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Chapter 1. The Real Numbers

1.2. Some Preliminaries

Exercise 1.2.1.

(a) Prove that 
√

3 is irrational. Does the same argument work to show that 
√

6 is
irrational?

(b) Where does the proof of Theorem 1.1.1 break down if we try to use it to prove 
√

4
is irrational?

Solution.

(a) Suppose there was a rational number 𝑝 = 𝑚
𝑛 , which we may assume is in lowest terms,

such that 𝑝2 = 3, i.e. such that 𝑚2 = 3𝑛2. It follows that 𝑚2 is divisible by 3; we claim
that this implies that 𝑚 is divisible by 3. Indeed, for any 𝑘 ∈ 𝐙 we have

(3𝑘 + 1)2 = 3(3𝑘2 + 2𝑘) + 1 and (3𝑘 + 2)2 = 3(3𝑘2 + 4𝑘 + 1) + 1.

Since 𝑚 is of the form 3𝑘 + 1 or 3𝑘 + 2 for some integer 𝑘 if 𝑚 is not divisible by 3, it
follows that

if 𝑚 is not divisible by 3, then 𝑚2 is not divisible by 3;

the contrapositive of this statement proves our claim.

Thus we may write 𝑚 = 3𝑘 for some 𝑘 ∈ 𝐙 and substitute this into the equation
𝑚2 = 3𝑛2 to obtain the equation 𝑛2 = 3𝑘2, from which it follows that 𝑛 is also divisible
by 3, contradicting our assumption that 𝑚 and 𝑛 had no common factors. We may
conclude that there is no rational number whose square is 3.

The same argument works to show that there is no rational number whose square is 6;
the crux of this argument is the implication

if 𝑚2 is divisible by 6, then 𝑚 is divisible by 6.

This can be seen using what we have already proved. If 𝑚2 is divisible by 6 = 2 ⋅ 3,
then 𝑚2 is divisible by 2 and 3. It follows that 𝑚 is divisible by 2 and 3 and hence that
𝑚 is divisible by 6.

(b) The argument breaks down when we try to assert that

if 𝑚2 is divisible by 4, then 𝑚 is divisible by 4.

This implication is false. For example, 22 = 4 is divisible by 4 but 2 is not divisible by
4.
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Exercise 1.2.2. Show that there is no rational number 𝑟 satisfying 2𝑟 = 3.

Solution. Suppose there was a rational number 𝑟 = 𝑚
𝑛 , which we may assume is in lowest

terms with 𝑛 > 0, such that 2𝑟 = 3. This implies that 2𝑚 = 3𝑛. Since 𝑛 > 0 gives 3𝑛 ≥ 3 and
2𝑚 < 2 for 𝑚 ≤ 0, it must be the case that 𝑚 > 0. It follows that the left-hand side of the
equation 2𝑚 = 3𝑛 is a positive even integer whereas the right-hand side is a positive odd
integer, which is a contradiction. We may conclude that there is no rational number 𝑟 such
that 2𝑟 = 3.

Exercise 1.2.3. Decide which of the following represent true statements about the na-
ture of sets. For any that are false, provide a specific example where the statement in
question does not hold.

(a) If 𝐴1 ⊇ 𝐴2 ⊇ 𝐴3 ⊇ 𝐴4 ⋯ are all sets containing an infinite number of elements,
then the intersection ⋂∞

𝑛=1 𝐴𝑛 is infinite as well.

(b) If 𝐴1 ⊇ 𝐴2 ⊇ 𝐴3 ⊇ 𝐴4 ⋯ are all finite, nonempty sets of real numbers, then the
intersection ⋂∞

𝑛=1 𝐴𝑛 is finite and nonempty.

(c) 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ 𝐶.

(d) 𝐴 ∩ (𝐵 ∩ 𝐶) = (𝐴 ∩ 𝐵) ∩ 𝐶.

(e) 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶).

Solution.

(a) This is false, as Example 1.2.2 shows.

(b) This is true and we can use the following lemma to prove it.

Lemma L.1. If (𝑎𝑛)∞
𝑛=1 is a decreasing sequence of positive integers, i.e.

𝑎𝑛+1 ≤ 𝑎𝑛 and 𝑎𝑛 ≥ 1 for all 𝑛 ∈ 𝐍, then (𝑎𝑛)∞
𝑛=1 must be eventually constant.

That is, there exists an 𝑁 ∈ 𝐍 such that 𝑎𝑛 = 𝑎𝑁  for all 𝑛 ≥ 𝑁 .

Proof. Let 𝐴 = {𝑎𝑛 : 𝑛 ∈ 𝐍}, which is non-empty and bounded below by 1. It fol-
lows from the well-ordering principle that 𝐴 has a least element, say min 𝐴 = 𝑎𝑁

for some 𝑁 ∈ 𝐍. Let 𝑛 > 𝑁  be given. It cannot be the case that 𝑎𝑛 < 𝑎𝑁 , since
this would contradict that 𝑎𝑁  is the least element of 𝐴, so we must have 𝑎𝑛 ≥ 𝑎𝑁 .
By assumption 𝑎𝑛 ≤ 𝑎𝑁  and so we may conclude that 𝑎𝑛 = 𝑎𝑁 . □

Consider the sequence (|𝐴𝑛|)∞
𝑛=1, where |𝐴𝑛| is the number of elements contained in 

𝐴𝑛. Because each 𝐴𝑛 is finite and non-empty, this is a sequence of positive integers.
Furthermore, this sequence is decreasing since the sets (𝐴𝑛)∞

𝑛=1 are nested:

𝐴1 ⊇ 𝐴2 ⊇ 𝐴3 ⊇ 𝐴4 ⊇ ⋯.
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We may now invoke Lemma L.1 to obtain an 𝑁 ∈ 𝐍 such that |𝐴𝑛| = |𝐴𝑁 | for all
𝑛 ≥ 𝑁 . Combining this equality with the inclusion 𝐴𝑛 ⊆ 𝐴𝑁  for each 𝑛 ≥ 𝑁 , we see
that 𝐴𝑛 = 𝐴𝑁  for all 𝑛 ≥ 𝑁 . It follows that ⋂∞

𝑛=1 𝐴𝑛 = 𝐴𝑁 , which by assumption is
finite and non-empty.

(c) This is false: let 𝐴 = 𝐵 = ∅ and 𝐶 = {0} and observe that

𝐴 ∩ (𝐵 ∪ 𝐶) = ∅ ≠ {0} = (𝐴 ∩ 𝐵) ∪ 𝐶.

(d) This is true, since

𝑥 ∈ 𝐴 ∩ (𝐵 ∩ 𝐶)) ⇔ 𝑥 ∈ 𝐴 and 𝑥 ∈ (𝐵 ∩ 𝐶) ⇔ 𝑥 ∈ 𝐴 and (𝑥 ∈ 𝐵 and 𝑥 ∈ 𝐶)

⇔ (𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵) and 𝑥 ∈ 𝐶 ⇔ 𝑥 ∈ (𝐴 ∩ 𝐵) and 𝑥 ∈ 𝐶 ⇔ 𝑥 ∈ (𝐴 ∩ 𝐵) ∩ 𝐶,

where we have used that logical conjunction (“and”) is associative for the third equiv-
alence. It follows that 𝑥 belongs to 𝐴 ∩ (𝐵 ∩ 𝐶) if and only if 𝑥 belongs to (𝐴 ∩ 𝐵) ∩ 𝐶,
which is to say that 𝐴 ∩ (𝐵 ∩ 𝐶) = (𝐴 ∩ 𝐵) ∩ 𝐶.

(e) This is true, since

𝑥 ∈ 𝐴 ∩ (𝐵 ∪ 𝐶) ⇔ 𝑥 ∈ 𝐴 and 𝑥 ∈ (𝐵 ∪ 𝐶) ⇔ 𝑥 ∈ 𝐴 and (𝑥 ∈ 𝐵 or 𝑥 ∈ 𝐶)

⇔ (𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵) or (𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐶) ⇔ 𝑥 ∈ (𝐴 ∩ 𝐵) or 𝑥 ∈ (𝐴 ∩ 𝐶)

⇔ 𝑥 ∈ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶),

where we have used that logical conjunction (“and”) distributes over logical disjunction
(“or”) for the third equivalence. It follows that 𝑥 belongs to 𝐴 ∩ (𝐵 ∪ 𝐶) if and only if
𝑥 belongs to (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶), which is to say that 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶).

Exercise 1.2.4. Produce an infinite collection of sets 𝐴1, 𝐴2, 𝐴3, … with the property
that every 𝐴𝑖 has an infinite number of elements, 𝐴𝑖 ∩ 𝐴𝑗 = ∅ for all 𝑖 ≠ 𝑗, and 
⋃∞

𝑖=1 𝐴𝑖 = 𝐍.

Solution. Arrange 𝐍 in a grid like so:

𝐴1

1
2
4
7
⋮

𝐴2

3
5
8
12
⋮

𝐴3

6
9
13
18
⋮

𝐴4

10
14
19
25
⋮

⋯

⋯
⋯
⋯
⋯
⋱

Now take 𝐴𝑖 to be the set of numbers appearing in the 𝑖th column.
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Exercise 1.2.5 (De Morgan's Laws). Let 𝐴 and 𝐵 be subsets of 𝐑.

(a) If 𝑥 ∈ (𝐴 ∩ 𝐵)c, explain why 𝑥 ∈ 𝐴c ∪ 𝐵c. This shows that (𝐴 ∩ 𝐵)c ⊆ 𝐴c ∪ 𝐵c.

(b) Prove the reverse inclusion (𝐴 ∩ 𝐵)c ⊇ 𝐴c ∪ 𝐵c, and conclude that
(𝐴 ∩ 𝐵)c = 𝐴c ∪ 𝐵c.

(c) Show (𝐴 ∪ 𝐵)c = 𝐴c ∩ 𝐵c by demonstrating inclusion both ways.

Solution.

(a) Observe that

𝑥 ∈ (𝐴 ∩ 𝐵)c ⇔ 𝑥 ∉ 𝐴 ∩ 𝐵 ⇔ not (𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵)

⇔ 𝑥 ∉ 𝐴 or 𝑥 ∉ 𝐵 ⇔ 𝑥 ∈ 𝐴c ∪ 𝐵c

(b) See part (a).

(c) The proof is similar to the one given in part (a).

𝑥 ∈ (𝐴 ∪ 𝐵)c ⇔ 𝑥 ∉ 𝐴 ∪ 𝐵 ⇔ not (𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵)

⇔ 𝑥 ∉ 𝐴 and 𝑥 ∉ 𝐵 ⇔ 𝑥 ∈ 𝐴c ∩ 𝐵c

The following Venn diagrams help to visualize De Morgan’s Laws. The blue regions are in-
cluded and the grey regions are excluded.

𝐴 𝐴 ∩ 𝐵 𝐵

(𝐴 ∩ 𝐵)c

𝐴 𝐴 ∩ 𝐵 𝐵

(𝐴 ∪ 𝐵)c

𝐴 𝐴 ∩ 𝐵 𝐵

𝐴c

𝐴 𝐴 ∩ 𝐵 𝐵

𝐵c
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Exercise 1.2.6.

(a) Verify the triangle inequality in the special case where 𝑎 and 𝑏 have the same sign.

(b) Find an efficient proof for all the cases at once by first demonstrating
(𝑎 + 𝑏)2 ≤ (|𝑎| + |𝑏|)2.

(c) Prove |𝑎 − 𝑏| ≤ |𝑎 − 𝑐| + |𝑐 − 𝑑| + |𝑑 − 𝑏| for all 𝑎, 𝑏, 𝑐, and 𝑑.

(d) Prove ||𝑎| − |𝑏|| ≤ |𝑎 − 𝑏|. (The unremarkable identity 𝑎 = 𝑎 − 𝑏 + 𝑏 may be use-
ful.)

Solution.

(a) First suppose that 𝑎 and 𝑏 are both non-negative, so that 𝑎 + 𝑏 is also non-negative;
it follows that |𝑎 + 𝑏| = 𝑎 + 𝑏 and |𝑎| + |𝑏| = 𝑎 + 𝑏. Thus the triangle inequality in this
case reduces to the evidently true statement 𝑎 + 𝑏 ≤ 𝑎 + 𝑏.

Now suppose that 𝑎 and 𝑏 are both negative, so that 𝑎 + 𝑏 is also negative; it follows
that |𝑎 + 𝑏| = −𝑎 − 𝑏 and |𝑎| + |𝑏| = −𝑎 − 𝑏. Thus the triangle inequality in this case
reduces to the evidently true statement −𝑎 − 𝑏 ≤ −𝑎 − 𝑏.

(b) Starting from the true statement 𝑎𝑏 ≤ |𝑎𝑏| and using that 𝑎2 = |𝑎|2 and |𝑎𝑏| = |𝑎||𝑏| for
any real numbers 𝑎 and 𝑏, observe that

2𝑎𝑏 ≤ 2|𝑎𝑏| ⇔ 𝑎2 + 2𝑎𝑏 + 𝑏2 ≤ |𝑎|2 + 2|𝑎||𝑏| + |𝑏|2

⇔ (𝑎 + 𝑏)2 ≤ (|𝑎| + |𝑏|)2 ⇔ |𝑎 + 𝑏|2 ≤ (|𝑎| + |𝑏|)2.

Because both |𝑎 + 𝑏| and |𝑎| + |𝑏| are non-negative, the inequality |𝑎 + 𝑏|2 ≤ (|𝑎| + |𝑏|)2

is equivalent to |𝑎 + 𝑏| ≤ |𝑎| + |𝑏|, as desired.

(c) We apply the triangle inequality twice:

|𝑎 − 𝑏| = |𝑎 − 𝑐 + 𝑐 − 𝑏| ≤ |𝑎 − 𝑐| + |𝑐 − 𝑏| ≤ |𝑎 − 𝑐| + |𝑐 − 𝑑| + |𝑑 − 𝑏|.

(d) Using the triangle inequality and the fact that | − 𝑎| = |𝑎| for any 𝑎 ∈ 𝐑, we find that

|𝑎| = |𝑎 − 𝑏 + 𝑏| ≤ |𝑎 − 𝑏| + |𝑏| ⇔ |𝑎| − |𝑏| ≤ |𝑎 − 𝑏|,

|𝑏| = |𝑏 − 𝑎 + 𝑎| ≤ |𝑏 − 𝑎| + |𝑎| = |𝑎 − 𝑏| + |𝑎| ⇔ |𝑏| − |𝑎| ≤ |𝑎 − 𝑏|.

Because ||𝑎| − |𝑏|| equals either |𝑎| − |𝑏| or |𝑏| − |𝑎|, it follows that ||𝑎| − |𝑏|| ≤ |𝑎 − 𝑏|.
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Exercise 1.2.7. Given a function 𝑓 and a subset 𝐴 of its domain, let 𝑓(𝐴) represent
the range of 𝑓 over the set 𝐴; that is, 𝑓(𝐴) = {𝑓(𝑥) : 𝑥 ∈ 𝐴}.

(a) Let 𝑓(𝑥) = 𝑥2. If 𝐴 = [0, 2] (the closed interval {𝑥 ∈ 𝐑 : 0 ≤ 𝑥 ≤ 2}) and
𝐵 = [1, 4], find 𝑓(𝐴) and 𝑓(𝐵). Does 𝑓(𝐴 ∩ 𝐵) = 𝑓(𝐴) ∩ 𝑓(𝐵) in this case? Does
𝑓(𝐴 ∪ 𝐵) = 𝑓(𝐴) ∪ 𝑓(𝐵)?

(b) Find two sets 𝐴 and 𝐵 for which 𝑓(𝐴 ∩ 𝐵) ≠ 𝑓(𝐴) ∩ 𝑓(𝐵).

(c) Show that, for an arbitrary function 𝑔 : 𝐑 → 𝐑, it is always true that
𝑔(𝐴 ∩ 𝐵) ⊆ 𝑔(𝐴) ∩ 𝑔(𝐵) for all sets 𝐴, 𝐵 ⊆ 𝐑.

(d) Form and prove a conjecture about the relationship between 𝑔(𝐴 ∪ 𝐵) and
𝑔(𝐴) ∪ 𝑔(𝐵) for an arbitrary function 𝑔.

Solution.

(a) Some straightforward calculations reveal that

𝑓(𝐴) = [0, 4], 𝑓(𝐴 ∩ 𝐵) = [1, 4], 𝑓(𝐴 ∪ 𝐵) = [0, 16],

𝑓(𝐵) = [1, 16], 𝑓(𝐴) ∩ 𝑓(𝐵) = [1, 4], 𝑓(𝐴) ∪ 𝑓(𝐵) = [0, 16].

From this we see that 𝑓(𝐴 ∩ 𝐵) = 𝑓(𝐴) ∩ 𝑓(𝐵) and 𝑓(𝐴 ∪ 𝐵) = 𝑓(𝐴) ∪ 𝑓(𝐵).

(b) Let 𝐴 = {−1} and 𝐵 = {1} and note that 𝑓(𝐴 ∩ 𝐵) = 𝑓(∅) = ∅, but

𝑓(𝐴) ∩ 𝑓(𝐵) = {1} ∩ {1} = {1} ≠ ∅.

(c) Observe that

𝑦 ∈ 𝑔(𝐴 ∩ 𝐵) ⇔ 𝑦 = 𝑔(𝑥) for some 𝑥 ∈ 𝐴 ∩ 𝐵

⇒ (𝑦 = 𝑔(𝑥1) for some 𝑥1 ∈ 𝐴) and (𝑦 = 𝑔(𝑥2) for some 𝑥2 ∈ 𝐵)

⇔ 𝑦 ∈ 𝑔(𝐴) and 𝑦 ∈ 𝑔(𝐵) ⇔ 𝑦 ∈ 𝑔(𝐴) ∩ 𝑔(𝐵).

It follows that 𝑦 belongs to 𝑔(𝐴) ∩ 𝑔(𝐵) whenever 𝑦 belongs to 𝑔(𝐴 ∩ 𝐵), which is to
say that 𝑔(𝐴 ∩ 𝐵) ⊆ 𝑔(𝐴) ∩ 𝑔(𝐵).

(d) We always have 𝑔(𝐴 ∪ 𝐵) = 𝑔(𝐴) ∪ 𝑔(𝐵); indeed,

𝑦 ∈ 𝑔(𝐴 ∪ 𝐵) ⇔ 𝑦 = 𝑔(𝑥) for some 𝑥 ∈ 𝐴 ∪ 𝐵

⇔ 𝑦 = 𝑔(𝑥) for some 𝑥 such that (𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵)

⇔ (𝑦 = 𝑔(𝑥1) for some 𝑥1 ∈ 𝐴) or (𝑦 = 𝑔(𝑥2) for some 𝑥2 ∈ 𝐵)

⇔ 𝑦 ∈ 𝑔(𝐴) or 𝑦 ∈ 𝑔(𝐵) ⇔ 𝑦 ∈ 𝑔(𝐴) ∪ 𝑔(𝐵).

It follows that 𝑔(𝐴 ∪ 𝐵) = 𝑔(𝐴) ∪ 𝑔(𝐵).

6 / 415



Exercise 1.2.8. Here are two important definitions related to a function 𝑓 : 𝐴 → 𝐵.
The function 𝑓 is one-to-one (1-1) if 𝑎1 ≠ 𝑎2 in 𝐴 implies that 𝑓(𝑎1) ≠ 𝑓(𝑎2) in 𝐵. The
function 𝑓 is onto if, given any 𝑏 ∈ 𝐵, it is possible to find an element 𝑎 ∈ 𝐴 for which 
𝑓(𝑎) = 𝑏.

Give an example of each or state that the request is impossible:

(a) 𝑓 : 𝐍 → 𝐍 that is 1-1 but not onto.

(b) 𝑓 : 𝐍 → 𝐍 that is onto but not 1-1.

(c) 𝑓 : 𝐍 → 𝐙 that is 1-1 and onto.

Solution.

(a) Let 𝑓 : 𝐍 → 𝐍 be given by 𝑓(𝑛) = 2𝑛. Notice that 𝑓 is injective since 𝑛 = 𝑚 if and only
if 2𝑛 = 2𝑚, but 𝑓 is not surjective since the range of 𝑓 contains only even numbers.

𝐍 1 2 3 ⋯

𝐍 1 2 3 4 5 6 ⋯

𝑓

(b) Let 𝑓 : 𝐍 → 𝐍 be given by 𝑓(1) = 1 and 𝑓(𝑛) = 𝑛 − 1 for 𝑛 ≥ 2. Notice that
𝑓(𝑛 + 1) = 𝑛 for any 𝑛 ∈ 𝐍, so that 𝑓 is surjective, but 𝑓 is not injective since
𝑓(1) = 𝑓(2) = 1.

𝐍 1 2 3 4 5 ⋯

𝐍 1 2 3 4 ⋯

𝑓

(c) Let 𝑓 : 𝐍 → 𝐙 be given by

𝑓(𝑛) =
⎩{
⎨
{⎧

𝑛
2 if 𝑛 is even,

−𝑛−1
2 if 𝑛 is odd.

𝐍 1 2 3 4 5 ⋯

𝐙 0 1 −1 2 −2 ⋯

𝑓

To see that 𝑓 is injective, let 𝑛 ≠ 𝑚 be given and consider these cases.
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Case 1. If 𝑛 and 𝑚 are both even, then 𝑓(𝑛) ≠ 𝑓(𝑚) since 𝑛 ≠ 𝑚 if and only if 
𝑛
2 ≠ 𝑚

2 .

Case 2. If 𝑛 and 𝑚 are both odd, then 𝑓(𝑛) ≠ 𝑓(𝑚) since 𝑛 ≠ 𝑚 if and only if 
−𝑛−1

2 ≠ −𝑚−1
2 .

Case 3. If 𝑛 and 𝑚 have opposite signs, say 𝑛 is even and 𝑚 is odd, then
𝑓(𝑛) ≠ 𝑓(𝑚) since 𝑓(𝑛) > 0 and 𝑓(𝑚) ≤ 0.

To see that 𝑓 is surjective, let 𝑛 ∈ 𝐙 be given. If 𝑛 > 0 then 𝑓(2𝑛) = 𝑛, and if 𝑛 ≤ 0
then 𝑓(−2𝑛 + 1) = 𝑛.

Exercise 1.2.9. Given a function 𝑓 : 𝐷 → 𝐑 and a subset 𝐵 ⊆ 𝐑, let 𝑓−1(𝐵)
be the set of all points from the domain 𝐷 that get mapped into 𝐵; that is,
𝑓−1(𝐵) = {𝑥 ∈ 𝐷 : 𝑓(𝑥) ∈ 𝐵}. This set is called the preimage of 𝐵.

(a) Let 𝑓(𝑥) = 𝑥2. If 𝐴 is the closed interval [0, 4] and 𝐵 is the closed interval [−1, 1],
find 𝑓−1(𝐴) and 𝑓−1(𝐵). Does 𝑓−1(𝐴 ∩ 𝐵) = 𝑓−1(𝐴) ∩ 𝑓−1(𝐵) in this case? Does 
𝑓−1(𝐴 ∪ 𝐵) = 𝑓−1(𝐴) ∪ 𝑓−1(𝐵)?

(b) The good behavior of preimages demonstrated in (a) is completely gen-
eral. Show that for an arbitrary function 𝑔 : 𝐑 → 𝐑, it is always true that
𝑔−1(𝐴 ∩ 𝐵) = 𝑔−1(𝐴) ∩ 𝑔−1(𝐵) and 𝑔−1(𝐴 ∪ 𝐵) = 𝑔−1(𝐴) ∪ 𝑔−1(𝐵) for all sets
𝐴, 𝐵 ⊆ 𝐑.

Solution.

(a) Some straightforward calculations reveal that

𝑓−1(𝐴) = [−2, 2], 𝑓−1(𝐴 ∩ 𝐵) = [−1, 1], 𝑓−1(𝐴 ∪ 𝐵) = [−2, 2],

𝑓−1(𝐵) = [−1, 1], 𝑓−1(𝐴) ∩ 𝑓−1(𝐵) = [−1, 1], 𝑓−1(𝐴) ∪ 𝑓−1(𝐵) = [−2, 2].

From this we see that

𝑓−1(𝐴 ∩ 𝐵) = 𝑓−1(𝐴) ∩ 𝑓−1(𝐵) and 𝑓−1(𝐴 ∪ 𝐵) = 𝑓−1(𝐴) ∪ 𝑓−1(𝐵).

(b) Observe that

𝑥 ∈ 𝑔−1(𝐴 ∩ 𝐵) ⇔ 𝑔(𝑥) ∈ 𝐴 ∩ 𝐵 ⇔ (𝑔(𝑥) ∈ 𝐴) and (𝑔(𝑥) ∈ 𝐵)

⇔ (𝑥 ∈ 𝑔−1(𝐴)) and (𝑥 ∈ 𝑔−1(𝐵)) ⇔ 𝑥 ∈ 𝑔−1(𝐴) ∩ 𝑔−1(𝐵).

Similarly,

𝑥 ∈ 𝑔−1(𝐴 ∪ 𝐵) ⇔ 𝑔(𝑥) ∈ 𝐴 ∪ 𝐵 ⇔ (𝑔(𝑥) ∈ 𝐴) or (𝑔(𝑥) ∈ 𝐵)

⇔ (𝑥 ∈ 𝑔−1(𝐴)) or (𝑥 ∈ 𝑔−1(𝐵)) ⇔ 𝑥 ∈ 𝑔−1(𝐴) ∪ 𝑔−1(𝐵).
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Exercise 1.2.10. Decide which of the following are true statements. Provide a short
justification for those that are valid and a counterexample for those that are not:

(a) Two real numbers satisfy 𝑎 < 𝑏 if and only if 𝑎 < 𝑏 + 𝜀 for every 𝜀 > 0.

(b) Two real numbers satisfy 𝑎 < 𝑏 if 𝑎 < 𝑏 + 𝜀 for every 𝜀 > 0.

(c) Two real numbers satisfy 𝑎 ≤ 𝑏 if and only if 𝑎 < 𝑏 + 𝜀 for every 𝜀 > 0.

Solution.

(a) This is false; the implication

if 𝑎 < 𝑏 + 𝜀 for every 𝜀 > 0, then 𝑎 < 𝑏

does not hold. The problem occurs when we consider the case where 𝑎 = 𝑏. For example,
we certainly have 1 < 1 + 𝜀 for every 𝜀 > 0 but of course 1 < 1 is false.

(b) See part (a).

(c) This is true. The implication

if 𝑎 ≤ 𝑏, then 𝑎 < 𝑏 + 𝜀 for every 𝜀 > 0

follows since 𝑎 ≤ 𝑏 < 𝑏 + 𝜀 for every 𝜀 > 0 and the implication

if 𝑎 > 𝑏, then 𝑎 ≥ 𝑏 + 𝜀 for some 𝜀 > 0

can be seen by taking 𝜀 = 𝑎 − 𝑏 > 0, so that 𝑏 + 𝜀 = 𝑎 ≤ 𝑎.

Exercise 1.2.11. Form the logical negation of each claim. One trivial way to do this
is to simply add “It is not the case that…” in front of each assertion. To make this
interesting, fashion the negation into a positive statement that avoids using the word
“not” altogether. In each case, make an intuitive guess as to whether the claim or its
negation is the true statement.

(a) For all real numbers 𝑎 < 𝑏, there exists an 𝑛 ∈ 𝐍 such that 𝑎 + 1/𝑛 < 𝑏.

(b) There exists a real number 𝑥 > 0 such that 𝑥 < 1/𝑛 for all 𝑛 ∈ 𝐍.

(c) Between every two distinct real numbers there is a rational number.

Solution.

(a) The negated statement is:

there exist real numbers 𝑎 < 𝑏 such that 𝑎 +
1
𝑛

≥ 𝑏  for all 𝑛 ∈ 𝐍.

The original statement is true and follows from the Archimedean Property (Theorem
1.4.2).

(b) The negated statement is:

for all 𝑥 > 0, there exists an 𝑛 ∈ 𝐍 such that
1
𝑛

≤ 𝑥.

9 / 415



The negated statement is true and again follows from the Archimedean Property (The-
orem 1.4.2).

(c) The negated statement is:

there are two distinct real numbers with no rational number between them.

The original statement is true; this is the density of 𝐐 in 𝐑 (Theorem 1.4.3).

Exercise 1.2.12. Let 𝑦1 = 6, and for each 𝑛 ∈ 𝐍 define 𝑦𝑛+1 = (2𝑦𝑛 − 6)/3.

(a) Use induction to prove that the sequence satisfies 𝑦𝑛 > −6 for all 𝑛 ∈ 𝐍.

(b) Use another induction argument to show that the sequence (𝑦1, 𝑦2, 𝑦3, …) is de-
creasing.

Solution.

(a) For 𝑛 ∈ 𝐍, let 𝑃(𝑛) be the statement that 𝑦𝑛 > −6. Since 𝑦1 = 6, the truth of 𝑃(1) is
clear. Suppose that 𝑃(𝑛) holds for some 𝑛 ∈ 𝐍 and observe that

𝑦𝑛+1 = 2
3𝑦𝑛 − 2 > 2

3(−6) − 2 = −6,

i.e. 𝑃(𝑛 + 1) holds. This completes the induction step and we may conclude that 𝑃(𝑛)
holds for all 𝑛 ∈ 𝐍.

(b) For 𝑛 ∈ 𝐍, let 𝑃(𝑛) be the statement that 𝑦𝑛+1 ≤ 𝑦𝑛. Since 𝑦1 = 6 and 𝑦2 = 2, the
truth of 𝑃(1) is clear. Suppose that 𝑃(𝑛) holds for some 𝑛 ∈ 𝐍 and observe that

𝑦𝑛+2 = 2
3𝑦𝑛+1 − 2 ≤ 2

3𝑦𝑛 − 2 = 𝑦𝑛+1,

i.e. 𝑃(𝑛 + 1) holds. This completes the induction step and we may conclude that 𝑃(𝑛)
holds for all 𝑛 ∈ 𝐍.
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Exercise 1.2.13. For this exercise, assume Exercise 1.2.5 has been successfully com-
pleted.

(a) Show how induction can be used to conclude that

(𝐴1 ∪ 𝐴2 ∪ ⋯ ∪ 𝐴𝑛)c = 𝐴c
1 ∩ 𝐴c

2 ∩ ⋯ ∩ 𝐴c
𝑛

for any finite 𝑛 ∈ 𝐍.

(b) It is tempting to appeal to induction to conclude that

(⋃
∞

𝑖=1
𝐴𝑖)

c

= ⋂
∞

𝑖=1
𝐴c

𝑖 ,

but induction does not apply here. Induction is used to prove that a particular
statement holds for every value of 𝑛 ∈ 𝐍, but this does not imply the validity of
the infinite case. To illustrate this point, find an example of a collection of sets 
𝐵1, 𝐵2, 𝐵3, … where ⋂∞

𝑖=1 𝐵𝑖 ≠ ∅ is true for every 𝑛 ∈ 𝐍, but ⋂∞
𝑖=1 𝐵𝑖 ≠ ∅ fails.

(c) Nevertheless, the infinite version of De Morgan’s Law stated in (b) is a valid state-
ment. Provide a proof that does not use induction.

Solution.

(a) For 𝑛 ∈ 𝐍, let 𝑃(𝑛) be the statement that (𝐴1 ∪ ⋯ ∪ 𝐴𝑛)c = 𝐴c
1 ∩ ⋯ ∩ 𝐴c

𝑛 for any sets
𝐴1, …, 𝐴𝑛. The truth of 𝑃(1) is clear. Suppose that 𝑃(𝑛) holds for some 𝑛 ∈ 𝐍, let 
𝐴1, …, 𝐴𝑛, 𝐴𝑛+1 be given, and observe that

(𝐴1 ∪ ⋯ ∪ 𝐴𝑛 ∪ 𝐴𝑛+1)
c = ((𝐴1 ∪ ⋯ ∪ 𝐴𝑛) ∪ (𝐴𝑛+1))

c

= (𝐴1 ∪ ⋯ ∪ 𝐴𝑛)c ∩ 𝐴c
𝑛+1 (Exercise 1.2.5)

= 𝐴c
1 ∩ ⋯ ∩ 𝐴c

𝑛 ∩ 𝐴c
𝑛+1, (induction hypothesis)

i.e. 𝑃(𝑛 + 1) holds. This completes the induction step and we may conclude that 𝑃(𝑛)
holds for all 𝑛 ∈ 𝐍.

(b) Let 𝐵𝑖 = {𝑖, 𝑖 + 1, 𝑖 + 2, …}, so that

𝐵1 = {1, 2, 3, …}, 𝐵2 = {2, 3, 4, …}, 𝐵3 = {3, 4, 5, …}, etc.

It is straightforward to verify that ⋂𝑛
𝑖=1 𝐵𝑖 = 𝐵𝑛 ≠ ∅ for any 𝑛 ∈ 𝐍. However, as Ex-

ample 1.2.2 shows, the intersection ⋂∞
𝑖=1 𝐵𝑖 is empty.

(c) Observe that

𝑥 ∈ (⋃
∞

𝑖=1
𝐴𝑖)

c

⇔ 𝑥 ∉ ⋃
∞

𝑖=1
𝐴𝑖 ⇔ 𝑥 ∉ 𝐴𝑖 for every 𝑖 ∈ 𝐍 ⇔ 𝑥 ∈ ⋂

∞

𝑖=1
𝐴c

𝑖 .

It follows that
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(⋃
∞

𝑖=1
𝐴𝑖)

c

= ⋂
∞

𝑖=1
𝐴c

𝑖 .
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1.3. The Axiom of Completeness

Exercise 1.3.1.

(a) Write a formal definition in the style of Definition 1.3.2 for the infimum or greatest
lower bound of a set.

(b) Now, state and prove a version of Lemma 1.3.8 for greatest lower bounds.

Solution.

(a) A real number 𝑡 is the greatest lower bound for a set 𝐴 ⊆ 𝐑 if it meets the following
two criteria:

(i) 𝑡 is a lower bound for 𝐴;

(ii) if 𝑏 is any lower bound for 𝐴, then 𝑏 ≤ 𝑡.

(b) Here is a version of Lemma 1.3.8 for greatest lower bounds.

Lemma L.2. If 𝑡 ∈ 𝐑 is a lower bound for a set 𝐴 ⊆ 𝐑, then 𝑡 = inf 𝐴 if and only
if for every choice of 𝜀 > 0, there exists an element 𝑎 ∈ 𝐴 satisfying 𝑎 < 𝑡 + 𝜀.

Proof. First, let us prove the implication

if 𝑡 = inf 𝐴, then for every 𝜀 > 0 there exists an 𝑎 ∈ 𝐴 such that 𝑎 < 𝑡 + 𝜀

by proving the contrapositive statement

if there exists an 𝜀 > 0 such that 𝑡 + 𝜀 ≤ 𝑎 for every 𝑎 ∈ 𝐴, then 𝑡 ≠ inf 𝐴.

If such an 𝜀 > 0 exists, then 𝑡 + 𝜀 is a lower bound for 𝐴 strictly greater than 𝑡;
it follows that 𝑡 is not the greatest lower bound for 𝐴, i.e. 𝑡 ≠ inf 𝐴.

Now let us prove the converse:

if for every 𝜀 > 0 there exists an 𝑎 ∈ 𝐴 such that 𝑎 < 𝑡 + 𝜀, then 𝑡 = inf 𝐴.

Suppose 𝑏 ∈ 𝐑 is such that 𝑏 > 𝑡. Letting 𝜀 = 𝑏 − 𝑡 > 0, we are guaranteed the
existence of an 𝑎 ∈ 𝐴 such that 𝑎 < 𝑡 + 𝜀 = 𝑏; it follows that 𝑏 is not a lower
bound for 𝐴. This proves the contrapositive of criterion (ii) in part (a) and we
may conclude that 𝑡 = inf 𝐴. □
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Exercise 1.3.2. Give an example of each of the following, or state that the request is
impossible.

(a) A set 𝐵 with inf 𝐵 ≥ sup 𝐵.

(b) A finite set that contains its infimum but not its supremum.

(c) A bounded subset of 𝐐 that contains its supremum but not its infimum.

Solution.

(a) Let 𝐵 = {0} and notice that inf 𝐵 = sup 𝐵 = 0.

(b) This is impossible. To see this, let us first use induction to show that any non-empty
finite subset of 𝐑 contains a minimum and a maximum element.

Lemma L.3. If 𝐸 ⊆ 𝐑 is non-empty and finite, then 𝐸 contains a minimum and
a maximum element.

Proof. For 𝑛 ∈ 𝐍, let 𝑃(𝑛) be the statement that any subset of 𝐑 containing 𝑛
elements has a minimum and a maximum element. For the base case 𝑃(1), simply
observe that min{𝑥} = max{𝑥} = 𝑥 for any 𝑥 ∈ 𝐑.

Suppose that 𝑃(𝑛) holds for some 𝑛 ∈ 𝐍 and let 𝐸 ⊆ 𝐑 be a set containing 𝑛 + 1
elements. Fix some 𝑥 ∈ 𝐸 and consider the set 𝐹 = 𝐸 ∖ {𝑥}, which contains 𝑛 el-
ements. Our induction hypothesis guarantees the existence of a minimum element
𝑎 = min 𝐹  and a maximum element 𝑏 = max 𝐹 , which must satisfy 𝑎 ≤ 𝑏. There
are now three cases; the conclusion is each case is straightforward to verify.

Case 1. If 𝑥 < 𝑎, then min 𝐸 = 𝑥 and max 𝐸 = 𝑏.

Case 2. If 𝑥 > 𝑏, then min 𝐸 = 𝑎 and max 𝐸 = 𝑥.

Case 3. If 𝑎 ≤ 𝑥 ≤ 𝑏, then min 𝐸 = 𝑎 and max 𝐸 = 𝑏.

In any case, the set 𝐸 has a minimum and a maximum element, i.e. 𝑃(𝑛 + 1)
holds. This completes the induction step and the proof. □

It is immediate from the definition of the supremum and the maximum of a set 𝐸 ⊆ 𝐑
that if max 𝐸 exists then sup 𝐸 = max 𝐸 (see Exercise 1.3.7); similarly, if min 𝐸 exists
then inf 𝐸 = min 𝐸. It follows that the given request is impossible: if 𝐸 ⊆ 𝐑 is finite,
then Lemma L.3 implies that min 𝐸 = inf 𝐸 and max 𝐸 = sup 𝐸 both exist and hence
𝐸 contains both its infimum and its supremum.

(c) Consider the bounded set 𝐸 = {𝑝 ∈ 𝐐 : 0 < 𝑝 ≤ 1}, which satisfies sup 𝐸 = 1 ∈ 𝐸 and
inf 𝐸 = 0 ∉ 𝐸.
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Exercise 1.3.3.

(a) Let 𝐴 be nonempty and bounded below, and define 𝐵 = {𝑏 ∈ 𝐑 : 𝑏 is a lower bound
for 𝐴}. Show that sup 𝐵 = inf 𝐴.

(b) Use (a) to explain why there is no need to assert that greatest lower bounds exist
as part of the Axiom of Completeness.

Solution.

(a) 𝐵 is non-empty since 𝐴 is bounded below, and 𝐵 is bounded above by any 𝑥 ∈ 𝐴;
there exists at least one such 𝑥 since 𝐴 is non-empty. It follows from the Axiom of
Completeness that sup 𝐵 exists. To see that sup 𝐵 = inf 𝐴, we need to show that sup 𝐵
satisfies criteria (i) and (ii) from Exercise 1.3.1 (a).

(i) First we need to prove that sup 𝐵 is a lower bound of 𝐴, i.e. if 𝑥 ∈ 𝐴 then
sup 𝐵 ≤ 𝑥. We will prove the contrapositive statement: if 𝑥 < sup 𝐵 then 𝑥 ∉ 𝐴.
If 𝑥 is strictly less than sup 𝐵, then 𝑥 cannot be an upper bound of 𝐵. Thus there
exists some 𝑏 ∈ 𝐵 such that 𝑥 < 𝑏. Since 𝑏 is a lower bound of 𝐴, it follows that 
𝑥 ∉ 𝐴.

(ii) Now we need to show that sup 𝐵 is the greatest lower bound of 𝐴. Indeed, suppose
𝑦 ∈ 𝐑 is a lower bound of 𝐴, so that 𝑦 ∈ 𝐵; it follows that 𝑦 ≤ sup 𝐵.

We may conclude that sup 𝐵 = inf 𝐴.

(b) Part (a) shows that the existence of the greatest lower bound for non-empty bounded
below subsets of 𝐑 is implied by the Axiom of Completeness; adding this existence as
part of the Axiom of Completeness would be redundant.

Exercise 1.3.4. Let 𝐴1, 𝐴2, 𝐴3, … be a collection of nonempty sets, each of which is
bounded above.

(a) Find a formula for sup(𝐴1 ∪ 𝐴2). Extend this to sup(⋃𝑛
𝑘=1 𝐴𝑘).

(b) Consider sup(⋃∞
𝑘=1 𝐴𝑘). Does the formula in (a) extend to the infinite case?

Solution.

(a) Let 𝑛 ∈ 𝐍 be given. For each 𝑘 ∈ {1, …, 𝑛}, the Axiom of Completeness guarantees that
sup 𝐴𝑘 exists. By Lemma L.3, the finite set {sup 𝐴1, …, sup 𝐴𝑘} has a maximum ele-
ment, say 𝑀 ; we claim that sup(⋃𝑛

𝑘=1 𝐴𝑘) = 𝑀 . To prove this, we must verify criteria
(i) and (ii) from Definition 1.3.2.

(i) If 𝑥 ∈ ⋃𝑛
𝑘=1 𝐴𝑘, then 𝑥 ∈ 𝐴𝑘 for some 𝑘 ∈ {1, …, 𝑛}; it follows that

𝑥 ≤ sup 𝐴𝑘 ≤ 𝑀 . Since 𝑥 was arbitrary, we see that 𝑀  is an upper bound for
⋃𝑛

𝑘=1 𝐴𝑘.
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(ii) If 𝑏 ∈ 𝐑 is an upper bound for ⋃𝑛
𝑘=1 𝐴𝑘, then 𝑏 must be an upper bound for each

𝐴𝑘. It follows that sup 𝐴𝑘 ≤ 𝑏 for each 𝑘 ∈ {1, …, 𝑛} and thus 𝑀 ≤ 𝑏.

We may conclude that sup(⋃𝑛
𝑘=1 𝐴𝑘) = 𝑀 .

(b) The proof given above does not extend to the infinite case, since the set 
{sup 𝐴1, sup 𝐴2, …} need not have a maximum. Indeed, it may be the case that 
sup(⋃∞

𝑘=1 𝐴𝑘) does not exist. For example, let 𝐴𝑘 = {𝑘}, which is non-empty and
bounded above with sup 𝐴𝑘 = 𝑘, but ⋃∞

𝑘=1 𝐴𝑘 = 𝐍, which does not have a supremum
in 𝐑.

Exercise 1.3.5. As in Example 1.3.7, let 𝐴 ⊆ 𝐑 be nonempty and bounded above, and
let 𝑐 ∈ 𝐑. This time define the set 𝑐𝐴 = {𝑐𝑎 : 𝑎 ∈ 𝐴}.

(a) If 𝑐 ≥ 0, show that sup(𝑐𝐴) = 𝑐 sup 𝐴.

(b) Postulate a similar type of statement for sup(𝑐𝐴) for the case 𝑐 < 0.

Solution.

(a) If 𝑐 = 0 then the result is clear, so suppose that 𝑐 > 0. For any 𝑥 ∈ 𝐴, notice that

𝑥 ≤ sup 𝐴 ⇔ 𝑐𝑥 ≤ 𝑐 sup 𝐴.

This demonstrates that 𝑐 sup 𝐴 is an upper bound of 𝑐𝐴.

Now observe that

𝑏 ∈ 𝐑 is an upper bound of 𝑐𝐴 ⇔ 𝑐𝑥 ≤ 𝑏 for all 𝑥 ∈ 𝐴

⇔ 𝑥 ≤ 𝑐−1𝑏 for all 𝑥 ∈ 𝐴 ⇔ 𝑐−1𝑏 is an upper bound of 𝐴.

It follows that sup 𝐴 ≤ 𝑐−1𝑏 and hence that 𝑐 sup 𝐴 ≤ 𝑏. We may conclude that 
sup(𝑐𝐴) = 𝑐 sup 𝐴.

(b) If 𝑐 < 0 and inf 𝐴 exists then sup(𝑐𝐴) = 𝑐 inf 𝐴. The proof is similar to part (a). For
any 𝑥 ∈ 𝐴, we have

inf 𝐴 ≤ 𝑥 ⇔ 𝑐𝑥 ≤ 𝑐 inf 𝐴,

so that 𝑐 inf 𝐴 is an upper bound of 𝑐𝐴.

Observe that

𝑏 ∈ 𝐑 is an upper bound of 𝑐𝐴 ⇔ 𝑐𝑥 ≤ 𝑏 for all 𝑥 ∈ 𝐴

⇔ 𝑐−1𝑏 ≤ 𝑥 for all 𝑥 ∈ 𝐴 ⇔ 𝑐−1𝑏 is an lower bound of 𝐴.

It follows that 𝑐−1𝑏 ≤ inf 𝐴 and hence that 𝑐 inf 𝐴 ≤ 𝑏. We may conclude that 
sup(𝑐𝐴) = 𝑐 inf 𝐴.

If inf 𝐴 doesn’t exist then sup(𝑐𝐴) doesn’t exist either, since for 𝑐 < 0 the set 𝐴 is
bounded below if and only if 𝑐𝐴 is bounded above. For example, 𝐴 = (−∞, 0) and
𝑐 = −1 gives 𝑐𝐴 = (0, ∞).
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Exercise 1.3.6. Given sets 𝐴 and 𝐵, define 𝐴 + 𝐵 = {𝑎 + 𝑏 : 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵}. Fol-
low these steps to prove that if 𝐴 and 𝐵 are nonempty and bounded above then
sup(𝐴 + 𝐵) = sup 𝐴 + sup 𝐵.

(a) Let 𝑠 = sup 𝐴 and 𝑡 = sup 𝐵. Show 𝑠 + 𝑡 is an upper bound for 𝐴 + 𝐵.

(b) Now let 𝑢 be an arbitrary upper bound for 𝐴 + 𝐵, and temporarily fix 𝑎 ∈ 𝐴. Show
𝑡 ≤ 𝑢 − 𝑎.

(c) Finally, show sup(𝐴 + 𝐵) = 𝑠 + 𝑡.

(d) Construct another proof of this same fact using Lemma 1.3.8.

Solution.

(a) For any 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 we have 𝑎 ≤ 𝑠 and 𝑏 ≤ 𝑡. It follows that 𝑎 + 𝑏 ≤ 𝑠 + 𝑡 and
thus 𝑠 + 𝑡 is an upper bound of 𝐴 + 𝐵.

(b) For any 𝑏 ∈ 𝐵 we have 𝑎 + 𝑏 ≤ 𝑢, which gives 𝑏 ≤ 𝑢 − 𝑎. This demonstrates that 𝑢 − 𝑎
is an upper bound for 𝐵 and so it follows that 𝑡 ≤ 𝑢 − 𝑎.

(c) Part (b) implies that for any 𝑎 ∈ 𝐴 we have 𝑡 ≤ 𝑢 − 𝑎, which gives 𝑎 ≤ 𝑢 − 𝑡. This
shows that 𝑢 − 𝑡 is an upper bound of 𝐴 and it follows that 𝑠 ≤ 𝑢 − 𝑡, i.e. 𝑠 + 𝑡 ≤ 𝑢.
Since 𝑢 was an arbitrary upper bound of 𝐴 + 𝐵, we may conclude that

sup(𝐴 + 𝐵) = 𝑠 + 𝑡 = sup 𝐴 + sup 𝐵.

(d) Let 𝜀 > 0 be given. By Lemma 1.3.8, there exist elements 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 
𝑠 − 𝜀

2 < 𝑎 and 𝑡 − 𝜀
2 < 𝑏, which implies that 𝑠 + 𝑡 − 𝜀 < 𝑎 + 𝑏. We showed in part (a)

that 𝑠 + 𝑡 is an upper bound of 𝐴 + 𝐵, so we may invoke Lemma 1.3.8 to conclude that
sup(𝐴 + 𝐵) = sup 𝐴 + sup 𝐵.

Exercise 1.3.7. Prove that if 𝑎 is an upper bound for 𝐴, and if 𝑎 is also an element of
𝐴, then it must be that 𝑎 = sup 𝐴.

Solution. Let 𝑏 ∈ 𝐑 be an upper bound of 𝐴. Since 𝑎 ∈ 𝐴, we must have 𝑎 ≤ 𝑏; it follows
that 𝑎 = sup 𝐴.

Exercise 1.3.8. Compute, without proofs, the suprema and infima (if they exist) of
the following sets:

(a) {𝑚/𝑛 : 𝑚, 𝑛 ∈ 𝐍 with 𝑚 < 𝑛}.

(b) {(−1)𝑚/𝑛 : 𝑚, 𝑛 ∈ 𝐍}.

(c) {𝑛/(3𝑛 + 1) : 𝑛 ∈ 𝐍}.

(d) {𝑚/(𝑚 + 𝑛) : 𝑚, 𝑛 ∈ 𝐍}.

Solution.
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(a) The supremum is 1 and the infimum is 0.

(b) The supremum is 1 and the infimum is −1.

(c) The supremum is 1
3  and the infimum is 1

4 .

(d) The supremum is 1 and the infimum is 0.

Exercise 1.3.9.

(a) If sup 𝐴 < sup 𝐵, show that there exists an element 𝑏 ∈ 𝐵 that is an upper bound
for 𝐴.

(b) Give an example to show that this is not always the case if we only assume 
sup 𝐴 ≤ sup 𝐵.

Solution.

(a) Let 𝜀 = sup 𝐵 − sup 𝐴 > 0. By Lemma 1.3.8, there exists some 𝑏 ∈ 𝐵 such that
sup 𝐵 − 𝜀 = sup 𝐴 < 𝑏. It follows that 𝑏 is an upper bound of 𝐴.

(b) If we let 𝐴 = 𝐵 = (0, 1) then sup 𝐴 = sup 𝐵 = 1, but no element of 𝐵 is an upper bound
of 𝐴.

Exercise 1.3.10 (Cut Property). The Cut Property of the real numbers is the fol-
lowing:

If 𝐴 and 𝐵 are nonempty, disjoint sets with 𝐴 ∪ 𝐵 = 𝐑 and 𝑎 < 𝑏 for all 𝑎 ∈ 𝐴 and
𝑏 ∈ 𝐵, then there exists 𝑐 ∈ 𝐑 such that 𝑥 ≤ 𝑐 whenever 𝑥 ∈ 𝐴 and 𝑥 ≥ 𝑐 whenever 
𝑥 ∈ 𝐵.

(a) Use the Axiom of Completeness to prove the Cut Property.

(b) Show that the implication goes the other way; that is, assume 𝐑 possesses the Cut
Property and let 𝐸 be a nonempty set that is bounded above. Prove sup 𝐸 exists.

(c) The punchline of parts (a) and (b) is that the Cut Property could be used in place
of the Axiom of Completeness as the fundamental axiom that distinguishes the
real numbers from the rational numbers. To drive this point home, give a concrete
example showing that the Cut Property is not a valid statement when 𝐑 is replaced
by 𝐐.

Solution.

(a) Suppose that 𝐴 and 𝐵 are non-empty disjoint subsets of 𝐑 such that 𝐴 ∪ 𝐵 = 𝐑
and 𝑎 < 𝑏 for all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Notice that 𝐴 is non-empty (by assumption) and
bounded above (because 𝐵 is non-empty); the Axiom of Completeness then implies
that 𝑐 = sup 𝐴 exists. It follows that 𝑥 ≤ 𝑐 for all 𝑥 ∈ 𝐴 and, since each element of 𝐵
is an upper bound of 𝐴, we also have 𝑥 ≥ 𝑐 for all 𝑥 ∈ 𝐵.

(b) Suppose that 𝐸 ⊆ 𝐑 is non-empty and bounded above. Define
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𝐴 = {𝑎 ∈ 𝐑 : 𝑎 is not an upper bound of 𝐸}

and 𝐵 = 𝐴c = {𝑏 ∈ 𝐑 : 𝑏 is an upper bound of 𝐸}.

Notice that 𝐵 is non-empty as 𝐸 is bounded above and 𝐴 is non-empty because
𝑥 − 1 ∈ 𝐴 for any 𝑥 ∈ 𝐸; we are guaranteed the existence of at least one 𝑥 ∈ 𝐸 as 𝐸 is
non-empty. Furthermore, 𝐴 and 𝐵 are evidently disjoint and satisfy 𝐴 ∪ 𝐵 = 𝐑.

Let 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 be given. Since 𝑎 is not an upper bound of 𝐸 there exists some 
𝑥 ∈ 𝐸 such that 𝑎 < 𝑥 and since 𝑏 is an upper bound of 𝐸, we must then have 𝑥 ≤ 𝑏; it
follows that 𝑎 < 𝑏. We may now invoke the Cut Property to obtain a 𝑐 ∈ 𝐑 such that
𝑥 ≤ 𝑐 for all 𝑥 ∈ 𝐴 and 𝑥 ≥ 𝑐 for all 𝑥 ∈ 𝐵.

We claim that 𝑐 = sup 𝐸. Since 𝐴 ∪ 𝐵 = 𝐑 and 𝐴 ∩ 𝐵 = ∅, exactly one of 𝑐 ∈ 𝐴 or
𝑐 ∈ 𝐵 holds. Suppose that 𝑐 ∈ 𝐴, i.e. 𝑐 is not an upper bound of 𝐸, which is the case if
and only if there is some 𝑡 ∈ 𝐸 such that 𝑐 < 𝑡. Observe that 𝑦 = 𝑐+𝑡

2  satisfies 𝑐 < 𝑦 < 𝑡,
so that 𝑦 ∈ 𝐴—but this contradicts the fact that 𝑥 ≤ 𝑐 for all 𝑥 ∈ 𝐴.

So it must be the case that 𝑐 ∈ 𝐵, i.e. 𝑐 is an upper bound of 𝐸. The Cut Property
guarantees that 𝑐 ≤ 𝑥 for all 𝑥 ∈ 𝐵. In other words, 𝑐 is less than all other upper bounds
of 𝐸; we may conclude that 𝑐 = sup 𝐸.

(c) A concrete example is given in the following lemma.

Lemma L.4. The sets

𝐴 = {𝑝 ∈ 𝐐 : 𝑝 < 0 or 𝑝2 < 2} and 𝐵 = {𝑝 ∈ 𝐐 : 𝑝 > 0 and 𝑝2 > 2}

satisfy the following properties:

(i) 𝐴 and 𝐵 are non-empty, 𝐴 ∪ 𝐵 = 𝐐, and 𝐴 ∩ 𝐵 = ∅;

(ii) 𝑝 < 𝑞 for all 𝑝 ∈ 𝐴 and 𝑞 ∈ 𝐵;

(iii) 𝐴 has no maximum element and 𝐵 has no minimum element.

Proof.

(i) Certainly 𝐴 and 𝐵 are non-empty. The negation of the statement “𝑝 < 0 or
𝑝2 < 2” is “𝑝 > 0 and 𝑝2 ≥ 2”; by Theorem 1.1.1, this negated statement is
equivalent to “𝑝 > 0 and 𝑝2 > 2” for 𝑝 ∈ 𝐐. Thus 𝐵 = 𝐐 ∖ 𝐴, from which
it follows that 𝐴 ∪ 𝐵 = 𝐐 and 𝐴 ∩ 𝐵 = ∅.

(ii) Let 𝑝 ∈ 𝐴 and 𝑞 ∈ 𝐵 be given. If 𝑝 ≤ 0 then certainly 𝑝 < 𝑞, so suppose that
𝑝 > 0. It must then be the case that 𝑝2 < 2, whence 𝑝2 < 𝑞2. Since 𝑝 and 𝑞
are positive, this implies that 𝑝 < 𝑞.

(iii) Let 𝑝 ∈ 𝐴 be given. We need to show that there exists some 𝑞 ∈ 𝐴 such that
𝑝 < 𝑞. If 𝑝 ≤ 0, we can take 𝑞 = 1; if 𝑝 > 0, so that 𝑝2 < 2, then define
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𝑞 = 𝑝 +
2 − 𝑝2

𝑝 + 2
=

2𝑝 + 2
𝑝 + 2

. (1)

Notice that 0 < 2−𝑝2

𝑝+2 , since 𝑝2 < 2, from which it follows that 𝑝 < 𝑞. A
straightforward calculation yields

2 − 𝑞2 =
2(2 − 𝑝2)
(𝑝 + 2)2 ;

again using that 𝑝2 < 2, we see that 2 − 𝑞2 > 0 and thus 𝑞 ∈ 𝐴.

Now let 𝑝 ∈ 𝐵 be given. We need to show that there exists some 𝑞 ∈ 𝐵 such
that 𝑞 < 𝑝. In fact, we can define 𝑞 by equation (1) again; an argument
similar to the one just given shows that 𝑞 < 𝑝 and 𝑞 ∈ 𝐵. □

Parts (i) and (ii) of Lemma L.4 show that the sets 𝐴 and 𝐵 satisfy the hypotheses of
the Cut Property. If the Cut Property held for 𝐐, then we would be able to obtain
a 𝑐 ∈ 𝐐 such that 𝑝 ≤ 𝑐 for all 𝑝 ∈ 𝐴 and 𝑐 ≤ 𝑞 for all 𝑞 ∈ 𝐵. Since 𝐴 ∪ 𝐵 = 𝐐 and
𝐴 ∩ 𝐵 = ∅, this implies that 𝑐 is either the maximum of 𝐴 or the minimum of 𝐵—but
this contradicts part (iii) of Lemma L.4. We may conclude that the Cut Property does
not hold for 𝐐.

Exercise 1.3.11. Decide if the following statements about suprema and infima are true
or false. Give a short proof for those that are true. For any that are false, supply an
example where the claim in question does not appear to hold.

(a) If 𝐴 and 𝐵 are nonempty, bounded, and satisfy 𝐴 ⊆ 𝐵, then sup 𝐴 ≤ sup 𝐵.

(b) If sup 𝐴 < inf 𝐵 for sets 𝐴 and 𝐵, then there exists a 𝑐 ∈ 𝐑 satisfying 𝑎 < 𝑐 < 𝑏
for all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵.

(c) If there exists a 𝑐 ∈ 𝐑 satisfying 𝑎 < 𝑐 < 𝑏 for all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, then
sup 𝐴 < inf 𝐵.

Solution.

(a) This is true. The Axiom of Completeness guarantees that sup 𝐴 and sup 𝐵 both exist.
Furthermore, since each element of 𝐴 is an element of 𝐵, any upper bound of 𝐵 must
be an upper bound of 𝐴 also. In particular, sup 𝐵 must be an upper bound of 𝐴; it
follows that sup 𝐴 ≤ sup 𝐵.

(b) This is true. Let 𝑐 = sup 𝐴+ inf 𝐵
2 , so that sup 𝐴 < 𝑐 < inf 𝐵, and notice that for any 𝑎 ∈ 𝐴

and 𝑏 ∈ 𝐵 we have

𝑎 ≤ sup 𝐴 < 𝑐 < inf 𝐵 ≤ 𝑏.

(c) This is false. Consider 𝐴 = (−1, 0) and 𝐵 = (0, 1), and notice that 𝑐 = 0 satisfies
𝑎 < 𝑐 < 𝑏 for all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, but sup 𝐴 = inf 𝐵 = 0.
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1.4. Consequences of Completeness

Exercise 1.4.1. Recall that 𝐈 stands for the set of irrational numbers.

(a) Show that if 𝑎, 𝑏 ∈ 𝐐, then 𝑎𝑏 and 𝑎 + 𝑏 are elements of 𝐐 as well.

(b) Show tha if 𝑎 ∈ 𝐐 and 𝑡 ∈ 𝐈, then 𝑎 + 𝑡 ∈ 𝐈 and 𝑎𝑡 ∈ 𝐈 as long as 𝑎 ≠ 0.

(c) Part (a) can be summarized by saying that 𝐐 is closed under addition and mul-
tiplication. Is 𝐈 closed under addition and multiplication? Given two irrational
numbers 𝑠 and 𝑡, what can we say about 𝑠 + 𝑡 and 𝑠𝑡?

Solution.

(a) Suppose 𝑎 = 𝑚
𝑛  and 𝑏 = 𝑝

𝑞  and observe that

𝑎𝑏 =
𝑚𝑝
𝑛𝑞

and 𝑎 + 𝑏 =
𝑚𝑞 + 𝑛𝑝

𝑛𝑞
,

which are rational numbers.

(b) Let 𝑎 ∈ 𝐐 be fixed. We want to prove that

𝑡 ∈ 𝐈 ⇒ 𝑎 + 𝑡 ∈ 𝐈.

To do this, we will prove the contrapositive statement

𝑎 + 𝑡 ∈ 𝐐 ⇒ 𝑡 ∈ 𝐐.

Simply observe that 𝑡 = (𝑎 + 𝑡) − 𝑎; it follows from part (a) that 𝑡 ∈ 𝐐.

Similarly, let 𝑎 ∈ 𝐐 be non-zero. We can show that

𝑎𝑡 ∈ 𝐐 ⇒ 𝑡 ∈ 𝐐

by observing that 𝑡 = 𝑎−1(𝑎𝑡) and appealing to part (a) to conclude that 𝑡 ∈ 𝐐.

(c) 𝐈 is not closed under addition or multiplication. For example, −
√

2 and 
√

2 are irra-
tional numbers, but their sum is the rational number 0 and their product is the rational
number −2. The sum or product of two irrational numbers may be irrational. For ex-
ample, it can be shown that 

√
2 +

√
3 and 

√
2
√

3 =
√

6 are irrational:

• For the irrationality of 
√

6, see Exercise 1.2.1 (a).

• For the irrationality of 
√

2 +
√

3, observe that 
√

2 +
√

3 is a root of the polyno-
mial 𝑥4 − 10𝑥2 + 1. The rational root theorem says that the only possible ratio-
nal roots of this polynomial are ±1—but neither of these solve the equation
𝑥4 − 10𝑥2 + 1 = 0.

So in general, we cannot say anything about the sum or product of two irrational num-
bers without more information.
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Exercise 1.4.2. Let 𝐴 ⊆ 𝐑 be nonempty and bounded above, and let 𝑠 ∈ 𝐑 have the
property that for all 𝑛 ∈ 𝐍, 𝑠 + 1

𝑛  is an upper bound for 𝐴 and 𝑠 − 1
𝑛  is not an upper

bound for 𝐴. Show 𝑠 = sup 𝐴.

Solution. If 𝑠 is not an upper of 𝐴 then there must exist some 𝑥 ∈ 𝐴 such that 𝑠 < 𝑥. By
the Archimedean Property (Theorem 1.4.2), there then exists a natural number 𝑛 such that
𝑠 + 1

𝑛 < 𝑥, which implies that 𝑠 + 1
𝑛  is not an upper bound of 𝐴. Given our hypothesis that

𝑠 + 1
𝑛  is an upper bound of 𝐴 for all 𝑛 ∈ 𝐍, we see that 𝑠 must be an upper bound of 𝐴.

Now let 𝜀 > 0 be given and usng the Archimedean Property (Theorem 1.4.2), pick a natural
number 𝑛 such that 1

𝑛 < 𝜀. By assumption 𝑠 − 1
𝑛  is not an upper bound of 𝐴, so there must

exist some 𝑥 ∈ 𝐴 such that 𝑠 − 1
𝑛 < 𝑥, which implies that 𝑠 − 𝜀 < 𝑥 since 1

𝑛 < 𝜀. Because 
𝜀 > 0 was arbitrary, we may invoke Lemma 1.3.8 to conclude that 𝑠 = sup 𝐴.

Exercise 1.4.3. Prove that ⋂∞
𝑛=1(0, 1/𝑛) = ∅. Notice that this demonstrates that the

intervals in the Nested Interval Property must be closeed for the conclusion of the the-
orem to hold.

Solution. Certainly 𝑥 ∉ ⋂∞
𝑛=1(0, 1

𝑛) if 𝑥 ≤ 0, so suppose that 𝑥 > 0. Use the Archimedean
Property (Theorem 1.4.2) to choose an 𝑁 ∈ 𝐍 such that 1

𝑁 < 𝑥; it follows that 𝑥 ∉ (0, 1
𝑁 )

and hence that 𝑥 ∉ ⋂∞
𝑛=1(0, 1

𝑛). We may conclude that ⋂∞
𝑛=1(0, 1

𝑛) = ∅.

Exercise 1.4.4. Let 𝑎 < 𝑏 be real numbers and consider the set 𝑇 = 𝐐 ∩ [𝑎, 𝑏]. Show 
sup 𝑇 = 𝑏.

Solution. Certainly 𝑏 is an upper bound of 𝑇 . Let 𝜀 > 0 be given. By the density of 𝐐 in 
𝐑 (Theorem 1.4.3), there exists a rational number 𝑝 satisfying

max{𝑎, 𝑏 − 𝜀} < 𝑝 < 𝑏.

It follows that 𝑝 ∈ 𝑇  and 𝑏 − 𝜀 < 𝑝 and hence, by Lemma 1.3.8, we may conclude that 
sup 𝑇 = 𝑏.

Exercise 1.4.5. Using Exercise 1.4.1, supply a proof for Corollary 1.4.4 by considering
the real numbers 𝑎 −

√
2 and 𝑏 −

√
2.

Solution. By the density of 𝐐 in 𝐑 (Theorem 1.4.3), there exists a rational number 𝑝 satis-
fying 𝑎 −

√
2 < 𝑝 < 𝑏 −

√
2, which gives 𝑎 < 𝑝 +

√
2 < 𝑏. Since 𝑝 +

√
2 is irrational (Exercise

1.4.1 (b)), the corollary is proved.
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Exercise 1.4.6. Recall that a set 𝐵 is dense in 𝐑 if an element of 𝐵 can be found
between any two real numbers 𝑎 < 𝑏. Which of the following sets are dense in 𝐑? Take
𝑝 ∈ 𝐙 and 𝑞 ∈ 𝐍 in every case.

(a) The set of all rational numbers 𝑝/𝑞 with 𝑞 ≤ 10.

(b) The set of all rational numbers 𝑝/𝑞 with 𝑞 a power of 2.

(c) The set of all rational numbers 𝑝/𝑞 with 10|𝑝| ≥ 𝑞.

Solution.

(a) This set is not dense in 𝐑. For 1 ≤ 𝑞 ≤ 10, observe that if 𝑝 ≥ 1 then 𝑝
𝑞 ≥ 1

10 , if 𝑝 ≤ −1
then 𝑝

𝑞 ≤ − 1
10 , and if 𝑝 = 0 then 𝑝

𝑞 = 0. So there is no element of this set between the
real numbers 1

1000  and 1
100 , for example.

(b) This set is dense in 𝐑. Let 𝑎 < 𝑏 be given real numbers. Using the Archimedean Prop-
erty (Theorem 1.4.2), let 𝑛 ∈ 𝐍 be such that 1

𝑛 < 𝑏 − 𝑎, which implies that 1
2𝑛 < 𝑏 − 𝑎.

Now let 𝑝 be the smallest integer greater than 2𝑛𝑎, so that 𝑝 − 1 ≤ 2𝑛𝑎 < 𝑝, and ob-
serve that

2𝑛𝑎 < 𝑝 ≤ 1 + 2𝑛𝑎 < 2𝑛𝑏;

it follows that 𝑝
2𝑛  lies between 𝑎 and 𝑏.

(c) This set is not dense in 𝐑. If 𝑝 > 0 then

10|𝑝| ≥ 𝑞 ⇔ 10𝑝 ≥ 𝑞 ⇔
𝑝
𝑞

≥
1
10

,

and if 𝑝 < 0 then

10|𝑝| ≥ 𝑞 ⇔ −10𝑝 ≥ 𝑞 ⇔
𝑝
𝑞

≤ −
1
10

.

We cannot have 𝑝 = 0 since 𝑞 is a positive integer. Thus there is no element of this set
between the real numbers 0 and 1

100 , for example.

Exercise 1.4.7. Finish the proof of Theorem 1.4.5 by showing that the assumption 
𝛼2 > 2 leads to a contradiction of the fact that 𝛼 = sup 𝑇 .

Solution. Assuming that 𝛼2 − 2 > 0, the Archimedean Property (Theorem 1.4.2) implies
that there is an 𝑛 ∈ 𝐍 such that

2𝛼
𝑛

< 𝑎2 − 2 ⇔ 2 < 𝛼2 −
2𝛼
𝑛

.

Let 𝛽 = 𝛼 − 1
𝑛  and note that since 1 ∈ 𝑇  we have 𝛼 ≥ 1 and hence 𝛽 ≥ 0; it follows that

𝑡 ≤ 𝛽 for all 𝑡 ∈ 𝑇  such that 𝑡 < 0. Now observe that
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𝛽2 = (𝛼 −
1
𝑛

)
2

= 𝛼2 −
2𝛼
𝑛

+
1
𝑛2 > 𝛼2 −

2𝛼
𝑛

> 2,

so that for any 𝑡 ∈ 𝑇  we have 𝑡2 < 2 < 𝛽2. If 𝑡 ∈ 𝑇  is such that 𝑡 ≥ 0 then the inequality 
𝑡2 < 𝛽2 implies that 𝑡 < 𝛽, as 𝛽 is also non-negative.

We have now shown that 𝑡 ≤ 𝛽 for all 𝑡 ∈ 𝑇 , i.e. 𝛽 is an upper bound for 𝑇—but this con-
tradicts the fact that 𝛼 is the supremum of 𝑇  since 𝛽 < 𝛼.

Exercise 1.4.8. Give an example of each or state that the request is impossible. When
a request is impossible, provide a compelling argument for why this is the case.

(a) Two sets 𝐴 and 𝐵 with 𝐴 ∩ 𝐵 = ∅, sup 𝐴 = sup 𝐵, sup 𝐴 ∉ 𝐴 and sup 𝐵 ∉ 𝐵.

(b) A sequence of nested open intervals 𝐽1 ⊇ 𝐽2 ⊇ 𝐽3 ⊇ ⋯ with ⋂∞
𝑛=1 𝐽𝑛 nonempty but

containing only a finite number of elements.

(c) A sequence of nested unbounded closed intervals 𝐿1 ⊇ 𝐿2 ⊇ 𝐿3 ⊇ ⋯
with ⋂∞

𝑛=1 𝐿𝑛 = ∅. (An unbounded closed interval has the form
[𝑎, ∞) = {𝑥 ∈ 𝐑 : 𝑥 ≥ 𝑎}.)

(d) A sequence of closed bounded (not necessarily nested) intervals 𝐼1, 𝐼2, 𝐼3, … with
the property that ⋂𝑁

𝑛=1 𝐼𝑛 ≠ ∅ for all 𝑁 ∈ 𝐍, but ⋂∞
𝑛=1 𝐼𝑛 = ∅.

Solution.

(a) Let

𝐴 = {−
1
2𝑛

: 𝑛 ∈ 𝐍} = {−
1
2
, −

1
4
, −

1
6
, …}

and 𝐵 = {−
1

2𝑛 − 1
: 𝑛 ∈ 𝐍} = {−1, −

1
3
, −

1
5
, …}.

Notice that 𝐴 ∩ 𝐵 = ∅ and sup 𝐴 = sup 𝐵 = 0, which belongs to neither 𝐴 nor 𝐵.

(b) If we let 𝐽𝑛 = (− 1
𝑛 , 1

𝑛) for 𝑛 ∈ 𝐍, then ⋂∞
𝑛=1 𝐽𝑛 = {0}.

(c) For 𝑛 ∈ 𝐍, let 𝐿𝑛 = [𝑛, ∞).

(d) This is impossible. To see this, let (𝐼𝑛)∞
𝑛=1 be a sequence of closed bounded intervals

satisfying ⋂𝑁
𝑛=1 𝐼𝑛 ≠ ∅ for every 𝑁 ∈ 𝐍. Define 𝐽𝑁 = ⋂𝑁

𝑛=1 𝐼𝑛 for 𝑁 ∈ 𝐍 and note that
any finite intersection of closed bounded intervals is a (possibly empty) closed bounded
interval. Thus:

• each 𝐽𝑁  is a closed bounded interval;

• these intervals are non-empty and nested, i.e. 𝐽1 ⊇ 𝐽2 ⊇ 𝐽3 ⊇ ⋯;

• ⋂∞
𝑛=1 𝐼𝑛 = ⋂∞

𝑁=1 𝐽𝑁 .

It then follows from the Nested Interval Property (Theorem 1.4.1) that
⋂∞

𝑛=1 𝐼𝑛 = ⋂∞
𝑁=1 𝐽𝑁  is non-empty.
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1.5. Cardinality

Exercise 1.5.1. Finish the following proof for Theorem 1.5.7.

Assume 𝐵 is a countable set. Thus, there exists 𝑓 : 𝐍 → 𝐵 which is 1-1 and onto. Let 
𝐴 ⊆ 𝐵 be an infinite subset of 𝐵. We must show that 𝐴 is countable.

Let 𝑛1 = min{𝑛 ∈ 𝐍 : 𝑓(𝑛) ∈ 𝐴}. As a start to a definition of 𝑔 : 𝐍 → 𝐴, set
𝑔(1) = 𝑓(𝑛1). Show how to inductively continue this process to product a 1-1 function 
𝑔 from 𝐍 onto 𝐴.

Solution. Given 𝑛1 = min 𝑓−1(𝐴) = min{𝑛 ∈ 𝐍 : 𝑓(𝑛) ∈ 𝐴}, we can construct a sequence 
(𝑛𝑘)∞

𝑘=1 of natural numbers recursively by defining

𝑛𝑘 = min(𝑓−1(𝐴) ∖ {𝑛1, …, 𝑛𝑘−1}) = min({𝑛 ∈ 𝐍 : 𝑓(𝑛) ∈ 𝐴} ∖ {𝑛1, …, 𝑛𝑘−1})

for 𝑘 ≥ 2. Because 𝐴 is infinite and 𝑓 is surjective, the set {𝑛 ∈ 𝐍 : 𝑓(𝑛) ∈ 𝐴} ∖ {𝑛1, …, 𝑛𝑘−1}
is non-empty (indeed, it must be infinite) for each 𝑘 ≥ 2; it follows that each 𝑛𝑘 is well-de-
fined. Here is an example construction of the sequence (𝑛𝑘)∞

𝑘=1 for some bĳection 𝑓 : 𝐍 → 𝐵.

1

𝑓(1) ∉ 𝐴

2

𝑓(2) ∈ 𝐴

3

𝑓(3) ∉ 𝐴

4

𝑓(4) ∈ 𝐴

5

𝑓(5) ∈ 𝐴

6

𝑓(6) ∉ 𝐴
𝑛1 = 2 𝑛2 = 4 𝑛3 = 5

⋯

⋯

It is clear from this construction that (𝑛𝑘)∞
𝑘=1 is a strictly increasing sequence.

Define 𝑔 : 𝐍 → 𝐴 by 𝑔(𝑘) = 𝑓(𝑛𝑘); we claim that 𝑔 is a bĳection. For injectivity, observe that

𝑔(ℓ) = 𝑔(𝑘) ⇔ 𝑓(𝑛ℓ) = 𝑓(𝑛𝑘) ⇔ 𝑛ℓ = 𝑛𝑘 ⇔ ℓ = 𝑘,

where we have used the injectivity of 𝑓 for the second equivalence and the strict monotonicity
of the sequence (𝑛𝑘)∞

𝑘=1 for the third equivalence.

For the surjectivity of 𝑔, let 𝑎 ∈ 𝐴 be given. Since 𝑓 is surjective, there is a positive integer
𝑁  such that 𝑓(𝑁) = 𝑎; we need to find some 𝑘 ∈ 𝐍 such that 𝑛𝑘 = 𝑁 . It cannot be the case
that 𝑁 < 𝑛1, otherwise 𝑛1 would not be the minimum of {𝑛 ∈ 𝐍 : 𝑓(𝑛) ∈ 𝐴}, so we must
have 𝑛1 ≤ 𝑁 . Given this, and the fact that (𝑛𝑘)∞

𝑘=1 is a strictly increasing sequence of natural
numbers, there must exist a 𝑘 ∈ 𝐍 such that 𝑛𝑘 ≤ 𝑁 < 𝑛𝑘+1. In fact, it must be the case
that 𝑛𝑘 = 𝑁 , otherwise 𝑛𝑘+1 would not be the minimum of {𝑛 ∈ 𝐍 : 𝑓(𝑛) ∈ 𝐴} ∖ {𝑛1, …, 𝑛𝑘}.
Thus 𝑔(𝑘) = 𝑓(𝑛𝑘) = 𝑓(𝑁) = 𝑎.
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Exercise 1.5.2. Review the proof of Theorem 1.5.6, part (ii) showing that 𝐑 is un-
countable, and then find the flaw in the following erroneous proof that 𝐐 is uncountable:

Assume, for contradiction, that 𝐐 is countable. Thus we can write 𝐐 = {𝑟1, 𝑟2, 𝑟3, …}
and, as before, construct a nested sequence of closed intervals with 𝑟𝑛 ∉ 𝐼𝑛. Our con-
struction implies ⋂∞

𝑛=1 𝐼𝑛 = ∅ while NIP implies ⋂∞
𝑛=1 𝐼𝑛 ≠ ∅. This contradiction implies

𝐐 must therefore be uncountable.

Solution. The construction does not imply that ⋂∞
𝑛=1 𝐼𝑛 = ∅; it only guarantees that this

intersection does not contain any rational numbers.

Exercise 1.5.3. Use the following outline to supply proofs for the statements in The-
orem 1.5.8.

(a) First, prove statement (i) for two countable sets, 𝐴1 and 𝐴2. Example 1.5.3 (ii)
may be a useful reference. Some technicalities can be avoided by first replacing 
𝐴2 with the set 𝐵2 = 𝐴2 ∖ 𝐴1 = {𝑥 ∈ 𝐴2 : 𝑥 ∉ 𝐴1}. The point of this is that the
union 𝐴1 ∪ 𝐵2 is equal to 𝐴1 ∪ 𝐴2 and the sets 𝐴1 and 𝐵2 are disjoint. (What
happens if 𝐵2 is finite?)

Now, explain how the more general statement in (i) follows.

(b) Explain why induction cannot be used to prove part (ii) of Theorem 1.5.8 from
part (i).

(c) Show how arranging 𝐍 into the two-dimensional array

1
2
4
7
11
⋮

3
5
8
12
⋯

6
9
13
⋯

10
14
⋯

15
⋯

⋯

leads to a proof of Theorem 1.5.8 (ii).

Solution.

(a) As noted, it will suffice to show that 𝐴1 ∪ 𝐵2 is countable, where 𝐵2 = 𝐴2 ∖ 𝐴1. Since
𝐴1 is countable, there exists a bĳection 𝑓 : 𝐍 → 𝐴1. Consider the following cases.

Case 1. If 𝐵2 is empty, then 𝐴1 ∪ 𝐵2 = 𝐴1, which is countable by assumption.

Case 2. Suppose that 𝐵2 is non-empty and finite, say 𝐵2 = {𝑥1, …, 𝑥𝑘} for some 𝑘 ∈ 𝐍.
Define 𝑔 : 𝐍 → 𝐴1 ∪ 𝐵2 by
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𝑔(𝑛) = {
𝑥𝑛 if 1 ≤ 𝑛 ≤ 𝑘,
𝑓(𝑛 − 𝑘) if 𝑘 < 𝑛.

𝐍 1 2 3 4 5 6 ⋯

𝐴1 ∪ 𝐵2 𝑥1 𝑥2 𝑥3 𝑓(1) 𝑓(2) 𝑓(3) ⋯

𝑔

𝐵2 𝐴1

The injectivity of 𝑔 follows as 𝐴1 and 𝐵2 are disjoint and 𝑓 is injective. For the surjec-
tivity of 𝑔, it is clear that every element of 𝐵2 belongs to the range of 𝑔; the surjectivity
of 𝑓 implies that the elements of 𝐴1 belong to the range of 𝑔 also.

Case 3. Suppose that 𝐵2 is infinite. Since 𝐵2 is a subset of the countable set 𝐴2,
Exercise 1.5.1 implies that 𝐵2 is countable, i.e. there exists a bĳection ℎ : 𝐍 → 𝐵2.
Define 𝑔 : 𝐍 → 𝐴1 ∪ 𝐵2 by

𝑔(𝑛) =
⎩{
⎨
{⎧𝑓(𝑛

2 ) if 𝑛 is even,

ℎ(𝑛+1
2 ) if 𝑛 is odd.

𝐍 1 2 3 4 5 ⋯

𝐴1 ∪ 𝐵2 ℎ(1) 𝑓(1) ℎ(2) 𝑓(2) ℎ(3) ⋯

𝑔

To see that 𝑔 is injective, suppose that 𝑚 and 𝑛 are distinct positive integers.

Case 3.1. If both of 𝑚 and 𝑛 are even then 𝑔(𝑚) ≠ 𝑔(𝑛) since 𝑓 is injective.

Case 3.2. If both of 𝑚 and 𝑛 are odd then 𝑔(𝑚) ≠ 𝑔(𝑛) since ℎ is injective.

Case 3.3. If one of 𝑚 and 𝑛 is even and the other is odd then 𝑔(𝑚) ≠ 𝑔(𝑛) since 𝑓
maps into 𝐴1, ℎ maps into 𝐵2, and 𝐴1 ∩ 𝐵2 = ∅.

To see that 𝑔 is surjective, let 𝑥 ∈ 𝐴1 ∪ 𝐵2 be given. Since 𝐴1 ∩ 𝐵2 = ∅, exactly one of
the statements 𝑥 ∈ 𝐴1 or 𝑥 ∈ 𝐵2 holds. Suppose 𝑥 ∈ 𝐴1. Because 𝑓 is surjective, there
is a positive integer 𝑛 such that 𝑓(𝑛) = 𝑥; it follows that 𝑔(2𝑛) = 𝑓(𝑛) = 𝑥. If 𝑥 ∈ 𝐵2,
then the surjectivity of ℎ implies that there is a positive integer 𝑛 such that ℎ(𝑛) = 𝑥;
it follows that 𝑔(2𝑛 − 1) = ℎ(𝑛) = 𝑥. We may conclude that 𝑔 is a bĳection and hence
that 𝐴1 ∪ 𝐵2 is countable.

A simple induction argument proves the more general statement in Theorem 1.5.8 (i).
Let 𝑃(𝑛) be the statement that for countable sets 𝐴1, …, 𝐴𝑛, the union 𝐴1 ∪ ⋯ ∪ 𝐴𝑛

is countable. The truth of 𝑃(1) is clear. Suppose that 𝑃(𝑛) holds for some 𝑛 ∈ 𝐍 and
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suppose we have countable sets 𝐴1, …, 𝐴𝑛, 𝐴𝑛+1. Let 𝐴′ = 𝐴1 ∪ ⋯ ∪ 𝐴𝑛; the induction
hypothesis guarantees that 𝐴′ is countable. Observe that

𝐴1 ∪ ⋯ ∪ 𝐴𝑛 ∪ 𝐴𝑛+1 = 𝐴′ ∪ 𝐴𝑛+1.

Since 𝐴′ and 𝐴𝑛+1 are countable, the union 𝐴′ ∪ 𝐴𝑛+1 is also countable by our previous
proof, i.e. 𝑃(𝑛 + 1) holds. This completes the induction step and the proof.

(b) Induction can only be used to show that a particular statement 𝑃(𝑛) holds for each
value of 𝑛 ∈ 𝐍.

(c) For each 𝑛 ∈ 𝐍 there exists a bĳection 𝑓𝑛 : 𝐍 → 𝐴𝑛. Let 𝑎𝑚𝑛 = 𝑓𝑛(𝑚) and arrange
these into another two-dimensional array like so:

𝑎11

𝑎21

𝑎31

𝑎41

𝑎51

𝑎12

𝑎22

𝑎32

𝑎42

𝑎13

𝑎23

𝑎33

𝑎14

𝑎24

𝑎15

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5

⋮

⋱

⋱

⋱

⋱

⋯

⋯

1

2

4

7

11

3

5

8

12

6

9

13

10

14

15

⋮

⋱

⋱

⋱

⋱

⋯

Since each 𝑓𝑛 is surjective, each element of ⋃∞
𝑛=1 𝐴𝑛 appears somewhere in the left

array. We define a function 𝑔 : ⋃∞
𝑛=1 𝐴𝑛 → 𝐍 by working through the grid along the di-

agonals (first 𝑎11, then 𝑎22, then 𝑎31, and so on), mapping an element 𝑎𝑚𝑛 to the natural
number appearing in the corresponding position in the right array. The 𝐴𝑛’s may have
elements in common; if we encounter an element 𝑎𝑚𝑛 that we have already seen before,
we simply skip this element and move on to the next one. In this way, we obtain an
injective function 𝑔. If we denote the range of 𝑔 by 𝐵 ⊆ 𝐍, then 𝑔 : ⋃∞

𝑛=1 𝐴𝑛 → 𝐵 is a
bĳection. Since the infinite set 𝐴1 is contained in the union ⋃∞

𝑛=1 𝐴𝑛 and 𝑔 is injective,
it must be the case that 𝐵 is infinite: Exercise 1.5.1 then implies that 𝐵 is countable,
i.e. there is a bĳection ℎ : 𝐍 → 𝐵. It follows that the function 𝑔−1 ∘ ℎ : 𝐍 → ⋃∞

𝑛=1 𝐴𝑛

is a bĳection and we may conclude that ⋃∞
𝑛=1 𝐴𝑛 is countable.

𝐍 𝐵 ⋃
∞

𝑛=1
𝐴𝑛

ℎ
𝑔−1

𝑔

𝑔−1 ∘ ℎ
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Exercise 1.5.4.

(a) Show (𝑎, 𝑏) ∼ 𝐑 for any interval (𝑎, 𝑏).

(b) Show that an unbounded interval like (𝑎, ∞) = {𝑥 : 𝑥 > 𝑎} has the same cardinal-
ity as 𝐑 as well.

(c) Using open intervals makes it more convenient to product the required 1-1, onto
functions, but it is not really necessary. Show that [0, 1) ∼ (0, 1) by exhibiting a
1-1 onto function between the two sets.

Solution.

(a) Let 𝑓 : (−1, 1) → 𝐑 be the bĳection given by 𝑓(𝑥) = 𝑥
𝑥2−1  (see Example 1.5.4) and let

𝑔 : (𝑎, 𝑏) → (−1, 1) be given by 𝑔(𝑥) = 2(𝑥−𝑎)
𝑏−𝑎 − 1; it is straightforward to verify that 𝑔 is

a bĳection. Thus (𝑎, 𝑏) ∼ (−1, 1) ∼ 𝐑 and it follows from Exercise 1.5.5 that (𝑎, 𝑏) ∼ 𝐑.

−1 0 1

−4

0

4

𝑓(𝑥) =
𝑥

𝑥2 − 1

𝑎 𝑎+𝑏
2 𝑏

−1

0

1

𝑔(𝑥) =
2(𝑥 − 𝑎)

𝑏 − 𝑎
− 1

(b) The bĳection 𝑓 : (𝑎, ∞) → (0, 1) given by 𝑓(𝑥) = 1
𝑥+1−𝑎  shows that (𝑎, ∞) ∼ (0, 1).

Since (0, 1) ∼ 𝐑 by part (a), Exercise 1.5.1 shows that (𝑎, ∞) ∼ 𝐑.

𝑎
0

1

𝑓(𝑥) =
1

𝑥 + 1 − 𝑎
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(c) Note that [0, 1) ∼ (0, 1] via the map 𝑥 ↦ 1 − 𝑥 and so, by Exercise 1.5.5, it will suffice
to show that (0, 1) ∼ (0, 1]. Define a function 𝑓 : (0, 1) → (0, 1] by

𝑓(𝑥) = {
1
𝑛 if 𝑥 = 1

𝑛+1 for some 𝑛 ∈ 𝐍,
𝑥 otherwise.

This function is a bĳection since it has an inverse 𝑓−1 : (0, 1] → (0, 1) given by

𝑓−1(𝑥) = {
1

𝑛+1 if 𝑥 = 1
𝑛 for some 𝑛 ∈ 𝐍,

𝑥 otherwise.

0 1
3

1
2 1

0

1/3

1/2

1

⋯

⋮

𝑓

0 1
3

1
2 1

0

1/3

1/2

1

⋯

⋮

𝑓−1

Exercise 1.5.5.

(a) Why is 𝐴 ∼ 𝐴 for every set 𝐴?

(b) Given sets 𝐴 and 𝐵, explain why 𝐴 ∼ 𝐵 is equivalent to asserting 𝐵 ∼ 𝐴.

(c) For three sets 𝐴, 𝐵, and 𝐶, show that 𝐴 ∼ 𝐵 and 𝐵 ∼ 𝐶 implies 𝐴 ∼ 𝐶. These
three properties are what is meant by saying that ∼ is an equivalence relation.

Solution.

(a) The identity function 𝑓 : 𝐴 → 𝐴 given by 𝑓(𝑥) = 𝑥 is a bĳection.

(b) Since 𝐴 ∼ 𝐵, there is a bĳection 𝑓 : 𝐴 → 𝐵. A function is bĳective if and only if it has
an inverse function 𝑓−1 : 𝐵 → 𝐴, which must also be bĳective.

(c) There are bĳections 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶. It follows that the composition
𝑔 ∘ 𝑓 : 𝐴 → 𝐶 is also a bĳection.

30 / 415



Exercise 1.5.6.

(a) Give an example of a countable collection of disjoint open intervals.

(b) Give an example of an uncountable collection of disjoint open intervals, or argue
that no such collection exists.

Solution.

(a) {(𝑛, 𝑛 + 1) : 𝑛 ∈ 𝐍} is a countable collection of disjoint open intervals.

(b) No such collection exists. If there was such a collection {𝐼𝑎 : 𝑎 ∈ 𝐴}, for some uncount-
able set 𝐴, then using the density of 𝐐 in 𝐑 we may choose a rational number 𝑟𝑎 ∈ 𝐼𝑎

for each 𝑎 ∈ 𝐴. Because the intervals are disjoint, each 𝑟𝑎 must be distinct, i.e. the map
𝑎 ↦ 𝑟𝑎 is an injection. It follows that {𝑟𝑎 : 𝑎 ∈ 𝐴} is an uncountable subset of 𝐐—but
this contradicts Theorem 1.5.6 (i) and Theorem 1.5.7.

Exercise 1.5.7. Consider the open interval (0, 1), and let 𝑆 be the set of points in the
open unit square; that is, 𝑆 = {(𝑥, 𝑦) : 0 < 𝑥, 𝑦 < 1}.

(a) Find a 1-1 function that maps (0, 1) into, but not necessarily onto, 𝑆. (This is easy.)

(b) Use the fact that every real number has a decimal expansion to product a 1-1
function that maps 𝑆 into (0, 1). Discuss whether the formulated function is onto.
(Keep in mind that any terminating decimal expansion such as .235 represents the
same real number as .234999…)

The Schröder-Bernstein Theorem discussed in Exercise 1.5.11 can now be applied to
conclude that (0, 1) ∼ 𝑆.

Solution.

(a) The map 𝑓 : (0, 1) → 𝑆 given by 𝑓(𝑥) = (𝑥, 1
2) is injective.

(b) For (𝑥, 𝑦) ∈ 𝑆, suppose 𝑥 has decimal representation 0.𝑥1𝑥2𝑥3… and 𝑦 has decimal
representation 0.𝑦1𝑦2𝑦3…, where if necessary we choose the decimal representation ter-
minating in 0’s. To define 𝑔 : 𝑆 → (0, 1), let 𝑔(𝑥, 𝑦) = 0.𝑥1𝑦1𝑥2𝑦2𝑥3𝑦3…

𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3

𝑥 = 0 . …

𝑔(𝑥, 𝑦) = 0 . 𝑥1 𝑦1 𝑥2 𝑦2 𝑥3 𝑦3 …

𝑦 = 0 . …

For the injectivity of 𝑔, suppose we have (𝑥, 𝑦) ≠ (𝑎, 𝑏) in 𝑆, so that at least one of 
𝑥 ≠ 𝑎 or 𝑦 ≠ 𝑏 holds. Assuming 𝑥 ≠ 𝑎 (the case where 𝑦 ≠ 𝑏 is handled similarly), let 
0.𝑥1𝑥2𝑥3… be the decimal representation of 𝑥 and let 0.𝑎1𝑎2𝑎3… be the decimal repre-
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sentation of 𝑎. Since 𝑥 ≠ 𝑎, there must be some index 𝑛 such that 𝑥𝑛 ≠ 𝑎𝑛. If 𝑔(𝑥, 𝑦)
has decimal representation 0.𝑠1𝑠2𝑠3… and 𝑔(𝑎, 𝑏) has decimal representation 0.𝑡1𝑡2𝑡3…,
then

𝑠2𝑛−1 = 𝑥𝑛 ≠ 𝑎𝑛 = 𝑡2𝑛−1.

This implies that 𝑔(𝑥, 𝑦) ≠ 𝑔(𝑎, 𝑏), provided it is not the case that 𝑔(𝑥, 𝑦) terminates
in 0’s and 𝑔(𝑎, 𝑏) terminates in 9’s, or vice versa. To rule this out, note that 𝑔(𝑎, 𝑏)
terminates in 9’s only if both 𝑎 and 𝑏 terminate in 9’s—but our construction specifically
chooses the decimal representations for 𝑎 and 𝑏 terminating in 0’s if necessary. The case
where 𝑔(𝑥, 𝑦) terminates in 9’s is handled similarly.

This function 𝑔 is not surjective since 0.1 does not belong to the range of 𝑔. Indeed,

𝑔(𝑥, 𝑦) = 0.𝑥1𝑦1𝑥2𝑦2… = 0.1000…

implies that 𝑦 = 0, but (𝑥, 0) ∉ 𝑆 for any 𝑥 ∈ (0, 1).

Exercise 1.5.8. Let 𝐵 be a set of positive real numbers with the property that adding
together any finite subset of elements from 𝐵 always gives a sum of 2 or less. Show 𝐵
must be finite or countable.

Solution. Suppose 𝑎 ∈ (0, 1]; we claim that 𝐵 ∩ (𝑎, 2] must be a (possibly empty) finite
set. By the Archimedean Property (Theorem 1.4.2), there is an 𝑛 ∈ 𝐍 such that 𝑛𝑎 > 2. If
𝐵 ∩ (𝑎, 2] contains at least 𝑛 elements, say {𝑏1, …, 𝑏𝑛}, then since each 𝑏𝑖 > 𝑎 we have

𝑏1 + ⋯ + 𝑏𝑛 > 𝑛𝑎 > 2.

This contradicts our hypotheses, so it must be the case that 𝐵 ∩ (𝑎, 2] contains less than 𝑛
elements. Our claim follows.

Any element of 𝐵 must be less than or equal to 2, so 𝐵 ⊆ (0, 2] and it follows that

𝐵 = ⋃
∞

𝑛=1
(𝐵 ∩ ( 1

𝑛 , 2]).

By our previous paragraph, each 𝐵 ∩ ( 1
𝑛 , 2] is a finite set. Thus the expression above shows

that 𝐵 is a countable union of finite sets and hence, by Theorem 1.5.8, 𝐵 is either finite or
countable.
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Exercise 1.5.9. A real number 𝑥 ∈ 𝐑 is called algebraic if there exist integers 
𝑎0, 𝑎1, 𝑎2, …, 𝑎𝑛 ∈ 𝐙, not all zero, such that

𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 = 0.

Said another way, a real number is algebraic if it is the root of a polynomial with inte-
ger coefficients. Real numbers that are not algebraic are called transcendental numbers.
Reread the last paragraph of Section 1.1. The final question posed here is closely related
to the question of whether or not transcendental numbers exist.

(a) Show that 
√

2, 3
√

2, and 
√

3 +
√

2 are algebraic.

(b) Fix 𝑛 ∈ 𝐍, and let 𝐴𝑛 be the algebraic numbers obtained as roots of polynomials
with integer coefficients that have degree 𝑛. Using the fact that every polynomial
has a finite number of roots, show that 𝐴𝑛 is countable.

(c) Now, argue that the set of all algebraic numbers is countable. What may we con-
clude about the set of transcendental numbers?

Solution.

(a)
√

2 is a root of the polynomial 𝑥2 − 2, 3
√

2 is a root of the polynomial 𝑥3 − 2, and√
3 +

√
2 is a root of the polynomial 𝑥4 − 10𝑥2 + 1.

(b) We will use the following useful corollary of Theorem 1.5.8 (ii).

Lemma L.5. If 𝐴1, …, 𝐴𝑛 are countable sets, then 𝐴1 × ⋯ × 𝐴𝑛 is also countable.

Proof. Suppose that 𝐴 and 𝐵 are countable sets, so that 𝐵 = {𝑏1, 𝑏2, 𝑏3, …}. For
each 𝑛 ∈ 𝐍, it is clear that the set 𝐴 × {𝑏𝑛} is countable. Now observe that

𝐴 × 𝐵 = ⋃
∞

𝑛=1
(𝐴 × {𝑏𝑛}).

It follows from Theorem 1.5.8 (ii) that 𝐴 × 𝐵 is countable. A straightforward
induction argument proves the general case. □

Let 𝑃𝑛 be the collection of polynomials with integer coefficients that have degree 𝑛, i.e.
𝑃𝑛 = {𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 : 𝑎𝑛, …, 𝑎0 ∈ 𝐙, 𝑎𝑛 ≠ 0}. Notice that

𝑃𝑛 ∼ (𝐙 ∖ {0}) × 𝐙 × ⋯ × 𝐙⏟⏟⏟⏟⏟
𝑛 times

via the map

𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 ↦ (𝑎𝑛, 𝑎𝑛−1, …, 𝑎1, 𝑎0).
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It follows from Lemma L.5 that 𝑃𝑛 is countable. For a polynomial 𝑝 ∈ 𝑃𝑛, let 𝑅𝑝 be
the set of its roots, i.e. 𝑅𝑝 = {𝑥 ∈ 𝐑 : 𝑝(𝑥) = 0}, and note that 𝑅𝑝 is always a finite
set. Now observe that

𝐴𝑛 = ⋃
𝑝∈𝑃𝑛

𝑅𝑝,

demonstrating that 𝐴𝑛 is a countable union of finite sets; it follows from Theorem 1.5.8
that 𝐴𝑛 is either finite or countable. Since 𝑛

√
𝑘 ∈ 𝐴𝑛 for each 𝑘 ∈ 𝐍 (it is a root of the

polynomial 𝑥𝑛 − 𝑘), we see that 𝐴𝑛 must be infinite and hence countable.

(c) If we let 𝐴 be the set of all algebraic numbers then 𝐴 = ⋃∞
𝑛=1 𝐴𝑛, i.e. 𝐴 is a countable

union of countable sets. It follows from Theorem 1.5.8 (ii) that 𝐴 is countable.

A consequence of this is that the set of transcendental numbers 𝐴c must be uncount-
able. To see this, note that 𝐑 = 𝐴 ∪ 𝐴c, the union of two countable sets is countable,
and 𝐑 is not countable.

Exercise 1.5.10.

(a) Let 𝐶 ⊆ [0, 1] be uncountable. Show that there exists 𝑎 ∈ (0, 1) such that 𝐶 ∩ [𝑎, 1]
is uncountable.

(b) Now let 𝐴 be the set of all 𝑎 ∈ (0, 1) such that 𝐶 ∩ [𝑎, 1] is uncountable, and let 
𝛼 = sup 𝐴. Is 𝐶 ∩ [𝛼, 1] an uncountable set?

(c) Does the statement in (a) remain true if “uncountable” is replaced by “infinite”?

Solution.

(a) If we suppose that for each 𝑎 ∈ (0, 1) the set 𝐶 ∩ [𝑎, 1] is countable, then we can express
𝐶 as a countable union of countable sets:

𝐶 = (𝐶 ∩ {0}) ∪ ⋃
∞

𝑛=2
(𝐶 ∩ [ 1

𝑛 , 1]).

This implies that 𝐶 is countable (Theorem 1.5.8 (ii)). Thus, given that 𝐶 is uncount-
able, there must exist some 𝑎 ∈ (0, 1) such that 𝐶 ∩ [𝑎, 1].

(b) Not necessarily. If 𝐶 = [0, 1], then for all 𝑎 ∈ (0, 1) we have 𝐶 ∩ [𝑎, 1] = [𝑎, 1], which is
uncountable. Thus 𝐴 = (0, 1), so that 𝛼 = 1, but 𝐶 ∩ [𝛼, 1] = {1} is not uncountable.

(c) The statement is no longer true in general. If we let 𝐶 = { 1
𝑛 : 𝑛 ∈ 𝐍} then no matter

which 𝑎 ∈ (0, 1) we choose, the intersection 𝐶 ∩ [𝑎, 1] is a finite set.
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Exercise 1.5.11 (Schröder-Bernstein Theorem). Assume there exists a 1-1 func-
tion 𝑓 : 𝑋 → 𝑌  and another 1-1 function 𝑔 : 𝑌 → 𝑋. Follow the steps to show that there
exists a 1-1, onto function ℎ : 𝑋 → 𝑌  and hence 𝑋 ∼ 𝑌 .

The strategy is to partition 𝑋 and 𝑌  into components

𝑋 = 𝐴 ∪ 𝐴′ and 𝑌 = 𝐵 ∪ 𝐵′

with 𝐴 ∩ 𝐴′ = ∅ and 𝐵 ∩ 𝐵′ = ∅, in such a way that 𝑓 maps 𝐴 onto 𝐵, and 𝑔 maps 𝐵′

onto 𝐴′.

(a) Explain how achieving this would lead to a proof that 𝑋 ∼ 𝑌 .

(b) Set 𝐴1 = 𝑋 ∖ 𝑔(𝑌 ) = {𝑥 ∈ 𝑋 : 𝑥 ∉ 𝑔(𝑌 )} (what happens if 𝐴1 = ∅?) and in-
ductively define a sequence of sets by letting 𝐴𝑛+1 = 𝑔(𝑓(𝐴𝑛)). Show
that {𝐴𝑛 : 𝑛 ∈ 𝐍} is a pairwise disjoint collection of subsets of 𝑋, while
{𝑓(𝐴𝑛) : 𝑛 ∈ 𝐍} is a similar collection in 𝑌 .

(c) Let 𝐴 = ⋃∞
𝑛=1 𝐴𝑛 and 𝐵 = ⋃∞

𝑛=1 𝑓(𝐴𝑛). Show that 𝑓 maps 𝐴 onto 𝐵.

(d) Let 𝐴′ = 𝑋 ∖ 𝐴 and 𝐵′ = 𝑌 ∖ 𝐵. Show 𝑔 maps 𝐵′ onto 𝐴′.

Solution.

(a) Abusing notation slightly, we have bĳections 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵′ → 𝐴′, and their in-
verses 𝑓−1 : 𝐵 → 𝐴 and 𝑔−1 : 𝐴′ → 𝐵′. Since 𝐴 ∩ 𝐴′ = ∅ and 𝐵 ∩ 𝐵′ = ∅, the functions
ℎ : 𝑋 → 𝑌  and ℎ′ : 𝑌 → 𝑋 given by

ℎ(𝑥) = {
𝑓(𝑥) if 𝑥 ∈ 𝐴,
𝑔−1(𝑥) if 𝑥 ∈ 𝐴′,

ℎ′(𝑦) = {
𝑓−1(𝑦) if 𝑦 ∈ 𝐵,
𝑔(𝑦) if 𝑦 ∈ 𝐵′

are well-defined. It is straightforward to verify that ℎ and ℎ′ are mutual inverses and
thus 𝑋 ∼ 𝑌 .

(b) If 𝐴1 is empty then 𝑋 = 𝑔(𝑌 ), i.e. 𝑔 is surjective. Since 𝑔 is injective by assumption, it
immediately follows that 𝑋 ∼ 𝑌  via 𝑔.

Let 𝑃(𝑛) be the statement that {𝐴1, …, 𝐴𝑛} is a pairwise disjoint collection of sets; to
prove that {𝐴𝑛 : 𝑛 ∈ 𝐍} is a pairwise disjoint collection, we will first use induction to
prove that 𝑃(𝑛) holds for all 𝑛 ∈ 𝐍. The truth of 𝑃(1) is clear, so suppose that 𝑃(𝑛)
holds for some 𝑛 ∈ 𝐍. To demonstrate the truth of 𝑃(𝑛 + 1), we need to show that
𝐴𝑘 ∩ 𝐴𝑛+1 = ∅ for all 1 ≤ 𝑘 ≤ 𝑛. Because 𝐴𝑛+1 = 𝑔(𝑓(𝐴𝑛)) ⊆ 𝑔(𝑌 ) and 𝐴1 = 𝑋 ∖ 𝑔(𝑌 ),
we see that 𝐴1 ∩ 𝐴𝑛+1 = ∅. If 𝑛 ≥ 2, suppose that 2 ≤ 𝑘 ≤ 𝑛 and observe that

𝐴𝑘 ∩ 𝐴𝑛+1 = 𝑔(𝑓(𝐴𝑘−1)) ∩ 𝑔(𝑓(𝐴𝑛))

= 𝑔(𝑓(𝐴𝑘−1 ∩ 𝐴𝑛)) (𝑓 and 𝑔 are injective)

= 𝑔(𝑓(∅)) (induction hypothesis)

= ∅.
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Hence 𝑃(𝑛 + 1) holds. This completes the induction step and it follows that 𝑃(𝑛) holds
for all 𝑛 ∈ 𝐍.

It is now straightforward to show that {𝐴𝑛 : 𝑛 ∈ 𝐍} is a pairwise disjoint collection of
sets. Let 𝐴𝑚 and 𝐴𝑛 be given and suppose without loss of generality that 𝑚 < 𝑛. By
the previous paragraph the collection {𝐴1, …, 𝐴𝑚, …, 𝐴𝑛} is pairwise disjoint and thus
𝐴𝑚 ∩ 𝐴𝑛 = ∅.

That {𝑓(𝐴𝑛) : 𝑛 ∈ 𝐍} is a pairwise disjoint collection now follows immediately from
the injectivity of 𝑓 .

(c) Observe that

𝑓(𝐴) = 𝑓(⋃
∞

𝑛=1
𝐴𝑛) = ⋃

∞

𝑛=1
𝑓(𝐴𝑛) = 𝐵,

where we have used that the image of a union is the union of the images; the proof of
this is similar to the proof of the special case given in Exercise 1.2.7 (d).

(d) Notice that

𝑏 ∈ 𝐵′ ⇔ 𝑏 ∉ 𝑓(𝐴𝑛) for all 𝑛 ∈ 𝐍

⇔ 𝑔(𝑏) ∉ 𝑔(𝑓(𝐴𝑛)) for all 𝑛 ∈ 𝐍 (𝑔 is injective)

⇔ 𝑔(𝑏) ∉ 𝐴𝑛+1 for all 𝑛 ∈ 𝐍

⇔ 𝑔(𝑏) ∉ 𝐴𝑛 for all 𝑛 ≥ 2.

Notice further that 𝑔(𝑦) ∉ 𝑋 ∖ 𝑔(𝑌 ) = 𝐴1 for any 𝑦 ∈ 𝑌 . It follows that

𝑏 ∈ 𝐵′ ⇔ 𝑔(𝑏) ∉ 𝐴𝑛 for all 𝑛 ∈ 𝐍 ⇔ 𝑔(𝑏) ∈ 𝐴′. (∗)

Thus 𝑔 maps 𝐵′ into 𝐴′. To see that 𝑔 : 𝐵′ → 𝐴′ is surjective, observe that for any
𝑎 ∈ 𝐴′ we have, in particular, 𝑎 ∉ 𝐴1 = 𝑋 ∖ 𝑔(𝑌 ), so that 𝑎 ∈ 𝑔(𝑌 ), i.e. 𝑎 = 𝑔(𝑦) for
some 𝑦 ∈ 𝑌 . It then follows from (∗) that 𝑦 ∈ 𝐵′.
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1.6. Cantor’s Theorem

Exercise 1.6.1. Show that (0, 1) is uncountable if and only if 𝐑 is uncountable. This
shows that Theorem 1.6.1 is equivalent to Theorem 1.5.6.

Solution. We have (0, 1) ∼ 𝐑 by Exercise 1.5.4 (a).

Exercise 1.6.2.

(a) Explain why the real number 𝑥 = .𝑏1𝑏2𝑏3𝑏4… cannot be 𝑓(1).

(b) Now, explain why 𝑥 ≠ 𝑓(2), and in general why 𝑥 ≠ 𝑓(𝑛) for any 𝑛 ∈ 𝐍.

(c) Point out the contradiction that arises from these observations and conclude that
(0, 1) is uncountable.

Solution.

(a) We have decimal expansions

𝑓(1) = 0.𝑎11𝑎12𝑎13𝑎14… and 𝑥 = 0.𝑏1𝑏2𝑏3𝑏4…

By construction, 𝑏1 ≠ 𝑎11. This implies that 𝑓(1) ≠ 𝑥, provided these decimal expan-
sions are not two different expansions of the same real number (for example, 0.3 and 
0.2999…). However, since the only way this can occur is when one decimal expansion
terminates in repeating 0’s and the other terminates in repeating 9’s, and the digits 
𝑏𝑛 are always either 2 or 3, we see that 0.𝑏1𝑏2𝑏3𝑏4… must be the unique decimal repre-
sentation of 𝑥.

(b) Since 0.𝑏1𝑏2𝑏3𝑏4… is the unique decimal expansion of the real number 𝑥 and 𝑏𝑛 ≠ 𝑎𝑛𝑛,
we have 𝑥 ≠ 𝑓(𝑛) for every 𝑛 ∈ 𝐍. Here is an example construction of 𝑥 given some
function 𝑓 : 𝐍 → (0, 1):

𝑓(1) = 0 . 9 2 8 4 7 6 …
𝑓(2) = 0 . 2 2 8 4 9 1 …
𝑓(3) = 0 . 9 9 1 0 2 5 …
𝑓(4) = 0 . 2 1 1 9 2 1 …
𝑓(5) = 0 . 1 2 5 7 2 3 …
𝑓(6) = 0 . 9 7 7 5 1 8 …

⋮
𝑥 = 0 . 2 3 2 2 3 2 …

Notice how the first digit (after the decimal point) of 𝑥 differs from the first digit of 
𝑓(1), the second digit of 𝑥 differs from the second digit of 𝑓(2), and so on.
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(c) The real number 𝑥 belongs to (0, 1) but not to the image of 𝑓 , which contradicts our
assumption that 𝑓 was surjective. It follows that there cannot exist a bĳection between
𝐍 and (0, 1). Since (0, 1) is infinite, we may conclude that (0, 1) is uncountable.

Exercise 1.6.3. Supply rebuttals to the following complaints about the proof of The-
orem 1.6.1

(a) Every rational number has a decimal expansion, so we could apply this same ar-
gument to show that the set of rational numbers between 0 and 1 is uncountable.
However, because we know that any subset of 𝐐 must be countable, the proof of
Theorem 1.6.1 must be flawed.

(b) Some numbers have two different decimal representations. Specifically, any decimal
expansion that terminates can also be written with repeating 9’s. For instance, 
1/2 can also be written as .5 or .4999… Doesn’t this cause some problems?

Solution.

(a) The problem with this reasoning is that the real number

𝑥 = 0.𝑏1𝑏2𝑏3𝑏4…

that we construct may not be rational. For example, consider the function
𝑓 : 𝐍 → (0, 1) ∩ 𝐐 given by

𝑓(1) = 0.3
𝑓(2) = 0.02
𝑓(3) = 0.003
𝑓(4) = 0.0003
𝑓(5) = 0.00002

𝑓(6) = 0.000003
𝑓(7) = 0.0000003
𝑓(8) = 0.00000003
𝑓(9) = 0.000000002

𝑓(10) = 0.0000000003

⋯

This results in 𝑥 = 0.2322322232…, which is not rational since its decimal expansion
does not repeat. So while 𝑥 does not belong to the image of 𝑓 , this is not a problem
because 𝑥 does not belong to (0, 1) ∩ 𝐐 either.

(b) We addressed this issue in Exercise 1.6.2 (a).

Exercise 1.6.4. Let 𝑆 be the set consisting of all sequences of 0’s and 1’s. Observe
that 𝑆 is not a particular sequence, but rather a large set whose elements are sequences;
namely,

𝑆 = {(𝑎1, 𝑎2, 𝑎3, …) : 𝑎𝑛 = 0 or 1}.

As an example, the sequence (1, 0, 1, 0, 1, 0, 1, 0, …) is an element of 𝑆, as is the sequence
(1, 1, 1, 1, 1, 1, …).

Give a rigorous argument showing that 𝑆 is uncountable.
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Solution. Suppose we have a function 𝑓 : 𝐍 → 𝑆. For each 𝑚 ∈ 𝐍, let 𝑎𝑚𝑛 be the element
in the 𝑛th position of 𝑓(𝑚), so that

𝑓(𝑚) = (𝑎𝑚1, 𝑎𝑚2, 𝑎𝑚3, 𝑎𝑚4, …) ∈ 𝑆.

Let 𝑏 = (𝑏1, 𝑏2, 𝑏3, 𝑏4, …) be the sequence given by

𝑏𝑛 = {
0 if 𝑎𝑛𝑛 = 1,
1 if 𝑎𝑛𝑛 = 0.

Notice that 𝑏 ∈ 𝑆 but 𝑏 ≠ 𝑓(𝑛) for any 𝑛 ∈ 𝐍, since 𝑏 differs from 𝑓(𝑛) in the 𝑛th position.
Here is an example construction of the sequence 𝑏, given some 𝑓 : 𝐍 → 𝑆:

𝑓(1) = (1, 0, 0, 1, 0, 1, …
𝑓(2) = (0, 0, 1, 1, 1, 0, …
𝑓(3) = (0, 1, 1, 0, 0, 0, …
𝑓(4) = (1, 1, 1, 1, 0, 0, …
𝑓(5) = (0, 0, 1, 0, 0, 1, …
𝑓(6) = (1, 0, 0, 1, 0, 1, …

⋮
𝑏 = (0, 1, 0, 0, 1, 0, …

Notice that 𝑏 differs from 𝑓(1) in the first position, from 𝑓(2) in the second position, and
so on.

Thus 𝑏 ∉ 𝑓(𝐍), so that 𝑓 is not a surjection. Since 𝑓 was arbitrary, it follows that there
can be no bĳection between 𝐍 and 𝑆. Certainly 𝑆 is infinite, so we may conclude that 𝑆 is
uncountable.

Exercise 1.6.5.

(a) Let 𝐴 = {𝑎, 𝑏, 𝑐}. List the eight elements of 𝑃(𝐴). (Do not forget that ∅ is consid-
ered to be a subset of every set.)

(b) If 𝐴 is finite with 𝑛 elements, show that 𝑃(𝐴) has 2𝑛 elements.

Solution.

(a) We have

𝑃(𝐴) = {∅, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}, {𝑎, 𝑏, 𝑐}}.

(b) To form a subset 𝐵 of 𝐴, for each element 𝑎 ∈ 𝐴 we must decide whether to include 
𝑎 in 𝐵 or not. This is a binary choice to be made for each of the 𝑛 elements of 𝐴; it
follows that there are 2𝑛 subsets of 𝐴. For example, here is a tree listing all 22 = 4
subsets of {𝑎, 𝑏}:
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𝑎 ∈ 𝐵?

yes 𝑏 ∈ 𝐵?

yes {𝑎, 𝑏}

no {𝑎}

no 𝑏 ∈ 𝐵?

yes {𝑏}

no ∅

Exercise 1.6.6.

(a) Using the particular set 𝐴 = {𝑎, 𝑏, 𝑐}, exhibit two different 1-1 mappings from 𝐴
into 𝑃(𝐴).

(b) Letting 𝐶 = {1, 2, 3, 4}, produce an example of a 1-1 map 𝑔 : 𝐶 → 𝑃(𝐶).

(c) Explain why, in parts (a) and (b), it is impossible to construct mappings that
are onto.

Solution.

(a) Here are two injections 𝑓 : 𝐴 → 𝑃(𝐴) and 𝑔 : 𝐴 → 𝑃(𝐴):

𝑓(𝑎) = {𝑎}, 𝑔(𝑎) = {𝑎, 𝑏},
𝑓(𝑏) = {𝑏}, 𝑔(𝑏) = {𝑏, 𝑐},
𝑓(𝑐) = {𝑐}, 𝑔(𝑐) = {𝑎, 𝑐}.

(b) Let 𝑔 be given by

𝑔(1) = {1}, 𝑔(3) = {3},
𝑔(2) = {2}, 𝑔(4) = {4}.

(c) The power set of a finite set 𝐴 always contains strictly more elements than 𝐴 (Exercise
1.6.5 (b)). For finite sets, it is impossible to construct a surjective function from a set 
𝐴 to a set 𝐵 if 𝐵 contains strictly more elements than 𝐴.

Exercise 1.6.7. Return to the particular functions constructed in Exercise 1.6.6 and
construct the subset 𝐵 that results using the preceding rule. In each case, note that 𝐵
is not in the range of the function used.

Solution. For all three functions from Exercise 1.6.6 we have 𝐵 = ∅, which does not belong
to the range of any of the functions.
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Exercise 1.6.8.

(a) First, show that the case 𝑎′ ∈ 𝐵 leads to a contradiction.

(b) Now, finish the argument by showing that the case 𝑎′ ∉ 𝐵 is equally unacceptable.

Solution.
(a) and (b). We have 𝑎′ ∈ 𝐵 if and only if 𝑎′ ∉ 𝑓(𝑎′) = 𝐵, which is a contradiction since 

𝑎′ either does or does not belong to 𝐵.

Exercise 1.6.9. Using the various tools and techniques developed in the last two sec-
tions (including the exercises from Section 1.5), give a compelling argument showing
that 𝑃(𝐍) ∼ 𝐑.

Solution. First, let us show that 𝑃(𝐍) ∼ 𝑆, where 𝑆 is the set of all binary sequences defined
in Exercise 1.6.4. Consider the function 𝑓 : 𝑃 (𝐍) → 𝑆 given by 𝑓(𝐸) = (𝑎1, 𝑎2, 𝑎3, …) where

𝑎𝑛 = {
1 if 𝑛 ∈ 𝐸,
0 if 𝑛 ∉ 𝐸.

For example, 𝑓({1, 3, 4, 6, 7, 10}) = (1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, …).

This function is a bĳection since it has an inverse 𝑓−1 : 𝑆 → 𝑃(𝐍) given by

𝑓−1(𝑎1, 𝑎2, 𝑎3, …) = {𝑛 ∈ 𝐍 : 𝑎𝑛 = 1}.

Now let us show that 𝑆 ∼ (0, 1). Consider the function 𝑔 : 𝑆 → (0, 1) given by

𝑔(𝑎1, 𝑎2, 𝑎3, …) = 0.5𝑎1𝑎2𝑎3…,

where 0.5𝑎1𝑎2𝑎3… is a decimal expansion (for example, 𝑔(1, 0, 1, 0, 0, 0, …) = 0.5101). This
function is injective since if 𝑎 = (𝑎1, 𝑎2, 𝑎3, …) ≠ 𝑏 = (𝑏1, 𝑏2, 𝑏3, …), then there must exist
some 𝑛 ∈ 𝐍 such that 𝑎𝑛 ≠ 𝑏𝑛. It follows that 𝑔(𝑎) ≠ 𝑔(𝑏), provided 𝑔(𝑎) = 0.5𝑎1𝑎2𝑎3… and
𝑔(𝑏) = 0.5𝑏1𝑏2𝑏3… are not two different decimal expansions of the same real number. This
cannot be the case since each 𝑎𝑖 and 𝑏𝑖 is either 0 or 1, and never 9.

Now consider the function ℎ : (0, 1) → 𝑆 given by

ℎ(𝑎) = ℎ(0.𝑎1𝑎2𝑎3…) = (𝑎1, 𝑎2, 𝑎3, …),

where 0.𝑎1𝑎2𝑎3… is the binary expansion of 𝑎 ∈ (0, 1), choosing that expansion which ter-
minates in 0’s if 𝑎 has two different binary expansions. This function is injective since if
𝑎 = 0.𝑎1𝑎2𝑎3… ≠ 𝑏 = 0.𝑏1𝑏2𝑏3…, then there must be some 𝑛 ∈ 𝐍 such that 𝑎𝑛 ≠ 𝑏𝑛. It fol-
lows that ℎ(𝑎) ≠ ℎ(𝑏).

The Schröder-Bernstein Theorem (Exercise 1.5.11) now implies that 𝑆 ∼ (0, 1). We showed
in Exercise 1.5.4 that (0, 1) ∼ 𝐑 and thus

𝑃(𝐍) ∼ 𝑆 ∼ (0, 1) ∼ 𝐑.
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In Exercise 1.5.5 we showed that ∼ is an equivalence relation, so the chain of equivalences
above allows us to conclude that 𝑃(𝐍) ∼ 𝐑.

Exercise 1.6.10. As a final exercise, answer each of the following by establishing a 1-1
correspondence with a set of known cardinality.

(a) Is the set of all functions from {0, 1} to 𝐍 countable or uncountable?

(b) Is the set of all functions from 𝐍 to {0, 1} countable or uncountable?

(c) Given a set 𝐵, a subset 𝒜 of 𝑃(𝐵) is called an antichain if no element of 𝒜 is a
subset of any other element of 𝒜. Does 𝑃(𝐍) contain an uncountable antichain?

Solution.

(a) Let 𝐍{0,1} be the set of all functions from {0, 1} to 𝐍. Consider the function
𝐹 : 𝐍{0,1} → 𝐍 × 𝐍 given by 𝐹(𝑓) = (𝑓(0), 𝑓(1)). This function is a bĳection since it
has an inverse 𝐹−1 : 𝐍 × 𝐍 → 𝐍{0,1} given by 𝐹−1(𝑎, 𝑏) = 𝑓 , where 𝑓 : {0, 1} → 𝐍 is
the function satisfying 𝑓(0) = 𝑎, 𝑓(1) = 𝑏. Thus

𝐍{0,1} ∼ 𝐍 × 𝐍 ∼ 𝐍,

where we have used Lemma L.5 for the second equivalence. We may conclude that 
𝐍{0,1} is countable.

(b) The set of all functions from 𝐍 to {0, 1} is nothing but the set 𝑆 of all binary sequences
defined in Exercise 1.6.4, since a function 𝑓 : 𝐍 → {0, 1} can be identified with the
sequence (𝑓(0), 𝑓(1), 𝑓(2), …). Thus the set of all functions from 𝐍 to {0, 1} is uncount-
able, since we showed that 𝑆 is uncountable in Exercise 1.6.4.

(c) We will construct an uncountable antichain contained in 𝑃(𝐍). Let 𝑝𝑚 be the 𝑚th

prime number, i.e. (𝑝1, 𝑝2, 𝑝3, 𝑝4, …) = (2, 3, 5, 7, …), and note that by the fundamental
theorem of arithmetic the map

𝐍 × 𝐍 → 𝐍
(𝑚, 𝑛) ↦ 𝑝𝑛

𝑚

is injective. Define a map Ψ : 𝑃(𝐍) ∖ {∅, 𝐍} → 𝑃(𝐍) by

Ψ(𝑋) = {𝑝𝑛
𝑚 : 𝑚 ∈ 𝑋, 𝑛 ∉ 𝑋}.

Let 𝒜 ⊆ 𝑃(𝐍) be the image of Ψ and let 𝑋 ≠ 𝑌  in 𝑃(𝐍) ∖ {∅, 𝐍} be given. Observe
that

𝑋 ≠ ∅ ⇒ there is some ℓ ∈ 𝑋,

𝑌 ≠ ∅ and 𝑌 ≠ 𝑋 ⇒ there is some 𝑚 ∈ 𝑌 such that 𝑚 ∉ 𝑋,

𝑌 ≠ 𝐍 ⇒ there is some 𝑛 ∉ 𝑌 .
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It follows that 𝑝𝑚
ℓ ∈ Ψ(𝑋) ∖ Ψ(𝑌 ) and 𝑝𝑛

𝑚 ∈ Ψ(𝑌 ) ∖ Ψ(𝑋), so that Ψ(𝑋) is not con-
tained in Ψ(𝑌 ) and Ψ(𝑌 ) is not contained in Ψ(𝑋). This demonstrates both that the
map Ψ is injective and that 𝒜 is an antichain. Since 𝑃(𝐍) ∖ {∅, 𝐍} is uncountable
(Exercise 1.6.9), it follows that 𝒜 ⊆ 𝑃(𝐍) is an uncountable antichain.
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Chapter 2. Sequences and Series

2.2. The Limit of a Sequence

Exercise 2.2.1. What happens if we reverse the order of the quantifiers in Definition
2.2.3?

Definition: A sequence (𝑥𝑛) verconges to 𝑥 if there exists an 𝜀 > 0 such that for all
𝑁 ∈ 𝐍 it is true that 𝑛 ≥ 𝑁  implies |𝑥𝑛 − 𝑥| < 𝜀.

Give an example of a vercongent sequence. Is there an example of a vercongent sequence
that is divergent? Can a sequence verconge to two different values? What exactly is
being described in this strange definition?

Solution. First observe that, by taking 𝑁 = 1 in the first statement,

(for all 𝑁 ∈ 𝐍, 𝑛 ≥ 𝑁 ⇒ |𝑥𝑛 − 𝑥| < 𝜀) ⇔ (for all 𝑛 ∈ 𝐍, |𝑥𝑛 − 𝑥| < 𝜀).

Thus a sequence verconges to 𝑥 if there exists an 𝜀 > 0 such that |𝑥𝑛 − 𝑥| < 𝜀 for all 𝑛 ∈ 𝐍,
or equivalently such that 𝑥𝑛 ∈ (𝑥 − 𝜀, 𝑥 + 𝜀) for all 𝑛 ∈ 𝐍.

For an example of a vercongent sequence that diverges, consider (𝑥𝑛) = (1, 0, 1, 0, …). This se-
quence verconges to 12  since |𝑥𝑛 − 1

2 | = 1
2 < 1 for all 𝑛 ∈ 𝐍. Now suppose that lim𝑛→∞ 𝑥𝑛 = 𝑥

for some 𝑥 ∈ 𝐑, so that there is some 𝑁 ∈ 𝐍 such that |𝑥𝑛 − 𝑥| < 1
2  whenever 𝑛 ≥ 𝑁 , and

observe that

1 = |𝑥𝑁 − 𝑥𝑁+1| ≤ |𝑥𝑁 − 𝑥| + |𝑥𝑁+1 − 𝑥| < 1
2 + 1

2 = 1,

i.e. 1 < 1. It follows that (𝑥𝑛) does not converge to any 𝑥 ∈ 𝐑.

A sequence can verconge to two different values. For example, the sequence (𝑥𝑛) = (0, 0, 0, …)
verconges to both 0 and 1:

|𝑥𝑛| = 0 < 1 for all 𝑛 ∈ 𝐍 and |𝑥𝑛 − 1| = 1 < 2 for all 𝑛 ∈ 𝐍.

This definition of “vercongence” describes the bounded sequences (see Definition 2.3.1): a
sequence which verconges to some 𝑥 ∈ 𝐑 must be bounded and conversely any bounded
sequence verconges to some 𝑥 ∈ 𝐑.
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Exercise 2.2.2. Verify, using the definition of convergence of a sequence, that the fol-
lowing sequences converge to the proposed limit.

(a) lim 2𝑛+1
5𝑛+4 = 2

5 .

(b) lim 2𝑛2

𝑛3+3 = 0.

(c) lim sin(𝑛2)
3√𝑛 = 0.

Solution.

(a) Let 𝜀 > 0 be given. Using the Archimedean Property (Theorem 1.4.2), let 𝑁 ∈ 𝐍 be
such that 𝑁 > 3

25𝜀  and observe that for 𝑛 ≥ 𝑁  we have

|
2𝑛 + 1
5𝑛 + 4

−
2
5
| =

3
25𝑛 + 20

<
3

25𝑛
≤

3
25𝑁

< 𝜀.

Thus lim𝑛→∞
2𝑛+1
5𝑛+4 = 2

5 .

1 5 10 15 20 25 30
𝑛

1
3

2
5

2𝑛+1
5𝑛+4

(b) Let 𝜀 > 0 be given. Using the Archimedean Property (Theorem 1.4.2), let 𝑁 ∈ 𝐍 be
such that 𝑁 > 2

𝜀  and observe that for 𝑛 ≥ 𝑁  we have

|
2𝑛2

𝑛3 + 3
| =

2𝑛2

𝑛3 + 3
<

2𝑛2

𝑛3 =
2
𝑛

≤
2
𝑁

< 𝜀.

It follows that lim𝑛→∞
2𝑛2

𝑛3+3 = 0.

1 5 10 15 20 25 30
𝑛

0

8
11

2𝑛2

𝑛3+3
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(c) Let 𝜀 > 0 be given. Using the Archimedean Property (Theorem 1.4.2), let 𝑁 ∈ 𝐍 be
such that 𝑁 > 1

𝜀3  and observe that for 𝑛 ≥ 𝑁  we have

|
sin(𝑛2)

3
√

𝑛
| =

|sin(𝑛2)|
3
√

𝑛
≤

1
3
√

𝑛
≤

1
3
√

𝑁
< 𝜀.

It follows that lim𝑛→∞
sin(𝑛2)

3√𝑛 = 0.

1 5 10 15 20 25 30
𝑛

−1

0

1

sin(𝑛2)
3√𝑛

Exercise 2.2.3. Describe what we would have to demonstrate in order to disprove each
of the following statements.

(a) At every college in the United States, there is a student who is at least seven
feet tall.

(b) For all colleges in the United States, there exists a professor who gives every stu-
dent a grade of either A or B.

(c) There exists a college in the United States where every student is at least six feet
tall.

Solution.

(a) We would have to find a college in the United States where every student is less than
seven feet tall.

(b) We would have to find a college in the United States where each professor gives at least
one student a grade of C or worse.

(c) We would have to show that every college in the United States has a student who is
less than six feet tall.
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Exercise 2.2.4. Give an example of each or state that the request is impossible. For
any that are impossible, give a compelling argument for why that is the case.

(a) A sequence with an infinite number of ones that does not converge to one.

(b) A sequence with an infinite number of ones that converges to a limit not equal
to one.

(c) A divergent sequence such that for every 𝑛 ∈ 𝐍, it is possible to find 𝑛 consecutive
ones somewhere in the sequence.

Solution.

(a) Consider the sequence (1, 0, 1, 0, …). This sequence has an infinite number of ones but,
as shown in Exercise 2.2.1, diverges.

(b) This is impossible. Suppose (𝑥𝑛) is such a sequence with lim𝑛→∞ 𝑥𝑛 = 𝑥 ≠ 1. There
then exists some 𝑁 ∈ 𝐍 such that |𝑥𝑛 − 𝑥| < |1 − 𝑥| whenever 𝑛 ≥ 𝑁 . Because this
sequence contains infinitely many ones, there must be some 𝑚 ≥ 𝑁  such that 𝑥𝑚 = 1
—but this implies that |𝑥𝑚 − 𝑥| = |1 − 𝑥| < |1 − 𝑥|, which is a contradiction.

(c) Consider the sequence

(𝑥𝑛) = (1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, …).

For each 𝑛 ∈ 𝐍 let 𝑚 = 𝑛(𝑛+1)
2  and note that we can find 𝑛 consecutive ones starting

at the 𝑚th position and, for 𝑛 ≥ 2, we can find a zero at the (𝑚 − 1)th position. Fur-
thermore, the sequence is divergent. If 𝑥 ∈ 𝐑 is such that lim𝑛→∞ 𝑥𝑛 = 𝑥, then there
must be some 𝑁 ∈ 𝐍 such that |𝑥𝑛 − 𝑥| < 1

2  whenever 𝑛 ≥ 𝑁 . Because the sequence
contains infinitely many ones and zeros, we can find indices 𝑘, ℓ ≥ 𝑁  such that 𝑥𝑘 = 1
and 𝑥ℓ = 0. It follows that

1 = |𝑥𝑘 − 𝑥ℓ| ≤ |𝑥𝑘 − 𝑥| + |𝑥ℓ − 𝑥| < 1
2 + 1

2 = 1,

i.e. 1 < 1. Thus (𝑥𝑛) does not converge to any 𝑥 ∈ 𝐑.

Exercise 2.2.5. Let [[𝑥]] be the greatest integer less than or equal to 𝑥. For example, 
[[𝜋]] = 3 and [[3]] = 3. For each sequence, find lim 𝑎𝑛 and verify it with the definition of
convergence.

(a) 𝑎𝑛 = [[5/𝑛]],

(b) 𝑎𝑛 = [[(12 + 4𝑛)/3𝑛]].

Reflecting on these examples, comment on the statement following Definition 2.2.3 that
“the smaller the 𝜀-neighborhood, the larger 𝑁  may have to be.”

Solution.

(a) Observe that
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𝑛 ≥ 6 ⇒ 0 < 5
𝑛 < 1 ⇒ 𝑎𝑛 = [[ 5

𝑛]] = 0.

So for any 𝜀 > 0, if we take 𝑁 = 6 then |𝑎𝑛| < 𝜀 for all 𝑛 ≥ 𝑁 ; it follows that 
lim𝑛→∞ 𝑎𝑛 = 0.

1 5 10 15
𝑛

0
1
2

5

𝑎𝑛 = [[ 5
𝑛]]

(b) We claim that lim𝑛→∞ 𝑎𝑛 = 1. Observe that

𝑛 ≥ 7 ⇒ 1
𝑛 < 1

6 ⇒ 4
𝑛 < 2

3 ⇒ 4
𝑛 + 1

3 < 1.

Hence for 𝑛 ≥ 7 we have

0 < 4
𝑛 + 1

3 < 1 ⇒ [[ 4
𝑛 + 1

3]] = 0.

So for any 𝜀 > 0, if we take 𝑁 = 7 then

𝑛 ≥ 𝑁 ⇒ [[𝑎𝑛 − 1]] = [[
12 + 4𝑛

3𝑛
− 1]] = [[

4
𝑛

+
1
3
]] = 0 < 𝜀.

Thus lim𝑛→∞ 𝑎𝑛 = 1.

1 5 10 15
𝑛

1

2

3

5

𝑎𝑛 = [[12+4𝑛
3𝑛 − 1]]

These examples demonstrate that taking smaller 𝜀-neighbourhoods may not require us to
take larger values of 𝑁 ; the same value of 𝑁  in each example works for every 𝜀-neighbour-
hood that we choose.
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Exercise 2.2.6. Prove Theorem 2.2.7. To get started, assume (𝑎𝑛) → 𝑎 and (𝑎𝑛) → 𝑏.
Now argue 𝑎 = 𝑏.

Solution. Let 𝜀 > 0 be given. There are positive integers 𝑁1 and 𝑁2 such that

𝑛 ≥ 𝑁1 ⇒ |𝑎𝑛 − 𝑎| < 𝜀
2 and 𝑛 ≥ 𝑁2 ⇒ |𝑎𝑛 − 𝑏| < 𝜀

2 .

Let 𝑁 = max{𝑁1, 𝑁2} and observe that for 𝑛 ≥ 𝑁  we have

|𝑎 − 𝑏| = |𝑎 − 𝑎𝑛 + 𝑎𝑛 − 𝑏| ≤ |𝑎𝑛 − 𝑎| + |𝑎𝑛 − 𝑏| < 𝜀
2 + 𝜀

2 = 𝜀.

Thus |𝑎 − 𝑏| < 𝜀 for any 𝜀 > 0; it follows from Theorem 1.2.6 that 𝑎 = 𝑏.

Exercise 2.2.7. Here are two useful definitions:

(i) A sequence (𝑎𝑛) is eventually in a set 𝐴 ⊆ 𝐑 if there exists an 𝑁 ∈ 𝐍 such that 
𝑎𝑛 ∈ 𝐴 for all 𝑛 ≥ 𝑁 .

(ii) A sequence (𝑎𝑛) is frequently in a set 𝐴 ⊆ 𝐑 if, for every 𝑁 ∈ 𝐍, there exists an 
𝑛 ≥ 𝑁  such that 𝑎𝑛 ∈ 𝐴.

(a) Is the sequence (−1)𝑛 eventually or frequently in the set {1}?

(b) Which definition is stronger? Does frequently imply eventually or does even-
tually imply frequently?

(c) Give an alternate rephrasing of Definition 2.2.3B using either frequently or
eventually. Which is the term we want?

(d) Suppose an infinite number of terms of a sequence (𝑥𝑛) are equal to 2. Is (𝑥𝑛)
necessarily eventually in the interval (1.9, 2.1)? Is it frequently in (1.9, 2.1)?

Solution.

(a) The sequence (−1)𝑛 is frequently but not eventually in the set {1}. To see this, let 
𝑁 ∈ 𝐍 be given. If 𝑁  is even, then (−1)𝑁 ∈ {1} and (−1)𝑁+1 ∉ {1}, and if 𝑁  is odd
then (−1)𝑁 ∉ {1} and (−1)𝑁+1 ∈ {1}. In any case, we can always find indices 𝑚, 𝑛 ≥ 𝑁
such that (−1)𝑚 ∉ {1} (this shows that the sequence is not eventually in {1}) and such
that (−1)𝑛 ∈ {1} (this shows that the sequence is frequently in {1}).

(b) Eventually is the stronger definition. Frequently does not imply eventually, as part (a)
shows, but eventually does imply frequently. To see this, suppose that (𝑎𝑛) is eventu-
ally in a set 𝐴, i.e. there is an 𝑁 ∈ 𝐍 such that 𝑎𝑛 ∈ 𝐴 for all 𝑛 ≥ 𝑁 . Let 𝑀 ∈ 𝐍 be
given, let 𝑛 = max{𝑀, 𝑁}, and observe that 𝑛 ≥ 𝑀  and 𝑎𝑛 ∈ 𝐴. It follows that (𝑎𝑛)
is frequently in 𝐴.

(c) The term we want is eventually. Here is a rephrasing of Definition 2.2.3B: a sequence 
(𝑎𝑛) converges to 𝑎 if, given any 𝜀 > 0, the sequence (𝑎𝑛) is eventually in the 𝜀-neigh-
bourhood 𝑉𝜀(𝑎) of 𝑎.
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(d) Such a sequence is not necessarily eventually in (1.9, 2.1). For example, consider the
sequence (𝑥𝑛) = (2, 0, 2, 0, 2, …). For any 𝑁 ∈ 𝐍, we can always find an index 𝑛 ≥ 𝑁
(either 𝑛 = 𝑁  or 𝑛 = 𝑁 + 1) such that 𝑥𝑛 = 0 ∉ (1.9, 2.1). However, such a sequence
must be frequently in (1.9, 2.1). Indeed, for any 𝑁 ∈ 𝐍 there must exist an index 𝑛 ≥ 𝑁
such that 𝑥𝑛 = 2 ∈ (1.9, 2.1), otherwise there would be only finitely many twos in the
sequence.

Exercise 2.2.8. For some additional practice with nested quantifiers, consider the fol-
lowing invented definition:

Let’s call a sequence (𝑥𝑛) zero-heavy if there exists 𝑀 ∈ 𝐍 such that for all 𝑁 ∈ 𝐍 there
exists 𝑛 satisfying 𝑁 ≤ 𝑛 ≤ 𝑁 + 𝑀  where 𝑥𝑛 = 0.

(a) Is the sequence (0, 1, 0, 1, 0, 1, …) zero-heavy?

(b) If a sequence is zero-heavy does it necessarily contain an infinite number of zeros?
If not, provide a counterexample.

(c) If a sequence contains an infinite number of zeros, is it necessarily zero-heavy? If
not, provide a counterexample.

(d) Form the logical negation of the above definition. That is, complete the sentence:
A sequence is not zero-heavy if ….

Solution.

(a) This sequence is zero-heavy: 𝑀 = 1 works. Indeed, let 𝑁 ∈ 𝐍 be given. If 𝑁  is odd then
let 𝑛 = 𝑁  and if 𝑁  is even then let 𝑛 = 𝑁 + 1. In either case we have 𝑁 ≤ 𝑛 ≤ 𝑁 + 1
and 𝑥𝑛 = 0.

(b) A zero-heavy sequence must contain an infinite number of zeros. To see this, suppose 
(𝑥𝑛) is a sequence with a finite number of zeros, i.e. there is an 𝑁 ∈ 𝐍 such that 
𝑥𝑛 ≠ 0 for all 𝑛 ≥ 𝑁 . It follows that, no matter which 𝑀  we choose, we will never be
able to find 𝑛 ∈ 𝐍 with 𝑁 ≤ 𝑛 ≤ 𝑁 + 𝑀  and 𝑥𝑛 = 0. Thus the sequence (𝑥𝑛) is not
zero-heavy.

(c) A sequence with an infinite number of zeros is not necessarily zero-heavy. For a coun-
terexample, consider the sequence

(𝑥𝑛) = (1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, …).

This sequence contains infinitely many zeros, but is not zero-heavy. To see this, let 
𝑀 ∈ 𝐍 be given. It is always possible to find 𝑀  consecutive ones in the sequence (see
Exercise 2.2.4 (c)); suppose this string of ones starts at 𝑥𝑁 = 1. It follows that for each
𝑛 ∈ 𝐍 satisfying 𝑁 ≤ 𝑛 ≤ 𝑁 + 𝑀  we have 𝑥𝑛 = 1 ≠ 0. Thus (𝑥𝑛) is not zero-heavy.

(d) A sequence is not zero-heavy if for every 𝑀 ∈ 𝐍 there exists an 𝑁 ∈ 𝐍 such that 𝑥𝑛 ≠ 0
for each 𝑛 ∈ 𝐍 satisfying 𝑁 ≤ 𝑛 ≤ 𝑁 + 𝑀 .
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2.3. The Algebraic and Order Limit Theorems

Exercise 2.3.1. Let 𝑥𝑛 ≥ 0 for all 𝑛 ∈ 𝐍.

(a) If (𝑥𝑛) → 0, show that (√𝑥𝑛) → 0.

(b) If (𝑥𝑛) → 𝑥, show that (√𝑥𝑛) →
√

𝑥.

Solution.

(a) Let 𝜀 > 0 be given. Since 𝑥𝑛 → 0, there exists an 𝑛 ∈ 𝐍 such that

𝑛 ≥ 𝑁 ⇒ |𝑥𝑛| = 𝑥𝑛 < 𝜀2 ⇔ √𝑥𝑛 < 𝜀.

It follows that √𝑥𝑛 → 0.

(b) By the Order Limit Theorem (Theorem 2.3.4) we must have 𝑥 ≥ 0. The case 𝑥 = 0
was handled in part (a) so suppose that 𝑥 > 0, which gives 

√
𝑥 > 0. For each 𝑛 ∈ 𝐍,

observe that

|√𝑥𝑛 −
√

𝑥| =
|√𝑥𝑛 −

√
𝑥|(√𝑥𝑛 −

√
𝑥)

√𝑥𝑛 +
√

𝑥
=

|𝑥𝑛 − 𝑥|
√𝑥𝑛 +

√
𝑥

≤
|𝑥𝑛 − 𝑥|

√
𝑥

.

Let 𝜀 > 0 be given. Since 𝑥𝑛 → 𝑥, there exists an 𝑁 ∈ 𝐍 such that |𝑥𝑛 − 𝑥| < 𝜀
√

𝑥
whenever 𝑛 ≥ 𝑁 . For 𝑛 ≥ 𝑁  it follows that

|√𝑥𝑛 −
√

𝑥| ≤
|𝑥𝑛 − 𝑥|

√
𝑥

< 𝜀.

Thus √𝑥𝑛 →
√

𝑥.

Exercise 2.3.2. Using only definition 2.2.3, prove that if (𝑥𝑛) → 2 then

(a) (2𝑥𝑛−1
3 ) → 1;

(b) (1/𝑥𝑛) → 1/2.

Solution.

(a) Let 𝜀 > 0 be given. Since 𝑥𝑛 → 2, there exists an 𝑁 ∈ 𝐍 such that |𝑥𝑛 − 2| < 3𝜀
2  when-

ever 𝑛 ≥ 𝑁 . For such 𝑛 we then have

|
2𝑥𝑛 − 1

3
− 1| = |

2𝑥𝑛 − 4
3

| = 2
3 |𝑥𝑛 − 2| < 𝜀.

It follows that 2𝑥𝑛−1
3 → 1.

(b) Since 𝑥𝑛 → 2, there is an 𝑁1 ∈ 𝐍 such that |𝑥𝑛 − 2| < 1 whenever 𝑛 ≥ 𝑁1. For 𝑛 ≥ 𝑁1

we then have
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2 ≤ |𝑥𝑛 − 2| + |𝑥𝑛| < 1 + |𝑥𝑛| ⇒
1

|𝑥𝑛|
< 1.

Let 𝜀 > 0 be given. Since 𝑥𝑛 → 2, there is an 𝑁2 ∈ 𝐍 such that |𝑥𝑛 − 2| < 2𝜀 for 𝑛 ≥ 𝑁2.
Let 𝑁 = max{𝑁1, 𝑁2} and observe that for 𝑛 ≥ 𝑁  we have

|
1
𝑥𝑛

−
1
2
| = |

2 − 𝑥𝑛
2𝑥𝑛

| =
|𝑥𝑛 − 2|
2|𝑥𝑛|

<
|𝑥𝑛 − 2|

2
< 𝜀.

It follows that 1
𝑥𝑛

→ 1
2 .

Exercise 2.3.3 (Squeeze Theorem). Show that if 𝑥𝑛 ≤ 𝑦𝑛 ≤ 𝑧𝑛 for all 𝑛 ∈ 𝐍, and
if lim 𝑥𝑛 = lim 𝑧𝑛 = 𝑙, then lim 𝑦𝑛 = 𝑙 as well.

Solution. Let 𝜀 > 0 be given. There are positive integers 𝑁1 and 𝑁2 such that

𝑛 ≥ 𝑁1 ⇒ |𝑥𝑛 − 𝑙| < 𝜀 ⇔ −𝜀 < 𝑥𝑛 − 𝑙 < 𝜀,

𝑛 ≥ 𝑁2 ⇒ |𝑧𝑛 − 𝑙| < 𝜀 ⇔ −𝜀 < 𝑧𝑛 − 𝑙 < 𝜀.

Let 𝑁 = max{𝑁1, 𝑁2}. Because 𝑥𝑛 − 𝑙 ≤ 𝑦𝑛 − 𝑙 ≤ 𝑧𝑛 − 𝑙 for all 𝑛 ∈ 𝐍, for 𝑛 ≥ 𝑁  we have

−𝜀 < 𝑥𝑛 − 𝑙 ≤ 𝑦𝑛 − 𝑙 ≤ 𝑧𝑛 − 𝑙 < 𝜀 ⇒ |𝑦𝑛 − 𝑙| < 𝜀.

Thus lim𝑛→∞ 𝑦𝑛 = 𝑙.

Exercise 2.3.4. Let (𝑎𝑛) → 0, and use the Algebraic Limit Theorem to compute each
of the following limits (assuming the fractions are always defined):

(a) lim( 1+2𝑎𝑛
1+3𝑎𝑛−4𝑎2

𝑛
)

(b) lim( (𝑎𝑛+2)2−4
𝑎𝑛

)

(c) lim(
2

𝑎𝑛
+3

1
𝑎𝑛

+5).

Solution. The manipulations of limits in these solutions are justified by the Algebraic Limit
Theorem (Theorem 2.3.3).

(a) lim(
1 + 2𝑎𝑛

1 + 3𝑎𝑛 − 4𝑎2
𝑛
) =

1 + 2 lim 𝑎𝑛

1 + 3 lim 𝑎𝑛 − 4(lim 𝑎𝑛)2 =
1
1

= 1.

(b) lim(
(𝑎𝑛 + 2)2 − 4

𝑎𝑛
) = lim(

𝑎2
𝑛 + 4𝑎𝑛

𝑎𝑛
) = lim(𝑎𝑛 + 4) = lim 𝑎𝑛 + 4 = 4.

(c) lim
⎝
⎜⎛

2
𝑎𝑛

+ 3
1

𝑎𝑛
+ 5⎠

⎟⎞ = lim(
2 + 3𝑎𝑛
1 + 5𝑎𝑛

) =
2 + 3 lim 𝑎𝑛
1 + 5 lim 𝑎𝑛

=
2
1

= 2.
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Exercise 2.3.5. Let (𝑥𝑛) and (𝑦𝑛) be given, and define (𝑧𝑛) to be the “shuffled” se-
quence (𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑥3, 𝑦3, …, 𝑥𝑛, 𝑦𝑛, …). Prove that (𝑧𝑛) is convergent if and only if 
(𝑥𝑛) and (𝑦𝑛) are both convergent with lim 𝑥𝑛 = lim 𝑦𝑛.

Solution. (𝑧𝑛) is the sequence given by

𝑧𝑛 =
⎩{
⎨
{⎧𝑥𝑛+1

2
if 𝑛 is odd,

𝑦𝑛
2

if 𝑛 is even.

Suppose that (𝑥𝑛) and (𝑦𝑛) are both convergent with lim 𝑥𝑛 = lim 𝑦𝑛 = 𝐿 for some 𝐿 ∈ 𝐑
and let 𝜀 > 0 be given. There are positive integers 𝑁1 and 𝑁2 such that

𝑛 ≥ 𝑁1 ⇒ |𝑥𝑛 − 𝐿| < 𝜀 and 𝑛 ≥ 𝑁2 ⇒ |𝑦𝑛 − 𝐿| < 𝜀.

Let 𝑁 = max{𝑁1, 𝑁2} and suppose 𝑛 ∈ 𝐍 is such that 𝑛 ≥ 2𝑁 . If 𝑛 is odd then 𝑛+1
2 ∈ 𝐍 and

𝑛 ≥ 2𝑁 > 2𝑁 − 1 ⇒ 𝑛+1
2 > 𝑁 ≥ 𝑁1 ⇒ |𝑥𝑛+1

2
− 𝐿| = |𝑧𝑛 − 𝐿| < 𝜀.

If 𝑛 is even then 𝑛
2 ∈ 𝐍 and

𝑛 ≥ 2𝑁 ⇒ 𝑛
2 ≥ 𝑁 ≥ 𝑁2 ⇒ |𝑦𝑛

2
− 𝐿| = |𝑧𝑛 − 𝐿| < 𝜀.

Thus |𝑧𝑛 − 𝐿| < 𝜀 for any 𝑛 ≥ 𝑁 ; it follows that lim 𝑧𝑛 = 𝐿.

Now suppose that (𝑧𝑛) is convergent with lim 𝑧𝑛 = 𝐿 for some 𝐿 ∈ 𝐑. Let 𝜀 > 0 be given.
Because 𝑧𝑛 → 𝐿, there exists an 𝑁 ∈ 𝐍 such that |𝑧𝑛 − 𝐿| < 𝜀 whenever 𝑛 ≥ 𝑁 . For such 
𝑛 we have 2𝑛 > 2𝑛 − 1 ≥ 𝑛 ≥ 𝑁  and thus

|𝑥𝑛 − 𝐿| = |𝑧2𝑛−1 − 𝐿| < 𝜀 and |𝑦𝑛 − 𝐿| = |𝑧2𝑛 − 𝐿| < 𝜀.

It follows that lim 𝑥𝑛 = lim 𝑦𝑛 = 𝐿.

Exercise 2.3.6. Consider the sequence given by 𝑏𝑛 = 𝑛 −
√

𝑛2 + 2𝑛. Taking (1/𝑛) → 0
as given, and using both the Algebraic Limit Theorem and the result in Exercise 2.3.1,
show lim 𝑏𝑛 exists and find the value of the limit.

Solution. Observe that

𝑏𝑛 = 𝑛 − √𝑛2 + 2𝑛 =
(𝑛 −

√
𝑛2 + 2𝑛)(𝑛 +

√
𝑛2 + 2𝑛)

𝑛 +
√

𝑛2 + 2𝑛
=

−2𝑛
𝑛 +

√
𝑛2 + 2𝑛

=
−2

1 + √1 + 2
𝑛

.

Thus, using Exercise 2.3.1,

lim 𝑏𝑛 = lim

⎝
⎜⎜
⎜⎛−

2

1 + √1 + 2
𝑛 ⎠

⎟⎟
⎟⎞ =

−2

1 + √1 + 2 lim 1
𝑛

=
−2

1 +
√

1
= −1.
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−1

1 −
√

3

1 5 10 15 20 25 30
𝑛

𝑏𝑛 = 𝑛 −
√

𝑛2 + 2𝑛

Exercise 2.3.7. Give an example of each of the following, or state that such a request
is impossible by referencing the proper theorem(s):

(a) sequences (𝑥𝑛) and (𝑦𝑛), which both diverge, but whose sum (𝑥𝑛 + 𝑦𝑛) converges;

(b) sequences (𝑥𝑛) and (𝑦𝑛), where (𝑥𝑛) converges, (𝑦𝑛) diverges, and (𝑥𝑛 + 𝑦𝑛) con-
verges;

(c) a convergent sequence (𝑏𝑛) with 𝑏𝑛 ≠ 0 for all 𝑛 such that (1/𝑏𝑛) diverges;

(d) an unbounded sequence (𝑎𝑛) and a convergent sequence (𝑏𝑛) with (𝑎𝑛 − 𝑏𝑛)
bounded;

(e) two sequences (𝑎𝑛) and (𝑏𝑛), where (𝑎𝑛𝑏𝑛) and (𝑎𝑛) converge but (𝑏𝑛) does not.

Solution.

(a) An example is given by 𝑥𝑛 = 𝑛 and 𝑦𝑛 = −𝑛.

(b) This is impossible. If (𝑥𝑛) and (𝑥𝑛 + 𝑦𝑛) both converge then by the Alge-
braic Limit Theorem (Theorem 2.3.3) (𝑦𝑛) must be convergent and satisfy
lim 𝑦𝑛 = lim(𝑥𝑛 + 𝑦𝑛) − lim 𝑥𝑛.

(c) An example is given by 𝑏𝑛 = 1
𝑛 .

(d) This is impossible: (𝑎𝑛 − 𝑏𝑛) must be unbounded. Since (𝑏𝑛) is convergent, it must be
bounded (Theorem 2.3.2), i.e. there is some 𝐵 ≥ 0 such that |𝑏𝑛| ≤ 𝐵 for all 𝑛 ∈ 𝐍.
Let 𝑀 ≥ 0 be given. Because (𝑎𝑛) is unbounded, there exists an 𝑁 ∈ 𝐍 such that
|𝑎𝑁 | ≥ 𝑀 + 𝐵. Observe that

|𝑎𝑁 − 𝑏𝑁 | ≥ ||𝑎𝑁 | − |𝑏𝑁 || ≥ |𝑎𝑁 | − |𝑏𝑁 | ≥ 𝑀 + 𝐵 − 𝐵 = 𝑀,

where we have used the reverse triangle inequality (Exercise 1.2.6 (d)) for the first
inequality. Since 𝑀  was arbitrary, we see that the sequence (𝑎𝑛 − 𝑏𝑛) is unbounded.

(e) An example is given by 𝑎𝑛 = 1
𝑛2  and 𝑏𝑛 = 𝑛.
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Exercise 2.3.8. Let (𝑥𝑛) → 𝑥 and let 𝑝(𝑥) be a polynomial.

(a) Show 𝑝(𝑥𝑛) → 𝑝(𝑥).

(b) Find an example of a function 𝑓(𝑥) and a convergent sequence (𝑥𝑛) → 𝑥 where
the sequence 𝑓(𝑥𝑛) converges, but not to 𝑓(𝑥).

Solution.

(a) Suppose 𝑝(𝑥) = 𝑎𝑚𝑥𝑚 + 𝑎𝑚−1𝑥𝑚−1 + ⋯ + 𝑎1𝑥 + 𝑎0. The Algebraic Limit Theorem
(Theorem 2.3.3) and some simple induction arguments allow us to make the following
manipulations:

lim 𝑝(𝑥𝑛) = lim(𝑎𝑚𝑥𝑚
𝑛 + 𝑎𝑚−1𝑥𝑚−1

𝑛 + ⋯ + 𝑎1𝑥𝑛 + 𝑎0)

= 𝑎𝑚(lim 𝑥𝑛)𝑚 + 𝑎𝑚−1(lim 𝑥𝑛)𝑚−1 + ⋯ + 𝑎1 lim 𝑥𝑛 + 𝑎0

= 𝑎𝑚𝑥𝑚 + 𝑎𝑚−1𝑥𝑚−1 + ⋯ + 𝑎1𝑥 + 𝑎0

= 𝑝(𝑥).

(b) Consider the function 𝑓 : 𝐑 → 𝐑 given by

𝑓(𝑥) = {
0 if 𝑥 = 0,
1 otherwise,

and the convergent sequence 𝑥𝑛 = 1
𝑛 → 0. We then have (𝑓(𝑥𝑛)) = (1, 1, 1, …), which

converges to 1 ≠ 0 = 𝑓(0).

Exercise 2.3.9.

(a) Let (𝑎𝑛) be a bounded (not necessarily convergent) sequence, and assume
lim 𝑏𝑛 = 0. Show that lim(𝑎𝑛𝑏𝑛) = 0. Why are we not allowed to use the Algebraic
Limit Theorem to prove this?

(b) Can we conclude anything about the convergence of (𝑎𝑛𝑏𝑛) if we assume that (𝑏𝑛)
converges to some nonzero limit 𝑏?

(c) Use (a) to prove Theorem 2.3.3, part (iii), for the case when 𝑎 = 0.

Solution.

(a) There is an 𝑀 > 0 such that |𝑎𝑛| ≤ 𝑀  for all 𝑛 ∈ 𝐍. Let 𝜀 > 0 be given. Because
𝑏𝑛 → 0, there is an 𝑁 ∈ 𝐍 such that

𝑛 ≥ 𝑁 ⇒ |𝑏𝑛| <
𝜀
𝑀

.

Observe that for 𝑛 ≥ 𝑁  we have
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|𝑎𝑛𝑏𝑛| = |𝑎𝑛||𝑏𝑛| ≤ 𝑀|𝑏𝑛| <
𝑀𝜀
𝑀

= 𝜀.

It follows that lim(𝑎𝑛𝑏𝑛) = 0. We may not use the Algebraic Limit Theorem here since
the sequence (𝑎𝑛) is not necessarily convergent; the hypotheses of that theorem require
both sequences (𝑎𝑛) and (𝑏𝑛) to be convergent.

(b) If the sequence (𝑎𝑛) converges to some 𝑎 then we may use the Algebraic Limit Theorem
to conclude that lim(𝑎𝑛𝑏𝑛) = 𝑎𝑏. If the sequence (𝑎𝑛) is divergent, then (𝑎𝑛𝑏𝑛) must
also be divergent. To see this, we will prove the contrapositive, i.e. if (𝑎𝑛𝑏𝑛) converges to
some 𝑥 ∈ 𝐑 then (𝑎𝑛) is convergent. Indeed, since 𝑏 ≠ 0, the Algebraic Limit Theorem
implies that

lim 𝑎𝑛 = lim(
𝑎𝑛𝑏𝑛
𝑏𝑛

) =
𝑥
𝑏
.

(c) Since (𝑏𝑛) is convergent, it is bounded (Theorem 2.3.2). So we may apply part (a) (with
the roles of (𝑎𝑛) and (𝑏𝑛) swapped) to conclude that

lim(𝑎𝑛𝑏𝑛) = 0 = 0𝑏 = 𝑎𝑏.

Exercise 2.3.10. Consider the following list of conjectures. Provide a short proof for
those that are true and a counterexample for any that are false.

(a) If lim(𝑎𝑛 − 𝑏𝑛) = 0, then lim 𝑎𝑛 = lim 𝑏𝑛.

(b) If (𝑏𝑛) → 𝑏, then |𝑏𝑛| → |𝑏|.

(c) If (𝑎𝑛) → 𝑎 and (𝑏𝑛 − 𝑎𝑛) → 0, then (𝑏𝑛) → 𝑎.

(d) If (𝑎𝑛) → 0 and |𝑏𝑛 − 𝑏| ≤ 𝑎𝑛 for all 𝑛 ∈ 𝐍, then (𝑏𝑛) → 𝑏.

Solution.

(a) This is false: consider 𝑎𝑛 = 𝑏𝑛 = (−1)𝑛.

(b) This is true. Let 𝜀 > 0 be given. Since 𝑏𝑛 → 𝑏, there is an 𝑁 ∈ 𝐍 such that |𝑏𝑛 − 𝑏| < 𝜀
whenever 𝑛 ≥ 𝑁 . For such 𝑛, the reverse triangle inequality (Exercise 1.2.6 (d)) gives

||𝑏𝑛| − |𝑏|| ≤ |𝑏𝑛 − 𝑏| < 𝜀.

Thus lim|𝑏𝑛| = |𝑏|.

(c) This is true. Using the Algebraic Limit Theorem (Theorem 2.3.3), we have

lim 𝑏𝑛 = lim(𝑏𝑛 − 𝑎𝑛 + 𝑎𝑛) = lim(𝑏𝑛 − 𝑎𝑛) + lim 𝑎𝑛 = 0 + 𝑎 = 𝑎.

(d) This is true. Since 0 ≤ |𝑏𝑛 − 𝑏| ≤ 𝑎𝑛 for every 𝑛 ∈ 𝐍, the Squeeze Theorem (Exercise
2.2.3) implies that lim|𝑏𝑛 − 𝑏| = 0, i.e. for every 𝜀 > 0 there is an 𝑁 ∈ 𝐍 such that

𝑛 ≥ 𝑁 ⇒ ||𝑏𝑛 − 𝑏| − 0| = |𝑏𝑛 − 𝑏| < 𝜀,

which is exactly the statement lim𝑛→∞ 𝑏𝑛 = 𝑏.
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Exercise 2.3.11 (Cesaro Means).

(a) Show that if (𝑥𝑛) is a convergent sequence, then the sequence given by the averages

𝑦𝑛 =
𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛

𝑛

also converges to the same limit.

(b) Give an example to show that it is possible for the sequence (𝑦𝑛) of averages to
converge even if (𝑥𝑛) does not.

Solution.

(a) Suppose lim 𝑥𝑛 = 𝑥 and let 𝜀 > 0 be given. Since 𝑥𝑛 → 𝑥, there is a positive integer 
𝑁1 ∈ 𝐍 such that

𝑛 ≥ 𝑁1 ⇒ |𝑥𝑛 − 𝑥| < 𝜀
2 .

Given this 𝑁1, notice that the sequence

⎝
⎜⎛

∑𝑁1
𝑘=1|𝑥𝑘 − 𝑥|

𝑛 ⎠
⎟⎞

has non-negative terms and converges to zero as 𝑛 → ∞ (the numerator is a constant).
It follows that there is an 𝑁2 ∈ 𝐍 such that

𝑛 ≥ 𝑁2 ⇒
∑𝑁1

𝑘=1|𝑥𝑘 − 𝑥|
𝑛

< 𝜀
2 .

Let 𝑁 = max{𝑁1, 𝑁2} and observe that for 𝑛 ≥ 𝑁 + 1 we have

|𝑦𝑛 − 𝑥| = |
∑𝑛

𝑘=1 𝑥𝑘

𝑛
−

𝑛𝑥
𝑛

|

= |
∑𝑛

𝑘=1(𝑥𝑘 − 𝑥)
𝑛

|

≤
∑𝑁1

𝑘=1|𝑥𝑘 − 𝑥|
𝑛

+
∑𝑛

𝑘=𝑁1+1|𝑥𝑘 − 𝑥|

𝑛

< 𝜀
2 + (

𝑛 − 𝑁1
𝑛

)𝜀
2

≤ 𝜀
2 + 𝜀

2

= 𝜀.

Thus lim𝑛→∞ 𝑦𝑛 = 𝑥.

(b) Consider the divergent sequence 𝑥𝑛 = (−1)𝑛+1. The sequence of averages (𝑦𝑛) is then
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𝑦𝑛 = {
1
𝑛 if 𝑛 is odd,
0 if 𝑛 is even,

which satisfies lim 𝑦𝑛 = 0.

Exercise 2.3.12. A typical task in analysis is to decipher whether a property possessed
by every term in a convergent sequence is necessarily inherited by the limit. Assume 
(𝑎𝑛) → 𝑎, and determine the validity of each claim. Try to produce a counterexample
for any that are false.

(a) If every (𝑎𝑛) is an upper bound for a set 𝐵, then 𝑎 is also an upper bound for 𝐵.

(b) If every 𝑎𝑛 is in the complement of the interval (0, 1), then 𝑎 is also in the com-
plement of (0, 1).

(c) If every 𝑎𝑛 is rational, then 𝑎 is rational.

Solution.

(a) This is true. For any 𝑏 ∈ 𝐵 we have 𝑏 ≤ 𝑎𝑛 for all 𝑛 ∈ 𝐍; the Order Limit Theorem
(Theorem 2.3.4) then implies that 𝑏 ≤ 𝑎 and it follows that 𝑎 is an upper bound of 𝐵.

(b) This is true. Observe that for a real number 𝑥 we have

𝑥 ∉ (0, 1) ⇔ 𝑥 ≤ 0 or 𝑥 ≥ 1 ⇔ |𝑥 − 1
2 | ≥ 1

2 .

So for each 𝑛 ∈ 𝐍 we have |𝑎𝑛 − 1
2 | ≥ 1

2 . The Algebraic Limit Theorem (Theorem 2.3.3)
and Exercise 2.3.10 (b) imply that lim|𝑎𝑛 − 1

2 | = |𝑎 − 1
2 |, and thus the Order Limit

Theorem (Theorem 2.3.4) gives us |𝑎 − 1
2 | ≥ 1

2 . It follows that 𝑎 belongs to the com-
plement of (0, 1).

(c) This is false. By the density of 𝐐 in 𝐑 (Theorem 1.4.3), for each 𝑛 ∈ 𝐍 we may pick
a rational number 𝑎𝑛 satisfying 

√
2 < 𝑎𝑛 <

√
2 + 1

𝑛 . The Squeeze Theorem (Exercise
2.3.3) then implies that lim 𝑎𝑛 =

√
2, which is an irrational number.

58 / 415



Exercise 2.3.13 (Iterated Limits). Given a doubly indexed array 𝑎𝑚𝑛 where
𝑚, 𝑛 ∈ 𝐍, what should lim𝑚,𝑛→∞ 𝑎𝑚𝑛 represent?

(a) Let 𝑎𝑚𝑛 = 𝑚/(𝑚 + 𝑛) and compute the iterated limits

lim
𝑛→∞

( lim
𝑚→∞

𝑎𝑚𝑛) and lim
𝑚→∞

( lim
𝑛→∞

𝑎𝑚𝑛).

Define lim𝑚,𝑛→∞ 𝑎𝑚𝑛 = 𝑎 to mean that for all 𝜀 > 0 there exists an 𝑁 ∈ 𝐍 such
that if both 𝑚, 𝑛 ≥ 𝑁 , then |𝑎𝑚𝑛 − 𝑎| < 𝜀.

(b) Let 𝑎𝑚𝑛 = 1/(𝑚 + 𝑛). Does lim𝑚,𝑛→∞ 𝑎𝑚𝑛 exist in this case? Do the two iterated
limits exist? How do these three values compare? Answer these same questions for
𝑎𝑚𝑛 = 𝑚𝑛/(𝑚2 + 𝑛2).

(c) Produce an example where lim𝑚,𝑛→∞ 𝑎𝑚𝑛 exists but where neither iterated limit
can be computed.

(d) Assume lim𝑚,𝑛→∞ 𝑎𝑚𝑛 = 𝑎, and assume that for each fixed 𝑚 ∈ 𝐍,
lim𝑛→∞(𝑎𝑚𝑛) = 𝑏𝑚. Show lim𝑚→∞ 𝑏𝑚 = 𝑎.

(e) Prove that if lim𝑚,𝑛→∞ 𝑎𝑚𝑛 exists and the iterated limits both exist, then all three
limits must be equal.

Solution.

(a) We apply the Algebraic Limit Theorem (Theorem 2.3.3):

lim
𝑚→∞

𝑎𝑚𝑛 = lim
𝑚→∞

(
𝑚

𝑚 + 𝑛
) = lim

𝑚→∞
(

1
1 + 𝑛

𝑚
) =

1
1 + 𝑛 lim𝑚→∞

1
𝑚

=
1
1

= 1.

Thus lim𝑛→∞(lim𝑚→∞ 𝑎𝑚𝑛) = 1. Similarly,

lim
𝑛→∞

𝑎𝑚𝑛 = lim
𝑛→∞

(
𝑚

𝑚 + 𝑛
) = lim

𝑛→∞
(

𝑚
𝑛

1 + 𝑚
𝑛

) =
𝑚 lim𝑛→∞

1
𝑛

1 + 𝑛 lim𝑚→∞
1
𝑛

=
0
1

= 0.

Thus lim𝑚→∞(lim𝑛→∞ 𝑎𝑚𝑛) = 0.

(b) For 𝑎𝑚𝑛 = 1
𝑚+𝑛 , we claim that lim𝑚,𝑛→∞ 𝑎𝑚𝑛 = 0. Indeed, let 𝜀 > 0 be given and let 

𝑁 ∈ 𝐍 be such that 1
𝑁 < 𝜀. For any 𝑚, 𝑛 ≥ 𝑁  it follows that

|𝑎𝑚𝑛| =
1

𝑚 + 𝑛
<

1
𝑛

≤
1
𝑁

< 𝜀.

Thus lim𝑚,𝑛→∞ 𝑎𝑚𝑛 = 0. The two iterated limits also exist and are equal to 0. Because
0 < 1

𝑚+𝑛 < 1
𝑚  for all 𝑚, 𝑛 ∈ 𝐍, the Squeeze Theorem (Exercise 2.3.3) implies that 

lim𝑚→∞ 𝑎𝑚𝑛 = 0 and it follows that lim𝑛→∞(lim𝑚→∞ 𝑎𝑚𝑛) = 0; a similar argument
shows that lim𝑚→∞(lim𝑛→∞ 𝑎𝑚𝑛) = 0.

Now let 𝑎𝑚𝑛 = 𝑚𝑛
𝑚2+𝑛2 . We will show that lim𝑚,𝑛→∞ 𝑎𝑚𝑛 does not exist by using the

following lemma.
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Lemma L.6. Let 𝑎𝑚,𝑛 be a doubly indexed array and suppose that
lim𝑚,𝑛→∞ 𝑎𝑚,𝑛 = 𝐿 for some 𝐿 ∈ 𝐑. If 𝜃 : 𝐍 → 𝐍 satisfies lim𝑚→∞ 𝜃(𝑚) = ∞,
then lim𝑚→∞ 𝑎𝑚,𝜃(𝑚) = 𝐿.

Proof. Let 𝜀 > 0 be given. Because lim𝑚,𝑛→∞ 𝑎𝑚,𝑛 = 𝐿, there is an 𝑀1 ∈ 𝐍 such
that

𝑚, 𝑛 ≥ 𝑀1 ⇒ |𝑎𝑚,𝑛 − 𝐿| < 𝜀,

and because lim𝑚→∞ 𝜃(𝑚) = ∞ there is an 𝑀2 ∈ 𝐍 such that 𝜃(𝑚) ≥ 𝑀1 when-
ever 𝑚 ≥ 𝑀2. Let 𝑀 = max{𝑀1, 𝑀2} and suppose that 𝑚 ≥ 𝑀 . It follows that 
𝑚 ≥ 𝑀1 and that 𝜃(𝑚) ≥ 𝑀1 and thus |𝑎𝑚,𝜃(𝑚) − 𝐿| < 𝜀. □

An immediate corollary of Lemma L.6 is that if lim𝑚,𝑛→∞ 𝑎𝑚,𝑛 exists, then

lim
𝑚→∞

𝑎𝑚,𝜃1(𝑚) = lim
𝑚→∞

𝑎𝑚,𝜃2(𝑚) = lim
𝑚,𝑛→∞

𝑎𝑚,𝑛

for any functions 𝜃1, 𝜃2 : 𝐍 → 𝐍 satisfying lim𝑚→∞ 𝜃𝑖(𝑚) = ∞. Now observe that

𝑎𝑚,𝑚 =
𝑚2

𝑚2 + 𝑚2 = 1
2 ⇒ lim

𝑚→∞
𝑎𝑚,𝑚 = 1

2 ,

𝑎𝑚,2𝑚 =
2𝑚2

𝑚2 + 4𝑚2 = 2
5 ⇒ lim

𝑚→∞
𝑎𝑚,2𝑚 = 2

5 .

It follows from the contrapositive of the corollary above (we are taking 𝜃1(𝑚) = 𝑚 and
𝜃2(𝑚) = 2𝑚) that lim𝑚,𝑛→∞ 𝑎𝑚𝑛 does not exist. However, the two iterated limits do
exist and are equal to 0. Using the Algebraic Limit Theorem (Theorem 2.3.3), for any
𝑛 ∈ 𝐍 we have

lim
𝑚→∞

(
𝑚𝑛

𝑚2 + 𝑛2 ) = lim
𝑚→∞

(
𝑛
𝑚

1 + 𝑛2

𝑚2

) =
𝑛 lim𝑚→∞

1
𝑚

1 + 𝑛2 lim𝑚→∞
1

𝑚2

=
0
1

= 0.

It follows that lim𝑛→∞(lim𝑚→∞ 𝑎𝑚𝑛) = 0 and a similar argument shows that 
lim𝑚→∞(lim𝑛→∞ 𝑎𝑚𝑛) = 0.

(c) Let 𝑎𝑚𝑛 = (−1)𝑚+𝑛( 1
𝑚 + 1

𝑛). We claim that lim𝑚,𝑛→∞ 𝑎𝑚𝑛 = 0. Let 𝜀 > 0 be given and
choose 𝑁 ∈ 𝐍 such that 1

𝑁 < 𝜀
2 . For 𝑚, 𝑛 ≥ 𝑁  we then have

|𝑎𝑚𝑛| = |(−1)𝑚+𝑛(
1
𝑚

+
1
𝑛

)| =
1
𝑚

+
1
𝑛

< 𝜀
2 + 𝜀

2 = 𝜀.

Thus lim𝑚,𝑛→∞ 𝑎𝑚𝑛 = 0. However, neither iterated limit exists. Fix 𝑛 ∈ 𝐍 and observe
that
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|𝑎𝑚,𝑛 − 𝑎𝑚+1,𝑛| = |(−1)𝑚+𝑛(
1
𝑚

+
1
𝑛

) − (−1)𝑚+𝑛+1(
1

𝑚 + 1
+

1
𝑛

)|

= |(−1)𝑚+𝑛(
1
𝑚

+
1
𝑛

+
1

𝑚 + 1
+

1
𝑛

)|

=
1
𝑚

+
1

𝑚 + 1
+

2
𝑛

≥
2
𝑛

.

Because 𝑛 ∈ 𝐍 is fixed, this implies that the sequence (𝑎𝑚,𝑛 − 𝑎𝑚+1,𝑛)∞
𝑚=1 cannot con-

verge to 0. Now, for a fixed 𝑛 ∈ 𝐍, the Algebraic Limit Theorem (Theorem 2.3.3) gives
us

lim
𝑚→∞

𝑎𝑚,𝑛 exists ⇒ lim
𝑚→∞

(𝑎𝑚,𝑛 − 𝑎𝑚+1,𝑛) = 0.

Thus, given that (𝑎𝑚,𝑛 − 𝑎𝑚+1,𝑛)∞
𝑚=1 does not converge to zero, it must be the case

that lim𝑚→∞ 𝑎𝑚,𝑛 does not exist. Since this is true for any 𝑛 ∈ 𝐍, we see that the
iterated limit lim𝑛→∞(lim𝑚→∞ 𝑎𝑚,𝑛) does not exist. Using the symmetry of 𝑎𝑚,𝑛

and swapping the roles of 𝑚 and 𝑛 in our argument shows that the iterated limit 
lim𝑚→∞(lim𝑛→∞ 𝑎𝑚,𝑛) does not exist either.

(d) First, using our hypothesis that lim𝑛→∞ 𝑎𝑚,𝑛 = 𝑏𝑚 for each fixed 𝑚 ∈ 𝐍, the
Algebraic Limit Theorem (Theorem 2.3.3), and Exercise 2.3.10 (b), notice that
lim𝑛→∞|𝑎𝑚,𝑛 − 𝑎| = |𝑏𝑚 − 𝑎| for any 𝑚 ∈ 𝐍.

Now let 𝜀 > 0 be given. Because lim𝑚,𝑛→∞ 𝑎𝑚,𝑛 = 𝑎, there is an 𝑁 ∈ 𝐍 such that 
|𝑎𝑚,𝑛 − 𝑎| < 𝜀

2  whenever 𝑚, 𝑛 ≥ 𝑁 . Suppose that 𝑚 ≥ 𝑁  and observe that, by the Or-
der Limit Theorem (Theorem 2.3.4),

|𝑎𝑚,𝑛 − 𝑎| < 𝜀
2 for all 𝑛 ≥ 𝑁 ⇒ lim

𝑛→∞
|𝑎𝑚,𝑛 − 𝑎| = |𝑏𝑚 − 𝑎| ≤ 𝜀

2 < 𝜀.

Thus |𝑏𝑚 − 𝑎| < 𝜀 whenever 𝑚 ≥ 𝑁  and it follows that lim𝑚→∞ 𝑏𝑚 = 𝑎.

(e) If the iterated limit lim𝑚→∞(lim𝑛→∞ 𝑎𝑚𝑛) exists, then it must be the case that for each
fixed 𝑚 ∈ 𝐍, the limit lim𝑛→∞ 𝑎𝑚𝑛 exists. Part (d) then implies that

lim
𝑚→∞

( lim
𝑛→∞

𝑎𝑚𝑛) = lim
𝑚,𝑛→∞

𝑎𝑚𝑛.

Swapping the roles of 𝑚 and 𝑛 and repeating the above argument shows that

lim
𝑛→∞

( lim
𝑚→∞

𝑎𝑚𝑛) = lim
𝑚,𝑛→∞

𝑎𝑚𝑛.
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2.4. The Monotone Convergence Theorem and a First Look
at Infinite Series

Exercise 2.4.1.

(a) Prove that the sequence defined by 𝑥1 = 3 and

𝑥𝑛+1 =
1

4 − 𝑥𝑛

converges.

(b) Now that we know lim 𝑥𝑛 exists, explain why lim 𝑥𝑛+1 must also exist and equal
the same value.

(c) Take the limit of each side of the recursive equation in part (a) to explicitly com-
pute lim 𝑥𝑛.

Solution.

(a) For 𝑛 ∈ 𝐍, let 𝑃(𝑛) be the statement that 𝑥𝑛+1 ≤ 𝑥𝑛 and 𝑥𝑛 ≥ −1. We will use strong
induction to show that 𝑃(𝑛) holds for all 𝑛 ∈ 𝐍. Since 𝑥1 = 3 and 𝑥2 = 1, we see that
𝑃(1) holds. Suppose that 𝑃(1), …, 𝑃 (𝑛) all hold for some 𝑛 ∈ 𝐍 and observe that

𝑥𝑛+1 ≤ 𝑥𝑛 ≤ ⋯ ≤ 𝑥1 = 3 ⇒ 1 ≤ 4 − 𝑥𝑛 ≤ 4 − 𝑥𝑛+1 ⇒
1

4 − 𝑥𝑛+1
≤

1
4 − 𝑥𝑛

,

i.e. 𝑥𝑛+2 ≤ 𝑥𝑛+1. Furthermore,

−1 ≤ 𝑥𝑛 ≤ 3 ⇒ 1 ≤ 4 − 𝑥𝑛 ≤ 5 ⇒ 𝑥𝑛+1 =
1

4 − 𝑥𝑛
≥

1
5

> −1.

Thus 𝑃(𝑛 + 1) holds. This completes the induction step.

We have now shown that the sequence (𝑥𝑛) is bounded below and decreasing. The Mo-
notone Convergence Theorem (Theorem 2.4.2) allows us to conclude that the sequence
converges.

(b) If (𝑥𝑛) is any convergent sequence with lim 𝑥𝑛 = 𝑥, then the sequence (𝑦𝑛) given by 
𝑦𝑛 = 𝑥𝑛+𝑘 for any 𝑘 ∈ 𝐍 is also convergent with lim 𝑦𝑛 = 𝑥. To see this, let 𝜀 > 0 be
given. Since lim 𝑥𝑛 = 𝑥, there exists an 𝑁 ∈ 𝐍 such that |𝑥𝑛 − 𝑥| < 𝜀 whenever 𝑛 ≥ 𝑁 .
Suppose 𝑛 ≥ max{𝑁 − 𝑘, 1}, so that 𝑛 + 𝑘 ≥ 𝑁 , and observe that

|𝑦𝑛 − 𝑥| = |𝑥𝑛+𝑘 − 𝑥| < 𝜀.

Thus lim 𝑦𝑛 = 𝑥.

(c) By parts (a) and (b) we have lim 𝑥𝑛 = lim 𝑥𝑛+1 = 𝑥 for some 𝑥 ∈ 𝐑. Taking the limit on
both sides of the recursive equation and using the Algebraic Limit Theorem (Theorem
2.3.3), we find that
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lim 𝑥𝑛+1 =
1

4 − lim 𝑥𝑛
⇔ 𝑥 =

1
4 − 𝑥

⇔ 𝑥2 − 4𝑥 + 1 = 0.

This quadratic equation has solutions 𝑥 = 2 ±
√

3. Since (𝑥𝑛) is decreasing and 𝑥2 = 1,
the Order Limit Theorem (Theorem 2.3.4) implies that lim 𝑥𝑛 = 𝑥 ≤ 1 < 2 +

√
3 and

so we may discard the solution 𝑥 = 2 +
√

3 to conclude that lim 𝑥𝑛 = 2 −
√

3.

2 −
√

3

3

1 2 3 4 5 6 7 8 9 10
𝑛

𝑥1

𝑥2

𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10

𝑥𝑛+1 =
1

4 − 𝑥𝑛

Exercise 2.4.2.

(a) Consider the recursively defined sequence 𝑦1 = 1,

𝑦𝑛+1 = 3 − 𝑦𝑛,

and set 𝑦 = lim 𝑦𝑛. Because (𝑦𝑛) and (𝑦𝑛+1) have the same limit, taking the
limit across the recursive equation gives 𝑦 = 3 − 𝑦. Solving for 𝑦, we conclude
lim 𝑦𝑛 = 3/2.

What is wrong with this argument?

(b) This time set 𝑦1 = 1 and 𝑦𝑛+1 = 3 − 1
𝑦𝑛

. Can the strategy in (a) be applied to
compute the limit of this sequence?

Solution.

(a) The problem is we have assumed that lim 𝑦𝑛 exists. Looking at the first few terms of
the sequence 𝑦1 = 1, 𝑦2 = 2, 𝑦3 = 1, 𝑦4 = 2, …, we see that in fact the sequence oscillates
and does not converge.

(b) The strategy works this time. Let 𝑃(𝑛) be the statement that 𝑦𝑛+1 ≥ 𝑦𝑛 and 𝑦𝑛 ≤ 3.
We will use strong induction to show that 𝑃(𝑛) holds for all 𝑛 ∈ 𝐍. Since 𝑦1 = 1 and 
𝑦2 = 2, we see that 𝑃(1) holds. Suppose that 𝑃(1), …, 𝑃 (𝑛) all hold for some 𝑛 ∈ 𝐍
and observe that

𝑦𝑛+1 ≥ 𝑦𝑛 ≥ ⋯ ≥ 𝑦1 = 1 ⇒
1

𝑦𝑛+1
≤

1
𝑦𝑛

⇒ 3 −
1

𝑦𝑛+1
≥ 3 −

1
𝑦𝑛

,

i.e. 𝑦𝑛+2 ≥ 𝑦𝑛+1. Furthermore,
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1 ≤ 𝑦𝑛 ≤ 3 ⇒
1
3

≤
1
𝑦𝑛

⇒ 𝑦𝑛+1 = 3 −
1
𝑦𝑛

≤
8
3

< 3.

Thus 𝑃(𝑛 + 1) holds. This completes the induction step.

We have now shown that (𝑦𝑛) is bounded above and increasing, so by the Monotone
Convergence Theorem (Theorem 2.4.2) we have lim 𝑦𝑛 = 𝑦 for some 𝑦 ∈ 𝐑. Given this,
we can take the limit across the recursive equation to obtain:

lim 𝑦𝑛+1 = 3 −
1

lim 𝑦𝑛
⇔ 𝑦 = 3 −

1
𝑦

⇔ 𝑦2 − 3𝑦 + 1 = 0.

This quadratic equation has solutions 3
2 ± 1

2

√
5. Since (𝑦𝑛) is increasing and 𝑦2 = 2,

we must have 𝑦 ≥ 2 > 3
2 − 1

2

√
5 and so we may discard the solution 𝑦 = 3

2 − 1
2

√
5 to

conclude that lim 𝑦𝑛 = 3
2 + 1

2

√
5.

1

3
2 + 1

2

√
5

1 2 3 4 5 6 7 8 9 10
𝑛

𝑦1

𝑦2

𝑦3
𝑦4 𝑦5 𝑦6 𝑦7 𝑦8 𝑦9 𝑦10

𝑦𝑛+1 = 3 −
1
𝑦𝑛

Exercise 2.4.3.

(a) Show that
√

2, √2 +
√

2, √2 + √2 +
√

2, …

converges and find the limit.

(b) Does the sequence

√
2, √2

√
2, √2√2

√
2, …

converge? If so, find the limit.

Solution.
(a) Let 𝑥1 =

√
2, 𝑥𝑛+1 = √2 + 𝑥𝑛, and let 𝑃(𝑛) be the statement that 𝑥𝑛+1 ≥ 𝑥𝑛 and 

𝑥𝑛 ≤ 2. We will use strong induction to show that 𝑃(𝑛) holds for all 𝑛 ∈ 𝐍. Since 
𝑥1 =

√
2 and 𝑥2 = √2 +

√
2, we see that 𝑃(1) holds. Suppose that 𝑃(1), …, 𝑃 (𝑛) all

hold for some 𝑛 ∈ 𝐍 and observe that
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𝑥𝑛+1 ≥ 𝑥𝑛 ≥ ⋯ ≥ 𝑥1 =
√

2 ⇒ √2 + 𝑥𝑛+1 ≥ √2 + 𝑥𝑛,

i.e. 𝑥𝑛+2 ≥ 𝑥𝑛+1. Furthermore,
√

2 ≤ 𝑥𝑛 ≤ 2 ⇒ √2 + 𝑥𝑛 ≤
√

4 = 2.

Thus 𝑃(𝑛 + 1) holds. This completes the induction step.

We have now shown that the sequence (𝑥𝑛) is bounded above and increasing, so by the
Monotone Convergence Theorem (Theorem 2.4.2) we have lim 𝑥𝑛 = 𝑥 for some 𝑥 ∈ 𝐑.
We may now take the limit on both sides of the recursive equation and use Exercise
2.3.1 to see that

lim 𝑥𝑛+1 = √2 + lim 𝑥𝑛 ⇒ 𝑥 =
√

2 + 𝑥 ⇒ 𝑥2 − 𝑥 − 2 = (𝑥 − 2)(𝑥 + 1) = 0.

So 𝑥 = 2 or 𝑥 = −1. Since the sequence is increasing and 𝑥1 =
√

2, we must have
𝑥 ≥

√
2 > −1 and thus lim 𝑥𝑛 = 2.

√
2

2

1 2 3 4 5 6 7 8 9 10
𝑛

𝑥1

𝑥2

𝑥3
𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10

𝑥𝑛+1 = √2 + 𝑥𝑛

(b) The sequence does converge. Let 𝑥1 =
√

2, 𝑥𝑛+1 = √2𝑥𝑛, and let 𝑃(𝑛) be the state-
ment that 𝑥𝑛+1 ≥ 𝑥𝑛 and 𝑥𝑛 ≤ 2. We will use strong induction to show that 𝑃(𝑛) holds
for all 𝑛 ∈ 𝐍. Since 𝑥1 =

√
2 and 𝑥2 = √2

√
2, we see that 𝑃(1) holds. Suppose that 

𝑃(1), …, 𝑃 (𝑛) all hold for some 𝑛 ∈ 𝐍 and observe that

𝑥𝑛+1 ≥ 𝑥𝑛 ≥ ⋯ ≥ 𝑥1 =
√

2 ⇒ √2𝑥𝑛+1 ≥ √2𝑥𝑛,

i.e. 𝑥𝑛+2 ≥ 𝑥𝑛+1. Furthermore,
√

2 ≤ 𝑥𝑛 ≤ 2 ⇒ √2𝑥𝑛 ≤
√

4 = 2.

Thus 𝑃(𝑛 + 1) holds. This completes the induction step.

We have now shown that the sequence (𝑥𝑛) is bounded above and increasing, so by the
Monotone Convergence Theorem (Theorem 2.4.2) we have lim 𝑥𝑛 = 𝑥 for some 𝑥 ∈ 𝐑.
We may now take the limit on both sides of the recursive equation and use Exercise
2.3.1 to see that

lim 𝑥𝑛+1 = √2 lim 𝑥𝑛 ⇒ 𝑥 =
√

2𝑥 ⇒ 𝑥2 − 2𝑥 = 𝑥(𝑥 − 2) = 0.
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Thus 𝑥 = 2 or 𝑥 = 0. Since the sequence is increasing and 𝑥1 =
√

2, we must have
𝑥 ≥

√
2 > 0 and so lim 𝑥𝑛 = 2.

√
2

2

1 2 3 4 5 6 7 8 9 10
𝑛

𝑥1

𝑥2

𝑥3
𝑥4

𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10

𝑥𝑛+1 = √2𝑥𝑛

Exercise 2.4.4.

(a) In Section 1.4 we used the Axiom of Completeness (AoC) to prove the Archimedean
Property of 𝐑 (Theorem 1.4.2). Show that the Monotone Convergence Theorem
can also be used to prove the Archimedean Property without making any use of
AoC.

(b) Use the Monotone Convergence Theorem to supply a proof for the Nested Interval
Property (Theorem 1.4.1) that doesn’t make use of AoC.

These two results suggest that we could have used the Monotone Convergence
Theorem in place of AoC as our starting axiom for building a proper theory of the
real numbers.

Solution.

(a) Assuming that any bounded monotone sequence converges, we want to prove part (i)
of Theorem 1.4.2: for any 𝑥 ∈ 𝐑, there exists an 𝑛 ∈ 𝐍 satisfying 𝑛 > 𝑥. Part (ii) of
Theorem 1.4.2 will then follow by taking 𝑥 = 1

𝑦  in part (i). Let 𝑥 ∈ 𝐑 be given and,
seeking a contradiction, suppose that 𝑛 ≤ 𝑥 for each 𝑛 ∈ 𝐍. It follows that the increas-
ing sequence (1, 2, 3, …) is bounded above and hence by assumption converges to some
𝑦 ∈ 𝐑. There then exists an 𝑁 ∈ 𝐍 such that |𝑛 − 𝑦| < 1

2  whenever 𝑛 ≥ 𝑁 . However,
this implies that

1 = |𝑁 + 1 − 𝑦 + 𝑦 − 𝑁| ≤ |𝑁 + 1 − 𝑦| + |𝑁 − 𝑦| < 1
2 + 1

2 = 1,

i.e. 1 < 1, a contradiction. We may conclude that there exists some 𝑛 ∈ 𝐍 such that 
𝑛 > 𝑥.

(b) Assuming that any bounded monotone sequence converges, we want to prove that any
sequence of nested intervals 𝐼𝑛 = [𝑎𝑛, 𝑏𝑛] has a non-empty intersection ⋂∞

𝑛=1 𝐼𝑛. Con-
sider the sequence (𝑎𝑛) of left-hand endpoints, which must be increasing because the
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intervals are nested. Moreover, this sequence is bounded above by any right-hand end-
point. Thus, by assumption, this sequence converges to some 𝑥 ∈ 𝐑. Notice that for any
𝑛 ∈ 𝐍 we have 𝑎𝑛 ≤ 𝑎𝑚 ≤ 𝑏𝑚 ≤ 𝑏𝑛 for all 𝑚 ≥ 𝑛. The Order Limit Theorem (Theorem
2.3.4) then implies that

𝑥 = lim
𝑚→∞

𝑎𝑚 ≤ 𝑏𝑛 and 𝑎𝑛 ≤ lim
𝑚→∞

𝑎𝑚 = 𝑥.

It follows that 𝑎𝑛 ≤ 𝑥 ≤ 𝑏𝑛 for all 𝑛 ∈ 𝐍, i.e. 𝑥 ∈ ⋂∞
𝑛=1 𝐼𝑛.

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑥 𝑏6 𝑏5 𝑏4 𝑏3 𝑏2 𝑏1⋯ ⋯

(In the general case the endpoints will not be so evenly spaced, although the ordering
will be the same.)

Exercise 2.4.5 (Calculating Square Roots). Let 𝑥1 = 2, and define

𝑥𝑛+1 =
1
2
(𝑥𝑛 +

2
𝑥𝑛

).

(a) Show that 𝑥2
𝑛 is always greater than or equal to 2, and then use this to prove that

𝑥𝑛 − 𝑥𝑛+1 ≥ 0. Conclude that lim 𝑥𝑛 =
√

2.

(b) Modify the sequence (𝑥𝑛) so that it converges to 
√

𝑐.

Solution.
(a) Let 𝑃(𝑛) be the statement that 𝑥𝑛 ≥

√
2. We will use induction to show that 𝑃(𝑛)

holds for all 𝑛 ∈ 𝐍. The truth of 𝑃(1) is clear, so suppose that 𝑃(𝑛) holds for some 
𝑛 ∈ 𝐍. Observe that

(𝑥𝑛 −
√

2)
2

= 𝑥2
𝑛 − 2

√
2𝑥𝑛 + 2 ≥ 0.

Our induction hypothesis guarantees that 𝑥𝑛 ≥
√

2 > 0 and so we may divide by 𝑥𝑛 to
obtain the inequality

𝑥𝑛 − 2
√

2 +
2
𝑥𝑛

≥ 0 ⇔
1
2
(𝑥𝑛 +

2
𝑥𝑛

) ≥
√

2,

i.e. 𝑥𝑛+1 ≥
√

2. This completes the induction step and thus, in particular, 𝑥2
𝑛 ≥ 2 for

each 𝑛 ∈ 𝐍. For any 𝑛 ∈ 𝐍 we then have

𝑥2
𝑛 − 2 ≥ 0 ⇔

𝑥𝑛
2

−
1
𝑥𝑛

≥ 0 ⇔ 𝑥𝑛 −
1
2
(𝑥𝑛 +

2
𝑥𝑛

) ≥ 0 ⇔ 𝑥𝑛 − 𝑥𝑛+1 ≥ 0.

Thus 𝑥𝑛+1 ≤ 𝑥𝑛 for all 𝑛 ∈ 𝐍.

We have now shown that the sequence (𝑥𝑛) is decreasing and bounded below. The Mo-
notone Convergence Theorem (Theorem 2.4.2) then implies that lim 𝑥𝑛 = 𝑥 for some 

67 / 415



𝑥 ∈ 𝐑, which must satisfy 𝑥 ≥
√

2 > 0 by the Order Limit Theorem (Theorem 2.3.4).
We can now take the limit across the recursive equation:

lim 𝑥𝑛+1 =
1
2
(lim 𝑥𝑛 +

2
lim 𝑥𝑛

) ⇔ 𝑥 =
1
2
(𝑥 +

2
𝑥

) ⇔ 𝑥2 = 2.

Since 𝑥 ≥
√

2 we may conclude that 𝑥 =
√

2.

√
2

2

1 2 3 4 5 6 7 8 9 10
𝑛

𝑥1

𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10

𝑥𝑛+1 =
1
2
(𝑥𝑛 +

2
𝑥𝑛

)

(b) For 𝑐 ≥ 0, let 𝑥1 = 1 + 𝑐 and define

𝑥𝑛+1 =
1
2
(𝑥𝑛 +

𝑐
𝑥𝑛

).

Repeating the argument given in part (a), replacing 2 with 𝑐 where appropriate, shows
that lim 𝑥𝑛 =

√
𝑐. For the base case of the induction argument, note that

𝑥1 = 1 + 𝑐 ≥ 1 ⇒ 𝑥1 ≥
√

1 + 𝑐 >
√

𝑐.

Exercise 2.4.6 (Arithmetic-Geometric Mean).

(a) Explain why √𝑥𝑦 ≤ (𝑥 + 𝑦)/2 for any two positive real numbers 𝑥 and 𝑦. (The
geometric mean is always less than the arithmetic mean.)

(b) Now let 0 ≤ 𝑥1 ≤ 𝑦1 and define

𝑥𝑛+1 = √𝑥𝑛𝑦𝑛 and 𝑦𝑛+1 =
𝑥𝑛 + 𝑦𝑛

2
.

Show lim 𝑥𝑛 and lim 𝑦𝑛 both exist and are equal.

Solution.

(a) Observe that

0 ≤ (𝑥 − 𝑦)2 ⇔ 0 ≤ 𝑥2 − 2𝑥𝑦 + 𝑦2 ⇔ 4𝑥𝑦 ≤ 𝑥2 + 2𝑥𝑦 + 𝑦2 ⇔ 4𝑥𝑦 ≤ (𝑥 + 𝑦)2.

Since 𝑥 and 𝑦 are both positive, this implies that √𝑥𝑦 ≤ 𝑥+𝑦
2 .

(b) By part (a) we have 𝑥𝑛 ≤ 𝑦𝑛 for all 𝑛 ∈ 𝐍. It follows that
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𝑦𝑛+1 =
𝑥𝑛 + 𝑦𝑛

2
≤

𝑦𝑛 + 𝑦𝑛
2

= 𝑦𝑛 and 𝑥𝑛+1 = √𝑥𝑛𝑦𝑛 ≥ √𝑥2
𝑛 = 𝑥𝑛.

Thus (𝑥𝑛) is increasing and (𝑦𝑛) is decreasing. Furthermore, (𝑦𝑛) is bounded below:
for any 𝑛 ∈ 𝐍, we have 𝑦𝑛 ≥ 𝑥𝑛 ≥ ⋯ ≥ 𝑥1. It follows from the Monotone Convergence
Theorem (Theorem 2.4.2) that lim 𝑦𝑛 = 𝑦 for some 𝑦 ∈ 𝐑. The Algebraic Limit Theo-
rem (Theorem 2.3.3) then gives

𝑥𝑛 = 2𝑦𝑛+1 − 𝑦𝑛 ⇒ lim 𝑥𝑛 = 2 lim 𝑦𝑛+1 − lim 𝑦𝑛 = 2𝑦 − 𝑦 = 𝑦.

Exercise 2.4.7 (Limit Superior). Let (𝑎𝑛) be a bounded sequence.

(a) Prove that the sequence defined by 𝑦𝑛 = sup{𝑎𝑘 : 𝑘 ≥ 𝑛} converges.

(b) The limit superior of (𝑎𝑛), or lim sup 𝑎𝑛, is defined by

lim sup 𝑎𝑛 = lim 𝑦𝑛,

where 𝑦𝑛 is the sequence from part (a) of this exercise. Provide a reasonable de-
finition for lim inf 𝑎𝑛 and briefly explain why it always exists for any bounded
sequence.

(c) Prove that lim inf 𝑎𝑛 ≤ lim sup 𝑎𝑛 for every bounded sequence, and give an exam-
ple of a sequence for which the inequality is strict.

(d) Show that lim inf 𝑎𝑛 = lim sup 𝑎𝑛 if and only if lim 𝑎𝑛 exists. In this case, all three
share the same value.

Solution.

(a) Suppose 𝑀 > 0 is the bound for (𝑎𝑛), i.e. |𝑎𝑛| ≤ 𝑀  for all 𝑛 ∈ 𝐍. It follows that
𝑦𝑛 ≥ 𝑎𝑛 ≥ −𝑀  for 𝑛 ∈ 𝐍, so that the sequence (𝑦𝑛) is bounded below. Furthermore,
for any 𝑛 ∈ 𝐍 we have

sup{𝑎𝑛+1, 𝑎𝑛+2, 𝑎𝑛+3, …} ≤ sup{𝑎𝑛, 𝑎𝑛+1, 𝑎𝑛+2, 𝑎𝑛+3, …},

i.e. 𝑦𝑛+1 ≤ 𝑦𝑛. Thus the sequence (𝑦𝑛) is decreasing and bounded below and hence
converges by the Monotone Convergence Theorem (Theorem 2.4.2).

(b) Let 𝑥𝑛 = inf{𝑎𝑘 : 𝑘 ≥ 𝑛}. As in part (a), we can show that this sequence is bounded
above, increasing, and hence convergent. We then define the limit inferior as 
lim inf 𝑎𝑛 = lim 𝑥𝑛.

(c) The infimum of a bounded set is always less than or equal to the supremum of that set,
so we have 𝑥𝑛 ≤ 𝑦𝑛 for each 𝑛 ∈ 𝐍. The Order Limit Theorem (Theorem 2.3.4) then
implies that lim 𝑥𝑛 ≤ lim 𝑦𝑛, i.e. lim inf 𝑎𝑛 ≤ lim sup 𝑎𝑛.

For an example of a bounded sequence where this inequality is strict, consider
the sequence 𝑎𝑛 = (−1)𝑛. For this sequence we have (𝑥𝑛) = (−1, −1, −1, …) and
(𝑦𝑛) = (1, 1, 1, …), so that lim inf 𝑎𝑛 = −1 < 1 = lim sup 𝑎𝑛.
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(d) Suppose lim inf 𝑎𝑛 = lim sup 𝑎𝑛. Since 𝑥𝑛 ≤ 𝑎𝑛 ≤ 𝑦𝑛 for all 𝑛 ∈ 𝐍, the Squeeze Theorem
(Exercise 2.3.3) implies that (𝑎𝑛) converges and that lim inf 𝑎𝑛 = lim sup 𝑎𝑛 = lim 𝑎𝑛.

Now suppose that lim 𝑎𝑛 = 𝑎 for some 𝑎 ∈ 𝐑 and let 𝜀 > 0 be given. Since 𝑎𝑛 → 𝑎,
there is an 𝑁 ∈ 𝐍 such that

𝑛 ≥ 𝑁 ⇒ 𝑎 − 𝜀
2 < 𝑎𝑛 < 𝑎 + 𝜀

2 .

This implies that 𝑎 − 𝜀
2  is a lower bound for {𝑎𝑘 : 𝑘 ≥ 𝑁} and that 𝑎 + 𝜀

2  is an upper
bound for {𝑎𝑘 : 𝑘 ≥ 𝑁}. It follows that 𝑎 − 𝜀

2 ≤ 𝑥𝑁 ≤ 𝑎𝑁 ≤ 𝑦𝑁 ≤ 𝜀
2  and hence, since 

(𝑥𝑛) is increasing and (𝑦𝑛) is decreasing,

𝑛 ≥ 𝑁 ⇒ 𝑎 − 𝜀 < 𝑥𝑁 ≤ 𝑥𝑛 ≤ 𝑎𝑛 ≤ 𝑦𝑛 ≤ 𝑦𝑁 < 𝑎 + 𝜀.

Thus |𝑥𝑛 − 𝑎| < 𝜀 and |𝑦𝑛 − 𝑎| < 𝜀 for all 𝑛 ≥ 𝑁 . We may conclude that

lim inf 𝑎𝑛 = lim sup 𝑎𝑛 = lim 𝑎𝑛 = 𝑎.

Exercise 2.4.8. For each series, find an explicit formula for the sequence of partial
sums and determine if the series converges.

(a) ∑
∞

𝑛=1

1
2𝑛 (b) ∑

∞

𝑛=1

1
𝑛(𝑛 + 1)

(c) ∑
∞

𝑛=1
log(

𝑛 + 1
𝑛

)

(In (c), log(𝑥) refers to the natural logarithm function from calculus.)

Solution. For each series, let (𝑠𝑚) be its sequence of partial sums.

(a) Here we have

𝑠𝑚 =
1
2

+ ⋯ +
1

2𝑚 ⇒ 2𝑠𝑚 = 1 + ⋯ +
1

2𝑚−1

⇒ 2𝑠𝑚 =
1 − 2−𝑚

1 − 1
2

⇒ 𝑠𝑚 = 1 −
1

2𝑚 ,

where we have used the formula (1 − 𝑥)(1 + 𝑥 + ⋯ + 𝑥𝑛) = 1 − 𝑥𝑛+1. It follows that 
lim 𝑠𝑚 = 1.

1
2

1

1 2 3 4 5 6 7 8 9 10
𝑚

𝑠𝑚 = ∑𝑚
𝑛=1

1
2𝑛

(b) For this series,
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𝑠𝑚 = ∑
𝑚

𝑛=1

1
𝑛(𝑛 + 1)

= ∑
𝑚

𝑛=1
(

1
𝑛

−
1

𝑛 + 1
)

= (1 −
1
2
) + (

1
2

−
1
3
) + ⋯ + (

1
𝑚

−
1

𝑚 − 1
) = 1 −

1
𝑚 + 1

.

It follows that lim 𝑠𝑚 = 1.

1
2

1

1 5 10 15 20 25 30
𝑚

𝑠𝑚 = ∑𝑚
𝑛=1

1
𝑛(𝑛+1)

(c) We have

𝑠𝑚 = ∑
𝑚

𝑛=1
log(

𝑛 + 1
𝑛

)

= ∑
𝑚

𝑛=1
(log(𝑛 + 1) − log(𝑛))

= (log(2) − log(1)) + (log(3) − log(2)) + ⋯ + (log(𝑚 + 1) − log(𝑚))

= log(𝑚 + 1),

which is unbounded and hence not convergent.

log(2)

3

1 5 10 15 20 25 30
𝑚

𝑠𝑚 = ∑𝑚
𝑛=1 log(𝑛+1

𝑛 )

Exercise 2.4.9. Complete the proof of Theorem 2.4.6 by showing that if the series 
∑∞

𝑛=0 2𝑛𝑏2𝑛 diverges, then so does ∑∞
𝑛=1 𝑏𝑛. Example 2.4.5 may be a useful reference.

Solution. Define the sequences of partial sums
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𝑠𝑚 = 𝑏1 + 𝑏2 + ⋯ + 𝑏𝑚 and 𝑡𝑚 = 𝑏1 + 2𝑏2 + ⋯ + 2𝑚𝑏2𝑚 .

We will use induction to show that 𝑡𝑚 ≤ 2𝑠2𝑚 for each 𝑚 ∈ 𝐍. For the base case 𝑚 = 1
we have

𝑡1 = 𝑏1 + 2𝑏2 ≤ 2𝑏1 + 2𝑏2 = 2𝑠2,

where we have used that 𝑏1 is non-negative. Suppose that the inequality holds for
some 𝑚 ∈ 𝐍. If 𝑗 ∈ {1, …, 2𝑚}, then 2𝑚 + 𝑗 ≤ 2𝑚+1; because the sequence (𝑏𝑛) is de-
creasing, we then have 𝑏2𝑚+1 ≤ 𝑏2𝑚+𝑗. Summing this inequality over all such 𝑗 gives us
2𝑚𝑏2𝑚+1 ≤ ∑2𝑚

𝑗=1 𝑏2𝑚+𝑗, and combining this with our induction hypothesis we obtain

𝑡𝑚+1 = 𝑡𝑚 + 2𝑚+1𝑏2𝑚+1 ≤ 2𝑠2𝑚 + 2 ∑
2𝑚

𝑗=1
𝑏2𝑚+𝑗 = 2𝑠2𝑚+1 .

This completes the induction step.

Since each 𝑏𝑛 is non-negative, both sequences of partial sums (𝑠𝑚) and (𝑡𝑚) are increasing.
It follows from the Monotone Convergence Theorem (Theorem 2.4.2) that the convergence of
each series is equivalent to the boundedness of the respective sequence of partial sums. Given
this, we want to show that if (𝑡𝑚) is unbounded then so is (𝑠𝑚); this follows immediately
from the inequality 𝑡𝑚 ≤ 2𝑠2𝑚 .

Exercise 2.4.10 (Infinite Products). A close relative of infinite series is the infinite
product

∏
∞

𝑛=1
𝑏𝑛 = 𝑏1𝑏2𝑏3 ⋯

which is understood in terms of its sequence of partial products

𝑝𝑚 = ∏
𝑚

𝑛=1
𝑏𝑛 = 𝑏1𝑏2𝑏3 ⋯ 𝑏𝑚.

Consider the special class of infinite products of the form

∏
∞

𝑛=1
(1 + 𝑎𝑛) = (1 + 𝑎1)(1 + 𝑎2)(1 + 𝑎3) ⋯ , where 𝑎𝑛 ≥ 0.

(a) Find an explicit formula for the sequence of partial products in the case where 
𝑎𝑛 = 1/𝑛 and decide whether the sequence converges. Write out the first few terms
in the sequence of partial products in the case where 𝑎𝑛 = 1/𝑛2 and make a con-
jecture about the convergence of this sequence.

(b) Show, in general, that the sequence of partial products converges if and only if 
∑∞

𝑛=1 𝑎𝑛 converges. (The inequality 1 + 𝑥 ≤ 3𝑥 for positive 𝑥 will be useful in one
direction.)

Solution.
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(a) For 𝑎𝑛 = 1
𝑛 , observe that

𝑝𝑚 = ∏
𝑚

𝑛=1
(1 +

1
𝑛

) = ∏
𝑚

𝑛=1
(

𝑛 + 1
𝑛

) = 2 ⋅
3
2

⋅
4
3

⋯
𝑚

𝑚 − 1
⋅
𝑚 + 1

𝑚

=
2
2

⋅
3
3

⋅
4
4

⋯
𝑚
𝑚

⋅ (𝑚 + 1) = 𝑚 + 1.

It follows that (𝑝𝑚) does not converge.

For 𝑎𝑛 = 1
𝑛2 , the first few partial products are

𝑝1 = 2,

𝑝2 = 2.5,

𝑝3 ≈ 2.778,

𝑝4 = 2.951,

𝑝5 = 3.069,

𝑝6 ≈ 3.155.

It looks like the partial products could be bounded. We conjecture that this infinite
product converges. Indeed, part (b) proves our conjecture, since ∑∞

𝑛=1
1

𝑛2  is a conver-
gent series.

(b) Let

𝑠𝑚 = ∑
𝑚

𝑛=1
𝑎𝑛 and 𝑝𝑚 = ∏

𝑚

𝑛=1
(1 + 𝑎𝑛).

Because 𝑎𝑛 ≥ 0 for all 𝑛 ∈ 𝐍, the sequence of partial sums and the sequence of partial
products are both non-negative and increasing. It follows from the Monotone Conver-
gence Theorem (Theorem 2.4.2) that the convergence of each sequence is equivalent to
the boundedness of that sequence. By multiplying out the terms in the partial product
𝑝𝑚, we would obtain the sum 𝑠𝑚 and some other non-negative terms; it follows that 
𝑠𝑚 ≤ 𝑝𝑚. The hint gives us

𝑝𝑚 = ∏
𝑚

𝑛=1
(1 + 𝑎𝑛) ≤ ∏

𝑚

𝑛=1
3𝑎𝑛 = 3∑𝑚

𝑛=1 𝑎𝑛 = 3𝑠𝑚 .

So we have the inequalities 𝑠𝑚 ≤ 𝑝𝑚 ≤ 3𝑠𝑚 . It follows that any bound of (𝑝𝑚) is also
a bound of (𝑠𝑚), and that if 𝑀 > 0 is a bound of (𝑠𝑚) then 3𝑀  is a bound of (𝑝𝑚).
Thus ∏∞

𝑛=1(1 + 𝑎𝑛) converges if and only if ∑∞
𝑛=1 𝑎𝑛 converges.
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2.5. Subsequences and the Bolzano-Weierstrass Theorem

Exercise 2.5.1. Give an example of each of the following, or argue that such a request
is impossible.

(a) A sequence that has a subsequence that is bounded but contains no subsequence
that converges.

(b) A sequence that does not contain 0 or 1 as a term but contains subsequences con-
verging to each of these values.

(c) A sequence that contains subsequences converging to every point in the infinite set

{1, 1/2, 1/3, 1/4, 1/5, …}.

(d) A sequence that contains subsequences converging to every point in the infinite set

{1, 1/2, 1/3, 1/4, 1/5, …},

but no subsequences converging to points outside of this set.

Solution.

(a) This is impossible. If a sequence (𝑎𝑛) has a bounded subsequence (𝑎𝑛𝑘), then by the
Bolzano-Weierstrass Theorem (Theorem 2.5.5) there must be a convergent subsequence
(𝑎𝑛𝑘ℓ

), which is also a convergent subsequence of the original sequence (𝑎𝑛).

(b) Consider the sequence

(1
2 , 1

2 , 1
4 , 3

4 , 1
6 , 5

6 , …),

i.e. the sequence (𝑎𝑛) given by

𝑎𝑛 =
⎩{
⎨
{⎧ 1

𝑛+1 if 𝑛 is odd,

1 − 1
𝑛 if 𝑛 is even.

This sequence does not contain 0 or 1 as a term, the subsequence (𝑎2𝑛−1) converges to
0, and the subsequence (𝑎2𝑛) converges to 1.

(c) Consider the following infinite array:
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1 1
2

1
3

1
4

1
5 ⋯

1 1
2

1
3

1
4

1
5 ⋯

1 1
2

1
3

1
4

1
5 ⋯

1 1
2

1
3

1
4

1
5 ⋯

1 1
2

1
3

1
4

1
5 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋱

Let (𝑎𝑛) be the sequence obtained by following the diagonals of this array, i.e.

(𝑎𝑛) = (1, 1, 1
2 , 1, 1

2 , 1
3 , 1, 1

2 , 1
3 , 1

4 , 1, …).

(d) This is impossible. Suppose that (𝑎𝑛) is a sequence that contains subsequences con-
verging to every point in the infinite set

{1, 1
2 , 1

3 , 1
4 , 1

5 , …}.

We will construct a subsequence of (𝑎𝑛) converging to 0. Since there is a subsequence
converging to 1, there must be some index 𝑛1 such that

|𝑎𝑛1 − 1| < 1 ⇔ 0 < 𝑎𝑛1 < 2.

Since there is a subsequence converging to 1
2 , there must be some index 𝑛2 > 𝑛1 such

that

|𝑎𝑛2 − 1
2 | < 1

2 ⇔ 0 < 𝑎𝑛2 < 1.

We continue in this manner, obtaining a subsequence (𝑎𝑛𝑘) satisfying 0 < 𝑎𝑛𝑘 < 2
𝑘 . The

Squeeze Theorem (Exercise 2.3.3) then implies that lim𝑘→∞ 𝑎𝑛𝑘 = 0.

Exercise 2.5.2. Decide whether the following propositions are true or false, providing
a short justification for each conclusion.

(a) If every proper subsequence of (𝑥𝑛) converges, then (𝑥𝑛) converges as well.

(b) If (𝑥𝑛) contains a divergent subsequence, then (𝑥𝑛) diverges.

(c) If (𝑥𝑛) is bounded and diverges, then there exist two subsequences of (𝑥𝑛) that
converge to different limits.

(d) If (𝑥𝑛) is monotone and contains a convergent subsequence, then (𝑥𝑛) converges.
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Solution.

(a) This is true. By assumption the subsequence (𝑥2, 𝑥3, 𝑥4, …) converges; certainly (𝑥𝑛)
converges to the same limit.

(b) This is true. Consider the contrapositive statement: if (𝑥𝑛) converges, then all subse-
quences of (𝑥𝑛) converge. This is implied by Theorem 2.5.2.

(c) This is true. Consider the sequences

𝑎𝑛 = inf{𝑥𝑚 : 𝑚 ≥ 𝑛} and 𝑏𝑛 = sup{𝑥𝑚 : 𝑚 ≥ 𝑛}.

As shown in Exercise 2.4.7 these sequences both converge since (𝑥𝑛) is bounded and
their limits are denoted by

lim inf 𝑥𝑛 = lim 𝑎𝑛 and lim sup 𝑥𝑛 = lim 𝑏𝑛.

We will construct a subsequence of (𝑥𝑛) converging to lim sup 𝑥𝑛. Let 𝑛0 = 0. Because
𝑏1 is the supremum of the set {𝑥1, 𝑥2, 𝑥3, …}, Lemma 1.3.8 implies that there exists an
𝑛1 ≥ 1 such that 𝑏1 − 1 < 𝑥𝑛1 ≤ 𝑏1. Similarly, because 𝑏𝑛1+1 is the supremum of the set

{𝑥𝑛1+1, 𝑥𝑛1+2, 𝑥𝑛1+3, …},

Lemma 1.3.8 gives us an 𝑛2 ≥ 𝑛1 + 1 such that 𝑏𝑛1+1 − 1
2 < 𝑥𝑛2 ≤ 𝑏𝑛1+1. Continuing

in this fashion, we obtain indices 𝑛1 < ⋯ < 𝑛𝑘 < ⋯ such that

𝑏𝑛𝑘−1+1 − 1
𝑘 < 𝑥𝑛𝑘 ≤ 𝑏𝑛𝑘−1+1 (∗)

for each 𝑘 ∈ 𝐍. Notice that (𝑏𝑛𝑘−1+1)
∞
𝑘=1 is a subsequence of (𝑏𝑛)∞

𝑛=1, which con-
verges to lim sup 𝑥𝑛; it follows from Theorem 2.5.2 that (𝑏𝑛𝑘−1+1)

∞
𝑘=1 also converges

to lim sup 𝑥𝑛. The Squeeze Theorem (Exercise 2.3.3) and (∗) then imply that
lim𝑘→∞ 𝑥𝑛𝑘 = lim sup 𝑥𝑛. Similarly, we can find a subsequence of (𝑥𝑛) converging to 
lim inf 𝑥𝑛. As we showed in Exercise 2.4.7, the fact that (𝑥𝑛) diverges implies that 
lim inf 𝑥𝑛 < lim sup 𝑥𝑛 and thus we have found two subsequences of (𝑥𝑛) that converge
to different limits.

(d) This is true. Suppose that (𝑥𝑛) is decreasing; the case where (𝑥𝑛) is increasing is handled
similarly. By assumption there is a subsequence (𝑥𝑛𝑘), which must also be decreasing,
converging to some 𝑥 ∈ 𝐑. By the Monotone Convergence Theorem (Theorem 2.4.2)
and the uniqueness of limits (Theorem 2.2.7), we have

lim
𝑘→∞

𝑥𝑛𝑘 = 𝑥 = inf{𝑥𝑛𝑘 : 𝑘 ∈ 𝐍}.

Let 𝜀 > 0 be given. Since 𝑥𝑛𝑘 → 𝑥, there is a 𝐾 ∈ 𝐍 such that |𝑥𝑛𝐾 − 𝑥| < 𝜀. Suppose
that 𝑛 ∈ 𝐍 is such that 𝑛 ≥ 𝑛𝐾 . Because (𝑥𝑛𝑘) is a subsequence, there exists some 
𝑘 ∈ 𝐍 such that 𝑛𝑘 ≥ 𝑛. Since (𝑥𝑛) is decreasing, we then have

𝑥 ≤ 𝑥𝑛𝑘 ≤ 𝑥𝑛 ≤ 𝑥𝑛𝐾 < 𝑥 + 𝜀 ⇒ |𝑥𝑛 − 𝑥| < 𝜀.

Thus lim𝑛→∞ 𝑥𝑛 = 𝑥.
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Exercise 2.5.3.

(a) Prove that if an infinite series converges, then the associative property holds. As-
sume 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + ⋯ converges to a limit 𝐿 (i.e., the sequence of par-
tial sums (𝑠𝑛) → 𝐿). Show that any regrouping of the terms

(𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛1) + (𝑎𝑛1+1 + ⋯ + 𝑎𝑛2) + (𝑎𝑛2+1 + ⋯ + 𝑎𝑛3) + ⋯

leads to a series that also converges to 𝐿.

(b) Compare this result to the example discussed at the end of Section 2.1 where infi-
nite addition was shown not to be associative. Why doesn’t our proof in (a) apply
to this example?

Solution.

(a) We have indices 𝑛1 < ⋯ < 𝑛𝑘 < ⋯ and we want to show that ∑∞
𝑘=1 𝑏𝑘 = 𝐿, where

𝑏1 = 𝑎1 + ⋯ + 𝑎𝑛1 = 𝑠𝑛1 and

𝑏𝑘 = 𝑎𝑛𝑘−1+1 + ⋯ + 𝑎𝑛𝑘 = 𝑠𝑛𝑘 − 𝑠𝑛𝑘−1

for 𝑘 ≥ 2. Observe that for 𝑚 ≥ 2, the partial sums are

𝑡𝑚 = ∑
𝑚

𝑘=1
𝑏𝑘 = 𝑠𝑛1 + ∑

𝑚

𝑘=2
(𝑠𝑛𝑘 − 𝑠𝑛𝑘−1)

= 𝑠𝑛1 + (𝑠𝑛2 − 𝑠𝑛1) + ⋯ + (𝑠𝑛𝑚 − 𝑠𝑛𝑚−1) = 𝑠𝑛𝑚 .

It follows from Theorem 2.5.2 that ∑∞
𝑘=1 𝑏𝑘 = lim𝑚→∞ 𝑡𝑚 = lim𝑚→∞ 𝑠𝑛𝑚 = 𝐿.

(b) Our proof does not apply to the series ∑∞
𝑛=1 (−1)𝑛 since this series does not converge:

the sequence of partial sums is (−1, 0, −1, 0, …).

Exercise 2.5.4. The Bolzano-Weierstrass Theorem is extremely important, and so is
the strategy employed in the proof. To gain some more experience with this technique,
assume the Nested Interval Property is true and use it to provide a proof of the Ax-
iom of Completeness. To prevent the argument from being circular, assume also that
(1/2𝑛) → 0. (Why precisely is this last assumption needed to avoid circularity?)

Solution. Let 𝐸 ⊆ 𝐑 be non-empty and bounded above by some 𝑏1 ∈ 𝐑. We will show that
sup 𝐸 exists. If 𝐸 has a maximum 𝑥, then sup 𝐸 = 𝑥. Otherwise, we will inductively construct
a sequence (𝐼𝑛)∞

𝑛=1 of nested intervals. 𝐸 is non-empty, so pick some 𝑎1 ∈ 𝐸; it must be the
case that 𝑎1 is not an upper bound of 𝐸 since 𝐸 has no maximum. Let 𝐼1 = [𝑎1, 𝑏1].

Suppose that after 𝑁  steps we have chosen intervals 𝐼𝑛 = [𝑎𝑛, 𝑏𝑛] for 𝑛 ∈ {1, …, 𝑁} such that
• 𝑎1 ≤ ⋯ ≤ 𝑎𝑁  are not upper bounds of 𝐸;
• 𝑏𝑁 ≤ ⋯ ≤ 𝑏1 are upper bounds of 𝐸;
• |𝐼𝑛| = 2−(𝑛−1)(𝑏1 − 𝑎1) for each 𝑛 ∈ {1, …, 𝑁}.
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Let 𝑚 = 𝑎𝑁+𝑏𝑁
2  be the midpoint of the interval 𝐼𝑁 . If 𝑚 is an upper bound of 𝐸 let 𝑎𝑁+1 = 𝑎𝑁

and 𝑏𝑁+1 = 𝑚, and if 𝑚 is not an upper bound of 𝐸 let 𝑎𝑁+1 = 𝑚 and 𝑏𝑁+1 = 𝑏𝑁 ; now let
𝐼𝑁+1 = [𝑎𝑁+1, 𝑏𝑁+1].

𝑎𝑁 𝑚 𝑏𝑁

if 𝑚 is an upper bound of 𝐸,
let 𝐼𝑁+1 be this half of 𝐼𝑁

if 𝑚 is not an upper bound of 𝐸,
let 𝐼𝑁+1 be this half of 𝐼𝑁

In either case, we have chosen intervals 𝐼𝑛 = [𝑎𝑛, 𝑏𝑛] for 𝑛 ∈ {1, …, 𝑁 + 1} such that
• 𝑎1 ≤ ⋯ ≤ 𝑎𝑁+1 are not upper bounds of 𝐸;
• 𝑏𝑁+1 ≤ ⋯ ≤ 𝑏1 are upper bounds of 𝐸;
• |𝐼𝑛| = 2−(𝑛−1)(𝑏1 − 𝑎1) for each 𝑛 ∈ {1, …, 𝑁 + 1}.

This inductive process provides us with a sequence (𝐼𝑛)∞
𝑛=1 of intervals 𝐼𝑛 = [𝑎𝑛, 𝑏𝑛] with the

following properties:
• (𝑎𝑛)∞

𝑛=1 is an increasing sequence, the terms of which are not upper bounds of 𝐸;
• (𝑏𝑛)∞

𝑛=1 is a decreasing sequence, the terms of which are upper bounds of 𝐸;
• |𝐼𝑛| = 2−(𝑛−1)(𝑏1 − 𝑎1) for each 𝑛 ∈ 𝐍.

Because (𝑎𝑛) is increasing and (𝑏𝑛) is decreasing, the intervals (𝐼𝑛) are nested. By as-
sumption 𝐑 has the Nested Interval Property (Theorem 1.4.1), so there exists an 𝑥 ∈ 𝐑
such that 𝑥 ∈ ⋂∞

𝑛=1 𝐼𝑛 we claim that 𝑥 = sup 𝐸. Let 𝑦 ∈ 𝐸 and 𝜀 > 0 be given. Since
|𝐼𝑛| = 2−(𝑛−1)(𝑏1 − 𝑎1) for each 𝑛 ∈ 𝐍 and (2−𝑛) → 0 (by assumption), there must exist an
𝑁 ∈ 𝐍 such that

|𝐼𝑁 | = 𝑏𝑁 − 𝑎𝑁 < 𝜀 ⇒ 𝑥 + (𝑏𝑁 − 𝑎𝑁) < 𝑥 + 𝜀.

Because 𝑥 ∈ ⋂∞
𝑛=1 𝐼𝑛 we then have

𝑎𝑁 ≤ 𝑥 ⇒ 𝑏𝑁 ≤ 𝑥 + (𝑏𝑁 − 𝑎𝑁) ⇒ 𝑏𝑁 < 𝑥 + 𝜀.

Since 𝑦 ∈ 𝐸 and 𝑏𝑁  is an upper bound of 𝐸, it follows that 𝑦 ≤ 𝑏𝑁 < 𝑥 + 𝜀. Thus 𝑦 < 𝑥 + 𝜀
for every 𝜀 > 0; it follows from Exercise 1.2.10 (c) that 𝑦 ≤ 𝑥. Because 𝑦 ∈ 𝐸 was arbitrary,
we see that 𝑥 is an upper bound of 𝐸.

Now suppose that 𝑡 ∈ 𝐑 is such that 𝑡 < 𝑥. Since (|𝐼𝑛|) → 0, there must be an 𝑁 ∈ 𝐍 such
that

|𝐼𝑁 | = 𝑏𝑁 − 𝑎𝑁 < 𝑥 − 𝑡 ⇒ 𝑡 < 𝑥 − (𝑏𝑁 − 𝑎𝑁).

Because 𝑥 ∈ ⋂∞
𝑛=1 𝐼𝑛 we then have

𝑥 ≤ 𝑏𝑁 ⇒ 𝑥 − (𝑏𝑁 − 𝑎𝑁) ≤ 𝑎𝑁 ⇒ 𝑡 < 𝑎𝑁 .

It follows that 𝑡 is not an upper bound of 𝐸 since 𝑎𝑁  is not an upper bound of 𝐸. We may
conclude that 𝑥 is the least upper bound of 𝐸, i.e. 𝑥 = sup 𝐸.

We had to assume that (2−𝑛) → 0 since the usual proof of this would involve the Archimedean
Property (Theorem 1.4.2), which we proved using the Axiom of Completeness.
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Exercise 2.5.5. Assume (𝑎𝑛) is a bounded sequence with the property that every con-
vergent subsequence of (𝑎𝑛) converges to the same limit 𝑎 ∈ 𝐑. Show that (𝑎𝑛) must
converge to 𝑎.

Solution. Since (𝑎𝑛) is bounded, lim inf 𝑎𝑛 and lim sup 𝑎𝑛 both exist. In the solution to
Exercise 2.5.2 (c) we showed that there are subsequences (𝑎𝑛𝑘) and (𝑎𝑛ℓ) such that

lim
𝑘→∞

𝑎𝑛𝑘 = lim inf 𝑎𝑛 and lim
ℓ→∞

𝑎𝑛ℓ lim sup 𝑎𝑛.

By assumption we have lim𝑘→∞ 𝑎𝑛𝑘 = limℓ→∞ 𝑎𝑛ℓ = 𝑎 and so by the uniqueness of limits
(Theorem 2.2.7) it follows that lim inf 𝑎𝑛 = lim inf 𝑎𝑛 = 𝑎. Exercise 2.4.7 then implies that 
lim 𝑎𝑛 = 𝑎.

Exercise 2.5.6. Use a similar strategy to the one in Example 2.5.3 to show lim 𝑏1/𝑛

exists for all 𝑏 ≥ 0 and find the value of the limit. (The results in Exercise 2.3.1 may be
assumed.)

Solution. If 𝑏 = 0 then 𝑏1/𝑛 = 0 for all 𝑛 ∈ 𝐍 and thus lim 𝑏1/𝑛 = 0. Suppose that 𝑏 > 0 and
observe that

0 < 𝑏 < 1 ⇒ 𝑏 < 𝑏1/2 < 𝑏1/3 < ⋯ < 1 and 𝑏 ≥ 1 ⇒ 𝑏 ≥ 𝑏1/2 ≥ 𝑏1/3 ≥ ⋯ ≥ 1.

In either case (𝑏1/𝑛) is bounded and monotone and hence convergent by the Monotone Con-
vergence Theorem (Theorem 2.4.2), say lim 𝑏1/𝑛 = 𝐿 ∈ 𝐑. Note that, by Theorem 2.5.2, 
lim 𝑏1/2𝑛 = 𝐿 also. Note further that

lim 𝑏1/2𝑛 = lim √𝑏1/𝑛 = √lim 𝑏1/𝑛 =
√

𝐿

by Exercise 2.3.1. Since limits are unique (Theorem 2.2.7) we must have 𝐿 =
√

𝐿, which
implies that 𝐿 = 0 or 𝐿 = 1. If 0 < 𝑏 < 1 then the Order Limit Theorem (Theorem 2.3.4)
gives 0 < 𝑏 < 𝐿 ≤ 1, so that 𝐿 = 1, and if 𝑏 ≥ 1 then the Order Limit Theorem gives 𝐿 ≥ 1
and thus 𝐿 = 1.

We may conclude that lim 𝑏1/𝑛 = 0 if 𝑏 = 0 and lim 𝑏1/𝑛 = 1 if 𝑏 > 0.

0

1

2

1 2 3 4 5 6 7 8 9 10
𝑛

𝑏 = 0 𝑏 = 1
2 𝑏 = 1 𝑏 = 2
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Exercise 2.5.7. Extend the result proved in Example 2.5.3 to the case |𝑏| < 1; that is,
show lim(𝑏𝑛) = 0 if and only if −1 < 𝑏 < 1.

Solution. Consider the following cases.

Case 1. 𝑏 > 1. In this case (𝑏𝑛) is unbounded and hence divergent.

Case 2. 𝑏 = 1. In this case (𝑏𝑛) = (1, 1, 1, …) and thus lim 𝑏𝑛 = 1.

Case 3. 0 < 𝑏 < 1. Example 2.5.3 shows that in this case we have lim 𝑏𝑛 = 0.

Case 4. 𝑏 = 0. In this case (𝑏𝑛) = (0, 0, 0, …) and thus lim 𝑏𝑛 = 0.

Case 5. −1 < 𝑏 < 0. Observe that 𝑏 = (−1)|𝑏|, so that 𝑏𝑛 = (−1)𝑛|𝑏|𝑛. Since 0 < |𝑏| < 1,
we have lim |𝑏|𝑛 = 0 by the 0 < 𝑏 < 1 case. Given this, and the boundedness of (−1)𝑛,
it follows from Exercise 2.3.9 (a) that

lim 𝑏𝑛 = lim[(−1)𝑛|𝑏|𝑛] = 0.

Case 6. 𝑏 = −1. In this case 𝑏𝑛 = (−1)𝑛, which is divergent since it has two convergent
subsequences with different limits:

lim[(−1)2𝑛] = 1 ≠ −1 = lim[(−1)2𝑛+1].

Case 7. 𝑏 < −1. We have 𝑏𝑛 = (−1)𝑛|𝑏|𝑛 with |𝑏| > 1. Observe that the subsequence 
(𝑏2𝑛) = (|𝑏|2𝑛) is divergent by the 𝑏 > 1 case. It then follows from Exercise 2.5.2 (b)
that the sequence (𝑏𝑛) is divergent.

We may conclude that lim 𝑏𝑛 = 0 if and only if −1 < 𝑏 < 1.

Exercise 2.5.8. Another way to prove the Bolzano-Weierstrass Theorem is to show
that every sequence contains a monotone subsequence. A useful device in this endeavor
is the notion of a peak term. Given a sequence (𝑥𝑛), a particular term 𝑥𝑚 is a peak term
if no later term in the sequence exceeds it; i.e., if 𝑥𝑚 ≥ 𝑥𝑛 for all 𝑛 ≥ 𝑚.

(a) Find examples of sequences with zero, one, and two peak terms. Find an example
of a sequence with infinitely many peak terms that is not monotone.

(b) Show that every sequence contains a monotone subsequence and explain how this
furnishes a new proof of the Bolzano-Weierstrass Theorem.

Solution.

(a) Any strictly increasing sequence will have zero peak terms; the sequence (1, 2, 3, …) for
example. For sequences with one and two peak terms, consider

(2, 0, 1
2 , 2

3 , 3
4 , 4

5 , …) and (3, 2, 0, 1
2 , 2

3 , 3
4 , 4

5 , …).
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0

1

2

1 2 3 4 5 6 7 8 9 10
𝑛

one peak term

0

1

2

3

1 2 3 4 5 6 7 8 9 10
𝑛

two peak terms

For a sequence with infinitely many peak terms but which is not monotone, consider

(0, 1, −2, −1, −4, −3, −6, −5, …).

−8

−6

−4

−2

0

1 2 3 4 5 6 7 8 9 10
𝑛

infinitely many peak terms, not monotone

(b) Let (𝑥𝑛) be a sequence. If (𝑥𝑛) contains infinitely many peak terms 𝑥𝑛1 , 𝑥𝑛2 , …, 𝑥𝑛𝑘 , …,
where we may assume that 𝑛1 < 𝑛2 < ⋯ < 𝑛𝑘 < ⋯, then the subsequence (𝑥𝑛𝑘) is a
decreasing subsequence of (𝑥𝑛). If (𝑥𝑛) contains only finitely many peak terms, then
we are guaranteed the existence of a term 𝑥𝑛1 which is not a peak term and after which
there are no peak terms. Since 𝑥𝑛1 is not a peak term, there exists an 𝑛2 > 𝑛1 such
that 𝑥𝑛2 > 𝑥𝑛1 and 𝑥𝑛2 is not a peak term. Since 𝑥𝑛2 is not a peak term, there exists
an 𝑛3 > 𝑛2 such that 𝑥𝑛3 > 𝑥𝑛2 and 𝑥𝑛3 is not a peak term. Continuing in this way,
we obtain an increasing subsequence (𝑥𝑛𝑘).
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Now suppose that (𝑥𝑛) is a bounded sequence. By the previous paragraph there exists
a monotone subsequence (𝑥𝑛𝑘), which must also be bounded. The Monotone Conver-
gence Theorem (Theorem 2.4.2) then implies that (𝑥𝑛𝑘) is convergent. This provides
another proof of the Bolzano-Weierstrass Theorem.

Exercise 2.5.9. Let (𝑎𝑛) be a bounded sequence, and define the set

𝑆 = {𝑥 ∈ 𝐑 : 𝑥 < 𝑎𝑛 for infinitely many terms 𝑎𝑛}.

Show that there exists a subsequence (𝑎𝑛𝑘) converging to 𝑠 = sup 𝑆. (This is a direct
proof of the Bolzano-Weierstrass Theorem using the Axiom of Completeness.)

Solution. Since (𝑎𝑛) is bounded, there is an 𝑀 > 0 such that −𝑀 ≤ 𝑎𝑛 ≤ 𝑀  for all 𝑛 ∈ 𝐍. It
follows that (−∞, −𝑀) ⊆ 𝑆, so that 𝑆 is non-empty, and for any 𝑥 ∈ 𝑆 we have 𝑥 < 𝑎𝑛 ≤ 𝑀
for some 𝑛 ∈ 𝐍, so that 𝑆 is bounded above by 𝑀 . Thus, by the Axiom of Completeness, 
𝑠 = sup 𝑆 exists in 𝐑.

Let 𝑘 be a positive integer. We claim that the set

𝐶𝑘 = {𝑛 ∈ 𝐍 : 𝑠 − 1
𝑘 < 𝑎𝑛 ≤ 𝑠 + 1

𝑘}

is infinite. By Lemma 1.3.8 there exists an 𝑥 ∈ 𝑆 such that 𝑠 − 1
𝑘 < 𝑥 ≤ 𝑠. Define the sets

𝐸 = {𝑛 ∈ 𝐍 : 𝑥 < 𝑎𝑛}, 𝐴𝑘 = {𝑛 ∈ 𝐍 : 𝑠 + 1
𝑘 < 𝑎𝑛}, 𝐵𝑘 = {𝑛 ∈ 𝐍 : 𝑥 < 𝑎𝑛 ≤ 𝑠 + 1

𝑘}.

Observe that 𝐸 is the disjoint union of 𝐴𝑘 and 𝐵𝑘 and that 𝐸 is infinite since 𝑥 ∈ 𝑆. Fur-
thermore, 𝐴𝑘 must be finite, otherwise we would have 𝑠 + 1

𝑘 ∈ 𝑆. It follows that 𝐵𝑘 is infinite
and hence that 𝐶𝑘 is infinite, since 𝐵𝑘 ⊆ 𝐶𝑘.

Since 𝐶1 is infinite, there exists some 𝑛1 ∈ 𝐍 such that 𝑠 − 1 < 𝑎𝑛1 ≤ 𝑠 + 1. Since 𝐶2 is in-
finite, there exists some 𝑛2 > 𝑛1 such that 𝑠 − 1

2 < 𝑎𝑛2 ≤ 𝑠 + 1
2 . Continuing this process, we

obtain a subsequence (𝑎𝑛𝑘) satisfying 𝑠 − 1
𝑘 < 𝑎𝑛𝑘 ≤ 𝑠 + 1

𝑘 . The Squeeze Theorem (Exercise
2.3.3) then implies that lim𝑘→∞ 𝑎𝑛𝑘 = 𝑠.
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2.6. The Cauchy Criterion

Exercise 2.6.1. Supply a proof for Theorem 2.6.2.

Solution. Suppose 𝑥𝑛 → 𝑥 for some 𝑥 ∈ 𝐑 and let 𝜀 > 0 be given. There is an 𝑁 ∈ 𝐍 such
that |𝑥𝑛 − 𝑥| < 𝜀

2  whenever 𝑛 ≥ 𝑁 . For 𝑚, 𝑛 ≥ 𝑁  we then have

|𝑥𝑛 − 𝑥𝑚| ≤ |𝑥𝑛 − 𝑥| + |𝑥𝑚 − 𝑥| < 𝜀
2 + 𝜀

2 = 𝜀.

Thus (𝑥𝑛) is Cauchy.

Exercise 2.6.2. Give an example of each of the following, or argue that such a request
is impossible.

(a) A Cauchy sequence that is not monotone.

(b) A Cauchy sequence with an unbounded subsequence.

(c) A divergent monotone sequence with a Cauchy subsequence.

(d) An unbounded sequence containing a subsequence that is Cauchy.

Solution.

(a) Consider the sequence (𝑥𝑛) given by 𝑥𝑛 = (−1)𝑛

𝑛 . The sequence is convergent
(lim 𝑥𝑛 = 0) and hence Cauchy (Theorem 2.6.4), but is certainly not monotone.

−1

0

1

1 5 10 15 20 25 30
𝑛

𝑥𝑛 =
(−1)𝑛

𝑛

(b) This is impossible. A Cauchy sequence (𝑥𝑛) is necessarily convergent (Theorem 2.6.4)
and hence all subsequences of (𝑥𝑛) must be convergent (Theorem 2.5.2); each subse-
quence must then be bounded (Theorem 2.3.2).

(c) First, let us prove the following result.
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Lemma L.7. If (𝑥𝑛) is an unbounded monotone sequence then all subsequences
of (𝑥𝑛) are also unbounded and monotone.

Proof. Suppose (𝑥𝑛) is increasing (the case where (𝑥𝑛) is decreasing is handled
similarly) and let (𝑥𝑛𝑘) be a subsequence of (𝑥𝑛). If 𝑘 > ℓ then 𝑛𝑘 > 𝑛ℓ and thus
𝑥𝑛𝑘 ≥ 𝑥𝑛ℓ since (𝑥𝑛) is increasing; it follows that (𝑥𝑛𝑘) is an increasing sequence.
Now let 𝑀 > 0 be given. Since (𝑥𝑛) is unbounded, there is an 𝑁 ∈ 𝐍 such that 
𝑥𝑁 > 𝑀 , and since (𝑥𝑛𝑘) is a subsequence of (𝑥𝑛) we are guaranteed the exis-
tence of a 𝐾 ∈ 𝐍 such that 𝑛𝐾 > 𝑁 ; it follows that 𝑥𝑛𝐾 ≥ 𝑥𝑁 > 𝑀  since (𝑥𝑛) is
increasing. We may conclude that (𝑥𝑛𝑘) is unbounded. □

We can now show that the given request is impossible. If (𝑥𝑛) is a divergent monotone
sequence then by the Monotone Convergence Theorem (Theorem 2.4.2) the sequence 
(𝑥𝑛) must be unbounded. It follows from Lemma L.7 that all subsequences of (𝑥𝑛) are
unbounded, hence divergent (Theorem 2.3.2), and hence not Cauchy (Theorem 2.6.4).

(d) Consider the unbounded sequence (0, 1, 0, 2, 0, 3, …). The subsequence (0, 0, 0, …) is con-
vergent and hence Cauchy (Theorem 2.6.4).

Exercise 2.6.3. If (𝑥𝑛) and (𝑦𝑛) are Cauchy sequences, then one easy way to prove
that (𝑥𝑛 + 𝑦𝑛) is Cauchy is to use the Cauchy Criterion. By Theorem 2.6.4, (𝑥𝑛) and 
(𝑦𝑛) must be convergent, and the Algebraic Limit Theorem then implies (𝑥𝑛 + 𝑦𝑛) is
convergent and hence Cauchy.

(a) Give a direct argument that (𝑥𝑛 + 𝑦𝑛) is a Cauchy sequence that does not use the
Cauchy Criterion or the Algebraic Limit Theorem.

(b) Do the same for the product (𝑥𝑛𝑦𝑛).

Solution.

(a) Let 𝜀 > 0 be given. There are positive integers 𝑁1 and 𝑁2 such that

𝑚, 𝑛 ≥ 𝑁1 ⇒ |𝑥𝑛 − 𝑥𝑚| < 𝜀
2 and 𝑚, 𝑛 ≥ 𝑁2 ⇒ |𝑦𝑛 − 𝑦𝑚| < 𝜀

2 .

Let 𝑁 = max{𝑁1, 𝑁2} and observe that for 𝑚, 𝑛 ≥ 𝑁  we have

|𝑥𝑛 + 𝑦𝑛 − 𝑥𝑚 − 𝑦𝑚| ≤ |𝑥𝑛 − 𝑥𝑚| + |𝑦𝑛 − 𝑦𝑚| < 𝜀
2 + 𝜀

2 = 𝜀.

It follows that (𝑥𝑛 + 𝑦𝑛) is a Cauchy sequence.

(b) Because Cauchy sequences are bounded (Lemma 2.6.3), there are positive real numbers
𝑀1 and 𝑀2 such that |𝑥𝑛| ≤ 𝑀1 and |𝑦𝑛| ≤ 𝑀2 for all 𝑛 ∈ 𝐍. Let 𝜀 > 0 be given. There
are positive integers 𝑁1 and 𝑁2 such that

𝑚, 𝑛 ≥ 𝑁1 ⇒ |𝑥𝑛 − 𝑥𝑚| <
𝜀

2𝑀2
and 𝑚, 𝑛 ≥ 𝑁2 ⇒ |𝑦𝑛 − 𝑦𝑚| <

𝜀
2𝑀1

.
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Let 𝑁 = max{𝑁1, 𝑁2} and observe that for 𝑚, 𝑛 ≥ 𝑁  we have

|𝑥𝑛𝑦𝑛 − 𝑥𝑚𝑦𝑚| = |𝑥𝑛𝑦𝑛 − 𝑥𝑚𝑦𝑛 + 𝑥𝑚𝑦𝑛 − 𝑥𝑚𝑦𝑚|

≤ |𝑦𝑛||𝑥𝑛 − 𝑥𝑚| + |𝑥𝑚||𝑦𝑛 − 𝑦𝑚| < 𝑀2
𝜀

2𝑀2
+ 𝑀1

𝜀
2𝑀1

= 𝜀.

It follows that (𝑥𝑛𝑦𝑛) is a Cauchy sequence.

Exercise 2.6.4. Let (𝑎𝑛) and (𝑏𝑛) be Cauchy sequences. Decide whether each of the
following sequences is a Cauchy sequence, justifying each conclusion.

(a) 𝑐𝑛 = |𝑎𝑛 − 𝑏𝑛|

(b) 𝑐𝑛 = (−1)𝑛𝑎𝑛

(c) 𝑐𝑛 = [[𝑎𝑛]], where [[𝑥]] refers to the greatest integer less than or equal to 𝑥.

Solution. By the Cauchy Criterion (Theorem 2.6.4), we have lim 𝑎𝑛 = 𝑎 and lim 𝑏𝑛 = 𝑏 for
some real numbers 𝑎 and 𝑏. Again by the Cauchy Criterion, it will suffice to consider con-
vergence of the given sequences (𝑐𝑛).

(a) By Exercise 2.3.10 (b) and the Algebraic Limit Theorem (Theorem 2.3.3), we have

lim 𝑐𝑛 = lim|𝑎𝑛 − 𝑏𝑛| = |lim 𝑎𝑛 − lim 𝑏𝑛| = |𝑎 − 𝑏|.

Thus (𝑐𝑛) is convergent and hence Cauchy.

(b) Suppose that 𝑎 = 0. By Exercise 2.3.9 (a) we then have lim 𝑐𝑛 = 0 and it follows that 
(𝑐𝑛) is Cauchy. If 𝑎 ≠ 0 then observe that

lim 𝑐2𝑛 = lim 𝑎2𝑛 = 𝑎 ≠ −𝑎 = lim(−𝑎2𝑛−1) = lim(𝑐2𝑛−1).

Thus (𝑐𝑛) has two subsequences which converge to different limits. It follows that (𝑐𝑛)
is not convergent (Theorem 2.5.2) and hence not Cauchy.

(c) Suppose that 𝑎 is not an integer, so that [[𝑎]] < 𝑎 < [[𝑎]] + 1. Let

𝛿 = min{𝑎 − [[𝑎]], [[𝑎]] + 1 − 𝑎}.

Since lim 𝑎𝑛 = 𝑎, there is a positive integer 𝑁  such that 𝑎𝑛 ∈ (𝑎 − 𝛿, 𝑎 + 𝛿) when-
ever 𝑛 ≥ 𝑛. Observe that [[𝑎]] ≤ 𝑎 − 𝛿 and 𝑎 + 𝛿 ≤ [[𝑎]] + 1. For 𝑛 ≥ 𝑁  we then have
[[𝑎]] < 𝑎𝑛 < [[𝑎]] + 1, which gives us [[𝑎𝑛]] = [[𝑎]]. Thus the sequence [[𝑎𝑛]] is eventually
constant with value [[𝑎]]; it follows that [[𝑎𝑛]] is convergent with limit [[𝑎]] and hence
Cauchy.

If 𝑎 is an integer then the sequence ([[𝑎𝑛]]) may or may not be convergent (and so may or
may not be Cauchy). For example, if (𝑎𝑛) is the sequence (0, 0, 0, …) then lim[[𝑎𝑛]] = 0.
However, consider the sequence 𝑎𝑛 = (−1)𝑛

𝑛 , which also satisfies lim 𝑎𝑛 = 0. This gives

([[𝑎𝑛]]) = (−1, 0, −1, 0, −1, 0, …),

which is divergent.
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Exercise 2.6.5. Consider the following (invented) definition: A sequence (𝑠𝑛) is pseudo-
Cauchy if, for all 𝜀 > 0, there exists an 𝑁  such that if 𝑛 ≥ 𝑁 , then |𝑠𝑛+1 − 𝑠𝑛| < 𝜀.

Decide which one of the following two propositions is actually true. Supply a proof for
the valid statement and a counterexample for the other.

(i) Pseudo-Cauchy sequences are bounded.

(ii) If (𝑥𝑛) and (𝑦𝑛) are pseudo-Cauchy, then (𝑥𝑛 + 𝑦𝑛) is pseudo-Cauchy as well.

Solution.

(i) This statement is false: consider the sequence (𝑠𝑛) given by 𝑠𝑛 = ∑𝑛
𝑚=1

1
𝑚 . This se-

quence satisfies 𝑠𝑛+1 − 𝑠𝑛 = 1
𝑛+1 → 0, so that (𝑠𝑛) is pseudo-Cauchy. However, as shown

in Example 2.4.5, (𝑠𝑛) is unbounded.

(ii) This statement is true. Let 𝜀 > 0 be given. There are positive integers 𝑁1 and 𝑁2 such
that

𝑛 ≥ 𝑁1 ⇒ |𝑥𝑛+1 − 𝑥𝑛| < 𝜀
2 and 𝑛 ≥ 𝑁2 ⇒ |𝑦𝑛+1 − 𝑦𝑛| < 𝜀

2 .

Let 𝑁 = max{𝑁1, 𝑁2} and observe that for 𝑛 ≥ 𝑁  we have

|𝑥𝑛+1 + 𝑦𝑛+1 − 𝑥𝑛 − 𝑦𝑛| ≤ |𝑥𝑛+1 − 𝑥𝑛| + |𝑦𝑛+1 − 𝑦𝑛| < 𝜀
2 + 𝜀

2 = 𝜀.

Thus (𝑥𝑛 + 𝑦𝑛) is pseudo-Cauchy.

Exercise 2.6.6. Let’s call a sequence (𝑎𝑛) quasi-increasing if for all 𝜀 > 0 there exists
an 𝑁  such that whenever 𝑛 > 𝑚 ≥ 𝑛 it follows that 𝑎𝑛 > 𝑎𝑚 − 𝜀.

(a) Give an example of a sequence that is quasi-increasing but not monotone or even-
tually monotone.

(b) Give an example of a quasi-increasing sequence that is divergent but not monotone
or eventually monotone.

(c) Is there an analogue of the Monotone Convergence Theorem for quasi-increasing
sequences? Give an example of a bounded, quasi-increasing sequence that doesn’t
converge, or prove that no such sequence exists.

Solution.

(a) Consider the sequence (𝑎𝑛) given by

𝑎𝑛 =
⎩{
⎨
{⎧𝑛+1

2 if 𝑛 is odd,
𝑛
2 − 2

𝑛 if 𝑛 is even.
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2

4

6

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝑛

𝑎𝑛

Some calculations reveal that this sequence has the following properties.

(i) If 𝑚 ∈ 𝐍 is even then 𝑎𝑛 > 𝑎𝑚 for all 𝑛 > 𝑚.

(ii) If 𝑚 ∈ 𝐍 is odd then 𝑎𝑛 > 𝑎𝑚 for all 𝑛 > 𝑚 + 1 and 𝑎𝑚 − 𝑎𝑚+1 = 2
𝑚+1 > 0.

It follows that (𝑎𝑛) is not eventually monotone, for if 𝑁  is a positive integer, choose
an odd integer 𝑚 such that 𝑚 > 𝑁 ; by property (ii) we then have 𝑎𝑚 > 𝑎𝑚+1 and 
𝑎𝑚 < 𝑎𝑚+2. Furthermore, (𝑎𝑛) is quasi-increasing. Indeed, let 𝜀 > 0 be given, choose a
positive integer 𝑁  such that 2

𝑁+1 < 𝜀, and suppose that 𝑛 > 𝑚 ≥ 𝑁 . By properties (i)
and (ii) we have

𝑎𝑚 − 𝑎𝑛 < 0 < 𝜀 ⇒ 𝑎𝑛 > 𝑎𝑚 − 𝜀,

unless 𝑚 is odd and 𝑛 = 𝑚 + 1. In that case we have

𝑎𝑚 − 𝑎𝑚+1 =
2

𝑚 + 1
≤

2
𝑁 + 1

< 𝜀 ⇒ 𝑎𝑛 > 𝑎𝑚 − 𝜀.

(b) The sequence (𝑎𝑛) given in part (a) is unbounded and hence divergent.

(c) There is an analogue of the Monotone Convergence Theorem for bounded quasi-in-
creasing sequences. Let (𝑎𝑛) be such a sequence. We will show that (𝑎𝑛) converges to
lim sup 𝑎𝑛.

Let 𝑠 = lim sup 𝑎𝑛 and 𝑦𝑛 = sup{𝑎ℓ : ℓ ≥ 𝑛}, so that lim 𝑦𝑛 = 𝑠. By Exercise 2.5.2 (c)
there is a subsequence (𝑎𝑛𝑘) converging to 𝑠. Let 𝜀 > 0 be given. There is an 𝑁1 ∈ 𝐍
such that |𝑦𝑛 − 𝑠| < 𝜀 whenever 𝑛 ≥ 𝑁1. Since 𝑎𝑛 ≤ 𝑦𝑛 for all 𝑛 ∈ 𝐍, we have

𝑛 ≥ 𝑁1 ⇒ 𝑎𝑛 < 𝑠 + 𝜀. (1)

Because (𝑎𝑛) is quasi-increasing, there is an 𝑁2 ∈ 𝐍 such that

𝑛 > 𝑚 ≥ 𝑁2 ⇒ 𝑎𝑚 − 𝜀
2 < 𝑎𝑛, (2)

and since (𝑎𝑛𝑘) → 𝑠, there is a 𝑀 ∈ 𝐍 such that

𝑘 ≥ 𝑀 ⇒ |𝑎𝑛𝑘 − 𝑠| < 𝜀
2 . (3)

Because (𝑎𝑛𝑘) is a subsequence, there must be some 𝐾 ∈ 𝐍 such that 𝐾 ≥ 𝑀  and 
𝑛𝐾 ≥ 𝑁2. It follows from (2) that
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𝑛 > 𝑛𝐾 ⇒ 𝑎𝑛𝐾 − 𝜀
2 < 𝑎𝑛,

and it follows from (3) that 𝑠 − 𝜀 < 𝑎𝑛𝐾 − 𝜀
2 . Combining these gives

𝑛 > 𝑛𝐾 ⇒ 𝑠 − 𝜀 < 𝑎𝑛. (4)

Let 𝑁 = max{𝑁1, 𝑛𝐾}. By (1) and (4) we then have

𝑛 > 𝑁 ⇒ 𝑠 − 𝜀 < 𝑎𝑛 < 𝑠 + 𝜀.

Thus lim 𝑎𝑛 = 𝑠.

Exercise 2.6.7. Exercises 2.4.4 and 2.5.4 establish the equivalence of the Axiom of
Completeness and the Monotone Convergence Theorem. They also show that the Nested
Interval Property is equivalent to these other two in the presence of the Archimedean
Property.

(a) Assume the Bolzano-Weierstrass Theorem is true and use it to construct a
proof of the Monotone Convergence Theorem without making any appeal to the
Archimedean Property. This shows that BW, AoC, and MCT are all equivalent.

(b) Use the Cauchy Criterion to prove the Bolzano-Weierstrass Theorem, and find the
point in the argument where the Archimedean Property is implicitly required. This
establishes the final link the equivalence of the five characterizations of complete-
ness discussed at the end of Section 2.6.

(c) How do we know it is impossible to prove the Axiom of Completeness starting
from the Archimedean Property?

Solution.

(a) Suppose (𝑥𝑛) is bounded and increasing (the case where (𝑥𝑛) is decreasing is handled
similarly). By assumption there is a convergent subsequence (𝑥𝑛𝑘), say lim𝑘→∞ 𝑥𝑛𝑘 = 𝑥
for some 𝑥 ∈ 𝐑. Let 𝜀 > 0 be given. There is a 𝐾 ∈ 𝐍 such that

𝑘 ≥ 𝐾 ⇒ |𝑥𝑛𝑘 − 𝑥| < 𝜀. (1)

Suppose 𝑛 ∈ 𝐍 is such that 𝑛 ≥ 𝑛𝐾 . Because (𝑥𝑛) is increasing we then have
𝑥 − 𝜀 < 𝑥𝑛𝐾 ≤ 𝑥𝑛. Furthermore, it must be the case that 𝑥𝑛 < 𝑥 + 𝜀. Indeed, if
𝑥𝑛 ≥ 𝑥 + 𝜀 then since (𝑥𝑛𝑘) is a subsequence there must be some 𝑘 ∈ 𝐍 such
that 𝑛𝑘 ≥ 𝑛 ≥ 𝑛𝐾 . This implies that 𝑘 ≥ 𝐾 and, since (𝑥𝑛) is increasing, that
𝑥𝑛𝑘 ≥ 𝑥𝑛 ≥ 𝑥 + 𝜀 this contradicts (1). Thus we have

𝑛 ≥ 𝑛𝐾 ⇒ 𝑥 − 𝜀 < 𝑥𝑛 < 𝑥 + 𝜀.

It follows that lim 𝑥𝑛 = 𝑥.

(b) Let (𝑥𝑛) be a sequence bounded by some 𝑀 > 0. As in the proof of the Bolzano-Weier-
strass Theorem (Theorem 2.5.5) given in the textbook, construct a sequence of nested
intervals (𝐼𝑘) with length 𝑀 ⋅ 2−𝑘+1 and a subsequence (𝑥𝑛𝑘) such that 𝑥𝑛𝑘 ∈ 𝐼𝑘. Let 
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𝜀 > 0 be given. Assuming that 2−𝑘 → 0 (this is equivalent to assuming the Archimedean
Property), there is a 𝐾 ∈ 𝐍 such that 𝑀 ⋅ 2−𝐾+1 < 𝜀. Suppose that 𝑘 > ℓ ≥ 𝐾. Since
the intervals are nested, both 𝑥𝑛𝑘 and 𝑥𝑛ℓ belong to 𝐼𝐾 .

𝑥𝑛𝑘 𝑥𝑛ℓ

𝐼𝐾

𝑀
2𝐾−1

It follows that 𝑥𝑛𝑘 and 𝑥𝑛ℓ are no further apart than the length of 𝐼𝐾 , i.e.

|𝑥𝑛𝑘 − 𝑥𝑛ℓ| ≤
𝑀

2𝐾−1 < 𝜀.

This demonstrates that (𝑥𝑛𝑘) is a Cauchy sequence. By assumption this is equivalent
to (𝑥𝑛𝑘) being convergent.

(c) The ordered field 𝐐 has the Archimedean Property but does not satisfy the Axiom of
Completeness (see Lemma L.4; the subset 𝐴 ⊆ 𝐐 given there is non-empty and bounded
above but has no supremum in 𝐐).
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2.7. Properties of Infinite Series

Exercise 2.7.1. Proving the Alternating Series Test (Theorem 2.7.7) amounts to show-
ing that the sequence of partial sums

𝑠𝑛 = 𝑎1 − 𝑎2 + 𝑎3 − ⋯ ± 𝑎𝑛

converges. (The opening example in Section 2.1 includes a typical illustration of (𝑠𝑛).)
Different characterizations of completeness lead to different proofs.

(a) Prove the Alternating Series Test by showing that (𝑠𝑛) is a Cauchy sequence.

(b) Supply another proof for this result using the Nested Interval Property (Theorem
1.4.1).

(c) Consider the subsequences (𝑠2𝑛) and (𝑠2𝑛+1), and show how the Monotone Con-
vergence Theorem leads to a third proof for the Alternating Series Test.

Solution. First note that since (𝑎𝑛) is decreasing and converges to zero, 𝑎𝑛 ≥ 0 and
𝑎𝑛 − 𝑎𝑛+1 ≥ 0 for all 𝑛 ∈ 𝐍.

(a) Suppose 𝑛 > 𝑚 are positive integers. If 𝑛 − 𝑚 is even then

𝑎𝑚+1 − 𝑎𝑚+2⏟⏟⏟⏟⏟
≥0

+ 𝑎𝑚+3 − 𝑎𝑚+4⏟⏟⏟⏟⏟
≥0

+ ⋯ + 𝑎𝑛−1 − 𝑎𝑛⏟⏟⏟⏟⏟
≥0

≥ 0,

and 𝑎𝑚+1 + (−𝑎𝑚+2 + 𝑎𝑚+3)⏟⏟⏟⏟⏟⏟⏟
≤0

+ ⋯ + (−𝑎𝑛−2 + 𝑎𝑛−1)⏟⏟⏟⏟⏟⏟⏟
≤0

+ (−𝑎𝑛)⏟
≤0

≤ 𝑎𝑚+1.

If 𝑛 − 𝑚 is odd then

𝑎𝑚+1 − 𝑎𝑚+2⏟⏟⏟⏟⏟
≥0

+ 𝑎𝑚+3 − 𝑎𝑚+4⏟⏟⏟⏟⏟
≥0

+ ⋯ + 𝑎𝑛−2 − 𝑎𝑛−1⏟⏟⏟⏟⏟
≥0

+ 𝑎𝑛⏟
≥0

≥ 0,

and 𝑎𝑚+1 + (−𝑎𝑚+2 + 𝑎𝑚+3)⏟⏟⏟⏟⏟⏟⏟
≤0

+ ⋯ + (−𝑎𝑛−1 + 𝑎𝑛)⏟⏟⏟⏟⏟
≤0

≤ 𝑎𝑚+1.

It follows that

|𝑠𝑛 − 𝑠𝑚| = 𝑎𝑚+1 − 𝑎𝑚+2 + ⋯ ± 𝑎𝑛 ≤ 𝑎𝑚+1.

Let 𝜀 > 0 be given. Because 𝑎𝑛 → 0, there is an 𝑁 ∈ 𝐍 such that |𝑎𝑛| = 𝑎𝑛 < 𝜀 for all
𝑛 ≥ 𝑁 . For 𝑛 > 𝑚 ≥ 𝑁  we then have

|𝑠𝑛 − 𝑠𝑚| ≤ 𝑎𝑚+1 < 𝜀.

Thus (𝑠𝑛) is a Cauchy sequence.

(b) Let 𝑛 be a positive integer and observe that
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𝑠2𝑛−1 − 𝑠2𝑛 = 𝑎2𝑛 ≥ 0 ⇒ 𝑠2𝑛 ≤ 𝑠2𝑛−1,

𝑠2𝑛−1 − 𝑠2𝑛−3 = 𝑎2𝑛−1 − 𝑎2𝑛−2 ≤ 0 ⇒ 𝑠2𝑛−1 ≤ 𝑠2𝑛−3,

𝑠2𝑛 − 𝑠2𝑛−2 = 𝑎2𝑛−1 − 𝑎2𝑛 ≥ 0 ⇒ 𝑠2𝑛−2 ≤ 𝑠2𝑛.

Thus (𝐼𝑛 = [𝑠2𝑛, 𝑠2𝑛−1])
∞
𝑛=1 is a sequence of nested intervals. It follows from the Nested

Interval Property (Theorem 1.4.1) that there exists some 𝑥 ∈ ⋂∞
𝑛=1 𝐼𝑛; we claim that 

lim 𝑠𝑛 = 𝑥. Suppose that 𝑛 ∈ 𝐍. If 𝑛 is even then 𝑠𝑛 ∈ 𝐼𝑛/2 = [𝑠𝑛, 𝑠𝑛−1] and thus

|𝑠𝑛 − 𝑥| ≤ |𝐼𝑛/2| = 𝑠𝑛−1 − 𝑠𝑛 = 𝑎𝑛.

If 𝑛 is odd then 𝑠𝑛 ∈ 𝐼(𝑛+1)/2 = [𝑠𝑛+1, 𝑠𝑛] and thus

|𝑠𝑛 − 𝑥| ≤ |𝐼(𝑛+1)/2| = 𝑠𝑛 − 𝑠𝑛+1 = 𝑎𝑛+1 ≤ 𝑎𝑛.

It follows that |𝑠𝑛 − 𝑥| ≤ 𝑎𝑛 for all 𝑛 ∈ 𝐍. Since 𝑎𝑛 → 0, an application of the Squeeze
Theorem (Exercise 2.3.3) then yields lim 𝑠𝑛 = 𝑥.

(c) As shown in part (b), the sequence (𝑠2𝑛) is increasing and bounded above by 𝑠1, and
the sequence (𝑠2𝑛+1) is decreasing and bounded below by 𝑠2. The Monotone Conver-
gence Theorem (Theorem 2.4.2) then implies that lim 𝑠2𝑛 and lim 𝑠2𝑛+1 both exist.
Observe that

lim(𝑠2𝑛+1 − 𝑠2𝑛) = lim 𝑎2𝑛+1 = 0,

so that 𝑠2𝑛 and 𝑠2𝑛+1 both converge to the same limit 𝑥 ∈ 𝐑 (Exercise 2.3.10 (c)). It
follows that lim 𝑠𝑛 = 𝑥, as the next lemma shows.

Lemma L.8. If (𝑥𝑛) is a sequence such that

lim 𝑥2𝑛 = lim 𝑥2𝑛+1 = 𝑥

for some 𝑥 ∈ 𝐑, then lim 𝑥𝑛 = 𝑥.

Proof. Let 𝜀 > 0 be given. There are positive integers 𝑁1 and 𝑁2 such that

𝑛 ≥ 𝑁1 ⇒ |𝑥2𝑛 − 𝑥| < 𝜀, (1)

𝑛 ≥ 𝑁2 ⇒ |𝑥2𝑛+1 − 𝑥| < 𝜀. (2)

Let 𝑁 = max{𝑁1, 𝑁2} and suppose that 𝑛 ∈ 𝐍 is such that 𝑛 ≥ 2𝑁 + 1. If 𝑛 is
even then 𝑛2 > 𝑁 ≥ 𝑁1 and so |𝑥𝑛 − 𝑥| < 𝜀 by (1). If 𝑛 is odd then 𝑛−1

2 ≥ 𝑁 ≥ 𝑁2

and so |𝑥𝑛 − 𝑥| < 𝜀 by (2). Thus

𝑛 ≥ 2𝑁 + 1 ⇒ |𝑥𝑛 − 𝑥| < 𝜀.

Thus lim 𝑥𝑛 = 𝑥. □
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Exercise 2.7.2. Decide whether each of the following series converges or diverges:

(a) ∑∞
𝑛=1

1
2𝑛+𝑛  (b) ∑∞

𝑛=1
sin(𝑛)

𝑛2

(c) 1 − 3
4 + 4

6 − 5
8 + 6

10 − 7
12 + ⋯

(d) 1 + 1
2 − 1

3 + 1
4 + 1

5 − 1
6 + 1

7 + 1
8 − 1

9 + ⋯

(e) 1 − 1
22 + 1

3 − 1
42 + 1

5 − 1
62 + 1

7 − 1
82 + ⋯

Solution.

(a) Observe that for each 𝑛 ∈ 𝐍 we have

0 <
1

2𝑛 + 𝑛
<

1
2𝑛 .

Since ∑∞
𝑛=1

1
2𝑛 = 1 (Example 2.7.5), the Comparison Test (Theorem 2.7.4) implies that

∑∞
𝑛=1

1
2𝑛+𝑛  is convergent.

1
3

1

1 2 3 4 5 6 7 8 9 10
𝑚

𝑠𝑚 = ∑𝑚
𝑛=1

1
2𝑛+𝑛

(b) Observe that for each 𝑛 ∈ 𝐍 we have

0 <
|sin(𝑛)|

𝑛2 ≤
1
𝑛2 .

Since ∑∞
𝑛=1

1
𝑛2  is convergent (Example 2.4.4), the Comparison Test (Theorem 2.7.4)

implies that ∑∞
𝑛=1

sin(𝑛)
𝑛2  is absolutely convergent and hence convergent (Theorem 2.7.6).

4
5

1

6
5

1 2 3 4 5 6 7 8 9 10
𝑚

𝑠𝑚 = ∑𝑚
𝑛=1

sin(𝑛)
𝑛2
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(c) This is the series ∑∞
𝑛=1 𝑎𝑛, where

𝑎𝑛 = (−1)𝑛+1 𝑛 + 1
2𝑛

= (−1)𝑛+1(
1
2

+
1
2𝑛

).

This sequence is divergent by Theorem 2.5.2:

lim 𝑎2𝑛 = −1
2 ≠ 1

2 = lim 𝑎2𝑛+1.

It follows from Theorem 2.7.3 that ∑∞
𝑛=1 𝑎𝑛 is divergent.

0

1
2

1

1 2 3 4 5 6 7 8 9 10
𝑚

𝑠𝑚 = ∑𝑚
𝑛=1 (−1)𝑛+1 𝑛+1

2𝑛

(d) For the series 1 + 1
2 − 1

3 + 1
4 + 1

5 − 1
6 + 1

7 + 1
8 − 1

9 + ⋯, let (𝑠𝑚) be the sequence of par-
tial sums and consider the subsequence (𝑠3𝑚). Observe that

𝑠3𝑚 = (1 +
1
2

−
1
3
) + (

1
4

+
1
5

−
1
6
) + ⋯ + (

1
3𝑚 − 2

+
1

3𝑚 − 1
−

1
3𝑚

)

≥ (1 +
1
2

−
1
2
) + (

1
4

+
1
5

−
1
5
) + ⋯ + (

1
3𝑚 − 2

+
1

3𝑚 − 1
−

1
3𝑚 − 1

)

= 1 +
1
4

+ ⋯ +
1

3𝑚 − 2

=
1
3

∑
𝑚

𝑛=1

1
𝑛 − 2

3

≥
1
3

∑
𝑚

𝑛=1

1
𝑛

.

So we have shown that 𝑠3𝑚 ≥ 1
3 ∑𝑚

𝑛=1
1
𝑛  for all 𝑚 ∈ 𝐍. Since ∑𝑚

𝑛=1
1
𝑛  is unbounded

in 𝑚 (Example 2.4.5), it follows that (𝑠3𝑚) is unbounded. This implies that (𝑠𝑚) is
unbounded and hence divergent (Theorem 2.3.2).
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0

1

2

3

1 5 10 15 20 25 30
𝑚

𝑠3𝑚
1
3 ∑𝑚

𝑛=1
1
𝑛

(e) For the series 1 − 1
22 + 1

3 − 1
42 + 1

5 − 1
62 + 1

7 − 1
82 + ⋯, let (𝑠𝑚) be the sequence of par-

tial sums and consider the subsequence (𝑠2𝑚). For any 𝑛 ≥ 2 we have

1
𝑛2 ≤

1
𝑛(𝑛 − 1)

=
1

𝑛 − 1
−

1
𝑛

⇒ −
1
𝑛2 ≥ −

1
𝑛 − 1

+
1
𝑛

.

It follows that

𝑠2𝑚 = (1 −
1
22 ) + (

1
3

−
1
42 ) + ⋯ + (

1
2𝑚 − 1

−
1

(2𝑚)2 )

≥ (1 − 1 +
1
2
) + (

1
3

−
1
3

+
1
4
) + ⋯ + (

1
2𝑚 − 1

−
1

2𝑚 − 1
+

1
2𝑚

)

=
1
2

+
1
4

+ ⋯ +
1

2𝑚

=
1
2

∑
𝑚

𝑛=1

1
𝑛

.

So we have shown that 𝑠2𝑚 ≥ 1
2 ∑𝑚

𝑛=1
1
𝑛  for all 𝑚 ∈ 𝐍. Since ∑𝑚

𝑛=1
1
𝑛  is unbounded

in 𝑚 (Example 2.4.5), it follows that (𝑠2𝑚) is unbounded. This implies that (𝑠𝑚) is
unbounded and hence divergent (Theorem 2.3.2).

0

1

2

3

1 5 10 15 20 25 30
𝑚

𝑠2𝑚
1
2 ∑𝑚

𝑛=1
1
𝑛
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Exercise 2.7.3.

(a) Provide the details for the proof of the Comparison Test (Theorem 2.7.4) using
the Cauchy Criterion for Series.

(b) Give another proof for the Comparison Test, this time using the Monotone Con-
vergence Theorem.

Solution.

(a) Since 0 ≤ 𝑎𝑘 ≤ 𝑏𝑘 for all 𝑘 ∈ 𝐍, for any 𝑛 > 𝑚 we have

|𝑎𝑚+1 + ⋯ + 𝑎𝑛| = 𝑎𝑚+1 + ⋯ + 𝑎𝑛 ≤ 𝑏𝑚+1 + ⋯ + 𝑏𝑛 = |𝑏𝑚+1 + ⋯ + 𝑏𝑛|. (1)

Suppose that ∑∞
𝑘=1 𝑏𝑘 is convergent and let 𝜀 > 0 be given. By the Cauchy Criterion

for Series (Theorem 2.7.2), there exists an 𝑁 ∈ 𝐍 such that

𝑛 > 𝑚 ≥ 𝑁 ⇒ |𝑏𝑚+1 + ⋯ + 𝑏𝑛| < 𝜀.

It then follows from inequality (1) that |𝑎𝑚+1 + ⋯ + 𝑎𝑛| < 𝜀 for all 𝑛 > 𝑚 ≥ 𝑁 . The
Cauchy Criterion for Series allows us to conclude that ∑∞

𝑘=1 𝑎𝑘 is convergent.

Now suppose that ∑∞
𝑘=1 𝑎𝑘 is divergent. By the Cauchy Criterion for Series, there must

exist an 𝜀 > 0 such that for all 𝑁 ∈ 𝐍 there are positive integers 𝑛 and 𝑚 such that

𝑛 > 𝑚 ≥ 𝑁 and |𝑎𝑚+1 + ⋯ + 𝑎𝑛| ≥ 𝜀.

Let 𝑁 ∈ 𝐍 be given and let 𝑛 and 𝑚 be the positive integers obtained above. Inequality
(1) then gives us |𝑏𝑚+1 + ⋯ + 𝑏𝑛| ≥ 𝜀; it follows from the Cauchy Criterion for Series
that ∑∞

𝑘=1 𝑏𝑘 is divergent.

(b) Define the sequences of partial sums

𝑠𝑛 = 𝑎1 + ⋯ + 𝑎𝑛 and 𝑡𝑛 = 𝑏1 + ⋯ + 𝑏𝑛.

Since 0 ≤ 𝑎𝑘 ≤ 𝑏𝑘 for all 𝑘 ∈ 𝐍, both sequences of partial sums are increasing and sat-
isfy 0 ≤ 𝑠𝑛 ≤ 𝑡𝑛 for all 𝑛 ∈ 𝐍. It follows from the Monotone Convergence Theorem
(Theorem 2.4.2) that the convergence of each sequence is equivalent to the boundedness
of that sequence. From the inequality 0 ≤ 𝑠𝑛 ≤ 𝑡𝑛, it is clear that (𝑠𝑛) is bounded if 
(𝑡𝑛) is bounded and that (𝑡𝑛) is unbounded if (𝑠𝑛) is unbounded.
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Exercise 2.7.4. Give an example of each or explain why the request is impossible ref-
erencing the proper theorem(s).

(a) Two series ∑ 𝑥𝑛 and ∑ 𝑦𝑛 that both diverge but where ∑ 𝑥𝑛𝑦𝑛 converges.

(b) A convergent series ∑ 𝑥𝑛 and a bounded sequence (𝑦𝑛) such that ∑ 𝑥𝑛𝑦𝑛 diverges.

(c) Two sequences (𝑥𝑛) and (𝑦𝑛) where ∑ 𝑥𝑛 and ∑(𝑥𝑛 + 𝑦𝑛) both converge but 
∑ 𝑦𝑛 diverges.

(d) A sequence (𝑥𝑛) satisfying 0 ≤ 𝑥𝑛 ≤ 1/𝑛 where ∑ (−1)𝑛𝑥𝑛 diverges.

Solution.

(a) If we let (𝑥𝑛) and (𝑦𝑛) be the sequences given by 𝑥𝑛 = 𝑦𝑛 = 1
𝑛 , then ∑∞

𝑛=1 𝑥𝑛 and 
∑∞

𝑛=1 𝑦𝑛 are both the divergent harmonic series (Example 2.4.5), but ∑∞
𝑛=1 𝑥𝑛𝑦𝑛 is the

convergent (by Example 2.4.4) series ∑∞
𝑛=1

1
𝑛2 .

(b) Let (𝑥𝑛) be the sequence given by 𝑥𝑛 = (−1)𝑛+1

𝑛  and (𝑦𝑛) be the bounded sequence given
by 𝑦𝑛 = (−1)𝑛+1. It then follows from the Alternating Series Test (Theorem 2.7.7) that
∑∞

𝑛=1 𝑥𝑛 is convergent, but ∑∞
𝑛=1 𝑥𝑛𝑦𝑛 is the divergent harmonic series.

(c) This is impossible. By Theorem 2.7.1 we must have

∑
∞

𝑛=1
𝑦𝑛 = ∑

∞

𝑛=1
(𝑥𝑛 + 𝑦𝑛) − ∑

∞

𝑛=1
𝑥𝑛.

(d) Let (𝑥𝑛) be the sequence given by

𝑥𝑛 =
⎩{
⎨
{⎧ 1

2(𝑛+1) if 𝑛 is odd,
1
𝑛 if 𝑛 is even,

i.e. (𝑥𝑛) = (1
4 , 1

2 , 1
8 , 1

4 , 1
12 , 1

6 , …),

and let (𝑠𝑛) be the sequence of partial sums for the series ∑∞
𝑛=1 (−1)𝑛𝑥𝑛. Note that 

0 ≤ 𝑥𝑛 ≤ 1
𝑛  for all 𝑛 ∈ 𝐍. Note further that

𝑠2𝑚 = (−
1
4

+
1
2
) + (−

1
8

+
1
4
) + ⋯ + (−

1
4𝑚

+
1

2𝑚
)

=
1
4

+
1
8

+ ⋯ +
1

4𝑚

=
1
4

∑
𝑚

𝑛=1

1
𝑛

.

It follows that (𝑠2𝑚) is unbounded (Example 2.4.5) and hence that ∑∞
𝑛=1 (−1)𝑛𝑥𝑛 is

divergent.

Exercise 2.7.5. Now that we have proved the basis facts about geometric series, supply
a proof for Corollary 2.4.7.
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Solution. We want to show that the series ∑∞
𝑛=1

1
𝑛𝑝  converges if and only if 𝑝 > 1. If 𝑝 ≤ 0

then 1
𝑛𝑝  does not converge to zero and it follows that ∑∞

𝑛=1
1

𝑛𝑝  diverges (Theorem 2.7.3).
Suppose that 𝑝 > 0 and notice that the sequence 1

𝑛𝑝  is positive and decreasing. The Cauchy
Condensation Test (Theorem 2.4.6) then implies that ∑∞

𝑛=1
1

𝑛𝑝  is convergent if and only if
the series

∑
∞

𝑛=0

2𝑛

(2𝑛)𝑝 = ∑
∞

𝑛=0
(21−𝑝)𝑛

is convergent. This is a geometric series with common ratio 21−𝑝, so by Example 2.7.5 this
series is convergent if and only if

|21−𝑝| < 1 ⇔ 1 − 𝑝 < 0 ⇔ 𝑝 > 1.

1

5

10

1 5 10 15 20 25 30
𝑚

𝑝 ≤ 1, divergent

𝑝 > 1, convergent

𝑠𝑚 = ∑𝑚
𝑛=1

1
𝑛𝑝  for various values of 𝑝

𝑝 = −1 𝑝 = 0 𝑝 = 1
2 𝑝 = 1 𝑝 = 5

4 𝑝 = 2
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Exercise 2.7.6. Let’s say that a series subverges if the sequence of partial sums contains
a subsequence that converges. Consider this (invented) definition for a moment, and
then decide which of the following statements are valid propositions about subvergent
series:

(a) If (𝑎𝑛) is bounded, then ∑ 𝑎𝑛 subverges.

(b) All convergent series are subvergent.

(c) If ∑|𝑎𝑛| subverges, then ∑ 𝑎𝑛 subverges as well.

(d) If ∑ 𝑎𝑛 subverges, then (𝑎𝑛) has a convergent subsequence.

Solution.

(a) This is false. For the bounded sequence (𝑎𝑛) = (1, 1, 1, …), the sequence of partial sums
for the series ∑∞

𝑛=1 𝑎𝑛 is (1, 2, 3, …). This sequence is unbounded and monotone and
hence contains no convergent subsequence (Lemma L.7).

(b) This is true. If the sequence of partial sums (𝑠𝑚) is convergent then any subsequence
of (𝑠𝑛) is convergent; (𝑠𝑛) itself, for example.

(c) This is true; we will prove the contrapositive statement. Define the sequences of partial
sums

𝑠𝑛 = |𝑎1| + ⋯ + |𝑎𝑛| and 𝑡1 = 𝑎1 + ⋯ + 𝑎𝑛.

We want to show that if (𝑡𝑛) has no convergent subsequence, then neither does (𝑠𝑛).
By the Bolzano-Weierstrass Theorem (Theorem 2.5.5) it must be the case that (𝑡𝑛) is
unbounded and, since 𝑡𝑛 ≤ 𝑠𝑛 for all 𝑛 ∈ 𝐍, it follows that (𝑠𝑛) is unbounded. Thus 
(𝑠𝑛) is an increasing unbounded sequence; such sequences do not have convergent sub-
sequences, as shown in Lemma L.7.

(d) This is false. Consider the sequence (𝑎𝑛) = (1, −1, 2, −2, 3, −3, …). The sequence of par-
tial sums is (𝑠𝑛) = (1, 0, 2, 0, 3, 0, …), which has the convergent subsequence (0, 0, 0, …).
Thus ∑∞

𝑛=1 𝑎𝑛 subverges. However, (𝑎𝑛) has no convergent subsequence. To see this,
observe that for any sequence (𝑥𝑛) we have

(𝑥𝑛) has a convergent subsequence ⇒ (|𝑥𝑛|) has a convergent subsequence,

since if lim𝑘→∞ 𝑥𝑛𝑘 = 𝑥 then lim𝑘→∞|𝑥𝑛𝑘| = |𝑥| by Exercise 2.3.10 (b). Because 
(|𝑎𝑛|) = (1, 1, 2, 2, 3, 3, …) has no convergent subsequence (see Lemma L.7), it follows
that (𝑎𝑛) has no convergent subsequence.

Exercise 2.7.7.

(a) Show that if 𝑎𝑛 > 0 and lim(𝑛𝑎𝑛) = 𝑙 with 𝑙 ≠ 0, then the series ∑ 𝑎𝑛 diverges.

(b) Assume 𝑎𝑛 > 0 and lim(𝑛2𝑎𝑛) exists. Show that ∑ 𝑎𝑛 converges.
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Solution. The condition that 𝑎𝑛 > 0 can be relaxed to 𝑎𝑛 ≥ 0 for both parts of this exercise.

(a) Because 𝑛𝑎𝑛 ≥ 0 for all 𝑛 ∈ 𝐍, the Order Limit Theorem (Theorem 2.3.4) and the
assumption 𝑙 ≠ 0 imply that 𝑙 > 0. Since 𝑛𝑎𝑛 → 𝑙, there exists an 𝑁 ∈ 𝐍 such that

𝑛 ≥ 𝑁 ⇒ 0 <
𝑙
2

< 𝑛𝑎𝑛 ⇒ 0 <
𝑙

2𝑛
< 𝑎𝑛.

Thus the series ∑∞
𝑛=1 𝑎𝑛 diverges by comparison (Theorem 2.7.4) with the divergent

series ∑∞
𝑛=1

𝑙
2𝑛  (Example 2.4.5).

(b) Suppose that lim(𝑛2𝑎𝑛) = 𝐿; the Order Limit Theorem (Theorem 2.3.4) implies that 
𝐿 ≥ 0. There is an 𝑁 ∈ 𝐍 such that

𝑛 ≥ 𝑁 ⇒ 0 ≤ 𝑛2𝑎𝑛 < 𝐿 + 1 ⇒ 0 ≤ 𝑎𝑛 <
𝐿 + 1

𝑛2 .

Since the series ∑∞
𝑛=1

𝐿+1
𝑛2  is convergent (Corollary 2.4.7), the Comparison Test (The-

orem 2.7.4) implies that ∑∞
𝑛=1 𝑎𝑛 is also convergent.

Exercise 2.7.8. Consider each of the following propositions. Provide short proofs for
those that are true and counterexamples for any that are not.

(a) If ∑ 𝑎𝑛 converges absolutely, then ∑ 𝑎2
𝑛 also converges absolutely.

(b) If ∑ 𝑎𝑛 converges and (𝑏𝑛) converges, then ∑ 𝑎𝑛𝑏𝑛 converges.

(c) If ∑ 𝑎𝑛 converges conditionally, then ∑ 𝑛2𝑎𝑛 diverges.

Solution.

(a) This is true. Since the series ∑∞
𝑛=1|𝑎𝑛| converges, we must have lim|𝑎𝑛| = 0 by Theo-

rem 2.7.3. There is then an 𝑁 ∈ 𝐍 such that 0 ≤ |𝑎𝑛| ≤ 1 for 𝑛 ≥ 𝑁 ; it follows that
0 ≤ |𝑎𝑛|2 = 𝑎2

𝑛 ≤ |𝑎𝑛| for 𝑛 ≥ 𝑁 . We may now apply the Comparison Test (Theorem
2.7.4) to conclude that ∑∞

𝑛=1 𝑎2
𝑛 converges absolutely.

(b) This is false. Let 𝑎𝑛 = 𝑏𝑛 = (−1)𝑛
√

𝑛 , so that lim 𝑏𝑛 = 0. Notice that ∑∞
𝑛=1 𝑎𝑛 converges by

the Alternating Series Test (Theorem 2.7.7), but ∑∞
𝑛=1 𝑎𝑛𝑏𝑛 is the divergent harmonic

series.

(c) This is true; we will prove that

∑
∞

𝑛=1
|𝑎𝑛| diverges ⇒ ∑

∞

𝑛=1
𝑛2𝑎𝑛 diverges

by proving the contrapositive statement

∑
∞

𝑛=1
𝑛2𝑎𝑛 converges ⇒ ∑

∞

𝑛=1
|𝑎𝑛| converges.

By Theorem 2.7.3 we have lim(𝑛2𝑎𝑛) = 0, which implies that lim(𝑛2|𝑎𝑛|) = 0. We may
now apply Exercise 2.7.7 (b) to conclude that ∑∞

𝑛=1|𝑎𝑛| is convergent.
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Exercise 2.7.9 (Ratio Test). Given a series ∑∞
𝑛=1 𝑎𝑛 with 𝑎𝑛 ≠ 0, the Ratio Test

states that if (𝑎𝑛) satisfies

lim|
𝑎𝑛+1
𝑎𝑛

| = 𝑟 < 1,

then the series converges absolutely.

(a) Let 𝑟′ satisfy 𝑟 < 𝑟′ < 1. Explain why there exists an 𝑁  such that 𝑛 ≥ 𝑁  implies
|𝑎𝑛+1| ≤ |𝑎𝑛|𝑟′.

(b) Why does |𝑎𝑁 | ∑ (𝑟′)𝑛 converge?

(c) Now, show that ∑|𝑎𝑛| converges, and conclude that ∑ 𝑎𝑛 converges.

Solution.

(a) Since lim|𝑎𝑛+1
𝑎𝑛

| = 𝑟 and 𝑟′ − 𝑟 > 0, there is an 𝑁 ∈ 𝐍 such that

𝑛 ≥ 𝑁 ⇒ ||
𝑎𝑛+1
𝑎𝑛

| − 𝑟| < 𝑟′ − 𝑟 ⇒
|𝑎𝑛+1|
|𝑎𝑛|

< 𝑟′ ⇒ |𝑎𝑛+1| < |𝑎𝑛|𝑟′.

(b) Since 0 < 𝑟′ < 1, the geometric series ∑∞
𝑛=0 (𝑟′)𝑛 converges by Example 2.7.5.

(c) By part (a) we have

|𝑎𝑁+𝑛| < |𝑎𝑁+𝑛−1|𝑟′ < |𝑎𝑁+𝑛−2|(𝑟′)2 < ⋯ < |𝑎𝑁 |(𝑟′)𝑛

for any 𝑛 ∈ 𝐍. It then follows from part (b) and the Comparison Test (Theorem 2.7.4)
that the series

∑
∞

𝑛=0
|𝑎𝑁+𝑛| = ∑

∞

𝑛=𝑁
|𝑎𝑛|

is convergent. Since a finite number of terms do not affect convergence, we see that the
series ∑∞

𝑛=1|𝑎𝑛| is convergent; the convergence of ∑∞
𝑛=1 𝑎𝑛 is then given by Theorem

2.7.6.
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Exercise 2.7.10 (Infinite Products). Review Exercise 2.4.10 about infinite products
and then answer the following questions:

(a) Does 2
1 ⋅ 3

2 ⋅ 5
4 ⋅ 9

8 ⋅ 17
16 ⋯ converge?

(b) The infinite product 12 ⋅ 3
4 ⋅ 5

6 ⋅ 7
8 ⋅ 9

10 ⋯ certainly converges. (Why?) Does it converge
to zero?

(c) In 1655, John Wallis famously derived the formula

(
2 ⋅ 2
1 ⋅ 3

)(
4 ⋅ 4
3 ⋅ 5

)(
6 ⋅ 6
5 ⋅ 7

)(
8 ⋅ 8
7 ⋅ 9

)⋯ =
𝜋
2
.

Show that the left side of this identity at least converges to something. (A complete
proof of this result is taken up in Section 8.3.)

Solution.

(a) This is the infinite product

∏
∞

𝑛=0

2𝑛 + 1
2𝑛 = ∏

∞

𝑛=0
(1 +

1
2𝑛 ).

By Exercise 2.4.10 this infinite product converges if and only if the series ∑∞
𝑛=0

1
2𝑛

converges. This series is geometric with common ratio 𝑟 = 1
2  and hence convergent by

Example 2.7.5; it follows that the infinite product converges.

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10
𝑚

∏
𝑚

𝑛=0
(1 +

1
2𝑛 )

(b) This is the infinite product

∏
∞

𝑛=1

2𝑛 − 1
2𝑛

= ∏
∞

𝑛=1
(1 −

1
2𝑛

).

The sequence of partial products is positive and decreasing, since each term in the par-
tial product satisfies 0 < 1 − 1

2𝑛 < 1; the Monotone Convergence Theorem (Theorem
2.4.2) then implies that the infinite product converges.

Indeed, this infinite product converges to zero. To see this, let (𝑝𝑚) be the sequence of
partial products:
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𝑝𝑚 =
1
2

⋅
3
4

⋯
2𝑚 − 1

2𝑚
.

As noted above, (𝑝𝑚) is decreasing and satisfies 0 < 𝑝𝑚 < 1 for all 𝑚 ∈ 𝐍, so we can
look at the sequence of reciprocals (𝑝−1

𝑚 ):
1

𝑝𝑚
=

2
1

⋅
4
3

⋯
2𝑚

2𝑚 − 1
= (1 +

1
1
)(1 +

1
3
) ⋯ (1 +

1
2𝑚 − 1

)

≥ ∑
𝑚

𝑛=1

1
2𝑛 − 1

≥
1
2

∑
𝑚

𝑛=1

1
𝑛

.

It follows from Example 2.4.5 that (𝑝−1
𝑚 ) is unbounded above. Thus, for any 𝜀 > 0,

there is an 𝑀 ∈ 𝐍 such that 𝑝−1
𝑀 > 𝜀−1, and since (𝑝𝑚) is decreasing we then have

𝑚 ≥ 𝑀 ⇒ |𝑝𝑚| = 𝑝𝑚 ≤ 𝑝𝑀 < 𝜀.

Hence lim 𝑝𝑚 = 0.

0

1
2

1 5 10 15 20 25 30
𝑚

∏
𝑚

𝑛=1
(1 −

1
2𝑛

)

(c) This is the infinite product

∏
∞

𝑛=1

(2𝑛)2

(2𝑛 − 1)(2𝑛 + 1)
= ∏

∞

𝑛=1
(1 +

1
(2𝑛 − 1)(2𝑛 + 1)

) = ∏
∞

𝑛=1
(1 +

1
4𝑛2 − 1

).

By Exercise 2.4.10 this infinite product converges if and only if the series ∑∞
𝑛=1

1
4𝑛2−1

converges. Observe that for all 𝑛 ∈ 𝐍 we have

𝑛2 − 1 ≥ 0 ⇒ 4𝑛2 − 1 ≥ 3𝑛2 ⇒
1

4𝑛2 − 1
≤

1
3𝑛2 .

The series ∑∞
𝑛=1

1
3𝑛2  is convergent by Corollary 2.4.7, so the Comparison Test (Theorem

2.7.4) implies that the series ∑∞
𝑛=1

1
4𝑛2−1  is also convergent; it follows that the infinite

product (2⋅2
1⋅3)(4⋅4

3⋅5)(6⋅6
5⋅7)(8⋅8

7⋅9)⋯ converges.
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4
3

𝜋
2

1 5 10 15 20 25 30
𝑚

∏
𝑚

𝑛=1
(1 +

1
4𝑛2 − 1

)

Exercise 2.7.11. Find examples of two series ∑ 𝑎𝑛 and ∑ 𝑏𝑛 both of which diverge
but for which ∑ min{𝑎𝑛, 𝑏𝑛} converges. To make it more challenging, produce examples
where (𝑎𝑛) and (𝑏𝑛) are strictly positive and decreasing.

Solution. Consider the series

∑
∞

𝑛=1
𝑎𝑛 =

1
12⏟

1 term
sum = 1

+
1
22 + ⋯ +

1
52 +

1
62 + ⋯ +

1
62⏟⏟⏟⏟⏟

62 terms
sum = 1

+
1

422 + ⋯ +
1

18052 + ⋯

∑
∞

𝑛=1
𝑎𝑛 =

1
12 +

1
22 + ⋯ +

1
22⏟⏟⏟⏟⏟

22 terms
sum = 1

+
1
62 + ⋯ +

1
412 +

1
422 + ⋯ +

1
422⏟⏟⏟⏟⏟⏟⏟

422 terms
sum = 1

+ ⋯

Both (𝑎𝑛) and (𝑏𝑛) are strictly positive and decreasing and

∑
∞

𝑛=1
min{𝑎𝑛, 𝑏𝑛} = ∑

∞

𝑛=1

1
𝑛2 ,

which is a convergent series. Furthermore, both ∑ 𝑎𝑛 and ∑ 𝑏𝑛 diverge since their sequences
of partial sums are unbounded: we can find arbitrarily many groupings of consecutive terms
which sum to 1, as shown above.

Exercise 2.7.12 (Summation by parts). Let (𝑥𝑛) and (𝑦𝑛) be sequences, let
𝑠𝑛 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛 and set 𝑠0 = 0. Use the observation that 𝑥𝑗 = 𝑠𝑗 − 𝑠𝑗−1 to verify
the formula

∑
𝑛

𝑗=𝑚
𝑥𝑗𝑦𝑗 = 𝑠𝑛𝑦𝑛+1 − 𝑠𝑚−1𝑦𝑚 + ∑

𝑛

𝑗=𝑚
𝑠𝑗(𝑦𝑗 − 𝑦𝑗+1).

Solution. For positive integers 𝑛 > 𝑚,
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∑
𝑛

𝑗=𝑚
𝑥𝑗𝑦𝑗 = ∑

𝑛

𝑗=𝑚
(𝑠𝑗 − 𝑠𝑗−1)𝑦𝑗

= ∑
𝑛

𝑗=𝑚
𝑠𝑗𝑦𝑗 − ∑

𝑛

𝑗=𝑚
𝑠𝑗−1𝑦𝑗

= ∑
𝑛

𝑗=𝑚
𝑠𝑗𝑦𝑗 − ∑

𝑛−1

𝑗=𝑚−1
𝑠𝑗𝑦𝑗+1

= ∑
𝑛

𝑗=𝑚
𝑠𝑗𝑦𝑗 − ∑

𝑛

𝑗=𝑚
𝑠𝑗𝑦𝑗+1 + 𝑠𝑛𝑦𝑛+1 − 𝑠𝑚−1𝑦𝑚

= 𝑠𝑛𝑦𝑛+1 − 𝑠𝑚−1𝑦𝑚 + ∑
𝑛

𝑗=𝑚
𝑠𝑗(𝑦𝑗 − 𝑦𝑗+1).

Exercise 2.7.13 (Abel's Test). Abel’s Test for convergence states that if the series 
∑∞

𝑘=1 𝑥𝑘 converges, and if (𝑦𝑘) is a sequence satisfying

𝑦1 ≥ 𝑦2 ≥ 𝑦3 ≥ ⋯ ≥ 0,

then the series ∑∞
𝑘=1 𝑥𝑘𝑦𝑘 converges.

(a) Use Exercise 2.7.12 to show that

∑
𝑛

𝑘=1
𝑥𝑘𝑦𝑘 = 𝑠𝑛𝑦𝑛+1 + ∑

𝑛

𝑘=1
𝑠𝑘(𝑦𝑘 − 𝑦𝑘+1),

where 𝑠𝑛 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛.

(b) Use the Comparison test to argue that ∑∞
𝑘=1 𝑠𝑘(𝑦𝑘 − 𝑦𝑘+1) converges absolutely,

and show how this leads directly to a proof of Abel’s Test.

Solution.

(a) This follows immediately from Exercise 2.7.12, taking 𝑚 = 1 and remembering that 
𝑠0 = 0.

(b) By assumption the sequence (𝑠𝑘) is convergent and hence, by Theorem 2.3.2, bounded
by some 𝑀 > 0, so that for each 𝑘 ∈ 𝐍 we have the inequality

0 ≤ |𝑠𝑘(𝑦𝑘 − 𝑦𝑘+1)| = |𝑠𝑘|(𝑦𝑘 − 𝑦𝑘+1) ≤ 𝑀(𝑦𝑘 − 𝑦𝑘+1). (1)

Notice that since (𝑦𝑘) is decreasing and bounded below, the limit 𝑦 = lim𝑘→∞ 𝑦𝑘 exists
by the Monotone Convergence Theorem (Theorem 2.4.2). It follows that the series 
∑∞

𝑘=1(𝑦𝑘 − 𝑦𝑘+1) is convergent since, letting 𝑡𝑚 be the 𝑚th partial sum, we have

𝑡𝑚 = (𝑦1 − 𝑦2) + (𝑦2 − 𝑦3) + ⋯ + (𝑦𝑚 − 𝑦𝑚+1) = 𝑦1 − 𝑦𝑚+1 → 𝑦1 − 𝑦 as 𝑚 → ∞.

Inequality (1) and the Comparison Test (Theorem 2.7.4) then imply that
∑∞

𝑘=1 𝑠𝑘(𝑦𝑘 − 𝑦𝑘+1) is absolutely convergent and hence convergent (Theorem 2.7.6).
From part (a) we have ∑𝑛

𝑘=1 𝑥𝑘𝑦𝑘 = 𝑠𝑛𝑦𝑛+1 + ∑𝑛
𝑘=1 𝑠𝑘(𝑦𝑘 − 𝑦𝑘+1); it follows that
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∑
∞

𝑘=1
𝑥𝑘𝑦𝑘 = lim

𝑛→∞
(𝑠𝑛𝑦𝑛+1 + ∑

𝑛

𝑘=1
𝑠𝑘(𝑦𝑘 − 𝑦𝑘+1)) = 𝑦 ∑

∞

𝑘=1
𝑥𝑘 + ∑

∞

𝑘=1
𝑠𝑘(𝑦𝑘 − 𝑦𝑘+1).

Exercise 2.7.14 (Dirichlet's Test). Dirichlet’s Test for convergence states that if the
partial sums of ∑∞

𝑘=1 𝑥𝑘 are bounded (but not necessarily convergent), and if (𝑦𝑘) is
a sequence satisfying 𝑦1 ≥ 𝑦2 ≥ 𝑦3 ≥ ⋯ ≥ 0 with lim 𝑦𝑘 = 0, then the series ∑∞

𝑘=1 𝑥𝑘𝑦𝑘

converges.

(a) Point out how the hypothesis of Dirichlet’s Test differs from that of Abel’s Test in
Exercise 2.7.13, but show that essentially the same strategy can be used to provide
a proof.

(b) Show how the Alternating Series Test (Theorem 2.7.7) can be derived as a special
case of Dirichlet’s Test.

Solution.

(a) Abel’s Test has the stronger hypothesis that the sequence of partial sums of ∑∞
𝑘=1 𝑥𝑘 is

convergent (and hence bounded), but the weaker hypothesis that (𝑦𝑘) need only satisfy
𝑦1 ≥ 𝑦2 ≥ 𝑦3 ≥ ⋯ ≥ 0 without necessarily converging to zero.

Let (𝑠𝑘) be the 𝑘th partial sum of ∑∞
𝑛=1 𝑥𝑛; we are given that (𝑠𝑘) is bounded by some

𝑀 > 0. It follows that

0 ≤ |𝑠𝑘(𝑦𝑘 − 𝑦𝑘+1)| = |𝑠𝑘|(𝑦𝑘 − 𝑦𝑘+1) ≤ 𝑀(𝑦𝑘 − 𝑦𝑘+1) (1)

for each 𝑘 ∈ 𝐍. The series ∑∞
𝑘=1(𝑦𝑘 − 𝑦𝑘+1) is convergent since it has 𝑚th partial sum

(𝑦1 − 𝑦2) + (𝑦2 − 𝑦3) + ⋯ + (𝑦𝑚 − 𝑦𝑚+1) = 𝑦1 − 𝑦𝑚+1 → 𝑦1 as 𝑚 → ∞.

Inequality (1) and the Comparison Test (Theorem 2.7.4) then imply that
∑∞

𝑘=1 𝑠𝑘(𝑦𝑘 − 𝑦𝑘+1) is absolutely convergent and hence convergent (Theorem 2.7.6).
Since (𝑠𝑘) is bounded and lim 𝑦𝑘 = 0, we have lim(𝑠𝑘𝑦𝑘+1) = 0 by Exercise 2.3.9 (b).
It follows that

∑
∞

𝑘=1
𝑥𝑘𝑦𝑘 = lim

𝑛→∞
(𝑠𝑛𝑦𝑛+1 + ∑

𝑛

𝑘=1
𝑠𝑘(𝑦𝑘 − 𝑦𝑘+1)) = ∑

∞

𝑘=1
𝑠𝑘(𝑦𝑘 − 𝑦𝑘+1).

(b) The Alternating Series Test (Theorem 2.7.7) can be recovered from Dirichlet’s Test by
taking 𝑥𝑘 = (−1)𝑘+1; the sequence of partial sums of ∑∞

𝑘=1 𝑥𝑘 is (1, 0, 1, 0, …), which is
certainly bounded.
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2.8. Double Summations and Products of Infinite Series

Exercise 2.8.1. Using the particular array (𝑎𝑖𝑗) from Section 2.1, compute lim𝑛→∞ 𝑠𝑛𝑛.
How does this value compare to the two iterated values for the sum already computed?

Solution. The array in question is

−1 1
2

1
4

1
8

1
16 ⋯

0 −1 1
2

1
4

1
8 ⋯

0 0 −1 1
2

1
4 ⋯

0 0 0 −1 1
2 ⋯

0 0 0 0 −1 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋱

That is, 𝑎𝑖,𝑗 = 2𝑖−𝑗 if 𝑗 > 𝑖, 𝑎𝑖,𝑗 = −1 if 𝑗 = 𝑖, and 𝑎𝑖,𝑗 = 0 if 𝑗 < 𝑖. If we let 𝑓(𝑗) be the sum of
the first row up to the 𝑗th column, then using the formula for the partial sums of a geometric
series, we find that

𝑓(𝑗) = {
−1 if 𝑗 = 1,
−1 + 1

2 + ⋯ + 1
2𝑗−1 = − 1

2𝑗−1 if 𝑗 ≥ 2

= −
1

2𝑗−1 .

Since subsequent rows are simply the first row shifted along, we see that 𝑠1,1 = 𝑓(1),
𝑠2,2 = 𝑓(1) + 𝑓(2), 𝑠3,3 = 𝑓(1) + 𝑓(2) + 𝑓(3), and in general

𝑠𝑛,𝑛 = ∑
𝑛

𝑗=1
𝑓(𝑗) = ∑

𝑛

𝑗=1
−

1
2𝑗−1 = − ∑

𝑛−1

𝑗=0

1
2𝑗 .

It follows that

lim
𝑛→∞

𝑠𝑛,𝑛 = − ∑
∞

𝑗=0

1
2𝑗 = −2.

At the beginning of Section 2.1, we found that summing along the rows first gave a value of
0 for the double sum, whereas summing down the columns first gave a value of −2.
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Exercise 2.8.2. Show that if the iterated series

∑
∞

𝑖=1
∑
∞

𝑗=1
|𝑎𝑖𝑗|

converges (meaning for each fixed 𝑖 ∈ 𝐍 the series ∑∞
𝑗=1|𝑎𝑖𝑗| converges to some real

numbers 𝑏𝑖 and the series ∑∞
𝑖=1 𝑏𝑖 converges as well), then the iterated series

∑
∞

𝑖=1
∑
∞

𝑗=1
𝑎𝑖𝑗

converges.

Solution. For each 𝑖 ∈ 𝐍, Theorem 2.7.6 implies that the series ∑∞
𝑗=1 𝑎𝑖,𝑗 converges to some

real number 𝑐𝑖. Observe that

0 ≤ |𝑐𝑖| = |∑
∞

𝑗=1
𝑎𝑖,𝑗| ≤ ∑

∞

𝑗=1
|𝑎𝑖,𝑗| = 𝑏𝑖.

Since ∑∞
𝑖=1 𝑏𝑖 converges, the Comparison Test (Theorem 2.7.4) implies that the series ∑∞

𝑖=1 𝑐𝑖

is absolutely convergent and hence convergent (Theorem 2.7.6).

Exercise 2.8.3.

(a) Prove that (𝑡𝑛𝑛) converges.

(b) Now, use the fact that (𝑡𝑛𝑛) is a Cauchy sequence to argue that (𝑠𝑛𝑛) converges.

Solution.

(a) Since |𝑎𝑖,𝑗| ≥ 0 for all positive integers 𝑖 and 𝑗, the sequence (𝑡𝑛,𝑛) is increasing and
bounded above by the real number ∑∞

𝑖=1 ∑∞
𝑗=1|𝑎𝑖,𝑗|. Thus (𝑡𝑛,𝑛) converges by the Mo-

notone Convergence Theorem (Theorem 2.4.2).

(b) Suppose 𝑛 > 𝑚 are positive integers. By examining the following array,

𝑎1,1 ⋯ 𝑎1,𝑚 𝑎1,𝑚+1 ⋯ 𝑎1,𝑛

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑎𝑚,1 ⋯ 𝑎𝑚,𝑚 𝑎𝑚,𝑚+1 ⋯ 𝑎𝑚,𝑛

𝑎𝑚+1,1 ⋯ 𝑎𝑚+1,𝑚 𝑎𝑚+1,𝑚+1 ⋯ 𝑎𝑚+1,𝑛

⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑎𝑛,1 ⋯ 𝑎𝑛,𝑚 𝑎𝑛,𝑚+1 ⋯ 𝑎𝑛,𝑛
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we see that

∑
𝑛

𝑖=1
∑

𝑛

𝑗=1
𝑎𝑖,𝑗 − ∑

𝑚

𝑖=1
∑
𝑚

𝑗=1
𝑎𝑖,𝑗 = ∑

𝑚

𝑖=1
∑

𝑛

𝑗=𝑚+1
𝑎𝑖,𝑗 + ∑

𝑚

𝑖=𝑚+1
∑

𝑛

𝑗=1
𝑎𝑖,𝑗.

In other words, the difference of the entire “square” and the top left “square” is equal
to the sum of the top right “square” (in red) and the bottom “rectangle” (in blue).

Let 𝜀 > 0 be given. Since (𝑡𝑛,𝑛) is an increasing Cauchy sequence, there exists an 𝑁 ∈ 𝐍
such that

𝑛 > 𝑚 ≥ 𝑁 ⇒ |𝑡𝑛,𝑛 − 𝑡𝑚,𝑚| = 𝑡𝑛,𝑛 − 𝑡𝑚,𝑚 < 𝜀.

For such 𝑛 and 𝑚, observe that

|𝑠𝑛,𝑛 − 𝑠𝑚,𝑚| = |∑
𝑛

𝑖=1
∑

𝑛

𝑗=1
𝑎𝑖,𝑗 − ∑

𝑚

𝑖=1
∑
𝑚

𝑗=1
𝑎𝑖,𝑗|

= |∑
𝑚

𝑖=1
∑

𝑛

𝑗=𝑚+1
𝑎𝑖,𝑗 + ∑

𝑚

𝑖=𝑚+1
∑

𝑛

𝑗=1
𝑎𝑖,𝑗|

≤ ∑
𝑚

𝑖=1
∑

𝑛

𝑗=𝑚+1
|𝑎𝑖,𝑗| + ∑

𝑚

𝑖=𝑚+1
∑

𝑛

𝑗=1
|𝑎𝑖,𝑗|

= 𝑡𝑛,𝑛 − 𝑡𝑚,𝑚

< 𝜀.

Thus (𝑠𝑛,𝑛) is Cauchy and hence convergent.

Exercise 2.8.4.

(a) Let 𝜀 > 0 be arbitrary and argue that there exists an 𝑁1 ∈ 𝐍 such that 𝑚, 𝑛 ≥ 𝑁1

implies 𝐵 − 𝜀
2 < 𝑡𝑚𝑛 ≤ 𝐵.

(b) Now, show that there exists an 𝑁  such that

|𝑠𝑚𝑛 − 𝑆| < 𝜀

for all 𝑚, 𝑛 ≥ 𝑁 .

Solution.

(a) By Lemma 1.3.8 there exist positive integers 𝑘, ℓ such that 𝐵 − 𝜀
2 < 𝑡𝑘,ℓ ≤ 𝐵. Let

𝑁1 = max{𝑘, ℓ}. Since each |𝑎𝑖,𝑗| is positive, (𝑡𝑚,𝑛) is increasing in both 𝑚 and 𝑛; it
follows that for 𝑚, 𝑛 ≥ 𝑁1 we have 𝐵 − 𝜀

2 < 𝑡𝑚,𝑛 ≤ 𝐵.

(b) Because lim𝑛→∞ 𝑠𝑛,𝑛 = 𝑆, there is an 𝑁2 ∈ 𝐍 such that |𝑠𝑛,𝑛 − 𝑆| < 𝜀
2  for all 𝑛 ≥ 𝑁2.

Let 𝑁 = max{𝑁1, 𝑁2} and suppose that 𝑚, 𝑛 > 𝑁 . Similarly to Exercise 2.8.3 (b), we
have
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|𝑠𝑚,𝑛 − 𝑠𝑁,𝑁 | = |∑
𝑚

𝑖=1
∑

𝑛

𝑗=1
𝑎𝑖,𝑗 − ∑

𝑁

𝑖=1
∑
𝑁

𝑗=1
𝑎𝑖,𝑗|

= |∑
𝑁

𝑖=1
∑

𝑛

𝑗=𝑁+1
𝑎𝑖,𝑗 + ∑

𝑚

𝑖=𝑁+1
∑

𝑛

𝑗=1
𝑎𝑖,𝑗|

≤ ∑
𝑁

𝑖=1
∑

𝑛

𝑗=𝑁+1
|𝑎𝑖,𝑗| + ∑

𝑚

𝑖=𝑁+1
∑

𝑛

𝑗=1
|𝑎𝑖,𝑗|

= 𝑡𝑚,𝑛 − 𝑡𝑁,𝑁

≤ 𝐵 − 𝑡𝑁,𝑁

< 𝜀
2 .

It follows that

|𝑠𝑚,𝑛 − 𝑆| ≤ |𝑠𝑚,𝑛 − 𝑠𝑁,𝑁 | + |𝑠𝑁,𝑁 − 𝑆| < 𝜀
2 + 𝜀

2 = 𝜀.

Exercise 2.8.5.

(a) Show that for all 𝑚 ≥ 𝑁

|(𝑟1 + 𝑟2 + ⋯ + 𝑟𝑚) − 𝑆| ≤ 𝜀.

Conclude that the iterated sum ∑∞
𝑖=1 ∑∞

𝑗=1 𝑎𝑖𝑗 converges to 𝑆.

(b) Finish the proof by showing that the other iterated sum, ∑∞
𝑗=1 ∑∞

𝑖=1 𝑎𝑖𝑗, converges
to 𝑆 as well. Notice that the same argument can be used once it is established
that, for each fixed column 𝑗, the sum ∑∞

𝑖=1 𝑎𝑖𝑗 converges to some real number 𝑐𝑗.

Solution.

(a) For any 𝑛 ≥ 𝑁 , observe that

|(𝑟1 + ⋯ + 𝑟𝑚) − 𝑆| ≤ |(𝑟1 + ⋯ + 𝑟𝑚) − 𝑠𝑚,𝑛| + |𝑠𝑚,𝑛 − 𝑆|

< |(𝑟1 + ⋯ + 𝑟𝑚) − (∑
𝑛

𝑗=1
𝑎1,𝑗 + ⋯ + ∑

𝑛

𝑗=1
𝑎𝑚,𝑗)| + 𝜀

≤ |𝑟1 − ∑
𝑛

𝑗=1
𝑎1,𝑗| + ⋯ + |𝑟𝑚 − ∑

𝑛

𝑗=1
𝑎𝑚,𝑗| + 𝜀.

Since this is true for any 𝑛 ≥ 𝑁  and for any given 𝑖 we have ∑∞
𝑗=1 𝑎𝑖,𝑗 = 𝑟𝑖, taking the

limit in 𝑛 on both sides of the inequality

|(𝑟1 + ⋯ + 𝑟𝑚) − 𝑆| < |𝑟1 − ∑
𝑛

𝑗=1
𝑎1,𝑗| + ⋯ + |𝑟𝑚 − ∑

𝑛

𝑗=1
𝑎𝑚,𝑗| + 𝜀
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gives us |(𝑟1 + ⋯ + 𝑟𝑚) − 𝑆| ≤ 𝜀. Thus lim𝑚→∞ ∑𝑚
𝑖=1 𝑟𝑖 = 𝑆, i.e. ∑∞

𝑖=1 ∑∞
𝑗=1 𝑎𝑖,𝑗 = 𝑆.

(b) Fix 𝑗 ∈ 𝐍 and let (𝑥𝑛) be the sequence of partial sums of the series ∑∞
𝑖=1|𝑎𝑖,𝑗|, i.e.

𝑥𝑛 = |𝑎1,𝑗| + |𝑎2,𝑗| + ⋯ + |𝑎𝑛,𝑗|.

Because each |𝑎𝑖,𝑗| is a term of the convergent series ∑∞
𝑗=1|𝑎𝑖,𝑗| = 𝑟𝑖, which has only

non-negative terms, we see that |𝑎𝑖,𝑗| ≤ 𝑟𝑖, so that

𝑥𝑛 ≤ 𝑟1 + 𝑟2 + ⋯ + 𝑟𝑛 ≤ ∑
∞

𝑖=1
𝑟𝑖,

where the last inequality follows since each 𝑟𝑖 is non-negative. Thus (𝑥𝑛) is an increasing
and bounded sequence and hence converges by the Monotone Convergence Theorem.
It follows that ∑∞

𝑖=1 𝑎𝑖,𝑗 converges to some (non-negative) real number 𝑐𝑗.

Let 𝜀 > 0 be given. As in Exercise 2.8.4, there is an 𝑁 ∈ 𝐍 such that |𝑠𝑚,𝑛 − 𝑆| < 𝜀
for all 𝑚, 𝑛 ≥ 𝑁 . We can write 𝑠𝑚,𝑛 as

𝑠𝑚,𝑛 = ∑
𝑚

𝑖=1
𝑎𝑖,1 + ∑

𝑚

𝑖=1
𝑎𝑖,2 + ⋯ + ∑

𝑚

𝑖=1
𝑎𝑖,𝑛.

Suppose that 𝑚, 𝑛 ≥ 𝑁  and observe that

|(𝑐1 + ⋯ + 𝑐𝑛) − 𝑆| ≤ |(𝑐1 + ⋯ + 𝑐𝑛) − 𝑠𝑚,𝑛| + |𝑠𝑚,𝑛 − 𝑆|

< |(𝑐1 + ⋯ + 𝑐𝑚) − (∑
𝑚

𝑖=1
𝑎𝑖,1 + ⋯ + ∑

𝑚

𝑖=1
𝑎𝑖,𝑛)| + 𝜀

≤ |𝑐1 − ∑
𝑚

𝑖=1
𝑎𝑖,1| + ⋯ + |𝑐𝑛 − ∑

𝑚

𝑖=1
𝑎𝑖,𝑛| + 𝜀.

Since this is true for any 𝑚 ≥ 𝑁  and for any given 𝑗 we have ∑∞
𝑖=1 𝑎𝑖,𝑗 = 𝑐𝑗, taking the

limit in 𝑚 on both sides of the inequality

|(𝑐1 + ⋯ + 𝑐𝑛) − 𝑆| < |𝑐1 − ∑
𝑚

𝑖=1
𝑎𝑖,1| + ⋯ + |𝑐𝑛 − ∑

𝑚

𝑖=1
𝑎𝑖,𝑛| + 𝜀

gives us |(𝑐1 + ⋯ + 𝑐𝑛) − 𝑆| ≤ 𝜀. Thus lim𝑛→∞ ∑𝑛
𝑗=1 𝑐𝑗 = 𝑆, i.e. ∑∞

𝑗=1 ∑∞
𝑖=1 𝑎𝑖,𝑗 = 𝑆.

Exercise 2.8.6.

(a) Assuming the hypothesis—and hence the conclusion—of Theorem 2.8.1, show that
∑∞

𝑘=2 𝑑𝑘 converges absolutely.

(b) Imitate the strategy in the proof of Theorem 2.8.1 to show that ∑∞
𝑘=2 𝑑𝑘 converges

to 𝑆 = lim𝑛→∞ 𝑠𝑛,𝑛.

Solution.
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(a) Observe that

|𝑑2| = |𝑎1,1| = ∑
1

𝑖=1
∑

1

𝑗=1
|𝑎𝑖,𝑗|

|𝑑2| + |𝑑3| = |𝑎1,1| + |𝑎1,2 + 𝑎2,1| ≤ ∑
2

𝑖=1
∑

2

𝑗=1
|𝑎𝑖,𝑗|

|𝑑2| + |𝑑3| + |𝑑4| = |𝑎1,1| + |𝑎1,2 + 𝑎2,1| + |𝑎1,3 + 𝑎2,2 + 𝑎3,1| ≤ ∑
3

𝑖=1
∑

3

𝑗=1
|𝑎𝑖,𝑗|,

and in general for 𝑛 ≥ 2,

∑
𝑛

𝑘=2
|𝑑𝑘| ≤ ∑

𝑛−1

𝑖=1
∑
𝑛−1

𝑗=1
|𝑎𝑖,𝑗| ≤ ∑

∞

𝑖=1
∑
∞

𝑗=1
|𝑎𝑖,𝑗|.

By assumption ∑∞
𝑖=1 ∑∞

𝑗=1|𝑎𝑖,𝑗| is finite, so the sequence ∑𝑛
𝑘=2|𝑑𝑘| is increasing and

bounded above and hence converges by the Monotone Convergence Theorem.

(b) By considering the following figure, which shows the special case 𝑛 = 6, we see that for
each 𝑛 ≥ 2,

𝑠𝑛,𝑛 − ∑
𝑛

𝑘=2
𝑑𝑘 = ∑

𝑛

𝑖=1
∑

𝑛

𝑗=𝑛+1−𝑖
𝑎𝑖,𝑗.

𝑎1,1 𝑎1,2 𝑎1,3 𝑎1,4 𝑎1,5 𝑎1,6

𝑎2,1 𝑎2,2 𝑎2,3 𝑎2,4 𝑎2,5 𝑎2,6

𝑎3,1 𝑎3,2 𝑎3,3 𝑎3,4 𝑎3,5 𝑎3,6

𝑎4,1 𝑎4,2 𝑎4,3 𝑎4,4 𝑎4,5 𝑎4,6

𝑎5,1 𝑎5,2 𝑎5,3 𝑎5,4 𝑎5,5 𝑎5,6

𝑎6,1 𝑎6,2 𝑎6,3 𝑎6,4 𝑎6,5 𝑎6,6

𝑠6,6 − ∑
6

𝑘=2
𝑑𝑘 = ∑

6

𝑖=1
∑

6

𝑗=7−𝑖
𝑎𝑖,𝑗

Similarly, letting 𝑒𝑘 = |𝑎1,𝑘−1| + |𝑎2,𝑘−2| + ⋯ + |𝑎𝑘−1,1| for 𝑘 ≥ 2, for each 𝑛 ≥ 2 we
find that

111 / 415



𝑡𝑛,𝑛 − ∑
𝑛

𝑘=2
𝑒𝑘 = ∑

𝑛

𝑖=1
∑

𝑛

𝑗=𝑛+1−𝑖
|𝑎𝑖,𝑗|.

It follows that

|𝑠𝑛,𝑛 − ∑
𝑛

𝑘=2
𝑑𝑘| = |∑

𝑛

𝑖=1
∑

𝑛

𝑗=𝑛+1−𝑖
𝑎𝑖,𝑗| ≤ ∑

𝑛

𝑖=1
∑

𝑛

𝑗=𝑛+1−𝑖
|𝑎𝑖,𝑗| = 𝑡𝑛,𝑛 − ∑

𝑛

𝑘=2
𝑒𝑘. (1)

Let 𝜀 > 0 be given. Since lim𝑛→∞ 𝑠𝑛,𝑛 = 𝑆 and (𝑡𝑛,𝑛) is an increasing Cauchy sequence,
there are positive integers 𝑁1, 𝑁2 such that

𝑛 ≥ 𝑁1 ⇒ |𝑠𝑛,𝑛 − 𝑆| < 𝜀
2 and 𝑛 > 𝑚 ≥ 𝑁 ⇒ 𝑡𝑛,𝑛 − 𝑡𝑚,𝑚 < 𝜀

2 . (2)

Let 𝑁 = max{𝑁1, 2𝑁2} and suppose 𝑛 ≥ 𝑁 . Because 𝑛 ≥ 2𝑁2, each term of 𝑡𝑁2,𝑁2

appears in ∑𝑛
𝑘=2 𝑒𝑘; see the following figure, which has the special case 𝑛 = 6 and 

𝑁2 = 3.

|𝑎1,1| |𝑎1,2| |𝑎1,3| |𝑎1,4| |𝑎1,5| |𝑎1,6|

|𝑎2,1| |𝑎2,2| |𝑎2,3| |𝑎2,4| |𝑎2,5| |𝑎2,6|

|𝑎3,1| |𝑎3,2| |𝑎3,3| |𝑎3,4| |𝑎3,5| |𝑎3,6|

|𝑎4,1| |𝑎4,2| |𝑎4,3| |𝑎4,4| |𝑎4,5| |𝑎4,6|

|𝑎5,1| |𝑎5,2| |𝑎5,3| |𝑎5,4| |𝑎5,5| |𝑎5,6|

|𝑎6,1| |𝑎6,2| |𝑎6,3| |𝑎6,4| |𝑎6,5| |𝑎6,6|

𝑡3,3 ≤ ∑
6

𝑘=2
𝑒𝑘

It follows that 𝑡𝑁2,𝑁2
≤ ∑𝑛

𝑘=2 𝑒𝑘 and thus by (1) and (2) we have

|𝑠𝑛,𝑛 − ∑
𝑛

𝑘=2
𝑑𝑘| ≤ 𝑡𝑛,𝑛 − 𝑡𝑁2,𝑁2

< 𝜀
2

⇒ |∑
𝑛

𝑘=2
𝑑𝑘 − 𝑆| ≤ |𝑠𝑛,𝑛 − 𝑆| + |𝑠𝑛,𝑛 − ∑

𝑛

𝑘=2
𝑑𝑘| < 𝜀

2 + 𝜀
2 = 𝜀.

We may conclude that ∑∞
𝑘=2 𝑑𝑘 = 𝑆.
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Exercise 2.8.7. Assume that ∑∞
𝑖=1 𝑎𝑖 converges absolutely to 𝐴, and ∑∞

𝑗=1 𝑏𝑗 converges
absolutely to 𝐵.

(a) Show that the iterated sum ∑∞
𝑖=1 ∑∞

𝑗=1|𝑎𝑖𝑏𝑗| converges so that we may apply The-
orem 2.8.1.

(b) Let 𝑠𝑛𝑛 = ∑𝑛
𝑖=1 ∑𝑛

𝑗=1 𝑎𝑖𝑏𝑗, and prove that lim𝑛→∞ 𝑠𝑛𝑛 = 𝐴𝐵. Conclude that

∑
∞

𝑖=1
∑
∞

𝑗=1
𝑎𝑖𝑏𝑗 = ∑

∞

𝑗=1
∑
∞

𝑖=1
𝑎𝑖𝑏𝑗 = ∑

∞

𝑘=2
𝑑𝑘 = 𝐴𝐵,

where, as before, 𝑑𝑘 = 𝑎1𝑏𝑘−1 + 𝑎2𝑏𝑘−2 + ⋯ + 𝑎𝑘−1𝑏1.

Solution.

(a) Let 𝛼 = ∑∞
𝑖=1|𝑎𝑖| and let 𝛽 = ∑∞

𝑗=1|𝑏𝑗|. Notice that for a fixed 𝑖 ∈ 𝐍 we have

∑
𝑛

𝑗=1
|𝑎𝑖𝑏𝑗| = |𝑎𝑖| ∑

𝑛

𝑗=1
|𝑏𝑗| → |𝑎𝑖|𝛽 as 𝑛 → ∞.

It follows that

∑
𝑛

𝑖=1
|𝑎𝑖|𝛽 = 𝛽 ∑

𝑛

𝑖=1
|𝑎𝑖| → 𝛼𝛽 as 𝑛 → ∞.

That is, ∑∞
𝑖=1 ∑∞

𝑗=1|𝑎𝑖𝑏𝑗| = 𝛼𝛽.

(b) For each 𝑛 ∈ 𝐍 we have

𝑠𝑛,𝑛 = ∑
𝑛

𝑖=1
∑

𝑛

𝑗=1
𝑎𝑖𝑏𝑗 = (∑

𝑛

𝑖=1
𝑎𝑖)(∑

𝑛

𝑗=1
𝑏𝑗).

The Algebraic Limit Theorem (Theorem 2.3.3) then gives us lim𝑛→∞ 𝑠𝑛,𝑛 = 𝐴𝐵 and
Theorem 2.8.1 then gives the desired result.
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Chapter 3. Basic Topology of 𝐑

3.2. Open and Closed Sets

Exercise 3.2.1.

(a) Where in the proof of Theorem 3.2.3 part (ii) does the assumption that the col-
lection of open sets be finite get used?

(b) Give an example of a countable collection of open sets {𝑂1, 𝑂2, 𝑂3, …} whose in-
tersection ⋂∞

𝑛=1 𝑂𝑛 is closed, not empty and not all of 𝐑.

Solution.

(a) This assumption is used when we let 𝜀 = min{𝜀1, 𝜀2, …, 𝜀𝑁}; this minimum is guaran-
teed to exist because the set {𝜀1, 𝜀2, …, 𝜀𝑁} is finite (see Lemma L.3). An infinite subset
of 𝐑 does not necessarily have a minimum. For example, { 1

𝑛 : 𝑛 ∈ 𝐍} has no minimum.

(b) If we let 𝑂𝑛 = (− 1
𝑛 , 1

𝑛) for 𝑛 ∈ 𝐍, then each 𝑂𝑛 is open by Example 3.2.2 (ii), the col-
lection {𝑂1, 𝑂2, 𝑂3, …} is countable, and ⋂∞

𝑛=1 𝑂𝑛 = {0} = [0, 0], which is non-empty,
not equal to 𝐑, and closed by Example 3.2.9 (ii).

Exercise 3.2.2. Let

𝐴 = {(−1)𝑛 +
2
𝑛

: 𝑛 = 1, 2, 3, …} and 𝐵 = {𝑥 ∈ 𝐐 : 0 < 𝑥 < 1}.

Answer the following questions for each set:

(a) What are the limit points?

(b) Is the set open? Closed?

(c) Does the set contain any isolated points?

(d) Find the closure of the set.

Solution. Let us consider the set 𝐴 first.

(a) Let 𝐿𝐴 be the set of limit points of 𝐴. We claim that 𝐿𝐴 = {−1, 1}. To see this, first
let (𝑥𝑛) be the sequence given by 𝑥𝑛 = (−1)𝑛 + 2

𝑛  and notice that:
• 𝐴 = {𝑥𝑛 : 𝑛 ∈ 𝐍};
• lim𝑛→∞ 𝑥2𝑛−1 = −1;
• 𝑥2𝑛−1 ≠ −1 for each 𝑛 ∈ 𝐍;
• lim𝑛→∞ 𝑥2𝑛 = 1;
• 𝑥2𝑛 ≠ 1 for each 𝑛 ∈ 𝐍.
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It follows from Theorem 3.2.5 that −1 and 1 are limit points of 𝐴, so that {−1, 1} ⊆ 𝐿𝐴.

−1

0

1

2

1 5 10 15 20 25 30
𝑛

𝑥𝑛, 𝑛 odd 𝑥𝑛, 𝑛 even

Notice that the blue subsequence is converging to −1 and the red subsequence is con-
verging to 1.

Now suppose that 𝑥 ∈ 𝐑 is such that 𝑥 ∉ {−1, 1}. We will show that 𝑥 is not a limit
point of 𝐴. Note that the distance from 𝑥 to each of −1 and 1 is strictly positive, so that

𝜀 = min{|𝑥 + 1|, |𝑥 − 1|} > 0.

Since lim 𝑥2𝑛−1 = −1 and lim 𝑥2𝑛 = 1, the terms of (𝑥𝑛) (i.e. the elements of 𝐴) must
eventually be contained inside

𝑉𝜀/2(−1) ∪ 𝑉𝜀/2(1) = (−1 − 𝜀
2 , −1 + 𝜀

2) ∪ (1 − 𝜀
2 , 1 + 𝜀

2).

Graphically, the terms of (𝑥𝑛) are eventually contained in the blue intervals in the
following diagram.

−1

𝑉𝜀/2(−1)

𝑥

𝑉𝜀/2(𝑥)

1

𝑉𝜀/2(1)

𝜀

Case 1: 𝑥 closer to 1

−1

𝑉𝜀/2(−1)

𝑥

𝑉𝜀/2(𝑥)

1

𝑉𝜀/2(1)

𝜀

Case 2: 𝑥 closer to −1

−1

𝑉𝜀/2(−1)

𝑥

𝑉𝜀/2(𝑥)

1

𝑉𝜀/2(1)

𝜀 𝜀

Case 3: 𝑥 = 0
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Our choice of 𝜀 is such that [𝑉𝜀/2(−1) ∪ 𝑉𝜀/2(1)] ∩ 𝑉𝜀/2(𝑥) = ∅; notice that the red in-
terval does not intersect either of the blue intervals in the diagram above. Thus there
can be only finitely many elements of 𝐴 in 𝑉𝜀/2(𝑥). It follows that 𝑥 cannot possibly
be the limit of any sequence of elements of 𝐴 distinct from 𝑥, which by Theorem 3.2.5
is to say that 𝑥 cannot be a limit point of 𝐴. We may conclude that 𝐿𝐴 = {−1, 1}.

(b) 𝐴 is not open. It is straightforward to check that each 𝑎 ∈ 𝐴 satisfies 𝑎 ≤ 2 and also
that 2 ∈ 𝐴. Thus, for any 𝜀 > 0, we have 2 + 𝜀

2 ∈ 𝑉𝜀(2) but 2 + 𝜀
2 ∉ 𝐴.

𝐴 is not closed either since it does not contain the limit point −1: for any 𝑛 ∈ 𝐍 we
have (−1)𝑛 + 2

𝑛 > −1.

(c) Since 𝐿𝐴 = {−1, 1}, 1 ∈ 𝐴, and −1 ∉ 𝐴, every element of 𝐴 is an isolated point of 𝐴.

(d) The closure is

𝐴 = 𝐴 ∪ 𝐿𝐴 = {−1} ∪ {(−1)𝑛 +
2
𝑛

: 𝑛 = 1, 2, 3, …}.

Now let us consider the set 𝐵.

(a) Let 𝐿𝐵 be the set of limit points of 𝐵. We claim that 𝐿𝐵 = [0, 1]. To see this, first
suppose that 𝑥 ∈ [0, 1] and let 𝜀 > 0 be given. Observe that

𝑉𝜀(𝑥) ∩ (0, 1) = (max{𝑥 − 𝜀, 0}, min{𝑥 + 𝜀, 1}).

This is a proper interval contained in (0, 1) and hence, by the density of 𝐐 in 𝐑, con-
tains infinitely many elements of 𝐵. It follows that 𝑥 is a limit point of 𝐵 and hence
that [0, 1] ⊆ 𝐿𝐵.

If 𝑥 is a limit point of 𝐵 then by Theorem 3.2.5 it must be the case that 𝑥 is the limit of
a sequence of elements of 𝐵. The Order Limit Theorem (Theorem 2.3.4) then implies
that 0 ≤ 𝑥 ≤ 1, so that 𝐿𝐵 ⊆ [0, 1]. We may conclude that 𝐿𝐵 = [0, 1].

(b) 𝐵 is not open since for any 𝑥 ∈ 𝐵 and 𝜀 > 0, the neighbourhood 𝑉𝜀(𝑥) will contain
irrational numbers (Corollary 1.4.4) and hence cannot be contained in 𝐵. Neither is 𝐵
closed, since it does not contain the limit point 0.

(c) 𝐵 does not have any isolated points, since 𝐵 ⊆ [0, 1] = 𝐿𝐵.

(d) We have 𝐵 = 𝐵 ∪ 𝐿𝐵 = 𝐿𝐵 = [0, 1].
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Exercise 3.2.3. Decide whether the following sets are open, closed, or neither. If a set
is not open, find a point in the set for which there is no 𝜀-neighborhood contained in
the set. If a set is not closed, find a limit point that is not contained in the set.

(a) 𝐐.

(b) 𝐍.

(c) {𝑥 ∈ 𝐑 : 𝑥 ≠ 0}.

(d) {1 + 1/4 + 1/9 + ⋯ + 1/𝑛2 : 𝑛 ∈ 𝐍}.

(e) {1 + 1/2 + 1/3 + ⋯ + 1/𝑛 : 𝑛 ∈ 𝐍}.

Solution.

(a) 𝐐 is not open since 0 ∈ 𝐐 but, by Corollary 1.4.4, there are infinitely many irrational
numbers contained in 𝑉𝜀(0) for any 𝜀 > 0. 𝐐 is not closed either, since Theorem 3.25
and Theorem 3.2.10 show that 

√
2 ∉ 𝐐 is a limit point of 𝐐.

(b) 𝐍 is not open since 1 ∈ 𝐍 but 𝑉𝜀(1) contains infinitely many non-integers for any 𝜀 > 0.
However, 𝐍 is closed. Observe that

𝐍c = (−∞, 1) ∪ ⋃
∞

𝑛=1
(𝑛, 𝑛 + 1),

i.e. 𝐍c is a union of open intervals. It follows from Theorem 3.2.3 (i) that 𝐍c is open
and hence that 𝐍 is closed (Theorem 3.2.13).

(c) Let 𝐸 be the set in question and notice that 𝐸 = (−∞, 0) ∪ (0, ∞), a union of two open
intervals; it follows that 𝐸 is open. However, 𝐸 is not closed: notice that 1

𝑛 ∈ 𝐸 for each
𝑛 ∈ 𝐍 and 1

𝑛 → 0 ∉ 𝐸.

(d) Let 𝐸 be the set in question and note that each 𝑥 ∈ 𝐸 satisfies 𝑥 ≥ 1. It follows that for
all 𝜀 > 0 we have 1 − 𝜀

2 ∈ 𝑉𝜀(1) but 1 − 𝜀
2 ∉ 𝐸. Consequently, 𝐸 is not open. 𝐸 is not

closed either. From Example 2.4.4 we know that ∑∞
𝑘=1

1
𝑘2 = 𝐿 for some 𝐿 ∈ 𝐑. Observe

that for any 𝑛 ∈ 𝐍,

𝐿 − ∑
𝑛

𝑘=1

1
𝑘2 = ∑

∞

𝑘=𝑛+1

1
𝑘2 >

1
(𝑛 + 1)2 > 0 ⇒ 𝐿 ≠ ∑

𝑛

𝑘=1

1
𝑘2 .

This implies that 𝐿 is a limit point of 𝐸 (Theorem 3.2.5), and also that 𝐿 ∉ 𝐸. It
follows that 𝐸 is not closed.

(e) Let 𝐸 be the set in question. As in part (d) we have 1 ∈ 𝐸 and 𝑥 ≥ 1 for all
𝑥 ∈ 𝐸 it follows that 𝐸 is not open. However, 𝐸 is closed. Let 𝑠𝑛 = ∑𝑛

𝑘=1
1
𝑘 , so that

𝐸 = {𝑠𝑛 : 𝑛 ∈ 𝐍}, and notice that if 𝐸 had a limit point then Theorem 3.2.5 would im-
ply that the sequence (𝑠𝑛) contains a convergent subsequence—but (𝑠𝑛) is an increasing
and unbounded sequence and hence contains no convergent subsequences (Lemma L.7).
Thus 𝐸 has no limit points and it follows that 𝐸 is closed.
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Exercise 3.2.4. Let 𝐴 be nonempty and bounded above so that 𝑠 = sup 𝐴 exists.

(a) Show that 𝑠 ∈ 𝐴.

(b) Can an open set contain its supremum?

Solution.

(a) If 𝑠 ∈ 𝐴 then certainly 𝑠 ∈ 𝐴, so suppose that 𝑠 ∉ 𝐴. For each 𝑛 ∈ 𝐍 we may use Lemma
1.3.8 to choose some 𝑎𝑛 ∈ 𝐴 satisfying 𝑠 − 1

𝑛 < 𝑎𝑛 < 𝑠 (the last inequality is strict as 
𝑠 ∉ 𝐴). The Squeeze Theorem then implies that lim 𝑎𝑛 = 𝑠 and thus, by Theorem 3.2.5,
𝑠 is a limit point of 𝐴, whence 𝑠 ∈ 𝐴.

(b) An open set cannot contain its supremum. Suppose that 𝐴 ⊆ 𝐑 is open and 𝑥 ∈ 𝐴.
There then exists an 𝜀 > 0 such that 𝑉𝜀(𝑥) ⊆ 𝐴, which implies that 𝑥 + 𝜀

2 ∈ 𝐴. It fol-
lows that 𝑥 is not the supremum of 𝐴.

Exercise 3.2.5. Prove Theorem 3.2.8.

Solution. Theorem 3.2.8 states that a set 𝐹 ⊆ 𝐑 is closed if and only if every Cauchy se-
quence contained in 𝐹  has a limit that is also an element of 𝐹 .

First suppose that every Cauchy sequence contained in 𝐹  has a limit that is also an element
of 𝐹  and let 𝑥 ∈ 𝐑 be a limit point of 𝐹 . By Theorem 3.2.5 there is a sequence (𝑥𝑛) con-
tained in 𝐹  such that lim 𝑥𝑛 = 𝑥. Because convergent sequences are also Cauchy sequences
(Theorem 2.6.4), our hypothesis guarantees that 𝑥 ∈ 𝐹 . Thus 𝐹  contains each of its limit
points, i.e. 𝐹  is closed.

Now suppose that there exists a Cauchy sequence (𝑥𝑛) contained in 𝐹  satisfying
𝑥 = lim 𝑥𝑛 ∉ 𝐹 . As (𝑥𝑛) is entirely contained in 𝐹  and 𝑥 ∉ 𝐹 , it must be the case that 𝑥𝑛 ≠ 𝑥
for each 𝑛 ∈ 𝐍. It follows from Theorem 3.2.5 that 𝑥 is a limit point of 𝐹 . Thus 𝐹  does not
contain each of its limit points, i.e. 𝐹  is not closed.

Exercise 3.2.6. Decide whether the following statements are true or false. Provide
counterexamples for those that are false, and supply proofs for those that are true.

(a) An open set that contains every rational number must necessarily be all of 𝐑.

(b) The Nested Interval Property remains true if the “closed interval” is replaced by
“closed set”.

(c) Every nonempty open set contains a rational number.

(d) Every bounded infinite closed set contains a rational number.

(e) The Cantor set is closed.

Solution.
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(a) This is false: consider the open set 𝐑 ∖ {
√

2} = (−∞,
√

2) ∪ (
√

2, ∞).

(b) This is false. Consider the nested closed sets [𝑛, ∞) for 𝑛 ∈ 𝐍. The Archimedean Prop-
erty shows that

⋂
∞

𝑛=1
[𝑛, ∞) = ∅.

(c) This is true. Suppose that 𝐴 is open and non-empty, so that there exists some 𝑥 ∈ 𝐴
and some 𝜀 > 0 such that 𝑉𝜀(𝑥) ⊆ 𝐴. The density of 𝐐 in 𝐑 (Theorem 1.4.3) implies
that there is some rational number contained in 𝑉𝜀(𝑥) and hence in 𝐴.

(d) This is false. Consider the set

𝐸 = {
√

2} ∪ {
√

2 +
√

2
𝑛

: 𝑛 ∈ 𝐍}.

This is a bounded infinite set which contains only irrational numbers. Furthermore, an
argument similar to the one given in Exercise 3.2.2 (a) shows that 

√
2 is the only limit

point of 𝐸 and thus 𝐸 is closed.

(e) This is true. Because each 𝐶𝑛 is the union of 2𝑛 closed intervals, Theorem 3.2.14 (i)
shows that each 𝐶𝑛 is closed. It follows that 𝐶 = ⋂∞

𝑛=1 𝐶𝑛 is an intersection of closed
sets and hence is itself closed (Theorem 3.2.14 (ii)).

Exercise 3.2.7. Given 𝐴 ⊆ 𝐑, let 𝐿 be the set of all limit points of 𝐴.

(a) Show that the set 𝐿 is closed.

(b) Argue that if 𝑥 is a limit point of 𝐴 ∪ 𝐿, then 𝑥 is a limit point of 𝐴. Use this
observation to furnish a proof for Theorem 3.2.12.

Solution.

(a) Suppose that 𝑥 ∈ 𝐑 is a limit point of 𝐿; we will show that 𝑥 is a limit point of 𝐴 also.
Let 𝜀 > 0 be given. Because 𝑥 is a limit point of 𝐿, there exists some 𝑦 ∈ 𝐿 such that 
0 < |𝑥 − 𝑦| < 𝜀

2 , and then since 𝑦 is a limit point of 𝐴, there exists some 𝑎 ∈ 𝐴 such
that |𝑦 − 𝑎| < |𝑥 − 𝑦|. Notice that:

• |𝑥 − 𝑎| ≤ |𝑥 − 𝑦| + |𝑦 − 𝑎| < 2|𝑥 − 𝑦| < 𝜀, so that 𝑎 ∈ 𝑉𝜀(𝑥);

• |𝑥 − 𝑎| ≥ |𝑥 − 𝑦| − |𝑦 − 𝑎| > 0, so that 𝑎 ≠ 𝑥.

Thus 𝑥 is a limit point of 𝐴, i.e. 𝑥 ∈ 𝐿. We may conclude that 𝐿 is closed.

(b) Let 𝜀 > 0 be given. Because 𝑥 is a limit point of 𝐴 ∪ 𝐿, the neighbourhood 𝑉𝜀/2(𝑥)
contains some 𝑦 ∈ 𝐴 ∪ 𝐿 such that 𝑦 ≠ 𝑥. If 𝑦 ∈ 𝐴 then 𝑉𝜀(𝑥) contains a point of 
𝐴 other than 𝑥, and if 𝑦 ∈ 𝐿 then the argument given in part (a) shows that 𝑉𝜀(𝑥)
again contains a point of 𝐴 other than 𝑥. It follows that 𝑥 is a limit point of 𝐴. Thus
𝐴 = 𝐴 ∪ 𝐿 contains all of its limit points and hence is closed.
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Exercise 3.2.8. Assume 𝐴 is an open set and 𝐵 is a closed set. Determine if the fol-
lowing sets are definitely open, definitely closed, both, or neither.

(a) 𝐴 ∪ 𝐵

(b) 𝐴 ∖ 𝐵 = {𝑥 ∈ 𝐴 : 𝑥 ∉ 𝐵}

(c) (𝐴c ∪ 𝐵)c

(d) (𝐴 ∩ 𝐵) ∪ (𝐴c ∩ 𝐵)

(e) 𝐴c ∩ 𝐴c

Solution.

(a) 𝐴 ∪ 𝐵 is definitely closed by Theorem 3.2.12. It may or may not be open. For example,
if 𝐴 = 𝐵 = 𝐑 then 𝐴 ∪ 𝐵 = 𝐑 is open. If 𝐴 = (0, 1) and 𝐵 = [0, 1] then 𝐴 ∪ 𝐵 = [0, 1]
is not open.

(b) Since 𝐴 ∖ 𝐵 = 𝐴 ∩ 𝐵c is the intersection of two open sets, 𝐴 ∖ 𝐵 is definitely open. It
may or may not be closed. For example, if 𝐴 = (0, 1) and 𝐵 = [0, 1] then 𝐴 ∖ 𝐵 = ∅ is
closed. If 𝐴 = (0, 1) and 𝐵 = [2, 3], then 𝐴 ∖ 𝐵 = (0, 1) is not closed.

(c) 𝐴c ∪ 𝐵 is the union of two closed sets and hence is closed. The complement (𝐴c ∪ 𝐵)c

is then definitely open. It may or may not be closed. For example, if 𝐴 = 𝐵 = 𝐑 then
(𝐴c ∪ 𝐵)c = (∅ ∪ 𝐑)c = 𝐑c = ∅ is closed. If 𝐴 = (0, 1) and 𝐵 = 𝐴c = (−∞, 0] ∪ [1, ∞)
then

(𝐴c ∪ 𝐵)c = (𝐴c ∪ 𝐴c)c = (𝐴c)c = 𝐴

is not closed.

(d) This is simply the set 𝐵, which is given as definitely closed. It may or may not be open:
𝐵 = 𝐑 is closed and open, whereas 𝐵 = [0, 1] is closed but not open.

(e) We claim that 𝐴c is a subset of 𝐴c. To see this, let 𝐿𝐴 be the set of limit points of 𝐴
and let 𝐿𝐴c be the set of limit points of 𝐴c. Notice that

𝐴c = (𝐴 ∪ 𝐿𝐴)c = 𝐴c ∩ 𝐿c
𝐴 and 𝐴c = 𝐴c ∪ 𝐿𝐴c .

Our claim now follows since 𝐴c ⊆ 𝐴c ⊆ 𝐴c. Given this, we have 𝐴c ∩ 𝐴c = 𝐴c, which
is the complement of a closed set and hence is definitely open. It may or may not
be closed. For example, if 𝐴 = ∅ then 𝐴c = ∅c = 𝐑 is closed. If 𝐴 = (−∞, 0) then
𝐴c = (−∞, 0]c = (0, ∞) is not closed.
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Exercise 3.2.9 (De Morgan's Laws). A proof for De Morgan’s Laws in the case of
two sets is outlined in Exercise 1.2.5. The general argument is similar.

(a) Given a collection of sets {𝐸𝜆 : 𝜆 ∈ Λ}, show that

( ⋃
𝜆∈Λ

𝐸𝜆)
c

= ⋂
𝜆∈Λ

𝐸c
𝜆 and ( ⋂

𝜆∈Λ
𝐸𝜆)

c

= ⋃
𝜆∈Λ

𝐸c
𝜆.

(b) Now, provide the details for the proof of Theorem 3.2.14.

Solution.

(a) We have

𝑥 ∈ ( ⋃
𝜆∈Λ

𝐸𝜆)
c

⇔ 𝑥 ∉ ⋃
𝜆∈Λ

𝐸𝜆 ⇔ 𝑥 ∉ 𝐸𝜆 for all 𝜆 ∈ Λ

⇔ 𝑥 ∈ 𝐸c
𝜆 for all 𝜆 ∈ Λ ⇔ 𝑥 ∈ ⋂

𝜆∈Λ
𝐸c

𝜆

The equality (⋃𝜆∈Λ 𝐸𝜆)
c

= ⋂𝜆∈Λ 𝐸c
𝜆 follows. Similarly,

𝑥 ∈ ( ⋂
𝜆∈Λ

𝐸𝜆)
c

⇔ 𝑥 ∉ ⋂
𝜆∈Λ

𝐸𝜆 ⇔ 𝑥 ∉ 𝐸𝜆 for some 𝜆 ∈ Λ

⇔ 𝑥 ∈ 𝐸c
𝜆 for some 𝜆 ∈ Λ ⇔ 𝑥 ∈ ⋃

𝜆∈Λ
𝐸c

𝜆

Thus (⋂𝜆∈Λ 𝐸𝜆)
c

= ⋃𝜆∈Λ 𝐸c
𝜆.

(b) Suppose we have finitely many closed sets 𝐸1, …, 𝐸𝑛 and let 𝐸 = 𝐸1 ∪ ⋯ ∪ 𝐸𝑛. It fol-
lows from part (a) that

𝐸c = (𝐸1 ∪ ⋯ ∪ 𝐸𝑛)c = 𝐸c
1 ∩ ⋯ ∩ 𝐸c

𝑛.

Each 𝐸c
𝑘 is open, so Theorem 3.2.3 (ii) implies that 𝐸c, which is a finite intersection of

open sets, is also open. It then follows from Theorem 3.2.13 that 𝐸 is closed.

Now suppose that we have an arbitrary collection {𝐸𝜆 : 𝜆 ∈ Λ} of closed sets and let 
𝐸 = ⋂𝜆∈Λ 𝐸𝜆. By part (a),

𝐸c = ( ⋂
𝜆∈Λ

𝐸𝜆)
c

= ⋃
𝜆∈Λ

𝐸c
𝜆.

Each 𝐸c
𝜆 is open, so Theorem 3.2.3 (i) implies that 𝐸c, which is an arbitrary union of

open sets, is also open. It then follows from Theorem 3.2.13 that 𝐸 is closed.
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Exercise 3.2.10. Only one of the following three descriptions can be realized. Provide
an example that illustrates the viable description, and explain why the other two cannot
exist.

(a) A countable set contained in [0, 1] with no limit points.

(b) A countable set contained in [0, 1] with no isolated points.

(c) A set with an uncountable number of isolated points.

Solution.

(a) This is impossible. Suppose that 𝐸 ⊆ [0, 1] is countable, i.e. there is a bĳection
𝑓 : 𝐍 → 𝐸. For 𝑛 ∈ 𝐍, let 𝑥𝑛 = 𝑓(𝑛). The sequence (𝑥𝑛) is certainly bounded, so the
Bolzano-Weierstrass Theorem implies that there is a convergent subsequence (𝑥𝑛𝑘) → 𝑥
for some 𝑥 ∈ [0, 1]. It then follows from Theorem 3.2.5 that 𝑥 is a limit point of 𝐸. (If
𝑥𝑛𝑘 = 𝑥 for some 𝑘 ∈ 𝐍, simply remove this term from the sequence, or consider the
sequence as starting from 𝑘 + 1; there can be at most one such 𝑘 because 𝑓 is injective,
so this will not affect the convergence of the subsequence.)

(b) This is possible. Consider the countable set 𝐵 = (0, 1) ∩ 𝐐 from Exercise 3.2.2. We
showed there that 𝐵 has no isolated points.

(c) This is impossible. Suppose that 𝐸 is a subset of 𝐑 and let 𝐴 be the set of isolated
points of 𝐸. If 𝑥 ∈ 𝐴 then there is an 𝜀 > 0 such that 𝑉𝜀(𝑥) ∩ 𝐸 = {𝑥}. By the density
of 𝐐 in 𝐑, there exist rational numbers 𝑝, 𝑞 such that 𝑥 − 𝜀 < 𝑝 < 𝑥 < 𝑞 < 𝑥 + 𝜀. Thus,
letting 𝑈𝑥 = (𝑝, 𝑞), we have 𝑈𝑥 ∩ 𝐸 = {𝑥}. Define 𝑓 : 𝐴 → 𝐵 by 𝑓(𝑥) = 𝑈𝑥, where

𝐵 = ⋃
𝑝,𝑞∈𝐐,

𝑝<𝑞

{(𝑝, 𝑞)}.

Theorems 1.5.6 (i), 1.5.7, and 1.5.8 (i), together with Lemma L.5, show that 𝐵 is a
countable set. Assuming that 𝐴 is uncountable, the function 𝑓 cannot possibly be in-
jective. Therefore there must exist 𝑥 ≠ 𝑦 ∈ 𝐴 such that 𝑓(𝑥) = 𝑓(𝑦), i.e. 𝑈𝑥 = 𝑈𝑦. This
implies that

{𝑥} = 𝑈𝑥 ∩ 𝐸 = 𝑈𝑦 ∩ 𝐸 = {𝑦} ⇒ 𝑥 = 𝑦,

contradicting 𝑥 ≠ 𝑦. Thus 𝐴 cannot be uncountable.

Exercise 3.2.11.

(a) Prove that 𝐴 ∪ 𝐵 = 𝐴 ∪ 𝐵.

(b) Does this result about closures extend to infinite unions of sets?

Solution.

(a) First, let us prove the following lemma.

122 / 415



Lemma L.9. If 𝐴 and 𝐵 are subsets of 𝐑 then 𝑥 ∈ 𝐑 is a limit point of 𝐴 ∪ 𝐵
if and only if 𝑥 is a limit point of 𝐴 or 𝑥 is a limit point of 𝐵.

Proof. Suppose that 𝑥 ∈ 𝐑 is a limit point of 𝐴 and let 𝜀 > 0 be given. Because 𝑥
is a limit point of 𝐴, there exists some 𝑎 ∈ 𝐴 such that 𝑎 ∈ 𝑉𝜀(𝑥) and 𝑎 ≠ 𝑥. Thus
there is an element of 𝐴 ∪ 𝐵 distinct from 𝑥 and contained in 𝑉𝜀(𝑥); it follows
that 𝑥 is a limit point of 𝐴 ∪ 𝐵. Replacing 𝐴 with 𝐵 in the previous argument
shows that if 𝑥 is a limit point of 𝐵, then 𝑥 is a limit point of 𝐴 ∪ 𝐵.

Now suppose that 𝑥 is not a limit point of 𝐴 and not a limit point of 𝐵,
i.e. there exist positive real numbers 𝜀1 and 𝜀2 such that 𝑉𝜀1(𝑥) ∩ 𝐴 ⊆ {𝑥} and
𝑉𝜀2 ∩ 𝐵 ⊆ {𝑥}. If we let 𝜀 = min{𝜀1, 𝜀2} > 0, then 𝑉𝜀(𝑥) ∩ (𝐴 ∪ 𝐵) ⊆ {𝑥}; it fol-
lows that 𝑥 is not a limit point of 𝐴 ∪ 𝐵. □

Now let us show that 𝐴 ∪ 𝐵 = 𝐴 ∪ 𝐵. If 𝑥 ∈ 𝐴 ∪ 𝐵 then at least one of the following
holds:

• 𝑥 ∈ 𝐴 ∪ 𝐵, in which case 𝑥 ∈ 𝐴 ∪ 𝐵 since 𝐴 ⊆ 𝐴 and 𝐵 ⊆ 𝐵;

• 𝑥 is a limit point of 𝐴 ∪ 𝐵, in which case Lemma L.9 shows that 𝑥 is a limit point
of 𝐴 or a limit point of 𝐵, whence 𝑥 ∈ 𝐴 ∪ 𝐵.

In either case, 𝑥 ∈ 𝐴 ∪ 𝐵 and thus 𝐴 ∪ 𝐵 ⊆ 𝐴 ∪ 𝐵.

If 𝑥 ∈ 𝐴, then at least one of the following holds:

• 𝑥 ∈ 𝐴, in which case 𝑥 ∈ 𝐴 ∪ 𝐵 since 𝐴 ⊆ 𝐴 ∪ 𝐵 ⊆ 𝐴 ∪ 𝐵;

• 𝑥 is a limit point of 𝐴, in which case Lemma L.9 shows that 𝑥 is a limit point of 
𝐴 ∪ 𝐵, whence 𝑥 ∈ 𝐴 ∪ 𝐵.

Similarly, 𝑥 ∈ 𝐵 implies 𝑥 ∈ 𝐴 ∪ 𝐵. Thus 𝐴 ∪ 𝐵 ⊆ 𝐴 ∪ 𝐵 and we may conclude that 
𝐴 ∪ 𝐵 = 𝐴 ∪ 𝐵.

(b) The result does not extend to the infinite case. For a counterexample, consider the
closed sets 𝐴𝑛 = [ 1

𝑛 , 1] for 𝑛 ∈ 𝐍:

⋃
∞

𝑛=1
𝐴𝑛 = (0, 1] = [0, 1] but ⋃

∞

𝑛=1
𝐴𝑛 = ⋃

∞

𝑛=1
𝐴𝑛 = (0, 1].

Exercise 3.2.12. Let 𝐴 be an uncountable set and let 𝐵 be the set of real numbers
that divides 𝐴 into two uncountable sets; that is, 𝑠 ∈ 𝐵 if both {𝑥 : 𝑥 ∈ 𝐴 and 𝑥 < 𝑠}
and {𝑥 : 𝑥 ∈ 𝐴 and 𝑥 > 𝑠} are uncountable. Show 𝐵 is nonempty and open.

Solution. Define the sets

𝐵1 = {𝑥 ∈ 𝐑 : (−∞, 𝑥) ∩ 𝐴 is uncountable}, 𝐵2 = {𝑥 ∈ 𝐑 : (𝑥, ∞) ∩ 𝐴 is uncountable}.
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We claim that 𝐵1 is non-empty. Indeed, suppose that 𝐵1 = ∅, i.e. for all 𝑥 ∈ 𝐑 the intersec-
tion (−∞, 𝑥) ∩ 𝐴 is either countable or finite, and observe that

𝐴 = 𝐑 ∩ 𝐴 = (⋃
∞

𝑛=1
(−∞, 𝑛)) ∩ 𝐴 = ⋃

∞

𝑛=1
((−∞, 𝑛) ∩ 𝐴).

This expresses 𝐴 as a countable union of countable or finite sets; it follows from Theorem
1.5.8 that 𝐴 is countable or finite. Given that 𝐴 is uncountable, it must be the case that 𝐵1

is non-empty.

Next we claim that 𝐵1 is open. Let 𝑥 ∈ 𝐵1 be given, so that (−∞, 𝑥) ∩ 𝐴 is uncountable.
Note that for any 𝑦 ∈ 𝐑 with 𝑦 > 𝑥 we must have 𝑦 ∈ 𝐵1 also, since

((−∞, 𝑥) ∩ 𝐴) ⊆ ((−∞, 𝑦) ∩ 𝐴).

Given this, we would like to find an 𝜀 > 0 such that 𝑥 − 𝜀 ∈ 𝐵1; it will follow that
(𝑥 − 𝜀, ∞) ⊆ 𝐵1, so that 𝑉𝜀(𝑥) ⊆ 𝐵1. Seeking a contradiction, suppose that for every
𝜀 > 0 it holds that 𝑥 − 𝜀 ∉ 𝐵1. In particular we have 𝑥 − 1

𝑛 ∉ 𝐵1 for each 𝑛 ∈ 𝐍, so that
(−∞, 𝑥 − 1

𝑛) ∩ 𝐴 is either countable or finite for each 𝑛 ∈ 𝐍. Notice that

(−∞, 𝑥) ∩ 𝐴 = ⋃
∞

𝑛=1
((−∞, 𝑥 − 1

𝑛) ∩ 𝐴).

It then follows from Theorem 1.5.8 that (−∞, 𝑥) ∩ 𝐴 is countable or finite, contradicting
that 𝑥 ∈ 𝐵1. Thus there must exist an 𝜀 > 0 such that 𝑥 − 𝜀 ∈ 𝐵1, which, as noted above,
implies 𝑉𝜀(𝑥) ⊆ 𝐵1. Thus 𝐵1 is open. Similar arguments show that 𝐵2 is also non-empty
and open.

Now let us show that 𝐵1 ∪ 𝐵2 = 𝐑. If 𝑥 ∈ 𝐑 is such that 𝑥 ∉ 𝐵1 and 𝑥 ∉ 𝐵2, i.e. both 
(−∞, 𝑥) ∩ 𝐴 and (𝑥, ∞) ∩ 𝐴 are either countable or finite, then observe that

𝐴 = 𝐑 ∩ 𝐴 = ((−∞, 𝑥) ∩ 𝐴) ∪ ({𝑥} ∩ 𝐴) ∪ ((𝑥, ∞) ∩ 𝐴).

This expresses 𝐴 as a union of three countable or finite sets and it follows from Theorem
1.5.8 that 𝐴 is either countable or finite. Since 𝐴 is given as uncountable, it must be the case
that there is no such 𝑥 ∈ 𝐑. That is, 𝐵1 ∪ 𝐵2 = 𝐑.

Observe that 𝐵 = 𝐵1 ∩ 𝐵2. To see that 𝐵 is non-empty, suppose otherwise, so that 𝐵c
1 = 𝐵2.

This demonstrates that 𝐵1 is closed as well as open (Theorem 3.2.13). However, since 𝐵1 is
non-empty and not equal to 𝐑 (since 𝐵2 is non-empty), and the empty set and 𝐑 are the
only sets which are both closed and open (see Exercise 3.2.13), this is a contradiction. Thus
𝐵 is non-empty. Furthermore, 𝐵 is open since it is the union of two open sets (Theorem
3.2.3 (i)).

Exercise 3.2.13. Prove that the only open sets that are both open and closed are 𝐑
and the empty set ∅.
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Solution. It will suffice to show that if 𝐸 ⊆ 𝐑 is non-empty, open, and closed, then 𝐸 = 𝐑.
Since 𝐸 ≠ ∅ there exists some 𝑥 ∈ 𝐸. Let

𝑆 = {𝑡 ∈ 𝐑 : 𝑡 ≥ 𝑥 and [𝑥, 𝑡] ⊆ 𝐸}.

Note that 𝑆 is non-empty since 𝑥 ∈ 𝑆. We claim that 𝑆 is unbounded above. To see this, sup-
pose otherwise, so that 𝑠 = sup 𝑆 exists. If 𝑠 ∉ 𝑆 then for any 𝜀 > 0 Lemma 1.3.8 shows that
there is some 𝑡 ∈ 𝑆 such that 𝑠 − 𝜀 < 𝑡 < 𝑠 (the second inequality is strict because 𝑠 ∉ 𝑆).
Since 𝑡 ∈ 𝑆 implies 𝑡 ∈ 𝐸, and 𝑡 ≠ 𝑠, we see that for any 𝜀 > 0 the intersection 𝑉𝜀(𝑠) ∩ 𝐸
contains a point 𝑡 ∈ 𝐸 other than 𝑠. That is, 𝑠 is a limit point of 𝐸. Since 𝐸 is closed it
follows that 𝑠 ∈ 𝐸. If 𝑠 ∈ 𝑆 then certainly 𝑠 ∈ 𝐸, so in either case we have 𝑠 ∈ 𝐸.

Because 𝐸 is open there then exists an 𝜀 > 0 such that (𝑠 − 𝜀, 𝑠 + 𝜀) ⊆ 𝐸. This implies that
[𝑥, 𝑠 + 𝜀

2] ⊆ 𝐸, so that 𝑠 + 𝜀
2 ∈ 𝑆, contradicting that 𝑠 is the supremum of 𝑆. Hence 𝑆 must

be unbounded above and it follows that if 𝑡 ≥ 𝑥 then 𝑡 ∈ 𝐸. A similar argument with the in-
fimum of the set {𝑡 ∈ 𝐑 : 𝑡 ≤ 𝑥 and [𝑡, 𝑥] ⊆ 𝐸} shows that if 𝑡 ≤ 𝑥 then 𝑡 ∈ 𝐸. Thus 𝐸 = 𝐑.

Exercise 3.2.14. A dual notion to the closure of a set is the interior of a set. The
interior of 𝐸 is denoted 𝐸o and is defined as

𝐸o = {𝑥 ∈ 𝐸 : there exists 𝑉𝜀(𝑥) ⊆ 𝐸}.

Results about closures and interiors possess a useful symmetry.

(a) Show that 𝐸 is closed if and only if 𝐸 = 𝐸. Show that 𝐸 is open if and only if 
𝐸o = 𝐸.

(b) Show that 𝐸c = (𝐸c)o, and similarly that (𝐸o)c = 𝐸c.

Solution.

(a) Let 𝐿 be the set of limit points of 𝐸 and observe that 𝐸 ∪ 𝐿 = 𝐸 if and only if 𝐿 ⊆ 𝐸.
This is exactly the statement that 𝐸 = 𝐸 if and only if 𝐸 is closed.

Since 𝐸o ⊆ 𝐸, it will suffice to show that 𝐸 is open if and only if 𝐸 ⊆ 𝐸o. This is clear
once we note that 𝐸 ⊆ 𝐸o if and only if, for each 𝑥 ∈ 𝐸, there exists an 𝜀 > 0 such that
𝑉𝜀(𝑥) ⊆ 𝐸.

(b) Let 𝐿 be the set of limit points of 𝐸 and observe that

𝑥 ∈ 𝐸c ⇔ 𝑥 ∈ (𝐸 ∪ 𝐿)c

⇔ 𝑥 ∈ 𝐸c ∩ 𝐿c

⇔ 𝑥 ∉ 𝐸 and 𝑥 is not a limit point of 𝐸

⇔ there exists an 𝜀 > 0 such that 𝑉𝜀(𝑥) ∩ 𝐸 = ∅

⇔ there exists an 𝜀 > 0 such that 𝑉𝜀(𝑥) ⊆ 𝐸c

⇔ 𝑥 ∈ (𝐸c)o.
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Thus 𝐸c = (𝐸c)o. Similarly,

𝑥 ∈ (𝐸o)c ⇔ 𝑥 ∉ 𝐸o

⇔ for all 𝜀 > 0, 𝑉𝜀(𝑥) ⊈ 𝐸

⇔ for all 𝜀 > 0, 𝑉𝜀(𝑥) ∩ 𝐸c ≠ ∅

⇔ (for all 𝜀 > 0)(𝑥 ∈ 𝐸c or there exists 𝑦 ∈ 𝑉𝜀(𝑥) ∩ 𝐸c with 𝑦 ≠ 𝑥)

⇔ 𝑥 ∈ 𝐸c or for all 𝜀 > 0 there exists 𝑦 ∈ 𝑉𝜀(𝑥) ∩ 𝐸c with 𝑦 ≠ 𝑥

⇔ 𝑥 ∈ 𝐸c or 𝑥 is a limit point of 𝐸c

⇔ 𝑥 ∈ 𝐸c.

Thus (𝐸o)c = 𝐸c.

Exercise 3.2.15. A set 𝐴 is called an 𝐹𝜎 set if it can be written as the countable union
of closed sets. A set 𝐵 is called a 𝐺𝛿 set if it can be written as the countable intersection
of open sets.

(a) Show that a closed interval [𝑎, 𝑏] is a 𝐺𝛿 set.

(b) Show that the half-open interval (𝑎, 𝑏] is both a 𝐺𝛿 and an 𝐹𝜎 set.

(c) Show that 𝐐 is an 𝐹𝜎 set, and the set of irrationals 𝐈 forms a 𝐺𝛿 set. (We will see
in Section 3.5 that 𝐐 is not a 𝐺𝛿 set, nor is 𝐈 an 𝐹𝜎 set.)

Solution.

(a) Observe that

[𝑎, 𝑏] = ⋂
∞

𝑛=1
(𝑎 − 1

𝑛 , 𝑏 + 1
𝑛).

(b) For any 𝑛 ∈ 𝐍 the set (𝑎 − 1
𝑛 , 𝑏 + 1

𝑛) ∖ {𝑎} = (𝑎 − 1
𝑛 , 𝑎) ∪ (𝑎, 𝑏 + 1

𝑛) is the union of two
open sets and hence is open. Observe that

(𝑎, 𝑏] = [𝑎, 𝑏] ∖ {𝑎} = (⋂
∞

𝑛=1
(𝑎 − 1

𝑛 , 𝑏 + 1
𝑛)) ∖ {𝑎} = ⋂

∞

𝑛=1
((𝑎 − 1

𝑛 , 𝑏 + 1
𝑛) ∖ {𝑎}).

Thus (𝑎, 𝑏] is a 𝐺𝛿 set. Next, note that for any 𝑛 ∈ 𝐍 the set [𝑎 + 1
𝑛 , 𝑏 − 1

𝑛] ∪ {𝑏} is
the union of two closed sets and hence is closed. Note further that

(𝑎, 𝑏] = ⋃
∞

𝑛=1
([𝑎 + 1

𝑛 , 𝑏 − 1
𝑛] ∪ {𝑏}).

Thus (𝑎, 𝑏] is an 𝐹𝜎 set.

(c) Observe that
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𝐐 = ⋃
𝑟∈𝐐

{𝑟}.

Since 𝐐 is countable, this demonstrates that 𝐐 is an 𝐹𝜎 set. De Morgan’s Laws (Exercise
3.2.9) imply that the complement of an 𝐹𝜎 set is a 𝐺𝛿 set (and vice versa), so we have
also shown that 𝐈 is a 𝐺𝛿 set.
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3.3. Compact Sets

Exercise 3.3.1. Show that if 𝐾 is compact and nonempty, then sup 𝐾 and inf 𝐾 both
exist and are elements of 𝐾.

Solution. 𝐾 is non-empty and must be bounded by Theorem 3.3.8, so the Axiom of Com-
pleteness guarantees that sup 𝐾 and inf 𝐾 both exist. Theorem 3.3.8 also shows that 𝐾 is
closed and thus, by Exercise 3.2.14, we have 𝐾 = 𝐾. It then follows from Exercise 3.2.4 that
sup 𝐾 ∈ 𝐾 = 𝐾; a small modification of Exercise 3.2.4 also shows that inf 𝐾 ∈ 𝐾 = 𝐾.

Exercise 3.3.2. Decide which of the following sets are compact. For those that are not
compact, show how Definition 3.3.1 breaks down. In other words, give an example of a
sequence contained in the given set that does not possess a subsequence converging to
a limit in the set.

(a) 𝐍.

(b) 𝐐 ∩ [0, 1].

(c) The Cantor set.

(d) {1 + 1/22 + 1/32 + ⋯ + 1/𝑛2 : 𝑛 ∈ 𝐍}.

(e) {1, 1/2, 2/3, 3/4, 4/5, …}.

Solution.

(a) 𝐍 is not compact. Consider the increasing and unbounded sequence (1, 2, 3, …). As
shown in Lemma L.7, such sequences do not have convergent subsequences.

(b) 𝐐 ∩ [0, 1] is not compact. Let 𝑥 =
√

2
2 ∈ (0, 1). By Theorem 3.2.10 there is a sequence

of rational numbers (𝑥𝑛) converging to 𝑥. Because 0 < 𝑥 < 1, this sequence must even-
tually be contained in (0, 1). By removing a finite number of terms from the start of
the sequence if necessary, which will not affect convergence, we may assume that the
sequence is entirely contained in 𝐐 ∩ [0, 1]. It follows from Theorem 2.5.2 that every
subsequence of (𝑥𝑛) also converges to 𝑥, which does not belong to 𝐐 ∩ [0, 1].

(c) The Cantor set 𝐶 is compact by Theorem 3.3.8: 𝐶 is closed by Exercise 3.2.6 (e) and
bounded since 𝐶 ⊆ [0, 1].

(d) Let 𝐸 be the set in question and let 𝑠𝑛 = ∑𝑛
𝑗=1

1
𝑗2 . Certainly (𝑠𝑛) is contained in 𝐸

and from Example 2.4.4 we know that lim 𝑠𝑛 = 𝐿 for some 𝐿 ∈ 𝐑. Exercise 3.2.3 (d)
shows that 𝐿 does not belong to 𝐸. Since all subsequences of (𝑠𝑛) also converge to 𝐿
(Theorem 2.5.2), it follows that 𝐸 is not compact.
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(e) Let 𝐸 be the set in question, i.e. 𝐸 = {1} ∪ {1 − 1
𝑛 : 𝑛 ∈ 𝐍}. Arguing as in Exercise

3.2.2, we see that 1 is the only limit point of 𝐸. It follows that 𝐸 is closed and bounded,
and hence compact (Theorem 3.3.8).

Exercise 3.3.3. Prove the converse of Theorem 3.3.4 by showing that if a set 𝐾 ⊆ 𝐑
is closed and bounded, then it is compact.

Solution. Suppose that 𝐾 ⊆ 𝐑 is closed and bounded. If (𝑥𝑛) is an arbitrary sequence con-
tained in 𝐾, then (𝑥𝑛) must be bounded and so the Bolzano-Weierstrass Theorem implies
that there exists a subsequence (𝑥𝑛𝑘) such that lim𝑘→∞ 𝑥𝑛𝑘 = 𝑥 for some 𝑥 ∈ 𝐑. If there
exists a 𝑘 ∈ 𝐍 such that 𝑥𝑛𝑘 = 𝑥 then 𝑥 ∈ 𝐾 since 𝑥𝑛𝑘 ∈ 𝐾; otherwise 𝑥𝑛𝑘 ≠ 𝑥 for all 𝑘 ∈ 𝐍
and it follows from Theorem 3.2.5 that 𝑥 is a limit point of 𝐾. Thus 𝑥 ∈ 𝐾, since 𝐾 is closed.

Exercise 3.3.4. Assume 𝐾 is compact and 𝐹  is closed. Decide if the following sets are
definitely compact, definitely closed, both, or neither.

(a) 𝐾 ∩ 𝐹

(b) 𝐹 c ∪ 𝐾c

(c) 𝐾 ∖ 𝐹 = {𝑥 ∈ 𝐾 : 𝑥 ∉ 𝐹}

(d) 𝐾 ∩ 𝐹 c

Solution. Throughout this exercise, we will repeatedly use that a subset of 𝐑 is compact if
and only if it is closed and bounded (Theorem 3.3.8).

(a) 𝐾 is closed since it is compact, so 𝐾 ∩ 𝐹  is the intersection of two closed sets and hence
is definitely closed (Theorem 3.2.14 (ii)). Certainly the intersection of a bounded set
with any other set is again bounded, so since 𝐾 is bounded by virtue of being compact,
we see that 𝐾 ∩ 𝐹  is bounded as well as closed. It follows that 𝐾 ∩ 𝐹  is definitely
compact.

(b) The closure of any set is closed (Theorem 3.2.12), so 𝐹 c ∪ 𝐾c is definitely closed. How-
ever, 𝐹 c ∪ 𝐾c cannot be compact since it is unbounded. To see this, first note that if 
𝐸 ⊆ 𝐑 is bounded then 𝐸c must be unbounded, since 𝐑 = 𝐸 ∪ 𝐸c, the union of two
bounded sets is bounded, and 𝐑 is not bounded. It follows that 𝐾c is unbounded, since
𝐾 is bounded as a result of being compact. Because

𝐾c ⊆ 𝐹 c ∪ 𝐾c ⊆ 𝐹 c ∪ 𝐾c,

we see that 𝐹 c ∪ 𝐾c must also be unbounded.

(c) Since 𝐾 is bounded, 𝐾 ∖ 𝐹  must also be bounded and thus 𝐾 ∖ 𝐹  is compact if and
only if it is closed. 𝐾 ∖ 𝐹  could be closed: for example, taking 𝐹 = ∅. 𝐾 ∖ 𝐹  could
also fail to be closed. For example, if we take 𝐾 = [−2, 2] and 𝐹 = [−1, 1], then
𝐾 ∖ 𝐹 = [−2, 1) ∪ (1, 2], which is not closed.
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(d) First, notice that if 𝐸 ⊆ 𝐑 is bounded by some 𝑀 > 0, i.e. 𝐸 ⊆ [−𝑀, 𝑀], then since 
[−𝑀, 𝑀] is closed it follows from Theorem 3.2.12 that 𝐸 ⊆ [−𝑀, 𝑀] also, i.e. 𝐸 is also
bounded by 𝑀 .

Note that since 𝐾 is bounded, 𝐾 ∩ 𝐹 c = 𝐾 ∖ 𝐹  must also be bounded. By the previous
paragraph, it follows that 𝐾 ∩ 𝐹 c is bounded. Thus 𝐾 ∩ 𝐹 c is compact since it is closed
and bounded.

Exercise 3.3.5. Decide whether the following propositions are true or false. If the claim
is valid, supply a short proof, and if the claim is false, provide a counterexample.

(a) The arbitrary intersection of compact sets is compact.

(b) The arbitrary union of compact sets is compact.

(c) Let 𝐴 be arbitrary, and let 𝐾 be compact. Then, the intersection 𝐴 ∩ 𝐾 is compact.

(d) If 𝐹1 ⊇ 𝐹2 ⊇ 𝐹3 ⊇ 𝐹4 ⊇ ⋯ is a nested sequence of nonempty closed sets, then the
intersection ⋂∞

𝑛=1 𝐹𝑛 ≠ ∅.

Solution. Throughout this exercise, we will repeatedly use that a subset of 𝐑 is compact if
and only if it is closed and bounded (Theorem 3.3.8).

(a) This is true. Suppose we have some collection {𝐾𝑎 : 𝑎 ∈ 𝐴} of compact sets. Each 
𝐾𝑎 must be closed and bounded and so the intersection 𝐾 = ⋂𝑎∈𝐴 𝐾𝑎 is also closed
(Theorem 3.2.14 (ii)) and bounded. Thus 𝐾 is compact.

(b) This is false. For each 𝑛 ∈ 𝐍 let 𝐾𝑛 = [−𝑛, 𝑛]; each 𝐾𝑛 is closed and bounded and thus
compact. However, ⋃∞

𝑛=1 𝐾𝑛 = 𝐑, which is unbounded and hence not compact.

(c) This is false. If we let 𝐴 = (0, 1) and 𝐾 = [0, 1], then 𝐾 is compact since it is closed
and bounded but 𝐴 ∩ 𝐾 = (0, 1), which is not closed and hence not compact.

(d) This is false. See Exercise 3.2.6 (b) for a counterexample.

Exercise 3.3.6. This exercise is meant to illustrate the point made in the opening
paragraph to Section 3.3. Verify that the following three statements are true if every
blank is filled in with the word “finite”. Which are true if every blank is filled in with
the word “compact”? Which are true if every blank is filled in with the word “closed”?

(a) Every  set has a maximum.

(b) If 𝐴 and 𝐵 are , then 𝐴 + 𝐵 = {𝑎 + 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} is also .

(c) If {𝐴𝑛 : 𝑛 ∈ 𝐍} is a collection of  sets with the property that every finite
subcollection has a nonempty intersection, then ⋂∞

𝑛=1 𝐴𝑛 is nonempty as well.

Solution.
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(a) Every non-empty finite set has a maximum by Lemma L.3, and every non-empty com-
pact set has a maximum by Exercise 3.3.1. However, not every closed set has a maxi-
mum: 𝐑 is closed but has no maximum element.

(b) If 𝐴 is finite with 𝑚 elements and 𝐵 is finite with 𝑛 elements, then 𝐴 + 𝐵 can have at
most 𝑚𝑛 elements since the map 𝐴 × 𝐵 → 𝐴 + 𝐵; (𝑎, 𝑏) ↦ 𝑎 + 𝑏 is a surjection. Thus 
𝐴 + 𝐵 is also finite.

If 𝐴 and 𝐵 are compact then so is 𝐴 + 𝐵. To see this, let (𝑥𝑛) be a sequence contained
in 𝐴 + 𝐵, so that there are sequences (𝑎𝑛) contained in 𝐴 and (𝑏𝑛) contained in 𝐵
such that 𝑥𝑛 = 𝑎𝑛 + 𝑏𝑛 for each 𝑛 ∈ 𝐍. Since 𝐴 is compact, the sequence (𝑎𝑛) has a
subsequence (𝑎𝑛𝑘) such that lim𝑘→∞ 𝑎𝑛𝑘 = 𝑎 for some 𝑎 ∈ 𝐴. Since 𝐵 is compact, the
sequence (𝑏𝑛𝑘) has a subsequence (𝑏𝑛𝑘ℓ

) such that limℓ→∞ 𝑏𝑛𝑘ℓ
= 𝑏 for some 𝑏 ∈ 𝐵.

Observe that

lim
ℓ→∞

𝑥𝑛𝑘ℓ
= lim

ℓ→∞
(𝑎𝑛𝑘ℓ

+ 𝑏𝑛𝑘ℓ
) = lim

ℓ→∞
𝑎𝑛𝑘ℓ

+ lim
ℓ→∞

𝑏𝑛𝑘ℓ
= 𝑎 + 𝑏 ∈ 𝐴 + 𝐵.

Thus 𝐴 + 𝐵 is compact.

It is not necessarily the case that 𝐴 + 𝐵 is closed for closed sets 𝐴 and 𝐵. For a
counterexmaple, let 𝐴 = 𝐍 and let 𝐵 = {−𝑛 + 1

𝑛 : 𝑛 ∈ 𝐍}. For each 𝑛 ∈ 𝐍 we have
𝑛 + (−𝑛 + 1

𝑛) = 1
𝑛 ∈ 𝐴 + 𝐵 it follows from Theorem 3.2.5 that 0 is a limit point of 

𝐴 + 𝐵. Notice that, for 𝑛, 𝑘 ∈ 𝐙,

𝑛 − 𝑘 + 1
𝑘 = 0 ⇔ 𝑘 = 1 and 𝑛 = 0.

Because any element of 𝐴 + 𝐵 is of the form 𝑛 − 𝑘 + 1
𝑘  for some positive integers 𝑛, 𝑘,

we see that the limit point 0 fails to belong to 𝐴 + 𝐵. Thus 𝐴 + 𝐵 is not closed.

(c) Suppose {𝐴𝑛 : 𝑛 ∈ 𝐍} is a collection of finite sets with the property that every finite
subcollection has a non-empty intersection. For each 𝑘 ∈ 𝐍 let 𝐵𝑘 = ⋂𝑘

𝑛=1 𝐴𝑛 and no-
tice that each 𝐵𝑘 is finite and, by assumption, non-empty. Notice further that

𝐵1 ⊇ 𝐵2 ⊇ 𝐵3 ⊇ ⋯.

It then follows from Exercise 1.2.3 (b) that the intersection ⋂∞
𝑛=1 𝐴𝑛 is non-empty.

Suppose {𝐴𝑛 : 𝑛 ∈ 𝐍} is a collection of compact sets with the property that every fi-
nite subcollection has a non-empty intersection. For 𝑚 ∈ 𝐍 define 𝐾𝑚 = ⋂𝑚

𝑛=1 𝐴𝑛 and
observe that each 𝐾𝑚 is non-empty by assumption, each 𝐾𝑚 is compact by Exercise
3.3.5 (a), and the sequence (𝐾𝑚) satisfies

𝐾1 ⊇ 𝐾2 ⊇ 𝐾3 ⊇ ⋯.

It then follows from Theorem 3.3.5 that the intersection ⋂∞
𝑚=1 𝐾𝑚 = ⋂∞

𝑛=1 𝐴𝑛 is non-
empty.

The statement is not necessarily true for closed sets. For a counterexample, let
𝐴𝑛 = [𝑛, ∞) for 𝑛 ∈ 𝐍. For a finite subcollection {𝐴𝑛1 , …, 𝐴𝑛𝑚} we have
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⋂
𝑚

𝑘=1
𝐴𝑛𝑘 = [𝑁, ∞) ≠ ∅, where 𝑁 = max

1≤𝑘≤𝑚
𝑛𝑘.

However, ⋂∞
𝑛=1 𝐴𝑛 = ∅.

Exercise 3.3.7. As some more evidence of the surprising nature of the Cantor set,
follow these steps to show that the sum 𝐶 + 𝐶 = {𝑥 + 𝑦 : 𝑥, 𝑦 ∈ 𝐶} is equal to the closed
interval [0, 2]. (Keep in mind that 𝐶 has zero length and contains no intervals.)

Because 𝐶 ⊆ [0, 1], 𝐶 + 𝐶 ⊆ [0, 2], so we only need to prove the reverse inclusion
[0, 2] ⊆ {𝑥 + 𝑦 : 𝑥, 𝑦 ∈ 𝐶}. Thus, given 𝑠 ∈ [0, 2], we must find two elements 𝑥, 𝑦 ∈ 𝐶
satisfying 𝑥 + 𝑦 = 𝑠.

(a) Show that there exist 𝑥1, 𝑦1 ∈ 𝐶1 for which 𝑥1 + 𝑦1 = 𝑠. Show in general that, for
an arbitrary 𝑛 ∈ 𝐍, we can always find 𝑥𝑛, 𝑦𝑛 ∈ 𝐶𝑛 for which 𝑥𝑛 + 𝑦𝑛 = 𝑠.

(b) Keeping in mind that the sequences (𝑥𝑛) and (𝑦𝑛) do not necessarily converge,
show how they can nevertheless be used to produce the desired 𝑥 and 𝑦 in 𝐶 sat-
isfying 𝑥 + 𝑦 = 𝑠.

Solution.

(a) If 𝑠2 ∈ 𝐶1 = [0, 1
3] ∪ [2

3 , 1] then take 𝑥1 = 𝑦1 = 𝑠
2 , and if 𝑠2 ∈ (1

3 , 2
3) then take 𝑥1 = 𝑠

2 − 1
3

and 𝑦1 = 𝑠
2 + 1

3 . In either case we have 𝑥1, 𝑦1 ∈ 𝐶1 and 𝑥1 + 𝑦1 = 𝑠. Geometrically, we
have shown that for any 𝑠 ∈ [0, 2], the line given by 𝑥 + 𝑦 = 𝑠 must intersect the set 
𝐶1 × 𝐶1 ⊆ 𝐶0 × 𝐶0 = [0, 1]2.

0

1
3

2
3

1

0 1
3

2
3 1

𝐶1 × 𝐶1 and 𝑥 + 𝑦 = 𝑠 for various values of 𝑠 ∈ [0, 2]
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We will proceed by induction to show that for any 𝑛 ∈ 𝐍 we can find 𝑥𝑛, 𝑦𝑛 ∈ 𝐶𝑛 such
that 𝑥𝑛 + 𝑦𝑛 = 𝑠. The base case 𝑛 = 1 was handled above, so suppose that for some 
𝑛 ∈ 𝐍 we have 𝑥𝑛, 𝑦𝑛 ∈ 𝐶𝑛 such that 𝑥𝑛 + 𝑦𝑛 = 𝑠. Since 𝐶𝑛 consists of 2𝑛 closed inter-
vals each of length 3−𝑛, the set 𝐶𝑛 × 𝐶𝑛 consists of (2𝑛)2 closed squares each with side
length 3−𝑛. Geometrically, the induction hypothesis guarantees that the line 𝑥 + 𝑦 = 𝑠
intersects the set 𝐶𝑛 × 𝐶𝑛 and thus must intersect one of the (2𝑛)2 closed squares.
Moving from 𝐶𝑛 to 𝐶𝑛+1, the middle third of each of the 2𝑛 intervals is removed. This
has the effect of splitting each of the (2𝑛)2 squares of 𝐶𝑛 × 𝐶𝑛 into four subsquares. 
𝐶𝑛+1 × 𝐶𝑛+1 then consists of the collection of these subsquares. Now we make the ob-
servation that this situation is essentially the same as in the base case: given that the
line 𝑥 + 𝑦 = 𝑠 intersects one of the squares of 𝐶𝑛 × 𝐶𝑛, it must intersect at least one of
the four subsquares after we remove the middle third of the sides of the square. We are
then guaranteed the existence of some 𝑥𝑛+1, 𝑦𝑛+1 ∈ 𝐶𝑛+1 such that 𝑥𝑛+1 + 𝑦𝑛+1 = 𝑠.
This completes the induction step.

𝐶𝑛 → 𝐶𝑛+1

Subsquares of 𝐶𝑛 × 𝐶𝑛 and 𝐶𝑛+1 × 𝐶𝑛+1 intersecting the line 𝑥 + 𝑦 = 𝑠

(b) The sequence (𝑥𝑛) is certainly bounded, so by the Bolzano-Weierstrass Theorem there
is a convergent subsequence (𝑥𝑛𝑘) → 𝑥 for some 𝑥 ∈ 𝐑. Similarly, the sequence (𝑦𝑛𝑘) is
bounded and hence has a convergent subsequence (𝑦𝑛𝑘ℓ

) → 𝑦 for some 𝑦 ∈ 𝐑. Because
the sequence (𝐶𝑛) is nested we have 𝑥𝑛𝑘ℓ

∈ 𝐶1 for all ℓ ∈ 𝐍; it follows that 𝑥 ∈ 𝐶1

since 𝐶1 is closed. The terms 𝑥𝑛𝑘ℓ
 belong to 𝐶2 provided 𝑛𝑘ℓ ≥ 2, i.e. all but a finite

number of terms of (𝑥𝑛𝑘ℓ
) belong to 𝐶2. Since 𝐶2 is closed it must then be the case

that 𝑥 ∈ 𝐶2. Continuing in this fashion, we see that 𝑥 ∈ 𝐶𝑛 for all 𝑛 ∈ 𝐍, i.e. 𝑥 ∈ 𝐶.
Similarly we obtain 𝑦 ∈ 𝐶. Now observe that,

lim
ℓ→∞

(𝑥𝑛𝑘ℓ
+ 𝑦𝑛𝑘ℓ

) = 𝑥 + 𝑦 and lim
ℓ→∞

(𝑥𝑛𝑘ℓ
+ 𝑦𝑛𝑘ℓ

) = lim
ℓ→∞

𝑠 = 𝑠.

Since limits are unique (Theorem 2.2.7), we may conclude that 𝑥 + 𝑦 = 𝑠.
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Exercise 3.3.8. Let 𝐾 and 𝐿 be nonempty compact sets, and define

𝑑 = inf{|𝑥 − 𝑦| : 𝑥 ∈ 𝐾 and 𝑦 ∈ 𝐿}.

This turns out to be a reasonable definition for the distance between 𝐾 and 𝐿.

(a) If 𝐾 and 𝐿 are disjoint, show 𝑑 > 0 and that 𝑑 = |𝑥0 − 𝑦0| for some 𝑥0 ∈ 𝐾 and 
𝑦0 ∈ 𝐿.

(b) Show that it’s possible to have 𝑑 = 0 if we assume only that the disjoint sets 𝐾
and 𝐿 are closed.

Solution.

(a) Let 𝐸 = {|𝑥 − 𝑦| : 𝑥 ∈ 𝐾 and 𝑦 ∈ 𝐿} and notice that 𝐸 is non-empty (since 𝐾 and 𝐿
are non-empty) and bounded below by 0; it follows that 𝑑 = inf 𝐸 exists. By Exercise
1.3.1 (b), for each 𝑛 ∈ 𝐍 there exist elements 𝑥𝑛 ∈ 𝐾 and 𝑦𝑛 ∈ 𝐿 such that

𝑑 ≤ |𝑥𝑛 − 𝑦𝑛| < 𝑑 + 1
𝑛 . (1)

Since (𝑥𝑛) is entirely contained in the compact set 𝐾, we are guaranteed the existence of
a convergent subsequence (𝑥𝑛𝑘) → 𝑥0 for some 𝑥0 ∈ 𝐾. Similarly, because the sequence
(𝑦𝑛𝑘) is entirely contained in the compact set 𝐿, there exists a convergent subsequence
(𝑦𝑛𝑘ℓ

) → 𝑦0 for some 𝑦0 ∈ 𝐿. We then have, by Theorem 2.5.2,

lim
ℓ→∞

|𝑥𝑛𝑘ℓ
− 𝑦𝑛𝑘ℓ

| = |𝑥0 − 𝑦0|.

However, inequality (1) and the Squeeze Theorem imply that

lim
ℓ→∞

|𝑥𝑛𝑘ℓ
− 𝑦𝑛𝑘ℓ

| = 𝑑.

It follows from the uniqueness of limits (Theorem 2.2.7) that |𝑥0 − 𝑦0| = 𝑑. Since 𝐾
and 𝐿 are disjoint, it must be the case that 𝑥0 ≠ 𝑦0 and thus 𝑑 > 0.

(b) Let 𝐾 = 𝐍 and 𝐿 = {𝑛 + 1
𝑛 : 𝑛 ≥ 2} and note that 𝐾 and 𝐿 are non-empty and dis-

joint. Note further that

𝐾c = (−∞, 1) ∪ ⋃
∞

𝑛=1
(𝑛, 𝑛 + 1) and 𝐿c = (−∞, 5

2) ∪ ⋃
∞

𝑛=2
(𝑛 + 1

𝑛 , 𝑛 + 1 + 1
𝑛+1).

It follows that 𝐾c and 𝐿c are both open (Theorem 3.2.3 (i)) and hence that 𝐾 and 𝐿
are both closed (Theorem 3.2.13). Letting 𝐸 = {|𝑥 − 𝑦| : 𝑥 ∈ 𝐾 and 𝑦 ∈ 𝐿} again, note
that for each 𝑛 ≥ 2, by taking 𝑛 ∈ 𝐾 and 𝑛 + 1

𝑛 ∈ 𝐿, we have 1
𝑛 ∈ 𝐸. It follows that 

𝑑 = inf 𝐸 = 0.
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Exercise 3.3.9. Follow these steps to prove the final implication in Theorem 3.3.8.

Assume 𝐾 satisfies (i) and (ii), and let {𝑂𝜆 : 𝜆 ∈ Λ} be an open cover for 𝐾. For contra-
diction, let’s assume that no finite subcover exists. Let 𝐼0 be a closed interval containing
𝐾.

(a) Show that there exists a nested sequence of closed intervals 𝐼0 ⊇ 𝐼1 ⊇ 𝐼2 ⊇ ⋯ with
the property that, for each 𝑛, 𝐼𝑛 ∩ 𝐾 cannot be finitely covered and lim|𝐼𝑛| = 0.

(b) Argue that there exists an 𝑥 ∈ 𝐾 such that 𝑥 ∈ 𝐼𝑛 for all 𝑛.

(c) Because 𝑥 ∈ 𝐾, there must exist an open set 𝑂𝜆0 from the original collection that
contains 𝑥 as an element. Explain how this leads to the desired contradiction.

Solution.

(a) Let us proceed by induction. For the base case, 𝐼0 ∩ 𝐾 = 𝐾 cannot be covered by any
finite subcollection of {𝑂𝜆 : 𝜆 ∈ Λ} and we have |𝐼0| = 20|𝐼0|.

Suppose that after 𝑛 steps we have chosen nested closed intervals 𝐼0 ⊇ 𝐼1 ⊇ ⋯ ⊇ 𝐼𝑛−1

such that, for each 0 ≤ 𝑚 ≤ 𝑛 − 1, 𝐼𝑚 ∩ 𝐾 cannot be covered by any finite subcollec-
tion of {𝑂𝜆 : 𝜆 ∈ Λ} and |𝐼𝑚| = 2−𝑚|𝐼0|. Suppose that 𝐼𝑛−1 = [𝑎, 𝑐] and let 𝑏 = 𝑎+𝑐

2 .
Note that if both of the sets [𝑎, 𝑏] ∩ 𝐾 and [𝑏, 𝑐] ∩ 𝐾 could be covered by a finite sub-
collection of {𝑂𝜆 : 𝜆 ∈ Λ}, then 𝐼𝑛−1 ∩ 𝐾 could also be finitely covered. By assumption
this is not the case, so at least one of the intervals [𝑎, 𝑏] or [𝑏, 𝑐] must have the prop-
erty that its intersection with 𝐾 cannot be finitely covered. Let 𝐼𝑛 be this interval
and note that 𝐼𝑛 ⊆ 𝐼𝑛−1. Furthermore, since |𝐼𝑛−1| = 2−𝑛+1|𝐼0| and |𝐼𝑛| = 1

2 |𝐼𝑛−1|, we
have |𝐼𝑛| = 2−𝑛|𝐼0|. This completes the induction step and thus we obtain the desired
sequence of nested closed intervals.

(b) For each 𝑛 ∈ 𝐍, 𝐼𝑛 ∩ 𝐾 is the intersection of two compact sets and hence is itself
compact (Exercise 3.3.5 (a)). Furthermore, since the sequence (𝐼𝑛) is nested, the se-
quence (𝐼𝑛 ∩ 𝐾) is also nested. It follows from Theorem 3.3.5 that there exist some 
𝑥 ∈ ⋂∞

𝑛=1(𝐼𝑛 ∩ 𝐾) = 𝐾 ∩ ⋂∞
𝑛=1 𝐼𝑛.

(c) Because 𝑥 belongs to the open set 𝑂𝜆0 , there exists an 𝜀 > 0 such that 𝑉𝜀(𝑥) ⊆ 𝑂𝜆0 ,
and since lim|𝐼𝑛| = 0 there exists an 𝑁 ∈ 𝐍 such that |𝐼𝑁 | < 𝜀

2 . Thus, since 𝑥 ∈ 𝐼𝑁 , we
must have 𝐼𝑁 ⊆ 𝑉𝜀(𝑥) and hence (𝐼𝑁 ∩ 𝐾) ⊆ 𝑉𝜀(𝑥). This implies that (𝐼𝑁 ∩ 𝐾) ⊆ 𝑂𝜆0 ,
contradicting the fact that 𝐼𝑁 ∩ 𝐾 cannot be covered by any finite subcollection of 
{𝑂𝜆 : 𝜆 ∈ Λ}.
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Exercise 3.3.10. Here is an alternate proof to the one given in Exercise 3.3.9 for the
final implication in the Heine-Borel Theorem.

Consider the special case where 𝐾 is a closed interval. Let {𝑂𝜆 : 𝜆 ∈ Λ} be an open
cover for [𝑎, 𝑏] and define 𝑆 to be the set of all 𝑥 ∈ [𝑎, 𝑏] such that [𝑎, 𝑥] has a finite
subcover from {𝑂𝜆 : 𝜆 ∈ Λ}.

(a) Argue that 𝑆 is nonempty and bounded, and thus 𝑠 = sup 𝑆 exists.

(b) Now show 𝑠 = 𝑏, which implies [𝑎, 𝑏] has a finite subcover.

(c) Finally, prove the theorem for an arbitrary closed and bounded set 𝐾.

Solution.

(a) Since 𝑎 ∈ [𝑎, 𝑏] there must be some 𝑂𝜆0 such that 𝑎 ∈ 𝑂𝜆0 , so that [𝑎, 𝑎] is finitely cov-
ered; it follows that 𝑎 ∈ 𝑆. Evidently, 𝑆 is bounded above by 𝑏. Thus 𝑠 = sup 𝑆 exists.

(b) Seeking a contradiction, suppose that 𝑠 < 𝑏, so that 𝜀1 ≔ 𝑏−𝑠
2 > 0. Since 𝑠 ∈ [𝑎, 𝑏], there

exists some 𝑂𝜆0 such that 𝑠 ∈ 𝑂𝜆0 and thus there is an 𝜀2 > 0 such that 𝑉𝜀2(𝑠) ⊆ 𝑂𝜆0 .
Let 𝜀 = min{𝜀1, 𝜀2} > 0. By Lemma 1.3.8 there exists an 𝑥 ∈ 𝑆 such that 𝑠 − 𝜀 < 𝑥 ≤ 𝑠,
so that 𝑥 ∈ 𝑉𝜀(𝑠) and

[𝑎, 𝑥] ⊆ 𝑂𝜆1 ∪ ⋯ ∪ 𝑂𝜆𝑛

for some finite subcollection {𝑂𝜆1 , …, 𝑂𝜆𝑛}. Observe that 𝑠 + 𝜀
2 ≤ 𝑠 + 𝜀1

2 = 𝑠+𝑏
2 ∈ [𝑎, 𝑏]

and

[𝑎, 𝑠 + 𝜀
2] ⊆ 𝑉𝜀(𝑠) ∪ [𝑎, 𝑥] ⊆ 𝑉𝜀2 ∪ [𝑎, 𝑥] ⊆ 𝑂𝜆0 ∪ 𝑂𝜆1 ∪ ⋯ ∪ 𝑂𝜆𝑛 .

It follows that 𝑠 + 𝜀
2 ∈ 𝑆, contradicting that 𝑠 is the supremum of 𝑆. Hence it must be

the case that 𝑠 = 𝑏.

This implies that [𝑎, 𝑏] has a finite subcover: since 𝑏 ∈ [𝑎, 𝑏] there must be some 𝑂𝜆0

such that 𝑏 ∈ 𝑂𝜆0 and hence some 𝜀 > 0 such that 𝑉𝜀(𝑏) ⊆ 𝑂𝜆0 , and since sup 𝑆 = 𝑏
there is some 𝑥 ∈ 𝑆 such that 𝑏 − 𝜀 < 𝑥 ≤ 𝑏 and

[𝑎, 𝑥] ⊆ 𝑂𝜆1 ∪ ⋯ ∪ 𝑂𝜆𝑛

for some finite subcollection {𝑂𝜆1 , …, 𝑂𝜆𝑛}. It follows that

[𝑎, 𝑏] ⊆ 𝑉𝜀(𝑏) ∪ [𝑎, 𝑥] ⊆ 𝑂𝜆0 ∪ 𝑂𝜆1 ∪ ⋯ ∪ 𝑂𝜆𝑛 .

(c) Let {𝑂𝜆 : 𝜆 ∈ Λ} be an arbitrary open cover of 𝐾. Since 𝐾 is bounded, it is con-
tained in some closed interval [𝑎, 𝑏]. Note that since 𝐾 is closed, the collection
{𝐾c} ∪ {𝑂𝜆 : 𝜆 ∈ Λ} is an open cover of 𝐑 and hence of [𝑎, 𝑏]; by part (b), there then
exists a finite subcover of [𝑎, 𝑏]. Since 𝐾 is contained in [𝑎, 𝑏], this finite subcover must
also cover 𝐾, and since {𝐾c} evidently does not cover 𝐾, this finite subcover must
contain some sets 𝑂𝜆1 , …, 𝑂𝜆𝑛 . It follows that 𝐾 is covered by the finite collection
{𝑂𝜆1 , …, 𝑂𝜆𝑛}.
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Exercise 3.3.11. Consider each of the sets listed in Exercise 3.3.2. For each one that
is not compact, find an open cover for which there is no finite subcover.

Solution. The sets from Exercise 3.3.2 which are not compact are 𝐍, 𝐐 ∩ [0, 1], and

𝐸 = {∑
𝑛

𝑘=1

1
𝑘2 : 𝑛 ∈ 𝐍}.

Let us consider 𝐍 first. For each 𝑛 ∈ 𝐍, let 𝑂𝑛 = (𝑛 − 1, 𝑛 + 1), so that the collection
{𝑂𝑛 : 𝑛 ∈ 𝐍} covers 𝐍. Since each 𝑛 ∈ 𝐍 belongs to exactly the set 𝑂𝑛 and no others, there
are in fact no proper subcovers, finite or otherwise.

Next, consider 𝐐 ∩ [0, 1]. Let 𝑦 be the irrational number 
√

2
2 ∈ (0, 1). For each 𝑛 ∈ 𝐍, define

𝑂𝑛 = (−∞, 𝑦 − 1
𝑛) ∪ (𝑦 + 1

𝑛 , ∞)

and notice that ⋃∞
𝑛=1 𝑂𝑛 = 𝐑 ∖ {𝑦}; it follows that the collection {𝑂𝑛 : 𝑛 ∈ 𝐍} covers

𝐐 ∩ [0, 1] since 𝑦 is irrational. We claim that there can be no finite subcover. If {𝑂𝑛1 , …, 𝑂𝑛𝑚}
is some finite subcollection, then let 𝑁 = max{𝑛1, …, 𝑛𝑚} and observe that

⋃
𝑚

𝑘=1
𝑂𝑛𝑘 = (−∞, 𝑦 − 1

𝑁 ) ∪ (𝑦 + 1
𝑁 , ∞).

Notice that

[𝑦 − 1
𝑁 , 𝑦 + 1

𝑁 ] ∩ [0, 1] = [max{0, 𝑦 − 1
𝑁 }, min{1, 𝑦 + 1

𝑁 }].

Because this is a proper interval, we are guaranteed by the density of 𝐐 in 𝐑 the existence
of a rational number 𝑝 ∈ [𝑦 − 1

𝑁 , 𝑦 + 1
𝑁 ] ∩ [0, 1]. It follows that 𝐐 ∩ [0, 1] ⊈ ⋃𝑚

𝑘=1 𝑂𝑛𝑘 .

Now consider the set 𝐸 = {𝑠𝑛 : 𝑛 ∈ 𝐍}, where ∑𝑛
𝑘=1

1
𝑘2 . We know by the Monotone Conver-

gence Theorem that 𝐿 ≔ lim 𝑠𝑛 is the supremum of 𝐸. Furthermore, as noted in Exercise
3.2.2, 𝐿 does not belong to 𝐸. For each 𝑛 ∈ 𝐍, let 𝑂𝑛 = (−∞, 𝐿 − 1

𝑛) and note that

⋃
∞

𝑛=1
𝑂𝑛 = (−∞, 𝐿).

This must cover 𝐸 since 𝐿 is the supremum of 𝐸 but does not belong to 𝐸. We claim that
there cannot exist a finite subcover. If {𝑂𝑛1 , …, 𝑂𝑛𝑚} is some finite subcollection, then let 
𝑁 = max{𝑛1, …, 𝑛𝑚} and observe that

⋃
𝑚

𝑘=1
𝑂𝑛𝑘 = (−∞, 𝐿 − 1

𝑁 ).

Since lim 𝑠𝑛 = 𝐿, the sequence (𝑠𝑛) must eventually be contained in the interval
(𝐿 − 1

𝑁 , 𝐿 + 1
𝑁 ) and it follows that {𝑂𝑛1 , …, 𝑂𝑛𝑚} cannot cover 𝐸.
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Exercise 3.3.12. Using the concept of open covers (and explicitly avoiding the Bolzano-
Weierstrass Theorem), prove that every bounded infinite set has a limit point.

Solution. We will prove the contrapositive statement. That is, if 𝐸 ⊆ 𝐑 is bounded, then

𝐸 has no limit points ⇒ 𝐸 is finite.

If 𝐸 is empty we are done. Otherwise, each 𝑥 ∈ 𝐸 must be an isolated point, i.e. there exists
some 𝜀𝑥 > 0 such that 𝑉𝜀𝑥(𝑥) ∩ 𝐸 = {𝑥}. Notice that the collection {𝑉𝜀𝑥(𝑥) : 𝑥 ∈ 𝐸} is an
open cover of 𝐸. Since 𝐸 has no limit points, 𝐸 must be closed; the Heine-Borel Theorem
(Theorem 3.3.8) then implies that there exist finitely many points {𝑥1, …, 𝑥𝑛} such that

𝐸 ⊆ 𝑉𝜀𝑥1 (𝑥1) ∪ ⋯ ∪ 𝑉𝜀𝑥𝑛 (𝑥𝑛).

This implies that

𝐸 = 𝐸 ∩ (𝑉𝜀𝑥1 (𝑥1) ∪ ⋯ ∪ 𝑉𝜀𝑥𝑛 (𝑥𝑛)) = (𝑉𝜀𝑥1 (𝑥1) ∩ 𝐸) ∪ ⋯ ∪ (𝑉𝜀𝑥𝑛 (𝑥𝑛) ∩ 𝐸)

= {𝑥1} ∪ ⋯ ∪ {𝑥𝑛} = {𝑥1, …, 𝑥𝑛}.

Thus 𝐸 is finite.

Exercise 3.3.13. Let’s call a set clompact if it has the property that every closed cover
(i.e., a cover consisting of closed sets) admits a finite subcover. Describe all of the clom-
pact subsets of 𝐑.

Solution. Let 𝐸 be a subset of 𝐑. Suppose that 𝐸 is finite. If 𝐸 is empty then certainly 
𝐸 is clompact, so suppose that 𝐸 = {𝑥1, …, 𝑥𝑛} and let {𝐹𝜆 : 𝜆 ∈ Λ} be a closed cover of 
𝐸. For each 𝑥𝑘 ∈ 𝐸, there is some 𝐹𝜆𝑘 such that 𝑥𝑘 ∈ 𝐹𝜆𝑘 ; it follows that {𝐹𝜆1 , …, 𝐹𝜆𝑛} is a
finite subcover of 𝐸. Thus 𝐸 is clompact.

Now suppose that 𝐸 is infinite and consider the closed cover {{𝑥} : 𝑥 ∈ 𝐸}. Since 𝐸 is infi-
nite, finitely many singletons cannot possibly cover 𝐸. So we have found a closed cover of 
𝐸 which does not admit a finite subcover and thus 𝐸 is not clompact.

To conclude, the clompact subsets of 𝐑 are precisely the finite subsets of 𝐑.
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3.4. Perfect Sets and Connected Sets

Exercise 3.4.1. If 𝑃  is a perfect set and 𝐾 is compact, is the intersection 𝑃 ∩ 𝐾 always
compact? Always perfect?

Solution. 𝑃  is closed so 𝑃 ∩ 𝐾 must be compact by Exercise 3.3.4 (a). However, 𝑃 ∩ 𝐾
need not be perfect. For a counterexample, consider 𝑃 = [0, 1] and 𝐾 = {0}.

Exercise 3.4.2. Does there exist a perfect set consisting of only rational numbers?

Solution. No. By Theorem 3.4.3 a non-empty perfect set must be uncountable, but any
subset of 𝐐 is either finite or countably infinite (Theorem 1.5.6 (i) and Theorem 1.5.7).
(Strictly speaking, the empty set is both perfect and a subset of the rationals; I suspect this
is not what Abbott had in mind.)

Exercise 3.4.3. Review the portion of the proof given in Example 3.4.2 and follow
these steps to complete the argument.

(a) Because 𝑥 ∈ 𝐶1, argue that there exists an 𝑥1 ∈ 𝐶 ∩ 𝐶1 with 𝑥1 ≠ 𝑥 satisfying
|𝑥 − 𝑥1| ≤ 1/3.

(b) Finish the proof by showing that for each 𝑛 ∈ 𝐍, there exists 𝑐𝑛 ∈ 𝐶 ∩ 𝐶𝑛, differ-
ent from 𝑥 satisfying |𝑥 − 𝑥𝑛| ≤ 1/3𝑛.

Solution.

(a) Recall that 𝐶1 = [0, 1
3] ∪ [2

3 , 1]. The endpoints of these intervals are never removed at
any subsequent stage of the construction of the Cantor set, so they belong to 𝐶. Since
𝑥 ∈ 𝐶1, it must belong to one of these intervals, say the interval [0, 1

3]. If 0 ≤ 𝑥 < 1
3  then

take 𝑥1 = 1
3 , and if 𝑥 = 1

3  then take 𝑥1 = 0. We can make similar choices if 𝑥 ∈ [2
3 , 1].

In any case, we have chosen an 𝑥1 ∈ 𝐶 ∩ 𝐶1 satisfying 𝑥1 ≠ 𝑥 and |𝑥 − 𝑥1| ≤ 1
3 .

(b) Let 𝑛 ∈ 𝐍 be given. The set 𝐶𝑛 consists of 2𝑛 disjoint closed intervals each of length 
3−𝑛. The endpoints of these intervals are never removed at any subsequent stage of
the construction of the Cantor set and thus they belong to 𝐶. Since 𝑥 ∈ 𝐶, we have 
𝑥 ∈ 𝐶𝑛 and hence 𝑥 must belong to one of the disjoint closed intervals of which 𝐶𝑛 is
composed, say 𝐼 = [𝑎, 𝑏] where 𝑏 − 𝑎 = 3−𝑛. If 𝑎 ≤ 𝑥 < 𝑏 then let 𝑥𝑛 = 𝑏 and if 𝑥 = 𝑏
then let 𝑥𝑛 = 𝑎. In either case, we have chosen an 𝑥𝑛 ∈ 𝐶 ∩ 𝐶𝑛 satisfying 𝑥 ≠ 𝑥𝑛 and 
|𝑥 − 𝑥𝑛| ≤ 𝑏 − 𝑎 = 3−𝑛.

It follows from the Squeeze Theorem that lim 𝑥𝑛 = 𝑥. Thus 𝑥 is the limit of a sequence
(𝑥𝑛) contained in 𝐶 such that 𝑥𝑛 ≠ 𝑥 for each 𝑛 ∈ 𝐍, i.e. 𝑥 is a limit point of 𝐶 (The-
orem 3.2.5). Hence 𝐶 contains no isolated points.
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Exercise 3.4.4. Repeat the Cantor construction from Section 3.1 starting with the
interval [0, 1]. This time, however, remove the open middle fourth from each component.

(a) Is the resulting set compact? Perfect?

(b) Using the algorithms from Section 3.1, compute the length and dimension of this
Cantor-like set.

Solution. We begin with 𝐵0 ≔ [0, 1] and remove the open middle fourth to obtain
𝐵1 = [0, 3

8] ∪ [5
8 , 1]. Notice that each interval has length 3

8 . Next we remove the open middle
fourth from each of the two intervals of 𝐵1 to obtain

𝐵2 = ([0, 9
64] ∪ [15

64 , 24
64]) ∪ ([40

64 , 49
64] ∪ [55

64 , 1]).

Notice that each interval has length (3
8)2. We continue in this fashion, obtaining sets 𝐵𝑛

consisting of 2𝑛 disjoint closed intervals each of length (3
8)𝑛, and define our Cantor-like set

𝐵 = ⋂∞
𝑛=0 𝐵𝑛.

(a) The set 𝐵 is compact and perfect; the arguments used for the Cantor set work equally
well for 𝐵. Each 𝐵𝑛 is closed, being a finite union of closed intervals, and thus 𝐵 is an
intersection of closed sets and hence is itself closed. Certainly 𝐵 is bounded and thus,
by the Heine-Borel Theorem (Theorem 3.3.8), 𝐵 is compact.

As in Exercise 3.4.3, given any 𝑥 ∈ 𝐵 we can find a sequence of endpoints (𝑥𝑛) such that
𝑥𝑛 ∈ 𝐵 ∖ {𝑥} and |𝑥 − 𝑥𝑛| ≤ (3

8)𝑛 for each 𝑛 ∈ 𝐍. It follows from the Squeeze Theorem
and Theorem 3.2.5 that 𝑥 is a limit point of 𝐵 and hence that 𝐵 has no isolated points.
Because 𝐵 is also closed, we see that 𝐵 is a perfect set.

(b) At the first stage, we remove an interval of length 1
4 . At the 𝑛th stage (𝑛 = 2, 3, 4, …),

we remove 2𝑛−1 intervals each of length 1
4(3

8)𝑛−1. Thus the length of 𝐵 is

1 − (1
4 + 2 ⋅ 1

4 ⋅ 3
8 + 22 ⋅ 1

4 ⋅ (3
8)

2
+ ⋯)

= 1 − 1
4(1 + 3

4 + (3
4)

2
+ ⋯) = 1 −

1
4

1 − 3
4

= 0.

To calculate the dimension of 𝐵, we magnify the set by a factor of 83 , so that 𝐵0 becomes
the closed interval [0, 8

3]. When we remove the open middle fourth of this interval, we
are left with two intervals of length 1:

𝐵1 = [0, 1] ∪ [5
3 , 8

3].

Continuing the construction, we will obtain two copies of 𝐵. The dimension 𝑥 of 𝐵 is
then given by solving 2 = (8

3)𝑥, which gives

𝑥 =
log(2)

log(8) − log(3)
≈ 0.7067.
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Exercise 3.4.5. Let 𝐴 and 𝐵 be nonempty subsets of 𝐑. Show that if there exist dis-
joint open sets 𝑈  and 𝑉  with 𝐴 ⊆ 𝑈  and 𝐵 ⊆ 𝑉 , then 𝐴 and 𝐵 are separated.

Solution. Observe that 𝑉 c is a closed set which contains 𝐴 (since 𝑈 ∩ 𝑉 = ∅ implies that 
𝐴 ∩ 𝑉 = ∅). Since 𝐴 is the smallest closed set containing 𝐴 (Theorem 3.2.12), we must have
𝐴 ⊆ 𝑉 c, which gives

𝐴 ⊆ 𝑉 c ⇒ 𝐴 ∩ 𝑉 = ∅ ⇒ 𝐴 ∩ 𝐵 = ∅.

Similarly, 𝐴 ∩ 𝐵 = ∅. Thus 𝐴 and 𝐵 are separated.

Exercise 3.4.6. Prove Theorem 3.4.6.

Solution. Suppose we have non-empty subsets 𝐴, 𝐵 ⊆ 𝐑 such that every convergent se-
quence contained in one of the subsets has a limit which does not belong to the other subset.
Since a limit point of 𝐴 is the limit of a sequence of elements contained in 𝐴 (Theorem 3.2.5)
and an element of 𝐴 is the limit of a constant sequence contained in 𝐴, and by assumption
these limits do not belong to 𝐵, we see that 𝐴 ∩ 𝐵 = ∅. Similarly, 𝐴 ∩ 𝐵 = ∅. Thus 𝐴 and 
𝐵 are separated.

Conversely, suppose that 𝐴 and 𝐵 are separated. If (𝑥𝑛) → 𝑥 is a convergent sequence con-
tained in 𝐴 then 𝑥 ∈ 𝐴 and thus 𝑥 ∉ 𝐵 since 𝐴 ∩ 𝐵 = ∅. Similarly, the limit of any convergent
sequence contained in 𝐵 does not belong to 𝐴.

We have now shown that for non-empty subsets 𝐴, 𝐵 ⊆ 𝐑, 𝐴 and 𝐵 being separated is equiv-
alent to the condition that every convergent sequence contained in one of the subsets has a
limit which does not belong to the other subset.

Proving Theorem 3.4.6 is equivalent to showing that a subset 𝐸 ⊆ 𝐑 is disconnected if and
only if there exist non-empty subsets 𝐴, 𝐵 ⊆ 𝐸 such that 𝐸 = 𝐴 ∪ 𝐵 and every convergent
sequence contained in one of the subsets has a limit which does not belong to the other
subset. By the previous discussion, such subsets are separated. So the theorem follows from
the definition of disconnectedness.

Exercise 3.4.7. A set 𝐸 is totally disconnected if, given any two distinct points 𝑥, 𝑦 ∈ 𝐸,
there exist separated sets 𝐴 and 𝐵 with 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, and 𝐸 = 𝐴 ∪ 𝐵.

(a) Show that 𝐐 is totally disconnected.

(b) Is the set of irrational numbers totally disconnected?

Solution.

(a) Suppose that 𝑝 < 𝑞 are rational numbers. By the density of 𝐈 in 𝐑, there exists an
irrational number 𝑦 such that 𝑝 < 𝑦 < 𝑞. Define the sets

𝐴 = (−∞, 𝑦) ∩ 𝐐 and 𝐵 = (𝑦, ∞) ∩ 𝐐.
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Notice that 𝑝 ∈ 𝐴, 𝑞 ∈ 𝐵, and 𝐴 ∪ 𝐵 = 𝐐 since 𝑦 ∉ 𝐐. The density of 𝐐 in 𝐑 implies
that 𝐴 = (−∞, 𝑦] and 𝐵 = [𝑦, ∞). It follows that 𝐴 ∩ 𝐵 = 𝐴 ∩ 𝐵 = ∅ and hence that 
𝐴 and 𝐵 are separated. Thus 𝐐 is totally disconnected.

(b) 𝐈 is also totally disconnected. To see this, reverse the roles of 𝐐 and 𝐈 in the solution
to part (a).

Exercise 3.4.8. Follow these steps to show that the Cantor set is totally disconnected
in the sense described in Exercise 3.4.7.

Let 𝐶 = ⋂∞
𝑛=0 𝐶𝑛, as defined in Section 3.1.

(a) Given 𝑥, 𝑦 ∈ 𝐶, with 𝑥 < 𝑦, set 𝜀 = 𝑦 − 𝑥. For each 𝑛 = 0, 1, 2, …, the set 𝐶𝑛 con-
sists of a finite number of closed intervals. Explain why there must exist an 𝑁
large enough so that it is impossible for 𝑥 and 𝑦 both to belong to the same closed
interval of 𝐶𝑁 .

(b) Show that 𝐶 is totally disconnected.

Solution.

(a) If 𝐼 is an interval of length 𝛿, then any 𝑎, 𝑏 ∈ 𝐼 must satisfy |𝑎 − 𝑏| ≤ 𝛿. In the con-
struction of 𝐶, each 𝐶𝑛 consists of 2𝑛 disjoint closed intervals each of length 3−𝑛. Thus
we can find an 𝑁  large enough so that 𝐶𝑁  consists of closed intervals each of length 
3−𝑁 < 𝜀 = 𝑦 − 𝑥, i.e. whose length is smaller than the distance between 𝑥 and 𝑦. It
follows that 𝑥 and 𝑦 cannot possibly belong to the same interval of 𝐶𝑁 .

(b) Let [𝑎, 𝑏] be the closed interval of 𝐶𝑁  which contains 𝑥 and note that the open interval
(𝑏, 𝑏 + 3−𝑁) was either removed at the 𝑁 th stage of construction or is a subset of an
open interval which was removed at some previous stage of construction. It follows that
𝑡 ≔ 𝑏 + 1

2 ⋅ 3−𝑁 ∉ 𝐶. Since 𝑦 ∉ [𝑎, 𝑏] and 𝑦 > 𝑥, we must have 𝑦 > 𝑡. Here is an example
construction of 𝑡, with 𝑁 = 1; notice that any 𝑁 ≥ 1 would also work.

𝐶0

𝐶1

𝐶2

0 1
3𝑥 𝑦𝑡 = 1

3 + 1
6

(1
3 , 2

3)

⋮ ⋮ ⋮ ⋮

Define 𝐴 = (−∞, 𝑡) ∩ 𝐶 and 𝐵 = (𝑡, ∞) ∩ 𝐶. Notice that 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, and 𝐴 ∪ 𝐵 = 𝐶
since 𝑡 ∉ 𝐶. Notice further that 𝐴 ⊆ (−∞, 𝑡) = (−∞, 𝑡] and similarly 𝐵 ⊆ [𝑡, ∞). It fol-
lows that 𝐴 ∩ 𝐵 = 𝐴 ∩ 𝐵 = ∅ and hence that 𝐴 and 𝐵 are separated. Thus 𝐶 is totally
disconnected.
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Exercise 3.4.9. Let {𝑟1, 𝑟2, 𝑟3, …} be an enumeration of the rational numbers, and for
each 𝑛 ∈ 𝐍 set 𝜀𝑛 = 1/2𝑛. Define 𝑂 = ⋃∞

𝑛=1 𝑉𝜀𝑛(𝑟𝑛) and let 𝐹 = 𝑂c.

(a) Argue that 𝐹  is a closed, nonempty set consisting only of irrational numbers.

(b) Does 𝐹  contain any nonempty open intervals? Is 𝐹  totally disconnected? (See
Exercise 3.4.7 for the definition.)

(c) Is it possible to know whether 𝐹  is perfect? If not, can we modify this construction
to produce a nonempty perfect set of irrational numbers?

Solution.

(a) 𝑂 is an open set since it is a union of open intervals, so 𝐹 = 𝑂c must be closed. To see
that 𝐹  is non-empty, suppose otherwise, so that 𝑂 = 𝐑. It follows that the collection 
{𝑉𝜀𝑛(𝑟𝑛) : 𝑛 ∈ 𝐍} is an open cover of the compact set [0, 10]. Thus, by Theorem 3.3.8,
there exist finitely many indices 𝑛1 < ⋯ < 𝑛ℓ such that

[0, 10] ⊆ 𝑉𝜀𝑛1(𝑟𝑛1) ∪ ⋯ ∪ 𝑉𝜀𝑛ℓ
(𝑟𝑛ℓ).

However, the interval [0, 10] has length 10, whereas the set 𝑉𝜀𝑛1(𝑟𝑛1) ∪ ⋯ ∪ 𝑉𝜀𝑛ℓ
(𝑟𝑛ℓ)

has total length at most

∑
ℓ

𝑘=1

1
2𝑛𝑘−1 ≤ ∑

∞

𝑛=0

1
2𝑛 = 2,

since |𝑉𝜀𝑛ℓ
(𝑟𝑛ℓ)| = 2𝜀𝑛𝑘 = 2−𝑛𝑘+1. So we have a set of length 10 contained inside a

set of length 2, which is a contradiction; it follows that 𝐹  is non-empty. Finally, since
𝐐 ⊆ 𝑂, we see that 𝐹 = 𝑂c can contain only irrational numbers.

(b) 𝐹  cannot contain any non-empty open intervals, since this would imply that 𝐹  contains
a rational number (indeed, infinitely many rational numbers), but by part (a) 𝐹  con-
tains only irrational numbers.

To see that 𝐹  is totally disconnected, let us prove the following lemma.

Lemma L.10. Suppose 𝐺 ⊆ 𝐑 is totally disconnected. If 𝐸 is a non-empty subset
of 𝐺, then 𝐸 is also totally disconnected.

Proof. Let 𝑥, 𝑦 ∈ 𝐸 be given. Since 𝑥 and 𝑦 belong to the totally disconnected set
𝐺, there exist separated sets 𝐴 and 𝐵 such that 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, and 𝐺 = 𝐴 ∪ 𝐵.
Let 𝐶 = 𝐴 ∩ 𝐸 and 𝐷 = 𝐵 ∩ 𝐸 and note that 𝑥 ∈ 𝐶 and 𝑦 ∈ 𝐷. Furthermore, 
𝐶 ⊆ 𝐴 and 𝐷 ⊆ 𝐵, so

𝐶 ⊆ 𝐴 ⇒ 𝐶 ∩ 𝐷 ⊆ 𝐴 ∩ 𝐷 ⊆ 𝐴 ∩ 𝐵 = ∅.

Thus 𝐶 ∩ 𝐷 = ∅ and similarly 𝐶 ∩ 𝐷 = ∅; it follows that 𝐶 and 𝐷 are separated.
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Finally,

𝐸 = 𝐸 ∩ 𝐺 = 𝐸 ∩ (𝐴 ∪ 𝐵) = (𝐴 ∩ 𝐸) ∪ (𝐵 ∩ 𝐸) = 𝐶 ∪ 𝐷.

Thus 𝐸 is totally disconnected. □

Since 𝐹  is a subset of 𝐈, which we showed was totally disconnected in Exercise 3.4.7, it
follows from Lemma L.10 that 𝐹  is totally disconnected.

(c) There are enumerations of 𝐐 which, when used in this construction, will result in an 
𝐹  which is not perfect, i.e. an 𝐹  with at least one isolated point. Let 𝑦 be an irrational
number, say 𝑦 =

√
2; we will construct an enumeration (𝑟𝑛) of 𝐐, which gives an 𝐹

with 𝑦 as an isolated point, via the following four step process. (The idea for this con-
struction comes from math.SE user Ingix.)

Step 1. First we will construct a sequence (𝑝𝑛) of rational numbers with the following
properties:

(1.1) 𝑝1 < 𝑝2 < 𝑝3 < ⋯ < 𝑦;

(1.2) 𝑦 ∉ ⋃∞
𝑛=1 𝑉𝜀4𝑛(𝑝𝑛);

(1.3) (𝑦 − 1
16 , 𝑦) ⊆ ⋃∞

𝑛=1 𝑉𝜀4𝑛(𝑝𝑛).

To define this sequence, for each 𝑛 ∈ 𝐍 let 𝑝𝑛 be a rational number satisfying

𝑦 −
1

24𝑛 −
1

24𝑛+4 < 𝑝𝑛 < 𝑦 −
1

24𝑛 , i.e. 𝑦 − 𝜀4𝑛 − 𝜀4𝑛+4 < 𝑝𝑛 < 𝑦 − 𝜀4𝑛;

the existence of such a rational number is guaranteed by the density of 𝐐 in 𝐑. For
any 𝑛 ∈ 𝐍 certainly 𝑝𝑛 < 𝑦, and because 1 > 𝜀4 + 𝜀8 we also have 𝜀4𝑛 > 𝜀4𝑛+4 + 𝜀4𝑛+8,
whence 𝑝𝑛 < 𝑝𝑛+1. Thus (𝑝𝑛) satisfies condition (1.1). Furthermore, for any 𝑛 ∈ 𝐍,

𝑝𝑛 + 𝜀4𝑛 < 𝑦 ⇒ 𝑦 ∉ 𝑉𝜀4𝑛(𝑝𝑛).

Thus (𝑝𝑛) satisfies condition (1.2). Notice that each 𝑝𝑛+1 satisfies

𝑝𝑛 < 𝑝𝑛+1 < 𝑝𝑛 + 𝜀4𝑛 ⇒ 𝑝𝑛+1 ∈ 𝑉𝜀4𝑛(𝑝𝑛),

i.e. the centre of 𝑉𝜀4𝑛+4(𝑝𝑛+1) is contained in 𝑉𝜀4𝑛(𝑝𝑛). It follows that for any 𝑁 ∈ 𝐍
the union ⋃𝑁

𝑛=1 𝑉𝜀4𝑛(𝑝𝑛) is an open interval:

⋃
𝑁

𝑛=1
𝑉𝜀4𝑛(𝑝𝑛) = (𝑝1 − 1

16 , 𝐵), where 𝐵 = max{𝑝𝑛 + 𝜀4𝑛 : 1 ≤ 𝑛 ≤ 𝑁}.

(The exact value of 𝐵 is not important, but note that it must be strictly less than 
𝑦.) Observe that 𝑦 − 1

16 ∈ ⋃𝑁
𝑛=1 𝑉𝜀4𝑛(𝑝𝑛) for any 𝑁 ∈ 𝐍 since 𝑦 − 1

16 ∈ 𝑉𝜀4(𝑝1). Let
𝑡 ∈ 𝐑 be such that 𝑦 − 1

16 < 𝑡 < 𝑦. Because (𝑝𝑛) converges to 𝑦, we can find an 𝑁 ∈ 𝐍
such that 𝑡 < 𝑝𝑁 < 𝑦. It follows that 𝑦 − 1

16  and 𝑝𝑁  both belong to the open interval 
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⋃𝑁
𝑛=1 𝑉𝜀4𝑛(𝑝𝑛); since 𝑡 lies between these two values, 𝑡 must also belong to this open

interval, i.e.

𝑡 ∈ ⋃
𝑁

𝑛=1
𝑉𝜀4𝑛(𝑝𝑛) ⊆ ⋃

∞

𝑛=1
𝑉𝜀4𝑛(𝑝𝑛).

Because this is true for any 𝑡 ∈ (𝑦 − 1
16 , 𝑦), we see that (𝑝𝑛) satisfies condition (1.3).

Step 2. Now we will construct a sequence (𝑞𝑛) of rational numbers with the following
properties:

(2.1) 𝑦 < ⋯ < 𝑞3 < 𝑞2 < 𝑞1;

(2.2) 𝑦 ∉ ⋃∞
𝑛=1 𝑉𝜀4𝑛−2(𝑞𝑛);

(2.3) (𝑦, 𝑦 + 1
16) ⊆ ⋃∞

𝑛=1 𝑉𝜀4𝑛−2(𝑞𝑛).

To define this sequence, for each 𝑛 ∈ 𝐍 let 𝑞𝑛 be a rational number satisfying

𝑦 +
1

24𝑛−2 < 𝑞𝑛 < 𝑦 +
1

24𝑛−2 +
1

24𝑛+2 , i.e. 𝑦 + 𝜀4𝑛−2 < 𝑞𝑛 < 𝑦 + 𝜀4𝑛−2 + 𝜀4𝑛+2;

the existence of such a rational number is guaranteed by the density of 𝐐 in 𝐑. We
can argue as in Step 1 to show that (𝑞𝑛) satisfies conditions (2.1), (2.2), and (2.3).

Step 3. Since the sequences (𝑝𝑛) and (𝑞𝑛) constructed in Steps 1 and 2 are entirely
contained inside the interval [𝑝1, 𝑞1], we still have infinitely many rational numbers left
to enumerate. That is, letting

𝐸 = 𝐐 ∩ ({𝑝1, 𝑝2, …} ∪ {𝑞1, 𝑞2, …})c,

we have that 𝐸 is countably infinite. However, enumerating 𝐸 carelessly might exclude
𝑦 from 𝐹  in Step 4, since there are rational numbers in 𝐸 arbitrarily close to 𝑦; placing
one of these rational numbers “too early” in the final enumeration will include 𝑦 in the
𝜀𝑛-neighbourhood of that rational number. To surmount this problem, we will construct
an enumeration (𝑎𝑛) of 𝐸 with the following property:

(3.1) 𝑦 ∉ 𝑉𝜀2𝑛−1(𝑎𝑛) for all 𝑛 ∈ 𝐍.

We will first partition 𝐸 as follows. For each 𝑛 ∈ 𝐍, let

𝐴𝑛 = {
{𝑥 ∈ 𝐑 : 𝜀1 < |𝑥 − 𝑦|} if 𝑛 = 1,
{𝑥 ∈ 𝐑 : 𝜀2𝑛−1 < |𝑥 − 𝑦|} < 𝜀2𝑛−3 if 𝑛 ≥ 2.

Equivalently,

𝐴𝑛 = {
(−∞, 𝑦 − 𝜀1) ∪ (𝑦 + 𝜀1, ∞) if 𝑛 = 1,
(𝑦 − 𝜀2𝑛−3, 𝑦 − 𝜀2𝑛−1) ∪ (𝑦 + 𝜀2𝑛−1, 𝑦 + 𝜀2𝑛−3) if 𝑛 ≥ 2.

Now let 𝐸𝑛 = 𝐸 ∩ 𝐴𝑛 for each 𝑛 ∈ 𝐍.

𝐸3𝐸3 𝐸2𝐸2 𝐸1𝐸1 𝑦 ⋯⋯
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We have ⋃∞
𝑛=1 𝐸𝑛 = 𝐸 since the only real numbers not contained in ⋃∞

𝑛=1 𝐴𝑛 are 𝑦
and those of the form 𝑦 ± 𝜀2𝑛−1 for some 𝑛 ∈ 𝐍, none of which is rational, and the
collection {𝐸𝑛 : 𝑛 ∈ 𝐍} is evidently pairwise disjoint; it follows that this collection is a
partition of 𝐸.

Because lim𝑛→∞ 𝑝𝑛 = lim𝑛→∞ 𝑞𝑛 = 𝑦 and 𝑦 ∉ 𝐴𝑛 for any 𝑛 ∈ 𝐍, there can be only fi-
nitely many terms of the sequences (𝑝𝑛) and (𝑞𝑛) contained in each 𝐴𝑛. Thus each 𝐸𝑛

is countably infinite. We can then enumerate each 𝐸𝑛:

𝐸𝑛 = {𝑒1,𝑛, 𝑒2,𝑛, 𝑒3,𝑛, …}.

These enumerations can be combined to form an enumeration (𝑎𝑛) of 𝐸 using the same
method used in the proof that a countable union of countable sets is countable (see
Exercise 1.5.3 (c)). To be precise, consider the following “infinite arrays”.

𝑒1,1

𝑒2,1

𝑒3,1

𝑒4,1

𝑒5,1

𝑒1,2

𝑒2,2

𝑒3,2

𝑒4,2

𝑒1,3

𝑒2,3

𝑒3,3

𝑒1,4

𝑒2,4

𝑒1,5

𝐸1 1𝐸2 2𝐸3 3𝐸4 4𝐸5 5

⋮

⋱

⋱

⋱

⋱

⋯

⋯ ⋯

𝑎1

𝑎2

𝑎4

𝑎7

𝑎11

𝑎3

𝑎5

𝑎8

𝑎12

𝑎6

𝑎9

𝑎13

𝑎10

𝑎14

𝑎15

⋮

⋱

⋱

⋱

⋱

⋯

The enumeration of 𝐸𝑛 is the 𝑛th column of the left-hand array. The enumeration of 
𝐸 is obtained by letting 𝑎𝑁  in the right-hand array be the element 𝑒𝑚,𝑛 in the corre-
sponding position of the left-hand array, so that

𝑎1 = 𝑒1,1, 𝑎2 = 𝑒2,1, 𝑎3 = 𝑒1,2, 𝑎4 = 𝑒3,1, …

This mapping is bĳective because the collection {𝐸𝑛 : 𝑛 ∈ 𝐍} is a partition of 𝐸. Now
we need to show that (𝑎𝑛) satisfies condition (3.1). Let 𝑛 ∈ 𝐍 be given. The element 𝑎𝑛

belongs to some column of the right-hand array above, say the 𝑁 th column. From the
definition of our enumeration (𝑎𝑛), we have 𝑎𝑛 = 𝑒𝑚,𝑁  for some 𝑚 ∈ 𝐍. It follows that
𝑎𝑛 ∈ 𝐸𝑁  and hence that |𝑎𝑛 − 𝑦| > 𝜀2𝑁−1, which gives 𝑦 ∉ 𝑉𝜀2𝑁−1(𝑎𝑛). If we examine
the right-hand array, we see that the element at the top of the 𝑁 th column is 𝑎𝑁(𝑁+1)/2

(the 𝑁 th triangular number), and furthermore that 𝑛 ≥ 𝑁(𝑁 + 1)/2. Thus

2𝑛 − 1 ≥ 2𝑁 − 1 ⇒ 𝜀2𝑛−1 ≤ 𝜀2𝑁−1 ⇒ 𝑉𝜀2𝑛−1(𝑎𝑛) ⊆ 𝑉𝜀2𝑁−1(𝑎𝑛).

Combining this with 𝑦 ∉ 𝑉𝜀2𝑁−1(𝑎𝑛), we see that 𝑦 ∉ 𝑉𝜀2𝑛−1(𝑎𝑛). Thus (𝑎𝑛) satisfies
condition (3.3).
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Step 4. We can now form our final enumeration (𝑟𝑛) of 𝐐, by letting

𝑟2𝑛−1 = 𝑎𝑛, 𝑟4𝑛−2 = 𝑞𝑛, and 𝑟4𝑛 = 𝑝𝑛,

so that (𝑟𝑛) = (𝑎1, 𝑞1, 𝑎2, 𝑝1, 𝑎3, 𝑞2, 𝑎4, 𝑝2, …). Let 𝑂 = ⋃∞
𝑛=1 𝑉𝜀𝑛(𝑟𝑛) and 𝐹 = 𝑂c. By

condition (1.2), we have

(𝑦 − 1
16 , 𝑦) ⊆ ⋃

∞

𝑛=1
𝑉𝜀4𝑛(𝑝𝑛) = ⋃

∞

𝑛=1
𝑉𝜀4𝑛(𝑟4𝑛) ⊆ ⋃

∞

𝑛=1
𝑉𝜀𝑛(𝑟𝑛) = 𝑂,

and by condition (2.2) we have

(𝑦, 𝑦 + 1
16) ⊆ ⋃

∞

𝑛=1
𝑉𝜀4𝑛−2(𝑞𝑛) = ⋃

∞

𝑛=1
𝑉𝜀4𝑛−2(𝑟4𝑛−2) ⊆ ⋃

∞

𝑛=1
𝑉𝜀𝑛(𝑟𝑛) = 𝑂.

Thus (𝑦 − 1
16 , 𝑦) ∪ (𝑦, 𝑦 + 1

16) ⊆ 𝑂. Furthermore, since

𝑂 = ⋃
∞

𝑛=1
𝑉𝜀𝑛(𝑟𝑛)

= ⋃
∞

𝑛=1
𝑉𝜀4𝑛(𝑟4𝑛) ∪ ⋃

∞

𝑛=1
𝑉𝜀4𝑛−2(𝑟4𝑛−2) ∪ ⋃

∞

𝑛=1
𝑉𝜀2𝑛−1(𝑟2𝑛−1)

= ⋃
∞

𝑛=1
𝑉𝜀4𝑛(𝑝𝑛) ∪ ⋃

∞

𝑛=1
𝑉𝜀4𝑛−2(𝑞𝑛) ∪ ⋃

∞

𝑛=1
𝑉𝜀2𝑛−1(𝑎𝑛),

conditions (1.3), (2.3), and (3.1) imply that 𝑦 ∉ 𝑂. It follows that

(𝑦 − 1
16 , 𝑦 + 1

16) ∩ 𝐹 = {𝑦},

so that 𝑦 is an isolated point of 𝐹 . We may conclude that 𝐹  is not a perfect set.

Regarding the second half of the question, it is possible to modify the construction to
produce a non-empty perfect set consisting of only irrational numbers. To do this, we
start with any enumeration (𝑟𝑛) of 𝐐 and inductively define a sequence of non-negative
real numbers (𝜀𝑛) in such a way that if let

𝑂 = ⋃
∞

𝑛=1
𝑉𝜀𝑛(𝑟𝑛) and 𝐹 = 𝑂c,

then 𝐹  will be a non-empty perfect set of irrational numbers. Intuitively, we will induc-
tively construct 𝑂 as a union of disjoint open intervals, with no pair of these intervals
sharing an endpoint. (In what follows, we adopt the convention that 𝑉𝜀(𝑥) = ∅ if 𝜀 = 0.)

Suppose that after 𝑁  steps we have chosen 𝜀1, …, 𝜀𝑁  such that:

(IH1) {𝑟1, …, 𝑟𝑁} ⊆ ⋃𝑁
𝑛=1 𝑉𝜀𝑛(𝑟𝑛);

(IH2) for all 1 ≤ 𝑛 ≤ 𝑁 , either 𝜀𝑛 = 0 or 𝜀𝑛 is irrational and satisfies 0 < 𝜀𝑛 ≤ 2−𝑛
√

2;

(IH3) 𝑉𝜀𝑚(𝑟𝑚) ∩ 𝑉𝜀𝑛(𝑟𝑛) = ∅ for all 𝑚, 𝑛 ∈ 𝐍 with 1 ≤ 𝑚 < 𝑛 ≤ 𝑁 .
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Let 𝑈 = ⋃𝑁
𝑛=1 𝑉𝜀𝑛(𝑟𝑛). There are two cases.

Case 1. This is the easier case. If 𝑟𝑁+1 ∈ 𝑈  then let 𝜀𝑁+1 = 0, so that 𝑉𝜀𝑁+1(𝑟𝑁+1) = ∅.
Combining this with (IH1) gives us

{𝑟1, …, 𝑟𝑁 , 𝑟𝑁+1} ⊆ 𝑈 = ⋃
𝑁

𝑛=1
𝑉𝜀𝑛(𝑟𝑛) = ⋃

𝑁+1

𝑛=1
𝑉𝜀𝑛(𝑟𝑛).

(IH2) together with 𝜀𝑁+1 = 0 shows that for all 1 ≤ 𝑛 ≤ 𝑁 + 1, either 𝜀𝑛 = 0 or 𝜀𝑛 is
irrational and satisfies 0 < 𝜀𝑛 ≤ 2−𝑛

√
2.

Similarly, combining (IH3) with 𝑉𝜀𝑁+1(𝑟𝑁+1) = ∅, we have 𝑉𝜀𝑚(𝑟𝑚) ∩ 𝑉𝜀𝑛(𝑟𝑛) = ∅ for
all 𝑚, 𝑛 ∈ 𝐍 with 1 ≤ 𝑚 < 𝑛 ≤ 𝑁 + 1.

Case 2. This is the harder case. If 𝑟𝑁+1 ∉ 𝑈  then let 𝜀𝑛1 , …, 𝜀𝑛𝐽  be those 𝜀’s from 
𝜀1, …, 𝜀𝑁  which are non-zero; there must be at least one such 𝜀𝑛𝑗 by (IH1) and each 
𝜀𝑛𝑗 must be positive and irrational by (IH2). Observe that

𝑈 = ⋃
𝑁

𝑛=1
𝑉𝜀𝑛(𝑟𝑛) = ⋃

𝐽

𝑗=1
𝑉𝜀𝑛𝑗(𝑟𝑛𝑗),

where each 𝑉𝜀𝑛𝑗(𝑟𝑛𝑗) is a proper open interval. For each 1 ≤ 𝑗 ≤ 𝐽 , note that since 
𝑟𝑁+1 ∉ 𝑈 , we must have 𝑟𝑁+1 ∉ 𝑉𝜀𝑛𝑗(𝑟𝑛𝑗). Both of the endpoints of 𝑉𝜀𝑛𝑗(𝑟𝑛𝑗) are the
sum of a rational number and an irrational number and hence are irrational; since 
𝑟𝑁+1 is rational, we see that 𝑟𝑁+1 ∉ [𝑟𝑛𝑗 − 𝜀𝑛𝑗 , 𝑟𝑛𝑗 + 𝜀𝑛𝑗]. Given this, if we let 𝑑 be the
minimum of the distances from 𝑟𝑁+1 to the endpoints of each 𝑉𝜀𝑛𝑗 , i.e.

𝑑 = min{|𝑟𝑛𝑗 − 𝜀𝑛𝑗 − 𝑟𝑁+1|, |𝑟𝑛𝑗 + 𝜀𝑛𝑗 − 𝑟𝑁+1| : 1 ≤ 𝑗 ≤ 𝐽},

then 𝑑 must be positive. Furthermore, 𝑑 must be irrational since it is the sum of a
rational number and an irrational number, and for each 1 ≤ 𝑗 ≤ 𝐽  we have

[𝑟𝑁+1 − 𝑑
2 , 𝑟𝑁+1 + 𝑑

2] ∩ [𝑟𝑛𝑗 − 𝜀𝑛𝑗 , 𝑟𝑛𝑗 + 𝜀𝑛𝑗] = ∅. (∗)

Let 𝜀𝑁+1 = min{2−(𝑁+1)
√

2, 𝑑
2} and note that 𝜀𝑁+1 is positive, so that

𝑟𝑁+1 ∈ 𝑉𝜀𝑁+1(𝑟𝑁+1). Combining this with (IH1) gives us

{𝑟1, …, 𝑟𝑁 , 𝑟𝑁+1} ⊆ ⋃
𝑁+1

𝑛=1
𝑉𝜀𝑛(𝑟𝑛).

As noted before, 𝑑 is positive and irrational, so 𝜀𝑁+1 is positive, irrational, and satisfies
𝜀𝑁+1 ≤ 2−(𝑁+1)

√
2; combining this with (IH1) shows that for all 1 ≤ 𝑛 ≤ 𝑁 + 1, either

𝜀𝑛 = 0 or 𝜀𝑛 is irrational and satisfies 0 < 𝜀𝑛 ≤ 2−𝑛
√

2.

Let 1 ≤ 𝑛 ≤ 𝑁  be given. If 𝜀𝑛 = 0 then the identity 𝑉𝜀𝑛(𝑟𝑛) ∩ 𝑉𝜀𝑁+1(𝑟𝑁+1) = ∅ is clear,
since 𝑉𝜀𝑛(𝑟𝑛) = ∅. If 𝜀𝑛 ≠ 0 then 𝑛 = 𝑛𝑗 for some 1 ≤ 𝑗 ≤ 𝐽 . In this case, we have

𝑉𝜀𝑛(𝑟𝑛) = 𝑉𝜀𝑛𝑗(𝑟𝑛𝑗) = [𝑟𝑛𝑗 − 𝜀𝑛𝑗 , 𝑟𝑛𝑗 + 𝜀𝑛𝑗] and

𝑉𝜀𝑁+1(𝑟𝑁+1) = [𝑟𝑁+1 − 𝜀𝑁+1, 𝑟𝑁+1 + 𝜀𝑁+1] ⊆ [𝑟𝑁+1 − 𝑑
2 , 𝑟𝑁+1 + 𝑑

2].
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It then follows from equation (∗) that 𝑉𝜀𝑛(𝑟𝑛) ∩ 𝑉𝜀𝑁+1(𝑟𝑁+1) = ∅. Combining this with
(IH3), we see that 𝑉𝜀𝑚(𝑟𝑚) ∩ 𝑉𝜀𝑛(𝑟𝑛) = ∅ for all 𝑚, 𝑛 ∈ 𝐍 with 1 ≤ 𝑚 < 𝑛 ≤ 𝑁 + 1.

This completes the inductive step; for the base case, simply let 𝜀1 =
√

2
2 . By induction

we obtain a sequence (𝜀𝑛) which satisfies (IH1), (IH2), and (IH3) for all 𝑁 ∈ 𝐍. In
other words, the sequence (𝜀𝑛) has the following properties:

(A1) 𝐐 ⊆ ⋃∞
𝑛=1 𝑉𝜀𝑛(𝑟𝑛);

(A2) for all 𝑛 ∈ 𝐍, either 𝜀𝑛 = 0 or 𝜀𝑛 is irrational and satisfies 0 < 𝜀𝑛 ≤ 2−𝑛
√

2;

(A3) 𝑉𝜀𝑚(𝑟𝑚) ∩ 𝑉𝜀𝑛(𝑟𝑛) = ∅ for all 𝑚, 𝑛 ∈ 𝐍 with 𝑚 < 𝑛.

Let 𝑂 = ⋃∞
𝑛=1 𝑉𝜀𝑛(𝑟𝑛) and 𝐹 = 𝑂c. As in part (a), 𝐹  is closed and, by (A1), consists

solely of irrational numbers. By (A2) we have 𝜀𝑛 ≤ 2−𝑛
√

2 for each 𝑛 ∈ 𝐍; an argument
similar to the one given in part (a) shows that 𝑂 cannot be the entire real line and thus
𝐹  is non-empty.

To see that 𝐹  is perfect, suppose by way of contradiction that 𝑥 ∈ 𝐹  is isolated, i.e.
there exists a 𝛿 > 0 such that (𝑥 − 𝛿, 𝑥 + 𝛿) ∩ 𝐹 = {𝑥}. This implies that the intervals
(𝑥 − 𝛿, 𝑥) and (𝑥, 𝑥 + 𝛿) are contained in 𝑂. We claim that if an open interval (𝑐, 𝑑) is
to be contained in 𝑂, then it must be entirely contained inside a single 𝑉𝜀𝑛(𝑟𝑛). To see
this, suppose by way of contradiction that 𝑎, 𝑏 ∈ (𝑐, 𝑑) are such that 𝑎 < 𝑏, 𝑎 ∈ 𝑉𝜀𝑚(𝑟𝑚),
and 𝑏 ∈ 𝑉𝜀𝑛(𝑟𝑛), with 𝑚 ≠ 𝑛. By (A3), it must then be the case that

𝑎 < 𝑟𝑚 + 𝜀𝑚 < 𝑟𝑛 − 𝜀𝑛 < 𝑏.

𝑎 𝑏𝑟𝑚 + 𝜀𝑚 𝑟𝑛 − 𝜀𝑛

𝑉𝜀𝑚(𝑟𝑚) 𝑉𝜀𝑛(𝑟𝑛)

So 𝑟𝑚 + 𝜀𝑚 ∈ (𝑎, 𝑏) ⊆ (𝑐, 𝑑) ⊆ 𝑂; it follows that there exists some 𝑘 ∈ 𝐍 such that 
𝑟𝑚 + 𝜀𝑚 belongs to 𝑉𝜀𝑘(𝑟𝑘). If 𝑘 = 𝑚 this says that an open interval contains one of its
endpoints, and if 𝑘 ≠ 𝑚 then this violates (A3). In either case, we have a contradiction.

Thus any open interval (𝑐, 𝑑) contained in 𝑂 must be entirely contained inside a single
𝑉𝜀𝑛(𝑟𝑛). Since (𝑥 − 𝛿, 𝑥) and (𝑥, 𝑥 + 𝛿) are disjoint, there exist positive integers 𝑚 ≠ 𝑛
such that

(𝑥 − 𝛿, 𝑥) ⊆ 𝑉𝜀𝑚(𝑟𝑚) and (𝑥, 𝑥 + 𝛿) ⊆ 𝑉𝜀𝑛(𝑟𝑛).

This implies that

[𝑥 − 𝛿, 𝑥] ⊆ 𝑉𝜀𝑚(𝑟𝑚) and [𝑥, 𝑥 + 𝛿] ⊆ 𝑉𝜀𝑛(𝑟𝑛),

which gives us 𝑥 ∈ 𝑉𝜀𝑚(𝑟𝑚) ∩ 𝑉𝜀𝑛(𝑟𝑛), contradicting (A3). We may conclude that 𝐹
contains no isolated points, i.e. 𝐹  is a perfect set.
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3.5. Baire’s Theorem

Exercise 3.5.1. Argue that a set 𝐴 is a 𝐺𝛿 set if and only if its complement is an 
𝐹𝜎 set.

Solution. This is immediate from De Morgan’s Laws (see Exercise 3.2.9).

Exercise 3.5.2. Replace each  with the word finite or countable depending on
which is more appropriate.

(a) The  union of 𝐹𝜎 sets is an 𝐹𝜎 set.

(b) The  of 𝐹𝜎 sets is an 𝐹𝜎 set.

(c) The  union of 𝐺𝛿 sets is a 𝐺𝛿 set.

(d) The  intersection of 𝐺𝛿 sets is a 𝐺𝛿 set.

Solution.

(a) The countable union of 𝐹𝜎 sets is an 𝐹𝜎 set. Suppose we have a countable collec-
tion {𝐴𝑚 : 𝑚 ∈ 𝐍} of 𝐹𝜎 sets, i.e. for each 𝑚 ∈ 𝐍 there is a countable collection
{𝐵𝑚,𝑛 : 𝑛 ∈ 𝐍} of closed sets such that 𝐴𝑚 = ⋃∞

𝑛=1 𝐵𝑚,𝑛. Notice that

⋃
∞

𝑚=1
𝐴𝑚 = ⋃

∞

𝑚=1
⋃
∞

𝑛=1
𝐵𝑚,𝑛.

Because 𝐍2 is countable (Lemma L.5), the expression above shows that ⋃∞
𝑚=1 𝐴𝑚 is a

countable union of closed sets; it follows that ⋃∞
𝑚=1 𝐴𝑚 is an 𝐹𝜎 set.

(b) The finite intersection of 𝐹𝜎 sets is an 𝐹𝜎 set. To see this, it will suffice to show
that if 𝐴 and 𝐵 are 𝐹𝜎 sets, then 𝐴 ∩ 𝐵 is an 𝐹𝜎 set; the general case will then fol-
low from a straightforward induction argument. Suppose therefore that 𝐴 = ⋃∞

𝑚=1 𝐴𝑚

and 𝐵 = ⋃∞
𝑛=1 𝐵𝑛, where {𝐴𝑚 : 𝑚 ∈ 𝐍} and {𝐵𝑛 : 𝑛 ∈ 𝐍} are countable collections of

closed sets, and observe that

𝐴 ∩ 𝐵 = ( ⋃
∞

𝑚=1
𝐴𝑚) ∩ (⋃

∞

𝑛=1
𝐵𝑛) = ⋃

∞

𝑚=1
⋃
∞

𝑛=1
(𝐴𝑚 ∩ 𝐵𝑛).

Since each 𝐴𝑚 ∩ 𝐵𝑛 is closed (being an intersection of closeed sets) and 𝐍2 is countable
(Lemma L.5), we have expressed 𝐴 ∩ 𝐵 as a countable union of closed sets; it follows
that 𝐴 ∩ 𝐵 is an 𝐹𝜎 set.

The countable intersection of 𝐹𝜎 sets need not be an 𝐹𝜎 set. For a counterexample, let
{𝑟1, 𝑟2, …} be an enumeration of 𝐐 and for positive integers 𝑚, 𝑛, let

𝐵𝑚,𝑛 = (−∞, 𝑟𝑚 − 1
𝑛] ∪ [𝑟𝑚 + 1

𝑛 , ∞).
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Each 𝐵𝑚,𝑛 is a closed set, so if we let 𝐴𝑚 = ⋃∞
𝑛=1 𝐵𝑚,𝑛 for each 𝑚 ∈ 𝐍 then each 𝐴𝑚

is an 𝐹𝜎 set. We claim that ⋂∞
𝑚=1 𝐴𝑚 = 𝐈, the set of irrational numbers. To see this,

we will show that (⋂∞
𝑚=1 𝐴𝑚)c = 𝐐. By De Morgan’s Laws (Exercise 3.2.9), we have

( ⋂
∞

𝑚=1
𝐴𝑚)

c

= ⋃
∞

𝑚=1
𝐴c

𝑚 = ⋃
∞

𝑚=1
(⋃

∞

𝑛=1
𝐵𝑚,𝑛)

c

= ⋃
∞

𝑚=1
⋂
∞

𝑛=1
𝐵c

𝑚,𝑛 = ⋃
∞

𝑚=1
⋂
∞

𝑛=1
(𝑟𝑚 − 1

𝑛 , 𝑟𝑚 + 1
𝑛) = ⋃

∞

𝑚=1
{𝑟𝑚} = 𝐐.

Thus ⋂∞
𝑚=1 𝐴𝑚 = 𝐈. As we will show in Exercise 3.5.6, 𝐈 is not an 𝐹𝜎 set.

(c) The finite union of 𝐺𝛿 sets is a 𝐺𝛿 set, but the countable union of 𝐺𝛿 sets need not be
a 𝐺𝛿 set; these statements follow from part (b) of this exercise, Exercise 3.5.1, and De
Morgan’s Laws (Exercise 3.2.9).

(d) The countable intersection of 𝐺𝛿 sets is a 𝐺𝛿 set. This follows from part (a) of this
exercise, Exercise 3.5.1, and De Morgan’s Laws (Exercise 3.2.9).

Exercise 3.5.3. (This exercise has already appeared as Exercise 3.2.15.)

(a) Show that a closed interval [𝑎, 𝑏] is a 𝐺𝛿 set.

(b) Show that the half-open interval (𝑎, 𝑏] is both a 𝐺𝛿 and an 𝐹𝜎 set.

(c) Show that 𝐐 is an 𝐹𝜎 set, and the set of irrationals 𝐈 forms a 𝐺𝛿 set.

Solution. See Exercise 3.2.15.

Exercise 3.5.4. Starting with 𝑛 = 1, inductively construct a nested sequence of closed
intervals 𝐼1 ⊇ 𝐼2 ⊇ 𝐼3 ⊇ ⋯ satisfying 𝐼𝑛 ⊆ 𝐺𝑛. Give special attention to the issue of the
endpoints of each 𝐼𝑛. Show how this leads to a proof of the theorem.

Solution. Since 𝐺1 is dense it must be non-empty, i.e. there exists some 𝑥1 ∈ 𝐺1, and then
since 𝐺1 is open there exists an 𝜀1 > 0 such that 𝑉𝜀1(𝑥1) ⊆ 𝐺1. Let

𝑎1 = 𝑥1 − 𝜀1
2 , 𝑏1 = 𝑥1 + 𝜀1

2 , and 𝐼1 = [𝑎1, 𝑏1],

and note that 𝐼1 ⊆ 𝑉𝜀1(𝑥1) ⊆ 𝐺1. This handles the base case.

Suppose that after 𝑛 steps we have chosen nested, closed intervals

𝐼1 = [𝑎1, 𝑏1] ⊇ ⋯ ⊇ 𝐼𝑛 = [𝑎𝑛, 𝑏𝑛]

such that 𝐼1 ⊆ 𝐺1, …, 𝐼𝑛 ⊆ 𝐺𝑛 and 𝑎1 < 𝑏1, …, 𝑎𝑛 < 𝑏𝑛. Because 𝐺𝑛+1 is dense there exists
some 𝑥𝑛+1 ∈ 𝐺𝑛+1 such that 𝑎𝑛 < 𝑥𝑛+1 < 𝑏𝑛, and since 𝐺𝑛+1 is open there exists some 
𝜀𝑛+1 > 0 such that 𝑉𝜀𝑛+1(𝑥𝑛+1) ⊆ 𝐺𝑛+1. Let 𝛿 = min{2−1𝜀𝑛+1, 𝑥𝑛+1 − 𝑎𝑛, 𝑏𝑛 − 𝑥𝑛+1} and
define
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𝑎𝑛+1 = 𝑥𝑛+1 − 𝛿, 𝑏𝑛+1 = 𝑥𝑛+1 + 𝛿, and 𝐼𝑛+1 = [𝑎𝑛+1, 𝑏𝑛+1].

Note that 𝑎𝑛+1 < 𝑏𝑛+1, and since 𝛿 ≤ 𝑥𝑛+1 − 𝑎𝑛 and 𝛿 ≤ 𝑏𝑛 − 𝑥𝑛+1 we have 𝐼𝑛+1 ⊆ 𝐼𝑛. More-
over, because 𝛿 ≤ 2−1𝜀𝑛+1, we also have 𝐼𝑛+1 ⊆ 𝑉𝜀𝑛+1(𝑥𝑛+1) ⊆ 𝐺𝑛+1. This completes the
induction step.

Via induction we obtain a nested sequence of closed intervals (𝐼𝑛)∞
𝑛=1 such that 𝐼𝑛 ⊆ 𝐺𝑛 for

each 𝑛 ∈ 𝐍. We may now appeal to the Nested Interval Property (Theorem 1.4.1) to obtain
some 𝑥 ∈ ⋂∞

𝑛=1 𝐼𝑛, which must also belong to ⋂∞
𝑛=1 𝐺𝑛.

Exercise 3.5.5. Show that it is impossible to write

𝐑 = ⋃
∞

𝑛=1
𝐹𝑛,

where for each 𝑛 ∈ 𝐍, 𝐹𝑛 is a closed set containing no nonempty open intervals.

Solution. Suppose that {𝐹𝑛 : 𝑛 ∈ 𝐍} is a collection of closed sets, each of which contains no
non-empty open intervals. Let 𝑛 ∈ 𝐍 be given and let 𝑥 < 𝑧 be arbitrary real numbers. By
assumption (𝑥, 𝑧) ⊈ 𝐹𝑛, so there must exist some 𝑦 ∈ (𝑥, 𝑧) ∩ 𝐹 c

𝑛; it follows that 𝐹 c
𝑛 is dense.

Thus {𝐹 c
𝑛 : 𝑛 ∈ 𝐍} is a collection of open, dense sets. Theorem 3.5.2 and De Morgan’s Laws

(Exercise 3.2.9) now imply that

⋂
∞

𝑛=1
𝐹 c

𝑛 ≠ ∅ ⇔ ⋃
∞

𝑛=1
𝐹𝑛 ≠ 𝐑.

Exercise 3.5.6. Show how the previous exercise implies that the set 𝐈 of irrationals
cannot be an 𝐹𝜎 set, and 𝐐 cannot be a 𝐺𝛿 set.

Solution. We will argue by contradiction. Suppose that 𝐈 is an 𝐹𝜎 set, so that 𝐈 = ⋃∞
𝑚=1 𝐹𝑚,

where each 𝐹𝑚 is closed. Note that for any 𝑚 ∈ 𝐍, it must be the case that 𝐹𝑚 contains
no non-empty open interval; otherwise, 𝐹𝑚 would contain infinitely many rational numbers.
Let {𝑟1, 𝑟2, …} be an enumeration of 𝐐, so that 𝐐 = ⋃∞

𝑛=1{𝑟𝑛}, and note that each singleton
{𝑟𝑛} is closed and contains no non-empty open interval. Note further that

𝐑 = 𝐈 ∪ 𝐐 = ( ⋃
∞

𝑚=1
𝐹𝑚) ∪ (⋃

∞

𝑛=1
{𝑟𝑛}) = ⋃

∞

𝑚=1
⋃
∞

𝑛=1
(𝐹𝑚 ∪ {𝑟𝑛}).

For any 𝑚, 𝑛 ∈ 𝐍 the union 𝐹𝑚 ∪ {𝑟𝑛} is closed and contains no non-empty open intervals.
However, since 𝐍2 is countable (Lemma L.5), this expression for 𝐑 contradicts Exercise
3.5.5. Thus it must be the case that 𝐈 is not an 𝐹𝜎 set, which by Exercise 3.5.1 implies that
𝐐 cannot be a 𝐺𝛿 set.
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Exercise 3.5.7. Using Exercise 3.5.6 and versions of the statements in Exercise 3.5.2,
construct a set that is neither in 𝐹𝜎 nor in 𝐺𝛿.

Solution. Define 𝐸 = (𝐈 ∩ (−∞, 0]) ∪ (𝐐 ∩ [0, ∞)); we claim that 𝐸 is neither an 𝐹𝜎 nor a
𝐺𝛿 set. Seeking a contradiction, suppose that 𝐸 is an 𝐹𝜎 set. Notice that (−∞, 0) is an 
𝐹𝜎 set:

(−∞, 0) = ⋃
∞

𝑛=1
(−∞, − 1

𝑛].

It follows from Exercise 3.5.2 (b) that

𝐸 ∩ (−∞, 0) = 𝐈 ∩ (−∞, 0)

is an 𝐹𝜎 set, i.e. there is a countable collection {𝐹𝑚 : 𝑚 ∈ 𝐍} of closed sets such that

𝐈 ∩ (−∞, 0) = ⋃
∞

𝑚=1
𝐹𝑚.

For 𝑚 ∈ 𝐍, let −𝐹𝑚 = {−𝑥 : 𝑥 ∈ 𝐹𝑚}. Since (𝑥𝑛) → 𝑥 implies (−𝑥𝑛) → −𝑥, each −𝐹𝑚 is
closed. Furthermore,

𝐈 ∩ (0, ∞) = ⋃
∞

𝑚=1
−𝐹𝑚.

It follows that 𝐈 ∩ (0, ∞) is an 𝐹𝜎 set. However, Exercise 3.5.2 (a) now implies that

𝐈 = (𝐈 ∩ (−∞, 0)) ∪ (𝐈 ∩ (0, ∞))

is an 𝐹𝜎 set, contradicting Exercise 3.5.6. Thus 𝐸 cannot be an 𝐹𝜎 set.

Seeking another contradiction, suppose that 𝐸 is a 𝐺𝛿 set. Notice that [0, ∞) is a 𝐺𝛿 set:

[0, ∞) = ⋂
∞

𝑛=1
(− 1

𝑛 , ∞).

It follows from Exercise 3.5.2 (b) that

𝐸 ∩ [0, ∞) = 𝐐 ∩ [0, ∞)

is a 𝐺𝛿 set, i.e. there is a countable collection {𝑂𝑚 : 𝑚 ∈ 𝐍} of open sets such that

𝐐 ∩ [0, ∞) = ⋂
∞

𝑚=1
𝑂𝑚.

For 𝑚 ∈ 𝐍, let −𝑂𝑚 = {−𝑥 : 𝑥 ∈ 𝑂𝑚}. Because 𝑉𝜀(𝑥) ⊆ 𝑂𝑚 implies 𝑉𝜀(−𝑥) ⊆ −𝑂𝑚 for any
𝜀 > 0, each −𝑂𝑚 is open. Furthermore,

𝐐 ∩ (0, ∞] = ⋂
∞

𝑚=1
−𝑂𝑚.

It follows that 𝐐 ∩ (0, ∞] is a 𝐺𝛿 set. However, Exercise 3.5.2 (c) now implies that
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𝐐 = (𝐐 ∩ (−∞, 0]) ∪ (𝐐 ∩ [0, ∞))

is a 𝐺𝛿 set, contradicting Exercise 3.5.6. Thus 𝐸 cannot be a 𝐺𝛿 set.

Exercise 3.5.8. Show that a set 𝐸 is nowhere-dense in 𝐑 if and only if the complement
of 𝐸 is dense in 𝐑.

Solution. We will show that 𝐴 ⊆ 𝐑 contains no non-empty open intervals if and only if 𝐴c

is dense in 𝐑; the desired result can then be obtained by taking 𝐴 = 𝐸. By 𝐴 containing no
non-empty open intervals, we mean that for all 𝑥, 𝑦 ∈ 𝐑 such that 𝑥 < 𝑦, we have (𝑥, 𝑦) ⊈ 𝐴.
This is equivalent to saying that for all 𝑥, 𝑦 ∈ 𝐑 such that 𝑥 < 𝑦, there exists some 𝑡 ∈ 𝐑
such that 𝑥 < 𝑡 < 𝑦 and 𝑡 ∉ 𝐴. In other words, 𝐴c is dense in 𝐑.

Exercise 3.5.9. Decide whether the following sets are dense in 𝐑, nowhere-dense in 
𝐑, or somewhere in between.

(a) 𝐴 = 𝐐 ∩ [0, 5].

(b) 𝐵 = {1/𝑛 : 𝑛 ∈ 𝐍}.

(c) the set of irrationals.

(d) the Cantor set.

Solution.

(a) We have 𝐴 = [0, 5], which is not the entire real line and also contains non-empty open
intervals. Thus 𝐴 is neither dense nor nowhere-dense.

(b) We have 𝐵 = {0} ∪ 𝐵 ≠ 𝐑, so that 𝐵 is not dense. Note that if 𝐵 contained a non-
empty open interval then 𝐵 would contain at least one irrational number, but 𝐵 ⊆ 𝐐.
Thus 𝐵 contains no non-empty open intervals and it follows that 𝐵 is nowhere-dense.

(c) 𝐈 is dense in 𝐑 (see Exercise 1.4.5) and hence cannot be nowhere-dense (a dense sub-
set 𝐸 ⊆ 𝐑 certainly cannot be nowhere-dense; 𝐸 ⊆ 𝐑 contains every non-empty open
interval).

(d) The Cantor set is closed, so 𝐶 = 𝐶 ≠ 𝐑; it follows that 𝐶 is not dense in 𝐑. Further-
more, 𝐶 does not contain any non-empty open intervals; given any 𝑥 < 𝑦 ∈ 𝐶, it is
always possible to find some 𝑡 ∉ 𝐶 such that 𝑥 < 𝑡 < 𝑦 (see Exercise 3.4.8). Thus 𝐶 is
nowhere-dense in 𝐑.

Exercise 3.5.10. Finish the proof by finding a contradiction to the results in this
section.

Solution. Since 𝐸𝑛 ⊆ 𝐸𝑛 for each 𝑛 ∈ 𝐍, we have 𝐑 = ⋃∞
𝑛=1 𝐸𝑛. However, each 𝐸𝑛 is closed

and by assumption contains no non-empty open intervals, so this contradicts Exercise 3.5.5.
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Chapter 4. Functional Limits and Continuity

4.2. Functional Limits

Exercise 4.2.1.

(a) Supply the details for how Corollary 4.2.4 part (ii) follows from the Sequential
Criterion for Functional Limits in Theorem 4.2.3 and the Algebraic Limit Theorem
for sequences proved in Chapter 2.

(b) Now, write another proof of Corollary 4.2.4 part (ii) directly from Definition 4.2.1
without using the sequential criterion in Theorem 4.2.3.

(c) Repeat (a) and (b) for Corollary 4.2.4 part (iii).

Solution.

(a) Suppose (𝑥𝑛) is a sequence contained in 𝐴, satisfying 𝑥𝑛 ≠ 𝑐 and lim𝑛→∞ 𝑥𝑛 = 𝑐. The
sequential criterion (Theorem 4.2.3) implies that

lim
𝑛→∞

𝑓(𝑥𝑛) = 𝐿 and lim
𝑛→∞

𝑔(𝑥𝑛) = 𝑀,

and thus the Algebraic Limit Theorem (for sequences, Theorem 2.3.3) gives

lim
𝑛→∞

[𝑓(𝑥𝑛) + 𝑔(𝑥𝑛)] = 𝐿 + 𝑀.

The sequential criterion allows us to conclude that lim𝑥→𝑐[𝑓(𝑥) + 𝑔(𝑥)] = 𝐿 + 𝑀.

(b) Let 𝜀 > 0 be given. Since lim𝑥→𝑐 𝑓(𝑥) = 𝐿 and lim𝑥→𝑐 𝑔(𝑥) = 𝑀 , there exist positive
real numbers 𝛿1 and 𝛿2 such that

0 < |𝑥 − 𝑐| < 𝛿1 and 𝑥 ∈ 𝐴 ⇒ |𝑓(𝑥) − 𝐿| < 𝜀
2 ,

0 < |𝑥 − 𝑐| < 𝛿2 and 𝑥 ∈ 𝐴 ⇒ |𝑔(𝑥) − 𝑀| < 𝜀
2 .

Let 𝛿 = min{𝛿1, 𝛿2} and suppose that 𝑥 ∈ 𝐴 is such that 0 < |𝑥 − 𝑐| < 𝛿. Observe that

|𝑓(𝑥) + 𝑔(𝑥) − (𝐿 + 𝑀)| ≤ |𝑓(𝑥) − 𝐿| + |𝑔(𝑥) − 𝑀| < 𝜀
2 + 𝜀

2 = 𝜀.

Thus lim𝑥→𝑐[𝑓(𝑥) + 𝑔(𝑥)] = 𝐿 + 𝑀 .

(c) Suppose (𝑥𝑛) is a sequence contained in 𝐴, satisfying 𝑥𝑛 ≠ 𝑐 and lim𝑛→∞ 𝑥𝑛 = 𝑐. The
sequential criterion (Theorem 4.2.3) implies that

lim
𝑛→∞

𝑓(𝑥𝑛) = 𝐿 and lim
𝑛→∞

𝑔(𝑥𝑛) = 𝑀,

and thus the Algebraic Limit Theorem (Theorem 2.3.3) gives
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lim
𝑛→∞

[𝑓(𝑥𝑛)𝑔(𝑥𝑛)] = 𝐿𝑀.

The sequential criterion allows us to conclude that lim𝑥→𝑐[𝑓(𝑥)𝑔(𝑥)] = 𝐿𝑀 .

Let 𝜀 > 0 be given. Since lim𝑥→𝑐 𝑓(𝑥) = 𝐿 and lim𝑥→𝑐 𝑔(𝑥) = 𝑀 , there exist positive
real numbers 𝛿1, 𝛿2, and 𝛿3 such that

0 < |𝑥 − 𝑐| < 𝛿1 and 𝑥 ∈ 𝐴 ⇒ |𝑓(𝑥) − 𝐿| <
𝜀

2(|𝑀| + 1)
,

0 < |𝑥 − 𝑐| < 𝛿2 and 𝑥 ∈ 𝐴 ⇒ |𝑔(𝑥) − 𝑀| <
𝜀

2(|𝐿| + 1)
,

0 < |𝑥 − 𝑐| < 𝛿3 and 𝑥 ∈ 𝐴 ⇒ |𝑔(𝑥) − 𝑀| < 1 ⇒ |𝑔(𝑥)| < |𝑀| + 1.

Let 𝛿 = min{𝛿1, 𝛿2, 𝛿3}, suppose that 𝑥 ∈ 𝐴 is such that 0 < |𝑥 − 𝑐| < 𝛿, and observe
that

|𝑓(𝑥)𝑔(𝑥) − 𝐿𝑀| = |𝑓(𝑥)𝑔(𝑥) − 𝐿𝑔(𝑥) + 𝐿𝑔(𝑥) − 𝐿𝑀|

= |𝑔(𝑥)[𝑓(𝑥) − 𝐿] + 𝐿[𝑔(𝑥) − 𝑀]|

≤ |𝑔(𝑥)||𝑓(𝑥) − 𝐿| + |𝐿||𝑔(𝑥) − 𝑀|

< (|𝑀| + 1)
𝜀

2(|𝑀| + 1)
+ |𝐿|

𝜀
2(|𝐿| + 1)

< 𝜀
2 + 𝜀

2 = 𝜀.

Thus lim𝑥→𝑐[𝑓(𝑥)𝑔(𝑥)] = 𝐿𝑀 .

Exercise 4.2.2. For each stated limit, find the largest possible 𝛿-neighborhood that is
a proper response to the given 𝜀 challenge.

(a) lim𝑥→3(5𝑥 − 6) = 9, where 𝜀 = 1.

(b) lim𝑥→4
√

𝑥 = 2, where 𝜀 = 1.

(c) lim𝑥→𝜋[[𝑥]] = 3, where 𝜀 = 1. (The function [[𝑥]] returns the greatest integer less
than or equal to 𝑥.)

(d) lim𝑥→𝜋[[𝑥]] = 3, where 𝜀 = .01.

Solution.

(a) Observe that

|5𝑥 − 6 − 9| = 5|𝑥 − 3| < 1 ⇔ |𝑥 − 3| < 1
5 .

Thus 𝛿 = 1
5  is the largest possible 𝛿 we can take.

156 / 415



(b) It is straightforward to verify that 𝑥 ∈ (1, 7) = 𝑉3(4) gives us 
√

𝑥 ∈ (1, 3) = 𝑉1(2), so
that 𝛿 = 3 is a valid response to 𝜀 = 1. No larger value of 𝛿 will work, since this would
give us an 𝑥 ∈ [0, 1), which implies 

√
𝑥 ∈ [0, 1) ⊈ (1, 3).

(c) Since [[𝑥]] is always an integer, we have |[[𝑥]] − 3| < 1 if and only if [[𝑥]] = 3, which is
the case if and only if 3 ≤ 𝑥 < 4. Thus we should choose the largest possible 𝛿 such
that 𝑉𝛿(𝜋) ⊆ [3, 4), which is

𝛿 = min{𝜋 − 3, 4 − 𝜋} = 𝜋 − 3.

(d) As in part (c), we have |[[𝑥]] − 3| < 0.01 if nad only if [[𝑥]] = 3, so the largest possible
choice is 𝛿 = 𝜋 − 3.

Exercise 4.2.3. Review the definition of Thomae’s function 𝑡(𝑥) from Section 4.1.

(a) Construct three different sequences (𝑥𝑛), (𝑦𝑛), and (𝑧𝑛), each of which converges
to 1 without using the number 1 as a term in the sequence.

(b) Now, compute lim 𝑡(𝑥𝑛), lim 𝑡(𝑦𝑛), and lim 𝑡(𝑧𝑛).

(c) Make an educated conjecture for lim𝑥→1 𝑡(𝑥), and use Definition 4.2.1B to verify
the claim. (Given 𝜀 > 0, consider the set of points {𝑥 ∈ 𝐑 : 𝑡(𝑥) ≥ 𝜀}. Argue that
all the points in this set are isolated.)

Solution.

(a) We can take

𝑥𝑛 = 1 + 1
𝑛 , 𝑦𝑛 = 1 − 1

𝑛 , and 𝑧𝑛 = 1 +
√

2
𝑛 .

(b) Since 𝑥𝑛 = 𝑛+1
𝑛 , we have 𝑡(𝑥𝑛) = 1

𝑛  and thus lim 𝑡(𝑥𝑛) = 0. Similarly, 𝑦𝑛 = 𝑛−1
𝑛 , so 

𝑡(𝑦1) = 𝑡(0) = 1 and 𝑡(𝑦𝑛) = 1
𝑛  for 𝑛 ≥ 2. Thus lim 𝑡(𝑦𝑛) = 0 also. Finally, since 𝑧𝑛 ∈ 𝐈

for each 𝑛 ∈ 𝐍, we have lim 𝑡(𝑧𝑛) = 0.

(c) We conjecture that lim𝑥→1 𝑡(𝑥) = 0. To see this, first let us prove the following lemma.

Lemma L.11. Suppose 𝑥 ∈ 𝐑 and 𝑛 ∈ 𝐍. There exists a 𝛿 > 0 such that if 𝑎𝑏 ≠ 𝑥
is a rational number contained in 𝑉𝛿(𝑥) with 𝑏 > 0, then 𝑏 > 𝑛.

Proof. Suppose 𝑏 ∈ 𝐍 is such that 1 ≤ 𝑏 ≤ 𝑛. Since 𝐼 ≔ [𝑥 − 1, 𝑥 + 1] is an inter-
val of length 2, there are either 2𝑏 or 2𝑏 + 1 rationals of the form 𝑎

𝑏  contained
in 𝐼 . (To fit the most rationals of this form inside 𝐼 , we should place the first
such rational 𝑎

𝑏  on the left endpoint 𝑥 − 1; then 𝑎+2𝑏
𝑏 = 𝑎

𝑏 + 2 = 𝑥 + 1 is the right
endpoint. Thus we have the 2𝑏 + 1 rational numbers 𝑎

𝑏 , 𝑎+1
𝑏 , …, 𝑎+2𝑏

𝑏  contained in
𝐼 . In the general case, the left endpoint will not be of the form 𝑎

𝑏  and so there
will be only 2𝑏 rationals of this form contained in 𝐼 .) Given this, the set
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𝐴 = {|𝑥 − 𝑎
𝑏 | : 𝑎

𝑏 ∈ 𝐼 ∖ {𝑥}, 1 ≤ 𝑏 ≤ 𝑛}

is non-empty and finite, so that 𝛿 ≔ min 𝐴 exists (Lemma L.3); notice that 𝛿 > 0
since each element of 𝐴 is strictly positive. It follows that 𝑉𝛿(𝑥) can contain only
rationals 𝑎

𝑏  with denominators 𝑏 > 𝑛, other than possibly 𝑥 itself. □

Now we can prove that lim𝑥→1 𝑡(𝑥) = 0. Let 𝜀 > 0 be given and let 𝑛 ∈ 𝐍 be such that
1
𝑛 < 𝜀. By Lemma L.11, there exists a 𝛿 > 0 such that if 𝑎

𝑏 ≠ 1 is a rational number con-
tained in 𝑉𝛿(1), then 𝑏 > 𝑛. Suppose 𝑥 ∈ 𝑉𝛿(1). If 𝑥 is irrational then 𝑡(𝑥) = 0 ∈ 𝑉𝜀(0),
and if 𝑥 = 𝑎

𝑏 ≠ 1 is rational then

0 ≤ 𝑡(𝑥) = 1
𝑏 < 1

𝑛 < 𝜀 ⇒ 𝑡(𝑥) ∈ 𝑉𝜀(0).

In either case, 𝑥 ∈ 𝑉𝛿(1) ∖ {1} implies that 𝑡(𝑥) ∈ 𝑉𝜀(0) and thus lim𝑥→1 𝑡(𝑥) = 0.

Exercise 4.2.4. Consider the reasonable but erroneous claim that

lim
𝑥→10

1/[[𝑥]] = 1/10.

(a) Find the largest 𝛿 that represents a proper response to the challenge of 𝜀 = 1/2.

(b) Find the largest 𝛿 that represents a proper response to 𝜀 = 1/50.

(c) Find the largest 𝜀 challenge for which there is no suitable 𝛿 response possible.

Solution. Let 𝑓(𝑥) = 1
[[𝑥]] , which is defined provided [[𝑥]] ≠ 0, which is the case if and only

if 𝑥 < 0 or 𝑥 ≥ 1. Thus the domain of 𝑓 is 𝐴 = (−∞, 0) ∪ [1, ∞).

(a) Let 𝛿 = 8 and observe that

𝑥 ∈ 𝑉𝛿(10) = (2, 18) ⇒ 𝑓(𝑥) ∈ [ 1
17 , 1

2] ⊆ (−2
5 , 3

5) = 𝑉1/2(
1
10).

Thus 𝛿 = 8 is a valid response to the challenge of 𝜀 = 1
2 . If 𝛿 > 8, then there exists

an 𝑥 ∈ 𝑉𝛿(10) such that 1 ≤ 𝑥 < 2, which gives 𝑓(𝑥) = 1 ∉ (−2
5 , 3

5) = 𝑉1/2( 1
10). Hence

𝛿 = 8 is the largest proper response to the challenge of 𝜀 = 1
2 .

(b) Let 𝛿 = 1 and observe that

𝑥 ∈ 𝑉𝛿(10) = (9, 11) ⇒ 𝑓(𝑥) ∈ [ 1
10 , 1

9] ⊆ ( 2
25 , 3

25) = 𝑉1/50(
1
10).

Thus 𝛿 = 1 is a valid response to the challenge of 𝜀 = 1
50 . If 𝛿 > 1, then there exists

an 𝑥 ∈ 𝑉𝛿(10) such that 8 ≤ 𝑥 < 9, which gives 𝑓(𝑥) = 1
8 ∉ ( 2

25 ,
3
25) = 𝑉1/50( 1

10). Hence
𝛿 = 1 is the largest proper response to the challenge of 𝜀 = 1

50 .

(c) Suppose that 𝜀 = 1
90  and 𝛿 > 0. Notice that there exists an 𝑥 ∈ 𝑉𝛿(10) such that

9 ≤ 𝑥 < 10, which gives 𝑓(𝑥) = 1
9 ∉ ( 4

45 ,
1
9) = 𝑉𝜀( 1

10). Thus there is no valid 𝛿 response
to the challenge of 𝜀 = 1

90 .

158 / 415



Now suppose 𝜀 > 1
90 , let 𝛿 = 1, and observe that

𝑥 ∈ 𝑉𝛿(10) = (9, 11) ⇒ 𝑓(𝑥) ∈ [ 1
10 , 1

9] ⊆ 𝑉𝜀(
1
10).

Thus 𝛿 = 1 is a valid response to this 𝜀 challenge.

We may conclude that 𝜀 = 1
90  is the largest challenge for which there is no suitable 𝛿

response possible.

Exercise 4.2.5. Use Definition 4.2.1 to supply a proper proof for the following limit
statements.

(a) lim𝑥→2(3𝑥 + 4) = 10.

(b) lim𝑥→0 𝑥3 = 0.

(c) lim𝑥→2(𝑥2 + 𝑥 − 1) = 5.

(d) lim𝑥→3 1/𝑥 = 1/3.

Solution.

(a) Let 𝜀 > 0 be given and let 𝛿 = 𝜀
3 . If 𝑥 ∈ 𝐑 is such that 0 < |𝑥 − 2| < 𝛿, then

|(3𝑥 + 4) − 10| = |3𝑥 − 6| = 3|𝑥 − 2| < 3𝛿 = 𝜀.

Thus lim𝑥→2(3𝑥 + 4) = 10.

(b) Let 𝜀 > 0 be given and let 𝛿 = 𝜀1/3. If 𝑥 ∈ 𝐑 is such that 0 < |𝑥| < 𝛿, then

|𝑥3| = |𝑥|3 < 𝛿3 = 𝜀.

Thus lim𝑥→0 𝑥3 = 0.

(c) Let 𝜀 > 0 be given. Observe that if |𝑥 − 2| < 1, i.e. 𝑥 ∈ (1, 3), then 𝑥 + 3 ∈ (4, 7). Let 
𝛿 = min{𝜀

7 , 1}. If 𝑥 ∈ 𝐑 is such that 0 < |𝑥 − 2| < 𝛿, then 𝑥 ∈ (1, 3) and thus

|𝑥2 + 𝑥 − 1 − 5| = |𝑥 + 3||𝑥 − 2| < 7𝛿 ≤ 𝜀.

Thus lim𝑥→2(𝑥2 + 𝑥 − 1) = 5.

(d) Let 𝜀 > 0 be given. Observev that if |𝑥 − 3| < 1, i.e. 𝑥 ∈ (2, 4), then 1
3𝑥 ∈ ( 1

12 ,
1
6). Let 

𝛿 = min{6𝜀, 1} and note that if 𝑥 ∈ 𝐑 ∖ {0} is such that 0 < |𝑥 − 3| < 𝛿, then 𝑥 ∈ (2, 4)
and thus

|
1
𝑥

−
1
3
| =

|𝑥 − 3|
|3𝑥|

<
𝛿
6

≤ 𝜀.

Thus lim𝑥→3 1/𝑥 = 1/3.
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Exercise 4.2.6. Decide if the following claims are true or false, and give short justifi-
cations of each conclusion.

(a) If a particular 𝛿 has been constructed as a suitable response to a particular 𝜀 chal-
lenge, then any smaller positive 𝛿 will also suffice.

(b) If lim𝑥→𝑎 𝑓(𝑥) = 𝐿 and 𝑎 happens to be in the domain of 𝑓 , then 𝐿 = 𝑓(𝑎).

(c) If lim𝑥→𝑎 𝑓(𝑥) = 𝐿, then lim𝑥→𝑎 3[𝑓(𝑥) − 2]2 = 3(𝐿 − 2)2.

(d) If lim𝑥→𝑎 𝑓(𝑥) = 0, then lim𝑥→𝑎 𝑓(𝑥)𝑔(𝑥) = 0 for any function 𝑔 (with domain equal
to the domain of 𝑓 .)

Solution.

(a) This is true, since if 0 < 𝛿′ < 𝛿 then 𝑉𝛿′(𝑐) ⊆ 𝑉𝛿(𝑐) for any 𝑐 ∈ 𝐑.

(b) This is false. For a counterexample, consider Thomae’s function 𝑡. In Exercise 4.2.3 we
showed that lim𝑥→1 𝑡(𝑥) = 0, but 𝑡(1) = 1.

(c) This is true and follows from several applications of the Algebraic Limit Theorem for
Functional Limits (Corollary 4.2.4).

(d) This is false. Define 𝑓, 𝑔 : 𝐑 ∖ {0} → 𝐑 by 𝑓(𝑥) = 𝑥 and 𝑔(𝑥) = 1
𝑥 . It is straightforward

to verify that lim𝑥→0 𝑓(𝑥) = 0, but lim𝑥→0 𝑓(𝑥)𝑔(𝑥) = lim𝑥→0 1 = 1.

Exercise 4.2.7. Let 𝑔 : 𝐴 → 𝐑 and assume that 𝑓 is a bounded function on 𝐴 in the
sense that there exists 𝑀 > 0 satisfying |𝑓(𝑥)| ≤ 𝑀  for all 𝑥 ∈ 𝐴.

Show that if lim𝑥→𝑐 𝑔(𝑥) = 0, then lim𝑥→𝑐 𝑔(𝑥)𝑓(𝑥) = 0 as well.

Solution. Let 𝜀 > 0 be given. Since lim𝑥→𝑐 𝑔(𝑥) = 0, there is a 𝛿 > 0 such that 0 < |𝑥 − 𝑐| < 𝛿
and 𝑥 ∈ 𝐴 implies that |𝑔(𝑥)| < 𝜀

𝑀 . Observe that for such 𝑥 we have

|𝑓(𝑥)𝑔(𝑥)| = |𝑓(𝑥)||𝑔(𝑥)| < 𝑀 ⋅ 𝜀
𝑀 = 𝜀.

Thus lim𝑥→𝑐 𝑔(𝑥)𝑓(𝑥) = 0.

Exercise 4.2.8. Compute each limit or state that it does not exist. Use the tools de-
veloped in this section to justify each conclusion.

(a) lim𝑥→2
|𝑥−2|
𝑥−2

(b) lim𝑥→7/4
|𝑥−2|
𝑥−2

(c) lim𝑥→0 (−1)[[1/𝑥]]

(d) lim𝑥→0
3
√

𝑥(−1)[[1/𝑥]]

Solution.

(a) Let 𝑓 : 𝐑 ∖ {2} → 𝐑 be given by 𝑓(𝑥) = |𝑥−2|
𝑥−2 . Observe that
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𝑓(𝑥) = {1 if 𝑥 > 2,
−1 if 𝑥 < 2.

We claim that lim𝑥→2 𝑓(𝑥) does not exist. To see this, consider the sequences (𝑥𝑛) and
(𝑦𝑛) given by 𝑥𝑛 = 2 + 1

𝑛  and 𝑦𝑛 = 2 − 1
𝑛 , which satisfy lim𝑛→∞ 𝑥𝑛 = lim𝑛→∞ 𝑦𝑛 = 2.

However,

lim
𝑛→∞

𝑓(𝑥𝑛) = 1 ≠ −1 lim
𝑛→∞

𝑓(𝑦𝑛).

Our claim now follows from Corollary 4.2.5.

(b) Define 𝑓 as in part (a). We claim that lim𝑥→7/4 𝑓(𝑥) = −1. To see this, let 𝜀 > 0 be
given. If 𝑥 ∈ 𝐑 ∖ {2} is such that 0 < |𝑥 − 7

4 | < 1
4 , i.e. 𝑥 ∈ (3

2 , 2), then

|𝑓(𝑥) − (−1)| = (−1 + 1) = 0 < 𝜀.

Thus lim𝑥→7/4 𝑓(𝑥) = −1.

(c) We claim that lim𝑥→0 (−1)[[1/𝑥]] does not exist. To see this, consider the sequences (𝑥𝑛)
and (𝑦𝑛) given by 𝑥𝑛 = 1

2𝑛  and 𝑦𝑛 = 1
2𝑛+1 , which satisfy lim𝑛→∞ 𝑥𝑛 = lim𝑛→∞ 𝑦𝑛 = 0.

However,

lim
𝑛→∞

(−1)[[1/𝑥𝑛]] = lim
𝑛→∞

(−1)[[2𝑛]] = 1 ≠ −1 = lim
𝑛→∞

(−1)[[2𝑛+1]] = lim
𝑛→∞

(−1)[[1/𝑦𝑛]].

Our claim now follows from Corollary 4.2.5.

(d) Let 𝜀 > 0 be given and let 𝛿 = 𝜀3. If 𝑥 ∈ 𝐑 is such that 0 < |𝑥| < 𝛿, then

| 3
√

𝑥| = 3√|𝑥| < 3√𝛿 = 𝜀.

Thus lim𝑥→0
3
√

𝑥 = 0. Since the function (−1)[[1/𝑥]] is evidently bounded, we may apply
Exercise 4.2.7 to conclude that lim𝑥→0

3
√

𝑥(−1)[[1/𝑥]] = 0.

Exercise 4.2.9 (Infinite Limits). The statement lim𝑥→0 1/𝑥2 = ∞ certainly makes
intuitive sense. To construct a rigorous definition in the challenge-response style of Defi-
nition 4.2.1 for an infinite limit statement of this form, we replace the (arbitrarily small)
𝜀 > 0 challenge with an (arbitrarily large) 𝑀 > 0 challenge:

Definition: lim𝑥→𝑐 𝑓(𝑥) = ∞ means that for all 𝑀 > 0 we can find a 𝛿 > 0 such that
whenever 0 < |𝑥 − 𝑐| < 𝛿, it follows that 𝑓(𝑥) > 𝑀 .

(a) Show lim𝑥→0 1/𝑥2 = ∞ in the sense described in the previous definition.

(b) Now construct a definition for the statement lim𝑥→∞ 𝑓(𝑥) = 𝐿. Show 
lim𝑥→∞ 1/𝑥 = 0.

(c) What would a rigorous definition for lim𝑥→∞ 𝑓(𝑥) = ∞ look like? Give an example
of such a limit.

Solution.
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(a) Let 𝑀 > 0 be given and let 𝛿 = 1√
𝑀

> 0. If 𝑥 ∈ 𝐑 is such that 0 < |𝑥| < 𝛿, then observe
that

1
|𝑥|

>
√

𝑀 > 0 ⇒
1
𝑥2 > 𝑀.

It follows that lim𝑥→0
1
𝑥2 = ∞.

(b) The statement lim𝑥→∞ 𝑓(𝑥) = 𝐿 means that for all 𝜀 > 0 we can find an 𝑀 > 0 such
that whenever 𝑥 > 𝑀 , it follows that |𝑓(𝑥) − 𝐿| < 𝜀.

To see that lim𝑥→∞
1
𝑥 = 0, let 𝜀 > 0 be given, let 𝑀 = 1

𝜀 , and observe that

𝑥 > 𝑀 = 1
𝜀 ⇒ 1

𝑥 < 𝜀.

(c) The statement lim𝑥→∞ 𝑓(𝑥) = ∞ means that for all 𝑀 > 0 we can find a 𝐾 > 0 such
that whenever 𝑥 > 𝐾, it follows that 𝑓(𝑥) > 𝑀 ; it is straightforward to verify that 
lim𝑥→∞ 𝑥 = ∞, for example.

Exercise 4.2.10 (Right and Left Limits). Introductory calculus courses typically
refer to the right-hand limit of a function as the limit obtained by “letting 𝑥 approach 
𝑎 from the right-hand side.”

(a) Give a proper definition in the style of Definition 4.2.1 for the right-hand and left-
hand limit statements:

lim
𝑥→𝑎+

𝑓(𝑥) = 𝐿 and lim
𝑥→𝑎−

𝑓(𝑥) = 𝑀.

(b) Prove that lim𝑥→𝑎 𝑓(𝑥) = 𝐿 if and only if both the right and left-hand limits equal
𝐿.

Solution.

(a) Suppose we have a function 𝑓 : 𝐴 → 𝐑 and 𝑎 ∈ 𝐑 is a limit point of 𝐴 ∩ (𝑎, ∞). We
say that lim𝑥→𝑎+ 𝑓(𝑥) = 𝐿 provided that, for all 𝜀 > 0, there exists a 𝛿 > 0 such that
whenever 𝑎 < 𝑥 < 𝑎 + 𝛿 and 𝑥 ∈ 𝐴, it follows that |𝑓(𝑥) − 𝐿| < 𝜀. Similarly, if 𝑎 ∈ 𝐑
is a limit point of 𝐴 ∩ (−∞, 𝑎), we say that lim𝑥→𝑎− 𝑓(𝑥) = 𝑀  provided that, for all 
𝜀 > 0, there exists a 𝛿 > 0 such that whenever 𝑎 − 𝛿 < 𝑥 < 𝑎 and 𝑥 ∈ 𝐴, it follows that
|𝑓(𝑥) − 𝑀| < 𝜀.

(b) Let 𝑓 : 𝐴 → 𝐑 and 𝑎 ∈ 𝐴 be given, and suppose that 𝑎 is a limit point of both 𝐴 ∩ (𝑎, ∞)
and 𝐴 ∩ (−∞, 𝑎).

If lim𝑥→𝑎 𝑓(𝑥) = 𝐿 then certainly lim𝑥→𝑎+ 𝑓(𝑥) = lim𝑥→𝑎− 𝑓(𝑥) = 𝐿, since for any 𝑥 ∈ 𝐴
both of the statements 𝑎 < 𝑥 < 𝑎 + 𝛿 and 𝑎 − 𝛿 < 𝑥 < 𝑎 imply that 0 < |𝑥 − 𝑎| < 𝛿.
Suppose therefore that lim𝑥→𝑎+ 𝑓(𝑥) = lim𝑥→𝑎− 𝑓(𝑥) = 𝐿 and let 𝜀 > 0 be given. There
are positive real numbers 𝛿1 and 𝛿2 such that

𝑎 < 𝑥 < 𝑎 + 𝛿1 and 𝑥 ∈ 𝐴 ⇒ |𝑓(𝑥) − 𝐿| < 𝜀
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and 𝑎 − 𝛿2 < 𝑥 < 𝑎 and 𝑥 ∈ 𝐴 ⇒ |𝑓(𝑥) − 𝐿| < 𝜀.

Let 𝛿 = min{𝛿1, 𝛿2}. If 𝑥 ∈ 𝐴 is such that 0 < |𝑥 − 𝑎| < 𝛿, then either

𝑎 < 𝑥 < 𝑎 + 𝛿 ≤ 𝑎 + 𝛿1 ⇒ |𝑓(𝑥) − 𝐿| < 𝜀, or

𝑎 − 𝛿2 ≤ 𝑎 − 𝛿 < 𝑥 < 𝑎 ⇒ |𝑓(𝑥) − 𝐿| < 𝜀.

In either case we have |𝑓(𝑥) − 𝐿| < 𝜀. Thus lim𝑥→𝑎 𝑓(𝑥) = 𝐿.

Exercise 4.2.11 (Squeeze Theorem). Let 𝑓, 𝑔, and ℎ satisfy 𝑓(𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥) for
all 𝑥 in some common domain 𝐴. If lim𝑥→𝑐 𝑓(𝑥) = 𝐿 and lim𝑥→𝑐 ℎ(𝑥) = 𝐿 at some limit
point 𝑐 of 𝐴, show lim𝑥→𝑐 𝑔(𝑥) = 𝐿.

Solution. Suppose (𝑥𝑛) is a sequence contained in 𝐴 satisfying 𝑥𝑛 ≠ 𝑐 and lim𝑛→∞ 𝑥𝑛 =
𝑐. By assumption we have 𝑓(𝑥𝑛) ≤ 𝑔(𝑥𝑛) ≤ ℎ(𝑥𝑛) for all 𝑛 ∈ 𝐍, and Theorem 4.2.3 guaran-
tees that lim𝑛→∞ 𝑓(𝑥𝑛) = lim𝑛→∞ ℎ(𝑥𝑛) = 𝐿. We may now apply the Squeeze Theorem for
sequences (Exercise 2.3.3) to see that lim𝑛→∞ 𝑔(𝑥𝑛) = 𝐿, and Theorem 4.2.3 then allows us
to conclude that lim𝑥→𝑐 𝑔(𝑥) = 𝐿.
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4.3. Continuous Functions

Exercise 4.3.1. Let 𝑔(𝑥) = 3
√

𝑥.

(a) Prove that 𝑔 is continuous at 𝑐 = 0.

(b) Prove that 𝑔 is continuous at a point 𝑐 ≠ 0. (The identity

𝑎3 − 𝑏3 = (𝑎 − 𝑏)(𝑎2 + 𝑎𝑏 + 𝑏)

will be helpful.)

Solution.

(a) Let 𝜀 > 0 be given and let 𝛿 = 𝜀3. If 𝑥 ∈ 𝐑 is such that |𝑥| < 𝛿, then

| 3
√

𝑥| = 3√|𝑥| < 3√𝛿 = 𝜀.

Thus 𝑔 is continuous at 𝑐 = 0.

(b) Taking 𝑎 = 𝑥1/3 and 𝑏 = 𝑐1/3 in the identity 𝑎3 − 𝑏3 = (𝑎 − 𝑏)(𝑎2 + 𝑎𝑏 + 𝑏2) gives

𝑥 − 𝑐 = (𝑥1/3 − 𝑐1/3)(𝑥2/3 + (𝑥𝑐)1/3 + 𝑐2/3)

⇒ |𝑥 − 𝑐| = |𝑥1/3 − 𝑐1/3||𝑥2/3 + (𝑥𝑐)1/3 + 𝑐2/3|.

If we take 𝑥 close enough to 𝑐 so that 𝑥 and 𝑐 have the same sign, i.e. take 𝑥 such that
|𝑥 − 𝑐| < |𝑐|, then 𝑥𝑐 > 0 and so

|𝑥2/3 + (𝑥𝑐)1/3 + 𝑐2/3| = 𝑥2/3 + (𝑥𝑐)1/3 + 𝑐2/3 ≥ 𝑐2/3.

Let 𝛿 = min{|𝑐|, 𝑐2/3𝜀} and suppose 𝑥 ∈ 𝐑 is such that |𝑥 − 𝑐| < 𝛿. By the previous
discussion, we then have

|𝑥1/3 − 𝑐1/3| ≤
|𝑥 − 𝑐|
𝑐2/3 ≤ 𝜀.

Thus 𝑔 is continuous at 𝑐.
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Exercise 4.3.2. To gain a deeper understanding of the relationship between 𝜀 and 𝛿 in
the definition of continuity, let’s explore some modest variations of Definition 4.3.1. In
all of these, let 𝑓 be a function defined on all of 𝐑.

(a) Let’s say 𝑓 is onetinuous at 𝑐 if for all 𝜀 > 0 we can choose 𝛿 = 1 and it follows
that |𝑓(𝑥) − 𝑓(𝑐)| < 𝜀 whenever |𝑥 − 𝑐| < 𝛿. Find an example of a function that is
onetinuous on all of 𝐑.

(b) Let’s say 𝑓 is equaltinuous at 𝑐 if for all 𝜀 > 0 we can choose 𝛿 = 𝜀 and it follows
that |𝑓(𝑥) − 𝑓(𝑐)| < 𝜀 whenever |𝑥 − 𝑐| < 𝛿. Find an example of a function that
is equaltinuous on 𝐑 that is nowhere onetinuous, or explain why there is no such
function.

(c) Let’s say 𝑓 is lesstinuous at 𝑐 if for all 𝜀 > 0 we can choose 0 < 𝛿 < 𝜀 and it follows
that |𝑓(𝑥) − 𝑓(𝑐)| < 𝜀 whenever |𝑥 − 𝑐| < 𝛿. Find an example of a function that
is lesstinuous on 𝐑 that is nowhere equaltinuous, or explain why there is no such
function.

(d) Is every lesstinuous function continuous? Is every continuous function lesstinuous?
Explain.

Solution.

(a) Let 𝑓 be given by 𝑓(𝑥) = 0 for all 𝑥 ∈ 𝐑. Fix 𝑐 ∈ 𝐑 and let 𝜀 > 0 be given. If 𝑥 ∈ 𝐑 is
such that |𝑥 − 𝑐| < 1, then

|𝑓(𝑥) − 𝑓(𝑐)| = |0 − 0| = 0 < 𝜀.

Thus 𝑓 is onetinuous on 𝐑.

(b) Let 𝑓 be given by 𝑓(𝑥) = 𝑥 for all 𝑥 ∈ 𝐑. Fix 𝑐 ∈ 𝐑 and let 𝜀 > 0 be given. If 𝑥 ∈ 𝐑
is such that |𝑥 − 𝑐| < 𝜀, then

|𝑓(𝑥) − 𝑓(𝑐)| = |𝑥 − 𝑐| < 𝜀.

Thus 𝑓 is equaltinuous on 𝐑. However, 𝑓 is nowhere onetinuous. Fix 𝑐 ∈ 𝐑 again and
consider 𝜀 = 1

4 . Note that 𝑥 = 𝑐 + 1
2  satisfies |𝑥 − 𝑐| = 1

2 < 1, however

|𝑓(𝑥) − 𝑓(𝑐)| = |𝑥 − 𝑐| = 1
2 > 1

4 = 𝜀.

Thus 𝑓 is nowhere onetinuous.

(c) Let 𝑓 be given by 𝑓(𝑥) = 2𝑥 for all 𝑥 ∈ 𝐑. Fix 𝑐 ∈ 𝐑 let 𝜀 > 0 be given, and let
𝛿 = 𝜀

2 < 𝜀. If 𝑥 ∈ 𝐑 is such that |𝑥 − 𝑐| < 𝛿, then

|𝑓(𝑥) − 𝑓(𝑐)| = 2|𝑥 − 𝑐| < 2𝛿 = 𝜀.

Thus 𝑓 is lesstinuous on 𝐑. However, 𝑓 is nowhere equaltinuous. Fix 𝑐 ∈ 𝐑 again and
let 𝜀 = 1. Note that 𝑥 = 𝑐 + 3

4  satisfies |𝑥 − 𝑐| = 3
4 < 𝜀, however
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|𝑓(𝑥) − 𝑓(𝑐)| = 2|𝑥 − 𝑐| = 3
2 > 𝜀.

Thus 𝑓 is nowhere equaltinuous.

(d) It is clear that every lesstinuous function is continuous. We claim that every continu-
ous function is lesstinuous. To see this, let 𝑓 be a continuous function. Fix 𝑐 ∈ 𝐑 and
𝜀 > 0. Since 𝑓 is continuous at 𝑐, there is a 𝛿′ > 0 such that |𝑓(𝑥) − 𝑓(𝑐)| < 𝜀 whenever
|𝑥 − 𝑐| < 𝛿′. Let 𝛿 = min{𝛿′, 𝜀

2}, so that 0 < 𝛿 < 𝜀, and observe that if 𝑥 ∈ 𝐑 is such
that |𝑥 − 𝑐| < 𝛿 then 𝑥 also satisfies |𝑥 − 𝑐| < 𝛿′, whence |𝑓(𝑥) − 𝑓(𝑐)| < 𝜀.

Exercise 4.3.3.

(a) Supply a proof for Theorem 4.3.9 using the 𝜀-𝛿 characterization of continuity.

(b) Give another proof of this theorem using the sequential characterization of conti-
nuity (from Theorem 4.3.2 (iii)).

Solution.

(a) Let 𝑎 ∈ 𝐴 and 𝜀 > 0 be given. By assumption we have 𝑓(𝑎) ∈ 𝐵, so 𝑔 is continuous at
𝑓(𝑎). There then exists a 𝛿1 > 0 such that

|𝑦 − 𝑓(𝑎)| < 𝛿1 and 𝑦 ∈ 𝐵 ⇒ |𝑔(𝑦) − 𝑔(𝑓(𝑎))| < 𝜀. (1)

Since 𝑓 is continuous at 𝑎, there exists a 𝛿2 > 0 such that

|𝑥 − 𝑎| < 𝛿2 and 𝑥 ∈ 𝐴 ⇒ |𝑓(𝑥) − 𝑓(𝑎)| < 𝛿1. (2)

Combining (1) and (2) shows that

|𝑥 − 𝑎| < 𝛿2 and 𝑥 ∈ 𝐴 ⇒ |𝑓(𝑥) − 𝑓(𝑎)| < 𝛿1 and 𝑓(𝑥) ∈ 𝐵

⇒ |𝑔(𝑓(𝑥)) − 𝑔(𝑓(𝑎))| < 𝜀.

Thus 𝑔 ∘ 𝑓 is continuous at 𝑎.

(b) Let 𝑎 ∈ 𝐴 be given and suppose (𝑎𝑛)∞
𝑛=1 is contained in 𝐴 and satisfies lim𝑛→∞ 𝑎𝑛 = 𝑎.

Since 𝑓 is continuous at 𝑎, Theorem 4.3.2 (iii) gives us lim𝑛→∞ 𝑓(𝑎𝑛) = 𝑓(𝑎). By as-
sumption 𝑔 is continuous at 𝑓(𝑎) ∈ 𝐵 and (𝑓(𝑎𝑛))∞

𝑛=1 is contained in 𝐵, so Theorem
4.3.2 (iii) gives us lim𝑛→∞ 𝑔(𝑓(𝑎𝑛)) = 𝑔(𝑓(𝑎)). One more application of Theorem 4.3.2
(iii) allows us to conclude that 𝑔 ∘ 𝑓 is continuous at 𝑎.

166 / 415



Exercise 4.3.4. Assume 𝑓 and 𝑔 are defined on all of 𝐑 and that lim𝑥→𝑝 𝑓(𝑥) = 𝑞 and
lim𝑥→𝑞 𝑔(𝑥) = 𝑟.

(a) Give an example to show that it may not be true that

lim
𝑥→𝑝

𝑔(𝑓(𝑥)) = 𝑟.

(b) Show that the result in (a) does follow if we assume 𝑓 and 𝑔 are continuous.

(c) Does the result in (a) hold if we only assume 𝑓 is continuous? How about if we
only assume that 𝑔 is continuous?

Solution.

(a) Let 𝑓 be given by 𝑓(𝑥) = 0 for all 𝑥 ∈ 𝐑 and let 𝑔 be given by

𝑔(𝑥) = {0 if 𝑥 ≠ 0,
1 if 𝑥 = 0.

We have lim𝑥→0 𝑓(𝑥) = lim𝑥→0 𝑔(𝑥) = 0, however note that 𝑔(𝑓(𝑥)) = 𝑔(0) = 1 for all 
𝑥 ∈ 𝐑. It follows that

lim
𝑥→0

𝑔(𝑓(𝑥)) = 1 ≠ 0.

(b) By Theorem 4.3.9 the composition 𝑔 ∘ 𝑓 is continuous. Since 𝑓 and 𝑔 are defined on all
of 𝐑, Theorem 4.3.2 (iv) lets us write

lim
𝑥→𝑝

𝑔(𝑓(𝑥)) = 𝑔(𝑓(𝑝)) = 𝑔(lim
𝑥→𝑝

𝑓(𝑥)) = 𝑔(𝑞) = lim
𝑥→𝑞

𝑔(𝑥).

(c) As the counterexample in part (a) shows, the result does not hold if we only assume
that 𝑓 is continuous. However, it does hold if we assume that 𝑔 is continuous. To see
this, let (𝑥𝑛) be some sequence satisfying lim𝑛→∞ 𝑥𝑛 = 𝑝 and 𝑥𝑛 ≠ 𝑝. Theorem 4.2.3
shows that lim𝑛→∞ 𝑓(𝑥𝑛) = 𝑞, and since 𝑔 is continuous the sequential characterization
of continuity (Theorem 4.3.2 (iii)) implies that

lim
𝑛→∞

𝑔(𝑓(𝑥𝑛)) = 𝑔(𝑞) = 𝑟,

where the last equality also follows from the continuity of 𝑔. Theorem 4.2.3 allows us
to conclude that lim𝑥→𝑝 𝑔(𝑓(𝑥)) = 𝑟.

Exercise 4.3.5. Show using Definition 4.3.1 that if 𝑐 is an isolated point of 𝐴 ⊆ 𝐑,
then 𝑓 : 𝐴 → 𝐑 is continuous at 𝑐.

Solution. Since 𝑐 is an isolated point of 𝐴, there exists a 𝛿 > 0 such that 𝑉𝛿(𝑐) ∩ 𝐴 = {𝑐}.
Let 𝜀 > 0 be given. If 𝑥 ∈ 𝐴 is such that |𝑥 − 𝑐| < 𝛿 then it must be the case that 𝑥 = 𝑐. It
follows that

|𝑓(𝑥) − 𝑓(𝑐)| = |𝑓(𝑐) − 𝑓(𝑐)| = 0 < 𝜀.
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Thus 𝑓 is continuous at 𝑐.

Exercise 4.3.6. Provide an example of each or explain why the request is impossible.

(a) Two functions 𝑓 and 𝑔, neither of which is continuous at 0 such that 𝑓(𝑥)𝑔(𝑥) and
𝑓(𝑥) = 𝑔(𝑥) are continuous at 0.

(b) A function 𝑓(𝑥) continuous at 0 and 𝑔(𝑥) not continuous at 0 such that 𝑓(𝑥) + 𝑔(𝑥)
is continuous at 0.

(c) A function 𝑓(𝑥) continuous at 0 and 𝑔(𝑥) not continuous at 0 such that 𝑓(𝑥)𝑔(𝑥)
is continuous at 0.

(d) A function 𝑓(𝑥) not continuous at 0 such that 𝑓(𝑥) + 1
𝑓(𝑥)  is continuous at 0.

(e) A function 𝑓(𝑥) not continuous at 0 such that [𝑓(𝑥)]3 is continuous at 0.

Solution.

(a) Let 𝑓, 𝑔 : 𝐑 → 𝐑 be given by

𝑓(𝑥) = {
0 if 𝑥 ≠ 0,
1 if 𝑥 = 0,

𝑔(𝑥) = {1 if 𝑥 ≠ 0,
0 if 𝑥 = 0.

Neither 𝑓 nor 𝑔 is continuous at 0, however note that for all 𝑥 ∈ 𝐑 we have

𝑓(𝑥)𝑔(𝑥) = 0 and 𝑓(𝑥) + 𝑔(𝑥) = 1.

Thus 𝑓𝑔 and 𝑓 + 𝑔 are continuous at 0.

(b) This is impossible. If 𝑓 and 𝑓 + 𝑔 are continuous at 0 then Theorem 4.3.4 implies that
𝑔 = 𝑓 + 𝑔 − 𝑓 is continuous at 0.

(c) If we take 𝑔 as in part (a) and let 𝑓(𝑥) = 0 for all 𝑥 ∈ 𝐑, then 𝑔 is not continuous at 
0 but 𝑓 = 𝑓𝑔 is continuous at 0.

(d) Let 𝑓 : 𝐑 → 𝐑 be given by

𝑓(𝑥) = {
√

2 − 1 if 𝑥 ≠ 0,
√

2 + 1 if 𝑥 = 0,

and note that 𝑓 is discontinuous at 0. Note further that 𝑓(𝑥) + 1
𝑓(𝑥) = 2

√
2 for all 𝑥 ∈ 𝐑.

It follows that 𝑓 + 1
𝑓  is continuous at 0.

(e) This is impossible. As we showed in Exercise 4.3.1, the function 𝑥 ↦ 3
√

𝑥 is continuous
everywhere. It follows that if [𝑓(𝑥)]3 is continuous at 0 then, by Theorem 4.3.9, the
composition

𝑓(𝑥) = ([𝑓(𝑥)]3)
1/3

must also be continuous at 0.
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Exercise 4.3.7.

(a) Referring to the proper theorems, give a formal argument that Dirichlet’s function
from Section 4.1 is nowhere-continuous on 𝐑.

(b) Review the definition of Thomae’s function in Section 4.1 and demonstrate that it
fails to be continuous at every rational point.

(c) Use the characterization of continuity in Theorem 4.3.2 (iii) to show that Thomae’s
function is continuous at every irrational point in 𝐑. (Given 𝜀 > 0, consider the
set of points {𝑥 ∈ 𝐑 : 𝑡(𝑥) ≥ 𝜀}.)

Solution.

(a) Let 𝑔 : 𝐑 → 𝐑 be Dirichlet’s function, i.e.

𝑔(𝑥) = {
1 if 𝑥 ∈ 𝐐,
0 if 𝑥 ∉ 𝐐.

Suppose 𝑐 ∈ 𝐐. By the density of 𝐈 in 𝐑, for any 𝛿 > 0 there is an irrational number 
𝑥 ∈ 𝐈 such that 𝑥 ∈ 𝑉𝛿(𝑐); it follows that 𝑔(𝑥) = 0 ∉ 𝑉1(1) = 𝑉1(𝑔(𝑐)). Thus, by Theo-
rem 4.3.2 (ii), 𝑔 is not continuous at 𝑐.

Similarly, suppose 𝑐 ∈ 𝐈. By the density of 𝐐 in 𝐑, for any 𝛿 > 0 there is a rational
number 𝑥 ∈ 𝐐 such that 𝑥 ∈ 𝑉𝛿(𝑐); it follows that 𝑔(𝑥) = 1 ∉ 𝑉1(0) = 𝑉1(𝑔(𝑐)). Thus,
by Theorem 4.3.2 (ii), 𝑔 is not continuous at 𝑐.

We have now shown that 𝑔 fails to be continuous at each 𝑐 ∈ 𝐑, i.e. 𝑔 is nowhere-
continuous on 𝐑.

(b) Let 𝑡 : 𝐑 → 𝐑 be Thomae’s function, i.e.

𝑡(𝑥) =

⎩{
{⎨
{{
⎧1 if 𝑥 = 0,

1
𝑛 if 𝑥 = 𝑚

𝑛 ∈ 𝐐 ∖ {0} is in lowest terms with 𝑛 > 0,
0 if 𝑥 ∉ 𝐐.

Suppose 𝑐 ∈ 𝐐. The density of 𝐈 in 𝐑 allows us to pick a sequence of irrational num-
ber (𝑥𝑛) such that lim𝑛→∞ 𝑥𝑛 = 𝑐. We then have 𝑡(𝑥𝑛) = 0 for each 𝑛 ∈ 𝐍 and so 
lim𝑛→∞ 𝑡(𝑥𝑛) = 0. However, 𝑡(𝑐) is strictly positive; it follows that lim𝑛→∞ 𝑡(𝑥𝑛) ≠ 𝑡(𝑐)
and hence, by Corollary 4.3.3, 𝑡 is not continuous at 𝑐 ∈ 𝐐. Thus 𝑡 fails to be continuous
on 𝐐.

(c) Suppose 𝑐 ∈ 𝐈 and suppose we have a sequence (𝑥𝑛) such that lim𝑛→∞ 𝑥𝑛 = 𝑐. Our aim
is to show that lim𝑛→∞ 𝑡(𝑥𝑛) = 𝑡(𝑐) = 0. Let 𝜀 > 0 be given and choose 𝐾 ∈ 𝐍 such
that 1

𝐾 < 𝜀. By Lemma L.11, there exists a 𝛿 > 0 such that if 𝑦 = 𝑎
𝑏  is a rational number

contained in 𝑉𝛿(𝑐) with 𝑏 > 0, then 𝑏 > 𝐾. For such 𝑦 we have 𝑡(𝑦) = 1
𝑏 < 1

𝐾 < 𝜀. Since
lim𝑛→∞ 𝑥𝑛 = 𝑐, there is an 𝑁 ∈ 𝐍 such that 𝑥𝑛 ∈ 𝑉𝛿(𝑐) for all 𝑛 ≥ 𝑁 . Suppose 𝑛 ∈ 𝐍
satisfies 𝑛 ≥ 𝑁 . There are two cases.
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Case 1. If 𝑥𝑛 ∈ 𝐈, then |𝑡(𝑥𝑛)| = 0 < 𝜀.

Case 2. If 𝑥𝑛 ∈ 𝐐, then since 𝑥𝑛 ∈ 𝑉𝛿(𝑐) we have |𝑡(𝑥𝑛)| < 1
𝐾 < 𝜀.

In either case we have |𝑡(𝑥𝑛)| < 𝜀 and thus lim𝑛→∞ 𝑡(𝑥𝑛) = 𝑡(𝑐) = 0, as desired. Theo-
rem 4.3.2 (iii) allows us to conclude that 𝑡 is continuous at each 𝑐 ∈ 𝐈.

Exercise 4.3.8. Decide if the following claims are true or false, providing either a short
proof or counterexample to justify each conclusion. Assume throughout that 𝑔 is defined
and continuous on all of 𝐑.

(a) If 𝑔(𝑥) ≥ 0 for all 𝑥 < 1, then 𝑔(1) ≥ 0 as well.

(b) If 𝑔(𝑟) = 0 for all 𝑟 ∈ 𝐐, then 𝑔(𝑥) = 0 for all 𝑥 ∈ 𝐑.

(c) If 𝑔(𝑥0) > 0 for a single point 𝑥0 ∈ 𝐑, then 𝑔(𝑥) is in fact strictly positive for
uncountably many points.

Solution.

(a) This is true. Let (𝑥𝑛) be the sequence given by 𝑥𝑛 = 1 − 1
𝑛 . Since 𝑔 is continuous at 1

and lim𝑛→∞ 𝑥𝑛 = 1, Theorem 4.3.2 (iii) implies that lim𝑛→∞ 𝑔(𝑥𝑛) = 𝑔(1). Note that 
𝑥𝑛 < 1 for each 𝑛 ∈ 𝐍 and thus 𝑔(𝑥𝑛) ≥ 0 for each 𝑛 ∈ 𝐍. The Order Limit Theorem
(Theorem 2.3.4) allows us to conclude that lim𝑛→∞ 𝑔(𝑥𝑛) = 𝑔(1) ≥ 0 also.

(b) This is true. Let 𝑥 ∈ 𝐑 be given. By the density of 𝐐 in 𝐑, there is a sequence (𝑟𝑛) of
rational numbers such that lim𝑛→∞ 𝑟𝑛 = 𝑥. On one hand, by the continuity of 𝑔 at 𝑥, we
must have lim𝑛→∞ 𝑔(𝑟𝑛) = 𝑔(𝑥) (Theorem 4.3.2 (iii)). On the other hand, 𝑔(𝑟𝑛) = 0 for
all 𝑛 ∈ 𝐍 and thus lim𝑛→∞ 𝑔(𝑟𝑛) = 0. Since the limit of a sequence is unique (Theorem
2.2.7), it follows that 𝑔(𝑥) = 0.

(c) This is true. Since 𝑔 is continuous at 𝑥0, for 𝜀 = 𝑔(𝑥0) > 0 there is a 𝛿 > 0 such that 
𝑔(𝑥) ∈ 𝑉𝜀(𝑔(𝑥0)) = (0, 2𝑔(𝑥0)) whenever 𝑥 ∈ 𝑉𝛿(𝑥0). In other words, for each of the un-
countably many 𝑥 ∈ (𝑥0 − 𝛿, 𝑥0 + 𝛿) we have 𝑔(𝑥) > 0.

Exercise 4.3.9. Assume ℎ : 𝐑 → 𝐑 is continuous on 𝐑 and let 𝐾 = {𝑥 : ℎ(𝑥) = 0}.
Show that 𝐾 is a closed set.

Solution. Suppose that (𝑥𝑛) is a convergent sequence contained in 𝐾 with lim𝑛→∞ 𝑥𝑛 = 𝑥
for some 𝑥 ∈ 𝐑. On one hand, the continuity of ℎ implies that lim𝑛→∞ ℎ(𝑥𝑛) = ℎ(𝑥).
On the other hand, because each 𝑥𝑛 ∈ 𝐾, we have ℎ(𝑥𝑛) = 0 for each 𝑛 ∈ 𝐍 and thus 
lim𝑛→∞ ℎ(𝑥𝑛) = 0. The uniqueness of the limit of a sequence (Theorem 2.2.7) now implies
that ℎ(𝑥) = 0, i.e. 𝑥 ∈ 𝐾. Theorem 3.2.8 allows us to conclude that 𝐾 is closed.
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Exercise 4.3.10. Observe that if 𝑎 and 𝑏 are real numbers, then

max{𝑎, 𝑏} =
1
2
[(𝑎 + 𝑏) + |𝑎 − 𝑏|].

(a) Show that if 𝑓1, 𝑓2, …, 𝑓𝑛 are continuous functions, then

𝑔(𝑥) = max{𝑓1(𝑥), 𝑓2(𝑥), …, 𝑓𝑛(𝑥)}

is a continuous function.

(b) Let’s explore whether the result in (a) extends to the infinite case. For each 𝑛 ∈ 𝐍,
define 𝑓𝑛 on 𝐑 by

𝑓𝑛(𝑥) = {
1 if |𝑥| ≥ 1/𝑛,
𝑛|𝑥| if |𝑥| < 1/𝑛.

Now explicitly compute ℎ(𝑥) = sup{𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), …}.

Solution.

(a) First, let us show that the function 𝑥 ↦ |𝑥| is continuous on 𝐑. If 𝑦 ∈ 𝐑 and 𝜀 > 0, let
𝛿 = 𝜀 and suppose that |𝑥 − 𝑦| < 𝛿. The reverse triangle inequality (Exercise 1.2.6 (d))
shows that

||𝑥| − |𝑦|| ≤ |𝑥 − 𝑦| < 𝛿 = 𝜀.

Thus 𝑥 ↦ |𝑥| is continuous on 𝐑.

Now suppose that 𝑓1, 𝑓2 : 𝐴 → 𝐑 are two continuous functions defined on some domain
𝐴 ⊆ 𝐑. For any 𝑥 ∈ 𝐴, note that

𝑔(𝑥) = max{𝑓1(𝑥), 𝑓2(𝑥)} = 1
2 [(𝑓1(𝑥) + 𝑓2(𝑥)) + |𝑓1(𝑥) − 𝑓2(𝑥)|].

Since 𝑓1 and 𝑓2 are continuous on 𝐴, and we showed that 𝑥 ↦ |𝑥| is continuous every-
where, Theorem 4.3.9 and several applications of Theorem 4.3.4 show that 𝑔 is also
continuous on 𝐴.

Using the observation that

max{𝑓1(𝑥), 𝑓2(𝑥), …, 𝑓𝑛(𝑥)} = max{max{𝑓1(𝑥), 𝑓2(𝑥), …, 𝑓𝑛−1(𝑥)}, 𝑓𝑛(𝑥)},

a straightforward induction argument on 𝑛 (the base case was handled in the previous
paragraph) shows that the maximum of 𝑛 continuous functions is a continuous function.

(b) If 𝑥 = 0 then for each 𝑛 ∈ 𝐍 we have 𝑓𝑛(0) = 0 and thus ℎ(0) = 0. If 𝑥 ≠ 0 then choose
𝑛 ∈ 𝐍 such that 1

𝑛 < |𝑥| and notice that 𝑓𝑛(𝑥) = 1, so that ℎ(𝑥) = 1. Thus ℎ is the
function

ℎ(𝑥) = {
1 if 𝑥 ≠ 0,
0 if 𝑥 = 0,
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which is not continuous at 0.

Exercise 4.3.11 (Contraction Mapping Theorem). Let 𝑓 be a function defined on
all of 𝐑, and assume there is a constant 𝑐 such that 0 < 𝑐 < 1 and

|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑐|𝑥 − 𝑦|

for all 𝑥, 𝑦 ∈ 𝐑.

(a) Show that 𝑓 is continuous on 𝐑.

(b) Pick some point 𝑦1 ∈ 𝐑 and construct the sequence

(𝑦1, 𝑓(𝑦1), 𝑓(𝑓(𝑦1)), …).

In general, if 𝑦𝑛+1 = 𝑓(𝑦𝑛), show that the resulting sequence (𝑦𝑛) is a Cauchy se-
quence. Hence we may let 𝑦 = lim 𝑦𝑛.

(c) Prove that 𝑦 is a fixed point of 𝑓 (i.e. 𝑓(𝑦) = 𝑦) and that it is unique in this regard.

(d) Finally, prove that if 𝑥 is any arbitrary point in 𝐑, then the sequence 
(𝑥, 𝑓(𝑥), 𝑓(𝑓(𝑥)), …) converges to 𝑦 defined by (b).

Solution.

(a) Let 𝑦 ∈ 𝐑 and 𝜀 > 0 be given. Let 𝛿 = 𝑐−1𝜀, suppose that 𝑥 ∈ 𝐑 is such that |𝑥 − 𝑦| < 𝛿,
and observe that

|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑐|𝑥 − 𝑦| < 𝑐𝛿 = 𝜀.

Thus 𝑓 is continuous at each 𝑦 ∈ 𝐑.

(b) Suppose 𝑛 > 𝑚 are positive integers. Repeatedly applying the triangle inequality yields

|𝑦𝑛 − 𝑦𝑚| ≤ |𝑦𝑛 − 𝑦𝑛−1| + ⋯ + |𝑦𝑚+1 − 𝑦𝑚| = ∑
𝑛−1

𝑘=𝑚
|𝑦𝑘+1 − 𝑦𝑘|.

Now we use the hypothesis that |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑐|𝑥 − 𝑦| for all 𝑥, 𝑦 ∈ 𝐑 and the defin-
ition of the sequence 𝑦𝑛 = 𝑓(𝑦𝑛−1) to see that

∑
𝑛−1

𝑘=𝑚
|𝑦𝑘+1 − 𝑦𝑘| ≤ ∑

𝑛−1

𝑘=𝑚
𝑐|𝑦𝑘 − 𝑦𝑘−1| ≤ ⋯ ≤ ∑

𝑛−1

𝑘=𝑚
𝑐𝑘−1|𝑦2 − 𝑦1| = 𝑐−2|𝑦2 − 𝑦1| ∑

𝑛

𝑘=𝑚+1
𝑐𝑘.

If we let 𝑠𝑛 = ∑𝑛
𝑘=0 𝑐𝑘, then we have shown that for all positive integers 𝑛 > 𝑚 we have

the inequality

|𝑦𝑛 − 𝑦𝑚| ≤ 𝑐−2|𝑦2 − 𝑦1|(𝑠𝑛 − 𝑠𝑚). (1)

Let 𝜀 > 0 be given. The series ∑∞
𝑘=0 𝑐𝑘 is convergent since 0 < 𝑐 < 1, so the sequence 

(𝑠𝑛) is Cauchy. Thus there exists an 𝑁 ∈ 𝐍 such that

𝑛 > 𝑚 ≥ 𝑁 ⇒ |𝑠𝑛 − 𝑠𝑚| = 𝑠𝑛 − 𝑠𝑚 <
𝑐2

|𝑦2 − 𝑦1| + 1
𝜀. (2)
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Suppose 𝑛, 𝑚 are positive integers such that 𝑛 > 𝑚 ≥ 𝑁 . It follows from (1) and (2)
that

|𝑦𝑛 − 𝑦𝑚| ≤ 𝑐−2|𝑦2 − 𝑦1|
𝑐2

|𝑦2 − 𝑦1| + 1
𝜀 < 𝜀.

Thus (𝑦𝑛) is a Cauchy sequence.

(c) Since 𝑓 is continuous at 𝑦 (by part (a)), we have lim𝑛→∞ 𝑓(𝑦𝑛) = 𝑓(𝑦). It follows that

𝑦 = lim
𝑛→∞

𝑦𝑛+1 = lim
𝑛→∞

𝑓(𝑦𝑛) = 𝑓(𝑦).

For uniqueness, observe that for any 𝑥 ∈ 𝐑 such that 𝑥 = 𝑓(𝑥) we have

|𝑥 − 𝑦| = |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑐|𝑥 − 𝑦|.

If |𝑥 − 𝑦| were not zero this would imply that 𝑐 ≥ 1. Since 0 < 𝑐 < 1, it must be the
case that |𝑥 − 𝑦| = 0, i.e. 𝑥 = 𝑦.

(d) Let 𝑥1 = 𝑥 and 𝑥𝑛+1 = 𝑓(𝑥𝑛). As we just proved, (𝑥𝑛) converges to some 𝑦′ ∈ 𝐑 such
that 𝑓(𝑦′) = 𝑦′. The uniqueness part of (c) then implies that 𝑦′ = 𝑦.

Exercise 4.3.12. Let 𝐹 ⊆ 𝐑 be a nonempty closed set and define
𝑔(𝑥) = inf{|𝑥 − 𝑎| : 𝑎 ∈ 𝐹}. Show that 𝑔 is continuous on all of 𝐑 and 𝑔(𝑥) ≠ 0 for all 
𝑥 ∉ 𝐹 .

Solution. If 𝐴 and 𝐵 are non-empty and bounded below subsets of 𝐑 such that 𝑎 ≤ 𝑏 for
all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, then it is straightforward to verify that inf 𝐴 ≤ inf 𝐵. Fix 𝑐 ∈ 𝐑 and
note that for any 𝑥 ∈ 𝐑 and 𝑎 ∈ 𝐹  we have |𝑥 − 𝑎| ≤ |𝑥 − 𝑐| + |𝑐 − 𝑎|. It follows that

inf{|𝑥 − 𝑎| : 𝑎 ∈ 𝐹} ≤ inf{|𝑥 − 𝑐| + |𝑐 − 𝑎| : 𝑎 ∈ 𝐹}.

A statement analogous to Example 1.3.7 for infima then gives us

inf{|𝑥 − 𝑎| : 𝑎 ∈ 𝐹} ≤ |𝑥 − 𝑐| + inf{|𝑐 − 𝑎| : 𝑎 ∈ 𝐹}

i.e. 𝑔(𝑥) − 𝑔(𝑐) ≤ |𝑥 − 𝑐|. We can similarly derive 𝑔(𝑐) − 𝑔(𝑥) ≤ |𝑥 − 𝑐| and hence

|𝑔(𝑥) − 𝑔(𝑐)| ≤ |𝑥 − 𝑐|.

Thus for any 𝜀 > 0 we can take 𝛿 = 𝜀 and obtain

|𝑥 − 𝑐| < 𝛿 ⇒ |𝑔(𝑥) − 𝑔(𝑐)| < 𝜀.

It follows that 𝑔 is continuous at each 𝑐 ∈ 𝐑.

Suppose that 𝑔(𝑥) = 0. Using Exercise 1.3.1 (b) we can choose a sequence (𝑎𝑛) contained in
𝐹  satisfying lim𝑛→∞|𝑥 − 𝑎𝑛| = 𝑔(𝑥) = 0, which is equivalent to lim𝑛→∞ 𝑎𝑛 = 𝑥. Since 𝐹  is
closed, Theorem 3.2.8 then implies that 𝑥 ∈ 𝐹 . Thus if 𝑥 ∉ 𝐹  then it must be the case that
𝑔(𝑥) ≠ 0.
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Exercise 4.3.13. Let 𝑓 be a function defined on all of 𝐑 that satisfies the additive
condition 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) for all 𝑥, 𝑦 ∈ 𝐑.

(a) Show that 𝑓(0) = 0 and that 𝑓(−𝑥) = −𝑓(𝑥) for all 𝑥 ∈ 𝐑.

(b) Let 𝑘 = 𝑓(1). Show that 𝑓(𝑛) = 𝑘𝑛 for all 𝑛 ∈ 𝐍, and then prove that 𝑓(𝑧) = 𝑘𝑧
for all 𝑧 ∈ 𝐙. Now, prove that 𝑓(𝑟) = 𝑘𝑟 for any rational number 𝑟.

(c) Show that if 𝑓 is continuous at 𝑥 = 0, then 𝑓 is continuous at every point in 𝐑
and conclude that 𝑓(𝑥) = 𝑘𝑥 for all 𝑥 ∈ 𝐑. Thus, any additive function that is
continuous at 𝑥 = 0 must necessarily be a linear function through the origin.

Solution.

(a) We have 𝑓(0) = 𝑓(0 + 0) = 𝑓(0) + 𝑓(0) and thus 𝑓(0) = 0. Furthermore, for any 𝑥 ∈ 𝐑,

0 = 𝑓(0) = 𝑓(𝑥 − 𝑥) = 𝑓(𝑥) + 𝑓(−𝑥) ⇒ 𝑓(−𝑥) = −𝑓(𝑥).

(b) We will show that 𝑓(𝑛) = 𝑘𝑛 for all 𝑛 ∈ 𝐍 by induction on 𝑛. The base case is clear,
so suppose that 𝑓(𝑛) = 𝑘𝑛 for some 𝑛 ∈ 𝐍 and observe that

𝑓(𝑛 + 1) = 𝑓(𝑛) + 𝑓(1) = 𝑘𝑛 + 𝑘 = 𝑘(𝑛 + 1).

This completes the induction step and the proof.

Combining the identity 𝑓(𝑛) = 𝑘𝑛 with 𝑓(−𝑥) = −𝑓(𝑥) from part (a) shows that 
𝑓(𝑧) = 𝑘𝑧 for all 𝑧 ∈ 𝐙.

Now suppose that 𝑟 = 𝑚
𝑛  is a rational number. On one hand, using what we just proved,

𝑓(𝑛 ⋅ 𝑚
𝑛 ) = 𝑓(𝑚) = 𝑘𝑚.

On the other hand, using the additivity of 𝑓 ,

𝑓(𝑛 ⋅ 𝑚
𝑛 ) = 𝑓(∑

𝑛

𝑗=1

𝑚
𝑛 ) = ∑

𝑛

𝑗=1
𝑓(𝑚

𝑛 ) = 𝑛𝑓(𝑚
𝑛 ).

Thus 𝑛𝑓(𝑚
𝑛 ) = 𝑘𝑚, i.e. 𝑓(𝑟) = 𝑘𝑟.

(c) Let 𝑐 ∈ 𝐑 be given and suppose (𝑥𝑛) is a sequence satisfying lim𝑛→∞ 𝑥𝑛 = 𝑐. Since 
lim𝑛→∞(𝑥𝑛 − 𝑐) = 0 and 𝑓 is continuous at 0, we must have

lim
𝑛→∞

𝑓(𝑥𝑛 − 𝑐) = 𝑓(0) = 0.

The additivity of 𝑓 shows that 𝑓(𝑥𝑛 − 𝑐) = 𝑓(𝑥𝑛) − 𝑓(𝑐) for each 𝑛 ∈ 𝐍. It follows that

0 = lim
𝑛→∞

𝑓(𝑥𝑛 − 𝑐) = lim
𝑛→∞

(𝑓(𝑥𝑛) − 𝑓(𝑐)) = ( lim
𝑛→∞

𝑓(𝑥𝑛)) − 𝑓(𝑐),

which implies lim𝑛→∞ 𝑓(𝑥𝑛) = 𝑓(𝑐). Thus 𝑓 is continuous at each 𝑐 ∈ 𝐑.
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By Theorem 4.3.4, the function 𝑓(𝑥) − 𝑘𝑥 is continuous on all of 𝐑 and, by part (b),
satisfies 𝑓(𝑟) − 𝑘𝑟 = 0 for each 𝑟 ∈ 𝐐. Exercise 4.3.8 (b) allows us to conclude that 
𝑓(𝑥) − 𝑘𝑥 = 0, i.e. 𝑓(𝑥) = 𝑘𝑥, for all 𝑥 ∈ 𝐑.

Exercise 4.3.14.

(a) Let 𝐹  be a closed set. Construct a function 𝑓 : 𝐑 → 𝐑 such that the set of points
where 𝑓 fails to be continuous is precisely 𝐹 . (The concept of the interior of a set,
discussed in Exercise 3.2.14, may be useful.)

(b) Now consider an open set 𝑂. Construct a function 𝑔 : 𝐑 → 𝐑 whose set of discon-
tinuous points is precisely 𝑂. (For this problem, the function in Exercise 4.3.12
may be useful.)

Solution.

(a) Define 𝑓 : 𝐑 → 𝐑 by

𝑓(𝑥) =

⎩{
⎨
{⎧1 if 𝑥 ∈ 𝐐 ∩ 𝐹,

−1 if 𝑥 ∈ 𝐈 ∩ 𝐹 ,
0 if 𝑥 ∉ 𝐹 .

If 𝑥 ∉ 𝐹  then 𝑥 belongs to the open set 𝐹 c and so there exists a 𝛿 > 0 such that
(𝑥 − 𝛿, 𝑥 + 𝛿) ∩ 𝐹 c. Notice that 𝑓 vanishes on this proper open interval; it follows that
𝑓 is continuous at 𝑥.

Suppose 𝑥 ∈ 𝐐 ∩ 𝐹  and let 𝛿 > 0 be given. We consider two cases.

Case 1. If (𝑥 − 𝛿, 𝑥 + 𝛿) ⊆ 𝐹  then let 𝑦 be an irrational in (𝑥 − 𝛿, 𝑥 + 𝛿) and observe
that

𝑓(𝑦) = −1 ∉ (0, 2) = (𝑓(𝑥) − 1, 𝑓(𝑥) + 1).

Case 2. If (𝑥 − 𝛿, 𝑥 + 𝛿) ⊈ 𝐹  then let 𝑦 ∈ (𝑥 − 𝛿, 𝑥 + 𝛿) be such that 𝑦 ∉ 𝐹 . It follows
that

𝑓(𝑦) = 0 ∉ (0, 2) = (𝑓(𝑥) − 1, 𝑓(𝑥) + 1).

In either case we can find some 𝑦 ∈ 𝑉𝛿(𝑥) such that 𝑓(𝑦) ∉ 𝑉1(𝑓(𝑥)) and it follows that
𝑓 is not continuous at 𝑥. A similar argument shows that 𝑓 is not continuous at any
𝑥 ∈ 𝐈 ∩ 𝐹  either. We may conclude that the set of points where 𝑓 fails to be continuous
is precisely 𝐹 .

(b) Let 𝑑 : 𝐑 → 𝐑 be Dirichlet’s function and let ℎ : 𝐑 → 𝐑 be the function given by

ℎ(𝑥) = inf{|𝑥 − 𝑎| : 𝑎 ∈ 𝑂c}.

In Exercise 4.3.12 we showed that ℎ is continuous everywhere. Furthermore, since 𝑂c

is closed, Exercise 4.3.12 also shows that ℎ satisfies ℎ(𝑥) > 0 for all 𝑥 ∈ 𝑂 and ℎ(𝑥) = 0
for all 𝑥 ∉ 𝑂. Define 𝑔 : 𝐑 → 𝐑 by 𝑔(𝑥) = 𝑑(𝑥)ℎ(𝑥) and suppose that 𝑥 ∈ 𝑂. Since
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ℎ(𝑥) > 0 and ℎ is continuous at 𝑥, Exercise 4.3.8 (c) shows that there is some 𝛿 > 0
such that ℎ is strictly positive on the interval 𝐼 = (𝑥 − 𝛿, 𝑥 + 𝛿). It follows that for all
𝑡 ∈ 𝐼 we have 𝑑(𝑡) = 𝑔(𝑡)

ℎ(𝑡) . If 𝑔 were continuous at 𝑥 then Theorem 4.3.4 would imply
that 𝑑 is continuous at 𝑥; since Dirichlet’s function is nowhere-continuous, it must be
the case that 𝑔 is not continuous at 𝑥. Thus 𝑔 is discontinuous on 𝑂.

Now suppose that 𝑥 ∉ 𝑂, so that ℎ(𝑥) = 0 and thus 𝑔(𝑥) = 0. For any 𝑦 ∈ 𝐑 we then
have

|𝑔(𝑦) − 𝑔(𝑥)| = |𝑔(𝑦)| = |𝑑(𝑦)||ℎ(𝑦)| ≤ |ℎ(𝑦)|.

Since ℎ is continuous at 𝑥 and ℎ(𝑥) = 0, for any 𝜀 > 0 there exists a 𝛿 > 0 such that

|𝑦 − 𝑥| < 𝛿 ⇒ |ℎ(𝑦)| < 𝜀.

It follows that |𝑔(𝑦)| < 𝜀 for such 𝑦 and thus 𝑔 is continuous at 𝑥. We may conclude
that the set of points where 𝑔 fails to be continuous is precisely 𝑂.
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4.4. Continuous Functions on Compact Sets

Exercise 4.4.1.

(a) Show that 𝑓(𝑥) = 𝑥3 is continuous on all of 𝐑.

(b) Argue, using Theorem 4.4.5, that 𝑓 is not uniformly continuous on 𝐑.

(c) Show that 𝑓 is uniformly continuous on any bounded subset of 𝐑.

Solution.

(a) As Example 4.3.5 shows, any polynomial is continuous on all of 𝐑.

(b) Define sequences (𝑥𝑛) and (𝑦𝑛) by 𝑥𝑛 = 𝑛 + 1
𝑛  and 𝑦𝑛 = 𝑛 and observe that

|𝑥𝑛 − 𝑦𝑛| =
1
𝑛

→ 0 and |𝑓(𝑥𝑛) − 𝑓(𝑦𝑛)| = 3𝑛 +
3
𝑛

+
1
𝑛3 > 3.

Theorem 4.4.5 allows us to conclude that 𝑓 is not uniformly continuous on 𝐑.

(c) Suppose that 𝐴 ⊆ 𝐑 is a bounded subset of 𝐑, so that there is some 𝑀 > 0 such that
𝐴 ⊆ [−𝑀, 𝑀]. For any 𝑥, 𝑦 ∈ 𝐴, it follows that

|𝑥2 + 𝑥𝑦 + 𝑦2| ≤ |𝑥|2 + |𝑥||𝑦| + |𝑦2| ≤ 3𝑀2.

Let 𝜀 > 0 be given and let 𝛿 = (3𝑀2)−1𝜀. For any 𝑥, 𝑦 ∈ 𝐴 such that |𝑥 − 𝑦| < 𝛿, we
then have

|𝑥3 − 𝑦3| = |𝑥 − 𝑦||𝑥2 + 𝑥𝑦 + 𝑦2| < 3𝑀2𝛿 = 𝜀.

Thus 𝑓 is uniformly continuous on 𝐴.

Exercise 4.4.2.

(a) Is 𝑓(𝑥) = 1/𝑥 uniformly continuous on (0, 1)?

(b) Is 𝑔(𝑥) =
√

𝑥2 + 1 uniformly continuous on (0, 1)?

(c) Is ℎ(𝑥) = 𝑥 sin(1/𝑥) uniformly continuous on (0, 1)?

Solution.

(a) Define sequences (𝑥𝑛) and (𝑦𝑛) by 𝑥𝑛 = 1
𝑛  and 𝑦𝑛 = 1

𝑛+1 . Observe that

|𝑥𝑛 − 𝑦𝑛| =
1
𝑛

−
1

𝑛 + 1
→ 0 and |𝑓(𝑥𝑛) − 𝑓(𝑦𝑛)| = 1.

Theorem 4.4.5 allows us to conclude that 𝑓 is not uniformly continuous on 𝐑.

(b) If a function is uniformly continuous on some 𝐵 ⊆ 𝐑 then it is also uniformly continu-
ous on any subset 𝐴 ⊆ 𝐵. The function 𝑔(𝑥) =

√
𝑥2 + 1 is continuous on all of 𝐑, hence
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uniformly continuous on the compact set [0, 1] (Theorem 4.4.7), and hence uniformly
continuous on the subset (0, 1).

(c) Define ℎ : 𝐑 → 𝐑 by

ℎ(𝑥) = {𝑥 sin( 1
𝑥) if 𝑥 ≠ 0,

0 if 𝑥 = 0.

The continuity of ℎ away from the origin is clear. As shown in Example 4.3.6, ℎ is also
continuous at the origin and thus continuous on all of 𝐑. It follows that ℎ is uniformly
continuous on the compact set [0, 1] (Theorem 4.4.7) and hence uniformly continuous
on the subset (0, 1).

Exercise 4.4.3. Show that 𝑓(𝑥) = 1/𝑥2 is uniformly continuous on the set [1, ∞) but
not on the set (0, 1].

Solution. For any 𝑥, 𝑦 ∈ [1, ∞) we have

|
1
𝑥2 −

1
𝑦2 | = |

𝑦2 − 𝑥2

𝑥2𝑦2 | =
𝑥 + 𝑦
𝑥2𝑦2 |𝑥 − 𝑦| = (

1
𝑥𝑦2 +

1
𝑥2𝑦

)|𝑥 − 𝑦| ≤ 2|𝑥 − 𝑦|.

Let 𝜀 > 0 be given and let 𝛿 = 𝜀
2 . For any 𝑥, 𝑦 ∈ [1, ∞) such that |𝑥 − 𝑦| < 𝛿 we then have

|
1
𝑥2 −

1
𝑦2 | ≤ 2|𝑥 − 𝑦| < 2𝛿 = 𝜀.

Thus 𝑓 is uniformly continuous on [1, ∞).

Define the sequences (𝑥𝑛) and (𝑦𝑛) in (0, 1] by 𝑥𝑛 = 1√
𝑛  and 𝑦𝑛 = 1√

𝑛+1 . Observe that

|𝑥𝑛 − 𝑦𝑛| =
1

√
𝑛

−
1

√
𝑛 + 1

→ 0 and |𝑓(𝑥𝑛) − 𝑓(𝑦𝑛)| = 1.

It follows from Theorem 4.4.5 that 𝑓 is not uniformly continuous on (0, 1].

Exercise 4.4.4. Decide whether each of the following statements is true or false, justi-
fying each conclusion.

(a) If 𝑓 is continuous on [𝑎, 𝑏] with 𝑓(𝑥) > 0 for all 𝑎 ≤ 𝑥 ≤ 𝑏, then 1/𝑓 is bounded on
[𝑎, 𝑏] (meaning 1/𝑓 has bounded range).

(b) If 𝑓 is uniformly continuous on a bounded set 𝐴, then 𝑓(𝐴) is bounded.

(c) If 𝑓 is defined on 𝐑 and 𝑓(𝐾) is compact whenever 𝐾 is compact, then 𝑓 is con-
tinuous on 𝐑.

Solution.
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(a) This is true. Since 𝑓 is continuous on the compact set [𝑎, 𝑏], Theorem 4.4.2 implies that
there exist 𝑥0, 𝑥1 ∈ [𝑎, 𝑏] such that 𝑓(𝑥0) ≤ 𝑓(𝑥) ≤ 𝑓(𝑥1) for all 𝑥 ∈ [𝑎, 𝑏]. By assump-
tion we have 𝑓(𝑥0) > 0 and thus

0 < 𝑓(𝑥0) ≤ 𝑓(𝑥) ≤ 𝑓(𝑥1) ⇔ 0 <
1

𝑓(𝑥1)
≤

1
𝑓(𝑥)

≤
1

𝑓(𝑥0)

for all 𝑥 ∈ [𝑎, 𝑏], i.e. 1/𝑓 is bounded on [𝑎, 𝑏].

(b) This is true. Since 𝐴 is bounded, there is a 𝐾 > 0 such that 𝐴 ⊆ [−𝐾, 𝐾], and since 
𝑓 is uniformly continuous on 𝐴, there is a 𝛿 > 0 such that

𝑥, 𝑦 ∈ 𝐴 and |𝑥 − 𝑦| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑦)| < 1.

Let 𝑁 ∈ 𝐍 be such that 2𝐾
𝑁 < 𝛿 and for each 𝑗 ∈ {1, 2, …, 𝑁} define

𝐼𝑗 = [−𝐾 +
2𝐾(𝑗 − 1)

𝑁
, −𝐾 +

2𝐾𝑗
𝑁

],

so that 𝐼1 ∪ ⋯ ∪ 𝐼𝑁 = [−𝐾, 𝐾]. For 𝑗 ∈ {1, 2, …, 𝑁}, if 𝐼𝑗 ∩ 𝐴 ≠ ∅ then there exists some
𝑎𝑗 ∈ 𝐼𝑗 ∩ 𝐴. Let

𝑀 = max{1 + |𝑓(𝑎𝑗)| : 𝑗 ∈ {1, 2, …, 𝑁} and 𝐼𝑗 ∩ 𝐴 ≠ ∅};

we are justified by Lemma L.3 in taking the maximum of this set as it is finite and
must be non-empty, since if 𝐴 is non-empty (which we may as well assume) there must
be some 𝑗 such that 𝐼𝑗 ∩ 𝐴 ≠ ∅.

Suppose 𝑥 ∈ 𝐴. Since 𝐼1 ∪ ⋯ ∪ 𝐼𝑁 = [−𝐾, 𝐾] and 𝐴 ⊆ [−𝐾, 𝐾], there must be some 
𝑗 ∈ {1, 2, …, 𝑁} such that 𝑥 ∈ 𝐼𝑗 ∩ 𝐴. Because 𝑥, 𝑎𝑗 ∈ 𝐼𝑗 ∩ 𝐴 we then have

|𝑥 − 𝑎𝑗| ≤ |𝐼𝑗| =
2𝐾
𝑁

< 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑎𝑗)| < 1 ⇒ |𝑓(𝑥)| < 1 + |𝑓(𝑎𝑗)| ≤ 𝑀.

It follows that 𝑓(𝐴) ⊆ [−𝑀, 𝑀], i.e. 𝑓(𝐴) is bounded.

(c) This is false. Let 𝑓 : 𝐑 → 𝐑 be Dirichlet’s function, i.e.

𝑓(𝑥) = {
1 if 𝑥 ∈ 𝐐,
0 if 𝑥 ∉ 𝐐.

For any subset 𝐴 ⊆ 𝐑, the only possibilities for 𝑓(𝐴) are ∅, {0}, {1}, and {0, 1}; each
of these is compact. However, 𝑓 is nowhere-continuous.

Exercise 4.4.5. Assume that 𝑔 is defined on an open interval (𝑎, 𝑐) and it is known to
be uniformly continuous on (𝑎, 𝑏] and [𝑏, 𝑐), where 𝑎 < 𝑏 < 𝑐. Prove that 𝑔 is uniformly
continuous on (𝑎, 𝑐).

Solution. Let 𝜀 > 0 be given. There exist positive real numbers 𝛿1 and 𝛿2 such that
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𝑥, 𝑦 ∈ (𝑎, 𝑏] and |𝑥 − 𝑦| < 𝛿1 ⇒ |𝑔(𝑥) − 𝑔(𝑦)| < 𝜀
2 ,

𝑥, 𝑦 ∈ [𝑏, 𝑐) and |𝑥 − 𝑦| < 𝛿2 ⇒ |𝑔(𝑥) − 𝑔(𝑦)| < 𝜀
2 .

Let 𝛿 = min{𝛿1, 𝛿2} and suppose that 𝑥, 𝑦 ∈ (𝑎, 𝑐) are such that |𝑥 − 𝑦| < 𝛿. There are four
cases.

Case 1. If 𝑥, 𝑦 ∈ (𝑎, 𝑏], then since |𝑥 − 𝑦| < 𝛿 ≤ 𝛿1 we have |𝑔(𝑥) − 𝑔(𝑦)| < 𝜀
2 < 𝜀.

Case 2. If 𝑥, 𝑦 ∈ [𝑏, 𝑐), then since |𝑥 − 𝑦| < 𝛿 ≤ 𝛿2 we have |𝑔(𝑥) − 𝑔(𝑦)| < 𝜀
2 < 𝜀.

Case 3. If 𝑥 ∈ (𝑎, 𝑏] and 𝑦 ∈ [𝑏, 𝑐), then note that

|𝑥 − 𝑏| ≤ |𝑥 − 𝑦| < 𝛿 ≤ 𝛿1 ⇒ |𝑔(𝑥) − 𝑔(𝑏)| < 𝜀
2 ,

|𝑏 − 𝑦| ≤ |𝑥 − 𝑦| < 𝛿 ≤ 𝛿2 ⇒ |𝑔(𝑏) − 𝑔(𝑦)| < 𝜀
2 .

It follows that |𝑔(𝑥) − 𝑔(𝑦)| ≤ |𝑔(𝑥) − 𝑔(𝑏)| + |𝑔(𝑏) − 𝑔(𝑦)| < 𝜀
2 + 𝜀

2 = 𝜀.

Case 4. The case where 𝑥 ∈ [𝑏, 𝑐) and 𝑦 ∈ (𝑎, 𝑏] is handled similarly to Case 3.

In any case we have |𝑔(𝑥) − 𝑔(𝑦)| < 𝜀. Thus 𝑔 is uniformly continuous on (𝑎, 𝑐).

Exercise 4.4.6. Give an example of each of the following, or state that such a request
is impossible. For any that are impossible, supply a short explanation for why this is
the case.

(a) A continuous function 𝑓 : (0, 1) → 𝐑 and a Cauchy sequence (𝑥𝑛) such that 𝑓(𝑥𝑛)
is not a Cauchy sequence;

(b) A uniformly continuous function 𝑓 : (0, 1) → 𝐑 and a Cauchy sequence (𝑥𝑛) such
that 𝑓(𝑥𝑛) is not a Cauchy sequence;

(c) A continuous function 𝑓 : [0, ∞) → 𝐑 and a Cauchy sequence (𝑥𝑛) such that 𝑓(𝑥𝑛)
is not a Cauchy sequence.

Solution.

(a) Let 𝑓 : (0, 1) → 𝐑 be given by 𝑓(𝑥) = 1
𝑥  and consider the Cauchy sequence (𝑥𝑛) given

by 𝑥𝑛 = 1
𝑛+1 . Notice that 𝑓(𝑥𝑛) = 𝑛 + 1, which is not convergent and hence not Cauchy.

(b) This is impossible, as we will show in Exercise 4.4.13 (a).

(c) This is impossible. Let 𝑓 : [0, ∞) → 𝐑 be continuous and let (𝑥𝑛) be a Cauchy sequence
contained in [0, ∞); by Theorem 2.6.4 we must have lim𝑛→∞ 𝑥𝑛 = 𝑥 for some 𝑥 ∈ 𝐑.
Since [0, ∞) is a closed set we must have 𝑥 ∈ [0, ∞), and because 𝑓 is continuous at 𝑥 it
follows that lim𝑛→∞ 𝑓(𝑥𝑛) = 𝑓(𝑥). Thus (𝑓(𝑥𝑛)) is a Cauchy sequence (Theorem 2.6.4).

Exercise 4.4.7. Prove that 𝑓(𝑥) =
√

𝑥 is uniformly continuous on [0, ∞).
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Solution. Note that 𝑓 is continuous on the compact set [0, 1] and hence is uniformly con-
tinuous on [0, 1] (Theorem 4.4.7). Note further that for any 𝑥, 𝑦 ∈ [1, ∞) we have

|
√

𝑥 − √𝑦| =
|𝑥 − 𝑦|

√
𝑥 + √𝑦

≤ 1
2 |𝑥 − 𝑦|.

It is now straightforward to show that 𝑓 is uniformly continuous on [1, ∞) (see, for example,
Exercise 4.4.9). By an argument analogous to the one given in Exercise 4.4.5, we may now
conclude that 𝑓 is uniformly continuous on [0, ∞).

Exercise 4.4.8. Give an example of each of the following, or provide a short argument
for why the request is impossible.

(a) A continuous function defined on [0, 1] with range (0, 1).

(b) A continuous function defined on (0, 1) with range [0, 1].

(c) A continuous function defined on (0, 1] with range (0, 1).

Solution.

(a) This is impossible. If 𝑓 : [0, 1] → 𝐑 is continuous then since [0, 1] is compact, the image
of 𝑓 must be compact (Theorem 4.4.1). However, (0, 1) is not compact.

(b) Consider 𝑓 : (0, 1) → 𝐑 given by 𝑓(𝑥) = 1
2 sin(2𝜋𝑥) + 1

2 , which has range equal to [0, 1].

0

1
2

1

0 1
2 1

𝑓(𝑥) = 1
2 sin(2𝜋𝑥) + 1

2

(c) Consider 𝑓 : (0, 1] → 𝐑 given by 𝑓(𝑥) = 1
2(1 − 𝑥) sin( 1

𝑥) + 1
2 , which has range equal to

(0, 1).
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0

1
2

1

0 1
2 1

𝑓(𝑥) = 1
2(1 − 𝑥) sin( 1

𝑥) + 1
2

Exercise 4.4.9 (Lipschitz Functions). A function 𝑓 : 𝐴 → 𝐑 is called Lipschitz if
there exists a bound 𝑀 > 0 such that

|
𝑓(𝑥) − 𝑓(𝑦)

𝑥 − 𝑦
| ≤ 𝑀

for all 𝑥 ≠ 𝑦 ∈ 𝐴. Geometrically speaking, a function 𝑓 is Lipschitz if there is a uniform
bound on the magnitude of the slopes of lines drawn through any two points on the
graph of 𝑓 .

(a) Show that if 𝑓 : 𝐴 → 𝐑 is Lipschitz, then it is uniformly continuous on 𝐴.

(b) Is the converse statement true? Are all uniformly continuous functions necessarily
Lipschitz?

Solution.

(a) Since 𝑓 is Lipschitz, there is an 𝑀 > 0 such that

|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑀|𝑥 − 𝑦|

for all 𝑥, 𝑦 ∈ 𝐴. Let 𝜀 > 0 be given and let 𝛿 = 𝜀
𝑀 . For any 𝑥, 𝑦 ∈ 𝐴 satisfying |𝑥 − 𝑦| < 𝛿,

we then have

|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑀|𝑥 − 𝑦| < 𝑀𝛿 = 𝜀.

Thus 𝑓 is uniformly continuous on 𝐴.

(b) The converse statement is not true. Consider 𝑓 : [0, ∞) → 𝐑 given by 𝑓(𝑥) =
√

𝑥. As
we showed in Exercise 4.4.7, this function is uniformly continuous on [0, ∞). However,
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we claim that 𝑓 is not Lipschitz on [0, ∞). To show this, for each 𝑀 > 0 we need to
find some 𝑥 ≠ 𝑦 ∈ [0, ∞) such that

|
𝑓(𝑥) − 𝑓(𝑦)

𝑥 − 𝑦
| > 𝑀.

Given 𝑀 > 0, let 𝑥 = 1
4𝑀2  and 𝑦 = 0 and observe that

|
𝑓(𝑥) − 𝑓(𝑦)

𝑥 − 𝑦
| = |

1
2𝑀
1

4𝑀2

| = 2𝑀 > 𝑀.

Thus 𝑓 is not Lipschitz on [0, ∞).

Exercise 4.4.10. Assume that 𝑓 and 𝑔 are uniformly continuous functions defined on
a common domain 𝐴. Which of the following combinations are necessarily uniformly
continuous on 𝐴:

𝑓(𝑥) + 𝑔(𝑥), 𝑓(𝑥)𝑔(𝑥),
𝑓(𝑥)
𝑔(𝑥)

, 𝑓(𝑔(𝑥)) ?

(Assume that the quotient and the composition are properly defined and thus at least
continuous.)

Solution. We claim that 𝑓 + 𝑔 is uniformly continuous on 𝐴. To see this, let 𝜀 > 0 be given.
There exist 𝛿1, 𝛿2 > 0 such that

𝑥, 𝑦 ∈ 𝐴 and |𝑥 − 𝑦| < 𝛿1 ⇒ |𝑓(𝑥) − 𝑓(𝑦)| < 𝜀
2 ,

𝑥, 𝑦 ∈ 𝐴 and |𝑥 − 𝑦| < 𝛿2 ⇒ |𝑔(𝑥) − 𝑔(𝑦)| < 𝜀
2 .

Let 𝛿 = min{𝛿1, 𝛿2} and observe that for any 𝑥, 𝑦 ∈ 𝐴 satisfying |𝑥 − 𝑦| < 𝛿 we have

|𝑓(𝑥) + 𝑔(𝑥) − 𝑓(𝑦) − 𝑔(𝑦)| ≤ |𝑓(𝑥) − 𝑓(𝑦)| + |𝑔(𝑥) − 𝑔(𝑦)| < 𝜀
2 + 𝜀

2 = 𝜀.

Thus 𝑓 + 𝑔 is uniformly continuous on 𝐴.

The product 𝑓𝑔 need not be uniformly continuous. For a counterexample, consider
𝑓, 𝑔 : 𝐑 → 𝐑 given by 𝑓(𝑥) = 𝑔(𝑥) = 𝑥. These functions are clearly Lipschitz and hence uni-
formly continuous on all of 𝐑 (Exercise 4.4.9). However, the product 𝑓(𝑥)𝑔(𝑥) = 𝑥2 is not
uniformly continuous on 𝐑 this can be seen using the same sequences as in Exercise 4.4.1
(b) and appealing to Theorem 4.4.5.

The quotient 𝑓/𝑔 need not be uniformly continuous. For a counterexample, consider
𝑓, 𝑔 : (0, 1] → 𝐑 given by 𝑓(𝑥) = 1 and 𝑔(𝑥) = 𝑥. Both are uniformly continuous, but the
quotient 𝑓(𝑥)/𝑔(𝑥) = 1/𝑥 is not (Exercise 4.4.2 (a)).

Suppose that 𝑔(𝐴) ⊆ 𝐴, so that the composition 𝑓 ∘ 𝑔 : 𝐴 → 𝐑 is well-defined. We claim
that this composition is uniformly continuous. To see this, let 𝜀 > 0 be given. There exists a
𝛿2 > 0 such that

183 / 415



𝑠, 𝑡 ∈ 𝐴 and |𝑠 − 𝑡| < 𝛿2 ⇒ |𝑓(𝑠) − 𝑓(𝑡)| < 𝜀.

There then exists a 𝛿1 > 0 such that

𝑥, 𝑦 ∈ 𝐴 and |𝑥 − 𝑦| < 𝛿1 ⇒ |𝑔(𝑥) − 𝑔(𝑦)| < 𝛿2.

By assumption, 𝑥, 𝑦 ∈ 𝐴 implies 𝑔(𝑥), 𝑔(𝑦) ∈ 𝐴. Thus

𝑥, 𝑦 ∈ 𝐴 and |𝑥 − 𝑦| < 𝛿1 ⇒ 𝑔(𝑥), 𝑔(𝑦) ∈ 𝐴 and |𝑔(𝑥) − 𝑔(𝑦)| < 𝛿2

⇒ |𝑓(𝑔(𝑥)) − 𝑓(𝑔(𝑦))| < 𝜀.

It follows that 𝑓 ∘ 𝑔 is uniformly continuous on 𝐴.

Exercise 4.4.11 (Topological Characterization of Continuity). Let 𝑔 be defined
on all of 𝐑. If 𝐵 is a subset of 𝐑, define the set 𝑔−1(𝐵) by

𝑔−1(𝐵) = {𝑥 ∈ 𝐑 : 𝑔(𝑥) ∈ 𝐵}.

Show that 𝑔 is continuous if and only if 𝑔−1(𝑂) is open whenever 𝑂 ⊆ 𝐑 is an open set.

Solution. Suppose 𝑔 is continuous and 𝑂 ⊆ 𝐑 is an open set. Fix 𝑐 ∈ 𝑔−1(𝑂), so that
𝑔(𝑐) ∈ 𝑂. Since 𝑂 is open there exists an 𝜀 > 0 such that 𝑉𝜀(𝑔(𝑐)) ⊆ 𝑂, and since 𝑔 is con-
tinuous at 𝑐 there is a 𝛿 > 0 such that 𝑥 ∈ 𝑉𝛿(𝑐) implies 𝑔(𝑥) ∈ 𝑉𝜀(𝑔(𝑐)) ⊆ 𝑂 (Theorem 4.3.2
(ii)). In other words, any 𝑥 ∈ 𝑉𝛿(𝑐) also belongs to 𝑔−1(𝑂), so that 𝑉𝛿(𝑐) ⊆ 𝑔−1(𝑂). It follows
that 𝑔−1(𝑂) is an open set.

Now suppose that 𝑔−1(𝑂) is open whenever 𝑂 ⊆ 𝐑 is an open set. Fix 𝑐 ∈ 𝐑 and let 𝜀 > 0 be
given. The set 𝑉𝜀(𝑔(𝑐)) is open, so by assumption the set 𝑔−1[𝑉𝜀(𝑔(𝑐))] is also open. Certainly
we have 𝑐 ∈ 𝑔−1[𝑉𝜀(𝑔(𝑐))], so there exists a 𝛿 > 0 such that 𝑉𝛿(𝑐) ⊆ 𝑔−1[𝑉𝜀(𝑔(𝑐))]. It follows
that if 𝑥 ∈ 𝑉𝛿(𝑐) then 𝑔(𝑥) ∈ 𝑉𝜀(𝑔(𝑐)); Theorem 4.3.2 (ii) allows us to conclude that 𝑔 is
continuous at each 𝑐 ∈ 𝐑.

Exercise 4.4.12. Review Exercise 4.4.11, and then determine which of the following
statements is true about a continuous function defined on 𝐑:

(a) 𝑓−1(𝐵) is finite whenever 𝐵 is finite.

(b) 𝑓−1(𝐾) is compact whenever 𝐾 is compact.

(c) 𝑓−1(𝐴) is bounded whenever 𝐴 is bounded.

(d) 𝑓−1(𝐹) is closed whenever 𝐹  is closed.

Solution.

(a) This is false. Consider the function 𝑓 : 𝐑 → 𝐑 given by 𝑓(𝑥) = 0, which satisfies 
𝑓−1({0}) = 𝐑.

(b) This is false; see part (a) for a counterexample.

(c) This is false; see part (a) for a counterexample.
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(d) This is true. If 𝐹  is closed then 𝐹 c is open. Since 𝑓 is continuous, it follows from
Exercise 4.4.11 that 𝑓−1(𝐹 c) is open and thus (𝑓−1(𝐹 c))c is closed. This set is nothing
but 𝑓−1(𝐹):

𝑥 ∈ (𝑓−1(𝐹 c))c ⇔ 𝑥 ∉ 𝑓−1(𝐹 c) ⇔ 𝑓(𝑥) ∉ 𝐹 c ⇔ 𝑓(𝑥) ∈ 𝐹 ⇔ 𝑥 ∈ 𝑓−1(𝐹).

Exercise 4.4.13 (Continuous Extension Theorem).

(a) Show that a uniformly continuous function preserves Cauchy sequences; that is, if
𝑓 : 𝐴 → 𝐑 is uniformly continuous and (𝑥𝑛) ⊆ 𝐴 is a Cauchy sequence, then show
that 𝑓(𝑥𝑛) is a Cauchy sequence.

(b) Let 𝑔 be a continuous function on the open interval (𝑎, 𝑏). Prove that 𝑔 is uniformly
continuous on (𝑎, 𝑏) if and only if it is possible to define values 𝑔(𝑎) and 𝑔(𝑏) at the
endpoints so that the extended function 𝑔 is continuous on [𝑎, 𝑏]. (In the forward
direction, first produce candidates for 𝑔(𝑎) and 𝑔(𝑏), and then show the extended
𝑔 is continuous.)

Solution.

(a) Let 𝜀 > 0 be given. Since 𝑓 is uniformly continuous, there is a 𝛿 > 0 such that for any
𝑥, 𝑦 ∈ 𝐴 satisfying |𝑥 − 𝑦| < 𝛿, we have |𝑓(𝑥) − 𝑓(𝑦)| < 𝜀. Since (𝑥𝑛) ⊆ 𝐴 is a Cauchy
sequence, there is an 𝑁 ∈ 𝐍 such that for all 𝑛 > 𝑚 ≥ 𝑁  we have |𝑥𝑛 − 𝑥𝑚| < 𝛿, which
implies that |𝑓(𝑥𝑛) − 𝑓(𝑥𝑚)| < 𝜀. Thus (𝑓(𝑥𝑛)) is also a Cauchy sequence.

(b) Suppose that 𝑔 is uniformly continuous on (𝑎, 𝑏). Define a sequence 𝑎𝑛 = 𝑎 + 𝑏−𝑎
2𝑛 , so

that (𝑎𝑛) is contained in (𝑎, 𝑏) and satisfies lim𝑛→∞ 𝑎𝑛 = 𝑎. Because (𝑎𝑛) is Cauchy,
part (a) implies that the sequence (𝑔(𝑎𝑛)) is also Cauchy and hence convergent, say 
lim𝑛→∞ 𝑔(𝑎𝑛) = 𝑦 ∈ 𝐑. Define 𝑔(𝑎) = 𝑦.

We claim that this extended 𝑔 is continuous at 𝑎. Let (𝑥𝑛) be a sequence contained in
(𝑎, 𝑏) such that lim𝑛→∞ 𝑥𝑛 = 𝑎 and let 𝜀 > 0 be given. Since 𝑔 is uniformly continuous
on (𝑎, 𝑏), there is a 𝛿 > 0 such that for any 𝑥, 𝑦 ∈ (𝑎, 𝑏) satisfying |𝑥 − 𝑦| < 𝛿 we have 
|𝑔(𝑥) − 𝑔(𝑦)| < 𝜀. Note that lim𝑛→∞|𝑥𝑛 − 𝑎𝑛| = 0 since both (𝑥𝑛) and (𝑎𝑛) converge
to 𝑎. It follows that there exists an 𝑁 ∈ 𝐍 such that |𝑥𝑛 − 𝑎𝑛| < 𝛿 whenever 𝑛 ≥ 𝑁 ,
which implies |𝑔(𝑥𝑛) − 𝑔(𝑎𝑛)| < 𝜀. Thus lim𝑛→∞|𝑔(𝑥𝑛) − 𝑔(𝑎𝑛)| = 0. Combining this
with lim𝑛→∞ 𝑔(𝑎𝑛) = 𝑔(𝑎), we see that lim𝑛→∞ 𝑔(𝑥𝑛) = 𝑔(𝑎) also. Hence 𝑔 is continuous
at 𝑎.

An analogous argument shows that we can also continuously extend 𝑔 to be defined at
𝑏 by considering the sequence 𝑏𝑛 = 𝑏 − 𝑏−𝑎

2𝑛 .

For the converse implication, we apply Theorem 4.4.7 to see that 𝑔 is uniformly con-
tinuous on the compact set [𝑎, 𝑏] and hence uniformly continuous on the subset (𝑎, 𝑏).
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Exercise 4.4.14. Construct an alternate proof of Theorem 4.4.7 using the open cover
characterization of compactness from the Heine-Borel Theorem (Theorem 3.3.8 (iii)).

Solution. Suppose 𝑓 : 𝐾 → 𝐑 is continuous, where 𝐾 is compact. Let 𝜀 > 0 be given. Since
𝑓 is continuous on 𝐾, for each 𝑡 ∈ 𝐾 there exists a 𝛿𝑡 > 0 such that

𝑥 ∈ 𝐾 and |𝑥 − 𝑡| < 𝛿𝑡 ⇒ |𝑓(𝑥) − 𝑓(𝑡)| < 𝜀
2 .

Observe that the collection {𝑉𝛿𝑡/2(𝑡) : 𝑡 ∈ 𝐾} forms an open cover of 𝐾. Because 𝐾 is com-
pact there must exist a finite subcover {𝑉𝛿𝑡1/2(𝑡1), …, 𝑉𝛿𝑡𝑛/2(𝑡𝑛)}. Let 𝛿 = min{𝛿𝑡1 , …, 𝛿𝑡𝑛}
and suppose that 𝑥, 𝑦 ∈ 𝐾 are such that |𝑥 − 𝑦| < 𝛿

2 . There is a 𝑗 ∈ {1, …, 𝑛} such that
𝑥 ∈ 𝑉𝛿𝑡𝑗/2(𝑡𝑗), so that |𝑥 − 𝑡𝑗| < 𝛿𝑡𝑗/2 < 𝛿𝑡𝑗 and thus |𝑓(𝑥) − 𝑓(𝑡𝑗)| < 𝜀

2 . Note that

|𝑦 − 𝑡𝑗| ≤ |𝑥 − 𝑦| + |𝑥 − 𝑡𝑗| <
𝛿
2

+
𝛿𝑡𝑗

2
≤

𝛿𝑡𝑗

2
+

𝛿𝑡𝑗

2
= 𝛿𝑡𝑗 .

It follows that |𝑓(𝑦) − 𝑓(𝑡𝑗)| < 𝜀
2  and hence that

|𝑓(𝑥) − 𝑓(𝑦)| ≤ |𝑓(𝑥) − 𝑓(𝑡𝑗)| + |𝑓(𝑦) − 𝑓(𝑡𝑗)| < 𝜀
2 + 𝜀

2 = 𝜀.

Thus 𝑓 is uniformly continuous on 𝐾.
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4.5. The Intermediate Value Theorem

Exercise 4.5.1. Show how the Intermediate Value Theorem follows as a corollary to
Theorem 4.5.2.

Solution. Let 𝑓 : [𝑎, 𝑏] → 𝐑 be continuous and let 𝐿 ∈ 𝐑 be such that either 𝑓(𝑎) < 𝐿 < 𝑓(𝑏)
or 𝑓(𝑏) < 𝐿 < 𝑓(𝑎); our aim is to show that there exists 𝑐 ∈ (𝑎, 𝑏) such that 𝑓(𝑐) = 𝐿. The-
orem 3.4.7 shows that [𝑎, 𝑏] is connected and hence, by Theorem 4.5.2, the image 𝑓([𝑎, 𝑏]) is
also connected. Certainly 𝑓(𝑎), 𝑓(𝑏) ∈ 𝑓([𝑎, 𝑏]), so Theorem 3.4.7 implies that 𝐿 ∈ 𝑓([𝑎, 𝑏]),
i.e. there exists 𝑐 ∈ [𝑎, 𝑏] such that 𝑓(𝑐) = 𝐿. In fact, because 𝑓(𝑎) ≠ 𝐿 and 𝑓(𝑏) ≠ 𝐿, we
have 𝑐 ∈ (𝑎, 𝑏).

Exercise 4.5.2. Provide an example of each of the following, or explain why the request
is impossible.

(a) A continuous function defined on an open interval with range equal to a closed
interval.

(b) A continuous function defined on a closed interval with range equal to an open
interval.

(c) A continuous function defined on an open interval with range equal to an un-
bounded closed set different from 𝐑.

(d) A continuous function defined on all of 𝐑 with range equal to 𝐐.

Solution. (I am not sure if Abbott allows unbounded intervals here.)

(a) If we allow unbounded intervals then 𝑓 : 𝐑 → 𝐑 given by 𝑓(𝑥) = 𝑥 is an example of
such a function. For bounded intervals, see Exercise 4.4.8 (b) for an example of such a
function.

(b) If we allow unbounded intervals then 𝑓 : 𝐑 → 𝐑 given by 𝑓(𝑥) = 𝑥 is an example of
such a function. If we do not allow unbounded intervals then such a function cannot
exist by Theorem 4.4.1 (Preservation of Compact Sets), since a bounded open interval
is not closed.

(c) If we allow unbounded intervals, then 𝑓 : 𝐑 → 𝐑 given by 𝑓(𝑥) = max{0, 𝑥} is an ex-
ample of such a function; the image of 𝑓 is [0, ∞). For bounded intervals, consider the
function 𝑓 : (0, 2) → 𝐑 given by 𝑓(𝑥) = 1

𝑥(2−𝑥) ; the image of 𝑓 is [1, ∞).

(d) This is impossible. 𝐑 is connected (Theorem 3.4.7) and so its image under a continuous
function must also be connected (Theorem 4.5.2), but 𝐐 is not connected (Theorem
3.4.7).
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Exercise 4.5.3. A function 𝑓 is increasing on 𝐴 if 𝑓(𝑥) ≤ 𝑓(𝑦) for all 𝑥 < 𝑦 in 𝐴. Show
that if 𝑓 is increasing on [𝑎, 𝑏] and satisfies the intermediate value property (Definition
4.5.3), then 𝑓 is continuous on [𝑎, 𝑏].

Solution. First, let us prove the following lemma.

Lemma L.12. Suppose 𝑎 < 𝑏 and 𝑓 : [𝑎, 𝑏] → 𝐑 is increasing.

(i) If 𝑐 ∈ (𝑎, 𝑏] then

lim
𝑥→𝑐−

𝑓(𝑥) = sup{𝑓(𝑥) : 𝑎 < 𝑥 < 𝑐}.

(ii) If 𝑐 ∈ [𝑎, 𝑏) then

lim
𝑥→𝑐+

𝑓(𝑥) = inf{𝑓(𝑥) : 𝑐 < 𝑥 < 𝑏}.

Proof. We will prove (i); the proof of (ii) is similar. Note that since 𝑓 is increasing,
we have 𝑓([𝑎, 𝑏]) ⊆ [𝑓(𝑎), 𝑓(𝑏)]; it follows that {𝑓(𝑥) : 𝑎 < 𝑥 < 𝑐} is bounded and non-
empty, so 𝑠 ≔ sup{𝑓(𝑥) : 𝑎 < 𝑥 < 𝑐} exists. Let 𝜀 > 0 be given. By Lemma 1.3.8 there
exists a 𝑦 ∈ (𝑎, 𝑐) such that 𝑠 − 𝜀 < 𝑓(𝑦) ≤ 𝑠. Because 𝑓 is increasing, it follows that

𝑥 ∈ (𝑦, 𝑐) ⇒ 𝑠 − 𝜀 < 𝑓(𝑦) ≤ 𝑓(𝑥) ≤ 𝑠.

In other words, letting 𝛿 = 𝑐 − 𝑦, for any 𝑥 satisfying 𝑐 − 𝛿 < 𝑥 < 𝑐 it follows that
|𝑓(𝑥) − 𝑠| < 𝜀. Thus lim𝑥→𝑐− 𝑓(𝑥) = 𝑠. □

Returning to the exercise, we will now prove the contrapositive statement: if 𝑓 is increasing
and not continuous on [𝑎, 𝑏], then 𝑓 does not satisfy the intermediate value property. Suppose
therefore that 𝑓 is not continuous at some 𝑐 ∈ [𝑎, 𝑏], i.e. suppose that lim𝑥→𝑐 𝑓(𝑥) ≠ 𝑓(𝑐)
(Theorem 4.3.2 (iv)).

Case 1. Suppose 𝑐 ∈ (𝑎, 𝑏). Since 𝑓 is increasing on [𝑎, 𝑏], Lemma L.12 implies that both of
the one-sided limits exist:

𝛼 ≔ lim
𝑥→𝑐−

𝑓(𝑥) = sup{𝑓(𝑥) : 𝑎 < 𝑥 < 𝑐},

𝛽 ≔ lim
𝑥→𝑐+

𝑓(𝑥) = inf{𝑓(𝑥) : 𝑐 < 𝑥 < 𝑏}.

By Exercise 4.2.10 (b), it must be the case that at least one of these limits is not equal
to 𝑓(𝑐). Because 𝑓 is increasing, we must then have 𝛼 < 𝛽; it follows that the infinite set 
(𝛼, 𝛽) ∖ {𝑓(𝑐)}, which is contained in [𝑓(𝑎), 𝑓(𝑏)], does not intersect the image of 𝑓 . Thus 𝑓
does not satisfy the intermediate value property on [𝑎, 𝑏].

Case 2. Suppose 𝑐 = 𝑎, i.e. 𝑓 is not continuous at 𝑎. Since 𝑓 is increasing on [𝑎, 𝑏], Lem-
ma L.12 implies that the limit from the right exists:

𝛽 ≔ lim
𝑥→𝑐+

𝑓(𝑥) = inf{𝑓(𝑥) : 𝑐 < 𝑥 < 𝑏}.
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Because 𝑎 is the minimum element of the domain of 𝑓 we have

lim
𝑥→𝑎

𝑓(𝑥) = lim
𝑥→𝑎+

𝑓(𝑥) = 𝛽,

and since 𝑓 is not continuous at 𝑎 and increasing on [𝑎, 𝑏] it must then be the case that 
𝑓(𝑎) < 𝛽. It follows that the infinite set (𝑓(𝑎), 𝛽), which is contained in [𝑓(𝑎), 𝑓(𝑏)], does not
intersect the image of 𝑓 . Thus 𝑓 does not satisfy the intermediate value property on [𝑎, 𝑏].

Case 3. If 𝑓 fails to be continuous at 𝑏, then an argument similar to the one given in Case
2, this time using the limit 𝑥 → 𝑏−, shows that 𝑓 does not satisfy the intermediate value
property on [𝑎, 𝑏].

Exercise 4.5.4. Let 𝑔 be continuous on an interval 𝐴 and let 𝐹  be the set of points
where 𝑔 fails to be one-to-one; that is,

𝐹 = {𝑥 ∈ 𝐴 : 𝑓(𝑥) = 𝑓(𝑦) for some 𝑦 ≠ 𝑥 and 𝑦 ∈ 𝐴}.

Show 𝐹  is either empty or uncountable.

Solution. It will suffice to show that if 𝐹  is not empty then 𝐹  is uncountable. Suppose
therefore that there exist 𝑥, 𝑦 ∈ 𝐴 such that 𝑥 < 𝑦 and 𝑔(𝑥) = 𝑔(𝑦). If 𝑔 is constant on [𝑥, 𝑦]
then 𝐹  contains the uncountable subset [𝑥, 𝑦] and so must itself be uncountable. Otherwise,
there exists some 𝑎 ∈ (𝑥, 𝑦) such that 𝑔(𝑎) ≠ 𝑔(𝑥). Define an open interval

𝐼 = (min{𝑔(𝑥), 𝑔(𝑎)}, max{𝑔(𝑥), 𝑔(𝑎)})

and note that 𝐼 is non-empty since 𝑔(𝑎) ≠ 𝑔(𝑥). Since 𝑔 is continuous on 𝐴, the Intermedi-
ate Value Theorem (Theorem 4.5.1) implies that for each 𝑡 ∈ 𝐼 there exist 𝑥𝑡 ∈ (𝑥, 𝑎) and 
𝑦𝑡 ∈ (𝑎, 𝑦) such that 𝑔(𝑥𝑡) = 𝑔(𝑦𝑡) = 𝑡, so that 𝑥𝑡 ∈ 𝐹 . Because 𝑔 is a function, each 𝑡 ∈ 𝐼
corresponds to a distinct 𝑥𝑡 ∈ 𝐹 , i.e. the map 𝐼 → 𝐹  given by 𝑡 ↦ 𝑥𝑡 is injective. Since 𝐼 is
uncountable, it then follows that 𝐹  is uncountable.

Exercise 4.5.5.

(a) Finish the proof of the Intermediate Value Theorem using the Axiom of Complete-
ness started previously.

(b) Finish the proof of the Intermediate Value Theorem using the Nested Interval
Property started previously.

Solution.

(a) (Here is the start of the proof from the textbook.) To simplify matters a bit, let’s
consider the special case where 𝑓 is a continuous function satisfying 𝑓(𝑎) < 0 < 𝑓(𝑏)
and show that 𝑓(𝑐) = 0 for some 𝑐 ∈ (𝑎, 𝑏). First let

𝐾 = {𝑥 ∈ [𝑎, 𝑏] : 𝑓(𝑥) ≤ 0}.
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Notice that 𝐾 is bounded above by 𝑏, and 𝑎 ∈ 𝐾 so 𝐾 is not empty. Thus we may
appeal to the Axiom of Completeness to assert that 𝑐 = sup 𝐾 exists.

There are three cases to consider:

𝑓(𝑐) > 0, 𝑓(𝑐) < 0, and 𝑓(𝑐) = 0.

Case 1. Suppose that 𝑓(𝑐) > 0. Since 𝑓 is continuous at 𝑐, there is a 𝛿 > 0 such that 
𝑓(𝑥) > 0 for all 𝑥 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿) ∩ [𝑎, 𝑏] (see Exercise 4.3.8 (c)). This implies the exis-
tence of a 𝑡 ∈ (𝑐 − 𝛿, 𝑐) ∩ [𝑎, 𝑏] such that 𝑡 is an upper bound of 𝐾, which contradicts
that 𝑐 is the supremum of 𝐾.

Case 2. Suppose that 𝑓(𝑐) < 0. Since 𝑓 is continuous at 𝑐, there is a 𝛿 > 0 such that 
𝑓(𝑥) < 0 for all 𝑥 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿) ∩ [𝑎, 𝑏] (see Exercise 4.3.8 (c)). This implies the exis-
tence of a 𝑡 ∈ (𝑐, 𝑐 + 𝛿) ∩ [𝑎, 𝑏] such that 𝑡 belongs to 𝐾, which contradicts that 𝑐 is the
supremum of 𝐾.

So the only possibility is that 𝑓(𝑐) = 0; note that 𝑐 lies strictly between 𝑎 and 𝑏 since 
𝑓(𝑎) < 0 < 𝑓(𝑏).

The general case of the Intermediate Value Theorem can be obtained from this special
case by considering either the function 𝑔(𝑥) = 𝑓(𝑥) − 𝐿 if 𝑓(𝑎) < 𝑓(𝑏) or the function 
𝑔(𝑥) = 𝐿 − 𝑓(𝑥) if 𝑓(𝑎) > 𝑓(𝑏).

(b) (Here is the start of the proof from the textbook.) Again, consider the special case
where 𝐿 = 0 and 𝑓(𝑎) < 0 < 𝑓(𝑏). Let 𝐼0 = [𝑎, 𝑏], and consider the midpoint

𝑧 = (𝑎 + 𝑏)/2.

If 𝑓(𝑧) ≥ 0, then set 𝑎1 = 𝑎 and 𝑏1 = 𝑧. If 𝑓(𝑧) < 0, then set 𝑎1 = 𝑧 and 𝑏1 = 𝑏. In either
case, the interval 𝐼1 = [𝑎1, 𝑏1] has the property that 𝑓 is negative at the left endpoint
and nonnegative at the right.

We repeat this procedure inductively, obtaining a sequence (𝐼𝑛 = [𝑎𝑛, 𝑏𝑛])∞
𝑛=1 of

nested intervals such that 𝑓(𝑎𝑛) < 0, 𝑓(𝑏𝑛) ≥ 0, and |𝐼𝑛| = 2−𝑛(𝑏 − 𝑎) for all 𝑛 ∈ 𝐍.
We can now appeal to the Nested Interval Property (Theorem 1.4.1) to assert that
⋂∞

𝑛=1 𝐼𝑛 = {𝑐} for some 𝑐 ∈ [𝑎, 𝑏] (the intersection is non-empty as the intervals are
closed and nested, and the intersection is a singleton since lim𝑛→∞|𝐼𝑛| = 0); further-
more, we have

lim
𝑛→∞

𝑎𝑛 = lim
𝑛→∞

𝑏𝑛 = 𝑐.

Since 𝑓 is continuous at 𝑐, it follows that

lim
𝑛→∞

𝑓(𝑎𝑛) = lim
𝑛→∞

𝑓(𝑏𝑛) = 𝑓(𝑐).

The Order Limit Theorem (Theorem 2.3.4) implies that 𝑓(𝑐) ≤ 0, since 𝑓(𝑎𝑛) < 0 for
all 𝑛 ∈ 𝐍, and that 𝑓(𝑐) ≥ 0, since 𝑓(𝑏𝑛) ≥ 0 for all 𝑛 ∈ 𝐍. Thus 𝑓(𝑐) = 0.

Again, 𝑐 lies strictly between 𝑎 and 𝑏 since 𝑓(𝑎) < 0 < 𝑓(𝑏), and the general case of
the Intermediate Value Theorem can be obtained from this special case by considering
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either the function 𝑔(𝑥) = 𝑓(𝑥) − 𝐿 if 𝑓(𝑎) < 𝑓(𝑏) or the function 𝑔(𝑥) = 𝐿 − 𝑓(𝑥) if 
𝑓(𝑎) > 𝑓(𝑏).

Exercise 4.5.6. Let 𝑓 : [0, 1] → 𝐑 be continuous with 𝑓(0) = 𝑓(1).

(a) Show that there must exist 𝑥, 𝑦 ∈ [0, 1] satisfying |𝑥 − 𝑦| = 1/2 and 𝑓(𝑥) = 𝑓(𝑦).

(b) Show that for each 𝑛 ∈ 𝐍 there exist 𝑥𝑛, 𝑦𝑛 ∈ [0, 1] with |𝑥𝑛 − 𝑦𝑛| = 1/𝑛 and 
𝑓(𝑥𝑛) = 𝑓(𝑦𝑛).

(c) If ℎ ∈ (0, 1/2) is not of the form 1/𝑛, there does not necessarily exist |𝑥 − 𝑦| = ℎ
satisfying 𝑓(𝑥) = 𝑓(𝑦). Provide an example that illustrates this using ℎ = 2/5.

Solution.

(a) Define 𝑔 : [0, 1
2] → 𝐑 by 𝑔(𝑥) = 𝑓(𝑥) − 𝑓(𝑥 + 1

2) and note that 𝑔 is continuous by The-
orems 4.3.4 and 4.3.9. If 𝑔(0) = 0 then 𝑓(0) = 𝑓(1

2) and we are done. Otherwise, note
that

𝑔(0) = 𝑓(0) − 𝑓(1
2) = 𝑓(1) − 𝑓(1

2) = −(𝑓(1
2) − 𝑓(1)) = −𝑔(1

2).

It follows that 𝑔(0) and 𝑔(1
2) have opposite signs. The Intermediate Value Theorem

(Theorem 4.5.1) now implies that there exists a 𝑐 ∈ (0, 1
2) such that 𝑔(𝑐) = 0, i.e.

𝑓(𝑐) = 𝑓(𝑐 + 1
2).

(b) For 𝑛 = 1, we can take 𝑥1 = 0 and 𝑦1 = 1. For 𝑛 ≥ 2, define 𝑔 : [0, 𝑛−1
𝑛 ] → 𝐑 by

𝑔(𝑥) = 𝑓(𝑥) − 𝑓(𝑥 + 1
𝑛) and note that 𝑔 is continuous by Theorems 4.3.4 and 4.3.9. If

𝑔(0) = 0 then 𝑓(0) = 𝑓( 1
𝑛) and we are done. Otherwise, note that

𝑔(0) = 𝑓(0) − 𝑓( 1
𝑛),

𝑔( 1
𝑛) = 𝑓( 1

𝑛) − 𝑓( 2
𝑛),

𝑔( 2
𝑛) = 𝑓( 2

𝑛) − 𝑓( 3
𝑛),

⋮

𝑔(𝑛−1
𝑛 ) = 𝑓(𝑛−1

𝑛 ) − 𝑓(1).

Since 𝑓(0) = 𝑓(1), this implies that

𝑔(0) + 𝑔( 1
𝑛) + 𝑔( 2

𝑛) + ⋯ + 𝑔(𝑛−1
𝑛 ) = 0.

Because 𝑔(0) ≠ 0, there must exist some 𝑘 ∈ {1, …, 𝑛 − 1} such that 𝑔( 𝑘
𝑛) has the op-

posite sign to 𝑔(0). The Intermediate Value Theorem (Theorem 4.5.1) now implies that
there exists a 𝑐 ∈ (0, 𝑘

𝑛) such that 𝑔(𝑐) = 0, i.e. 𝑓(𝑐) = 𝑓(𝑐 + 1
𝑛). Thus we can take 

𝑥𝑛 = 𝑐 and 𝑦𝑛 = 𝑐 + 1
𝑛 .

(c) Consider the following piecewise linear function 𝑓 : [0, 1] → 𝐑.
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−2

−1

0

1

2

0 1
5

2
5

3
5

4
5 1

This function has the property that 𝑓(𝑥 + 2
5) − 𝑓(𝑥) = 1 for every 𝑥 ∈ [0, 3

5], so that
there cannot possibly exist 𝑥, 𝑦 ∈ [0, 1] satisfying |𝑥 − 𝑦| = 2

5  and 𝑓(𝑥) = 𝑓(𝑦).

Exercise 4.5.7. Let 𝑓 be a continuous function on the closed interval [0, 1] with range
also contained in [0, 1]. Prove that 𝑓 must have a fixed point; that is, show 𝑓(𝑥) = 𝑥 for
at least one value of 𝑥 ∈ [0, 1].

Solution. Define 𝑔 : [0, 1] → 𝐑 by 𝑔(𝑥) = 𝑓(𝑥) − 𝑥 and note that 𝑔 is continuous by Theo-
rem 4.3.4. Furthermore, fixed points of 𝑓 correspond precisely to zeros of 𝑔. If 𝑔(0) = 0 or
𝑔(1) = 0, then we are done. Suppose therefore that 𝑔(0) ≠ 0 and 𝑔(1) ≠ 0. Since 0 ≤ 𝑓(𝑥) ≤ 1
for all 𝑥 ∈ [0, 1], it must then be the case that 0 < 𝑓(0) ≤ 1 and 0 ≤ 𝑓(1) < 1, which implies
that 𝑔(0) is positive and 𝑔(1) is negative. The Intermediate Value Theorem (Theorem 4.5.1)
can now be applied to obtain some 𝑥 ∈ (0, 1) such that 𝑔(𝑥) = 0.

Exercise 4.5.8 (Inverse functions). If a function 𝑓 : 𝐴 → 𝐑 is one-to-one, then we
can define the inverse function 𝑓−1 on the range of 𝑓 in the natural way: 𝑓−1(𝑦) = 𝑥
where 𝑦 = 𝑓(𝑥).

Show that if 𝑓 is continuous on an interval [𝑎, 𝑏] and one-to-one, then 𝑓−1 is also con-
tinuous.

Solution. Here is a useful corollary of Exercise 4.4.11.

Lemma L.13. Suppose ℎ : 𝐴 → 𝐑 has the property that ℎ−1(𝐵) is closed for every
closed set 𝐵 ⊆ 𝐑. Then ℎ is continuous.

Proof. Let 𝑈 ⊆ 𝐑 be open, so that 𝑈c is closed. By assumption ℎ−1(𝑈c) is closed;
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notice that

ℎ−1(𝑈c) = (ℎ−1(𝑈))c.

Thus ℎ−1(𝑈) is open. It follows from Exercise 4.4.11 that ℎ is continuous. □

Suppose 𝑓 : [𝑎, 𝑏] → 𝐸 ⊆ 𝐑 is continuous and bĳective, and let ℎ : 𝐸 → [𝑎, 𝑏] be the inverse
of 𝑓 . If 𝐵 ⊆ 𝐑 is closed then 𝐵 ∩ [𝑎, 𝑏] is closed and bounded, hence compact (Heine-Borel
Theorem). It follows that 𝑓(𝐵 ∩ [𝑎, 𝑏]) is compact and hence closed. Using that 𝑓 and ℎ are
mutual inverses, notice that

𝑓(𝐵 ∩ [𝑎, 𝑏]) = 𝑓(𝐵) ∩ 𝑓([𝑎, 𝑏]) = ℎ−1(𝐵) ∩ 𝐸 = ℎ−1(𝐵).

Thus ℎ−1(𝐵) is closed whenever 𝐵 ⊆ 𝐑 is closed; it follows from Lemma L.13 that ℎ is
continuous.
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4.6. Sets of Discontinuity

Exercise 4.6.1. Using modifications of these functions, construct a function 𝑓 : 𝐑 → 𝐑
so that

(a) 𝐷𝑓 = 𝐙c.

(b) 𝐷𝑓 = {𝑥 : 0 < 𝑥 ≤ 1}.

Solution.

(a) Since 𝐙c is an open set, the construction given in Exercise 4.3.14 (b) will result in an 
𝑓 such that 𝐷𝑓 = 𝐙c.

(b) By Exercise 4.3.14, there exist functions 𝑔, ℎ : 𝐑 → 𝐑 such that 𝐷𝑔 = (0, 1
2) and

𝐷ℎ = [1
2 , 1]. Define 𝑓 : 𝐑 → 𝐑 by 𝑓(𝑥) = 𝑔(𝑥) + ℎ(𝑥); it follows from Theorem 4.3.4

that 𝐷𝑓 = (0, 1].

Exercise 4.6.2. Given a countable set 𝐴 = {𝑎1, 𝑎2, 𝑎3, …}, define 𝑓(𝑎𝑛) = 1/𝑛 and 
𝑓(𝑥) = 0 for all 𝑥 ∉ 𝐴. Find 𝐷𝑓 .

Solution. Our claim is that 𝐷𝑓 = 𝐴. First, fix 𝑐 ∉ 𝐴; we will show that 𝑓 is continuous at 
𝑐. Let 𝜀 > 0 be given and let 𝑁 ∈ 𝐍 be such that 1

𝑁 < 𝜀. Consider the set

𝐸 = {|𝑐 − 𝑎𝑛| : 1 ≤ 𝑛 ≤ 𝑁}.

This set is non-empty and finite and thus has a minimum (by Lemma L.3), say 𝛿 = min 𝐸.
Each element of 𝐸 must be strictly positive as 𝑐 ∉ 𝐴 and hence 𝛿 is also strictly positive. Fur-
thermore, the interval (𝑐 − 𝛿, 𝑐 + 𝛿) has the property that if 𝑎𝑛 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿) then 𝑛 > 𝑁
(otherwise 𝛿 would not be the minimum of 𝐸) and thus

|𝑓(𝑎𝑛) − 𝑓(𝑐)| = 1
𝑛 < 1

𝑁 < 𝜀.

If 𝑥 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿) and 𝑥 ∉ 𝐴 then |𝑓(𝑥) − 𝑓(𝑐)| = 0 < 𝜀. We have now shown that for any
𝜀 > 0 there is a 𝛿 > 0 such that

𝑥 ∈ (𝑐 − 𝛿, 𝑥 + 𝛿) ⇒ 𝑓(𝑥) ∈ (𝑓(𝑐) − 𝜀, 𝑓(𝑐) + 𝜀).

Thus 𝑓 is continuous at each 𝑐 ∉ 𝐴.

Now fix 𝑎𝑛 ∈ 𝐴. We will show that 𝑓 is not continuous at 𝑎𝑛. Let 𝜀 = 1
𝑛 > 0 and let 𝛿 > 0

be given. Because the interval (𝑎𝑛 − 𝛿, 𝑎𝑛 + 𝛿) is uncountable and 𝐴 is countable, it must be
the case that there exists an 𝑥 ∈ (𝑎𝑛 − 𝛿, 𝑎𝑛 + 𝛿) such that 𝑥 ∉ 𝐴. It follows that

|𝑓(𝑥) − 𝑓(𝑎𝑛)| = 1
𝑛 = 𝜀.

Thus 𝑓 is not continuous at 𝑎𝑛. We may conclude that 𝐷𝑓 = 𝐴, as claimed.
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Exercise 4.6.3. State a similar definition for the left-hand limit

lim
𝑥→𝑐−

𝑓(𝑥) = 𝐿.

Solution. See Exercise 4.2.10 (a).

Exercise 4.6.4. Supply a proof for this proposition.

Solution. See Exercise 4.2.10 (b).

Exercise 4.6.5. Prove that the only type of discontinuity a monotone function can
have is a jump discontinuity.

Solution. Suppose 𝑓 : 𝐑 → 𝐑 is monotone. (For simplicity, we will assume that the domain
of 𝑓 is all of 𝐑. A more general statement can certainly be made for monotone functions
𝐴 → 𝐑 defined on any domain 𝐴 ⊆ 𝐑, but Abbott’s definitions of left- and right-hand limits
are slightly awkward here. For example, if 𝑓 : [0, 1] → 𝐑 is a function, then Abbott’s defin-
ition of the left-hand limit of 𝑓 at 0 implies that lim𝑥→0− 𝑓(𝑥) = 𝐿 for any 𝐿 ∈ 𝐑: we may
choose any 𝛿 > 0 we like and obtain a statement beginning with (∀𝑥 ∈ ∅), which is always
true. It would be better not to talk about lim𝑥→0− 𝑓(𝑥) at all in such a case.)

First, note that a small modification of Lemma L.12 shows that if 𝑓 is increasing then for
each 𝑐 ∈ 𝐑,

lim
𝑥→𝑐−

𝑓(𝑥) = sup{𝑓(𝑥) : 𝑥 < 𝑐} and lim
𝑥→𝑐+

𝑓(𝑥) = inf{𝑓(𝑥) : 𝑐 < 𝑥}.

(If 𝑓 is decreasing then the supremum and the infimum should be swapped.) So for a mo-
notone function 𝑓 : 𝐑 → 𝐑, the left- and right-hand limits at some point 𝑐 ∈ 𝐑 always exist.
It follows that if 𝑓 is discontinuous at 𝑐 then it must be the case that these left- and right-
hand limits are not equal (Theorem 4.6.3/Exercise 4.6.4), i.e. 𝑓 has a jump discontinuity at
𝑐.

Exercise 4.6.6. Construct a bĳection between the set of jump discontinuities of a mo-
notone function 𝑓 and a subset of 𝐐. Conclude that 𝐷𝑓  for a monotone function 𝑓 must
either be finite or countable, but not uncountable.

Solution. Suppose 𝑓 : 𝐑 → 𝐑 is monotone increasing (if 𝑓 is decreasing then consider −𝑓)
and let 𝐷𝑓  be the set of jump discontinuities of 𝑓 (by Exercise 4.6.5, 𝐷𝑓  is the set of all
discontinuities of 𝑓). Fix 𝑐 ∈ 𝐷𝑓 . As we showed in Exercise 4.6.5, we have

ℓ𝑐 ≔ lim
𝑥→𝑐−

𝑓(𝑥) = sup{𝑓(𝑥) : 𝑥 < 𝑐} and 𝑢𝑐 ≔ lim
𝑥→𝑐+

𝑓(𝑥) = inf{𝑓(𝑥) : 𝑐 < 𝑥}.
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Since 𝑓 is discontinuous at 𝑐 and increasing we must have ℓ𝑐 < 𝑢𝑐 and thus (ℓ𝑐, 𝑢𝑐) is a
proper open interval. If 𝑑 ∈ 𝐷𝑓  is such that 𝑐 < 𝑑 then 𝑢𝑐 ≤ 𝑓(𝑐+𝑑

2 ) ≤ ℓ𝑑, so that the open
intervals (ℓ𝑐, 𝑢𝑐) and (ℓ𝑑, 𝑢𝑑) are disjoint. It follows that the set

{(ℓ𝑐, 𝑢𝑐) : 𝑐 ∈ 𝐷𝑓}

consists of pairwise disjoint open intervals. Given this, for each 𝑐 ∈ 𝐷𝑓  we can choose a
rational number 𝑟𝑐 ∈ (ℓ𝑐, 𝑢𝑐) and be sure that the function 𝑔 : 𝐷𝑓 → 𝐐 given by 𝑐 ↦ 𝑟𝑐 is
injective. This sets up a bĳection between 𝐷𝑓  and 𝑔(𝐷𝑓) ⊆ 𝐐. It follows from Theorems
1.5.6 and 1.5.7 (i) that 𝐷𝑓  is finite or countable, but not uncountable.

Exercise 4.6.7.

(a) Show that in each of the above cases we get an 𝐹𝜎 set as the set where the function
is discontinuous.

(b) Show that the two sets of discontinuity in Exercise 4.6.1 are 𝐹𝜎 sets.

Solution.

(a) For Dirichlet’s function, 𝐑 is a closed set. For the modified Dirichlet function, we have

𝐑 ∖ {0} = ⋃
∞

𝑛=1
(−∞, − 1

𝑛] ∪ [ 1
𝑛 , ∞).

For Thomae’s function we have

𝐐 = ⋃
𝑞∈𝐐

{𝑞}.

(b) Observe that

𝐙c = ⋃
(𝑚,𝑛)∈𝐙×𝐍

[𝑚 + 1
𝑛+1 , 𝑚 + 1 − 1

𝑛+1] and (0, 1] = ⋃
∞

𝑛=1
[ 1

𝑛 , 1].

Exercise 4.6.8. Prove that, for a fixed 𝛼 > 0, the set 𝐷𝛼
𝑓  is closed.

Solution. First, let us write down the negation of 𝛼-continuity. A function 𝑓 is not 
𝛼-continuous at a point 𝑥 ∈ 𝐑 if for all 𝛿 > 0 there exist 𝑦, 𝑧 ∈ (𝑥 − 𝛿, 𝑥 + 𝛿) such that
|𝑓(𝑦) − 𝑓(𝑧)| ≥ 𝛼.

To show that 𝐷𝛼
𝑓  is closed, let (𝑥𝑛) be a sequence contained in 𝐷𝛼

𝑓  such that lim𝑛→∞ 𝑥𝑛 = 𝑥
for some 𝑥 ∈ 𝐑. Our aim is to show that 𝑓 is not 𝛼-continuous at 𝑥. Let 𝛿 > 0 be given.
Since lim𝑛→∞ 𝑥𝑛 = 𝑥 there is an 𝑁 ∈ 𝐍 such that 𝑥𝑁 ∈ (𝑥 − 𝛿

2 , 𝑥 + 𝛿
2), and since 𝑓 is not 𝛼

-continuous at 𝑥𝑁  there exist 𝑦, 𝑧 ∈ (𝑥𝑁 − 𝛿
2 , 𝑥𝑁 + 𝛿

2) such that |𝑓(𝑦) − 𝑓(𝑧)| ≥ 𝛼. The tri-
angle inequality shows that 𝑦, 𝑧 ∈ (𝑥 − 𝛿, 𝑥 + 𝛿) and thus 𝑓 is not 𝛼-continuous at 𝑥, i.e. 
𝑥 ∈ 𝐷𝛼

𝑓 .

It follows that 𝐷𝛼
𝑓  contains its limit points and hence that 𝐷𝛼

𝑓  is a closed set.
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Exercise 4.6.9. If 𝛼 < 𝛼′, show that 𝐷𝛼′

𝑓 ⊆ 𝐷𝛼
𝑓 .

Solution. A function 𝑓 is not 𝛼′-continuous at a point 𝑥 ∈ 𝐑 if for all 𝛿 > 0 there exist 
𝑦, 𝑧 ∈ (𝑥 − 𝛿, 𝑥 + 𝛿) such that |𝑓(𝑦) − 𝑓(𝑧)| ≥ 𝛼′ > 𝛼; it follows that 𝑓 is not 𝛼-continuous
at 𝑥.

Exercise 4.6.10. Let 𝛼 > 0 be given. Show that if 𝑓 is continuous at 𝑥, then it is 𝛼-
continuous at 𝑥 as well. Explain how it follows that 𝐷𝛼

𝑓 ⊆ 𝐷𝑓 .

Solution. Because 𝑓 is continuous at 𝑥 there is a 𝛿 > 0 such that

𝑦 ∈ (𝑥 − 𝛿, 𝑥 + 𝛿) ⇒ |𝑓(𝑦) − 𝑓(𝑥)| < 𝛼
2 .

If 𝑦, 𝑧 ∈ (𝑥 − 𝛿, 𝑥 + 𝛿) then

|𝑓(𝑦) − 𝑓(𝑧)| ≤ |𝑓(𝑦) − 𝑓(𝑥)| + |𝑓(𝑧) − 𝑓(𝑥)| < 𝛼
2 + 𝛼

2 = 𝛼.

Thus 𝑓 is 𝛼-continuous at 𝑥. The contrapositive of this result states that if 𝑓 is not 𝛼-
continuous at 𝑥 then 𝑓 is not continuous at 𝑥. It follows that 𝐷𝛼

𝑓 ⊆ 𝐷𝑓 .

Exercise 4.6.11. Show that if 𝑓 is not continuous at 𝑥, then 𝑓 is not 𝛼-continuous for
some 𝛼 > 0. Now explain why this guarantees that

𝐷𝑓 = ⋃
∞

𝑛=1
𝐷𝛼𝑛

𝑓 ,

where 𝛼𝑛 = 1/𝑛.

Solution. If 𝑓 is not continuous at 𝑥 then there exists an 𝜀 > 0 such that for all 𝛿 > 0 there
is a 𝑦 ∈ (𝑥 − 𝛿, 𝑥 + 𝛿) such that |𝑓(𝑦) − 𝑓(𝑥)| ≥ 𝜀. It follows that 𝑓 is not 𝛼-continuous at 
𝑥, where we take 𝛼 = 𝜀.

Suppose 𝑥 ∈ 𝐷𝑓 . As we just showed, there exists an 𝛼 > 0 such that 𝑥 ∈ 𝐷𝛼
𝑓 . Let 𝑛 ∈ 𝐍 be

such that 1
𝑛 < 𝛼. We then have 𝐷𝛼

𝑓 ⊆ 𝐷𝛼𝑛
𝑓  (Exercise 4.6.9) and so 𝑥 ∈ 𝐷𝛼𝑛

𝑓 . It follows that

𝐷𝑓 ⊆ ⋃
∞

𝑛=1
𝐷𝛼𝑛

𝑓 .

For the reverse inclusion, note that for each 𝑛 ∈ 𝐍 we have 𝐷𝛼𝑛
𝑓 ⊆ 𝐷𝑓  by Exercise 4.6.10.

We may conclude that

𝐷𝑓 = ⋃
∞

𝑛=1
𝐷𝛼𝑛

𝑓 .
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Chapter 5. The Derivative

5.2. Derivatives and the Intermediate Value Property

Exercise 5.2.1. Supply proofs for parts (i) and (ii) of Theorem 5.2.4.

Solution.

(i) Observe that

lim
𝑥→𝑐

(𝑓 + 𝑔)(𝑥) − (𝑓 + 𝑔)(𝑐)
𝑥 − 𝑐

= lim
𝑥→𝑐

(
𝑓(𝑥) − 𝑓(𝑐)

𝑥 − 𝑐
+

𝑔(𝑥) − 𝑔(𝑐)
𝑥 − 𝑐

) = 𝑓 ′(𝑐) + 𝑔′(𝑐),

where we have used Corollary 4.2.4 (ii).

(ii) Observe that

lim
𝑥→𝑐

(𝑘𝑓)(𝑥) − (𝑘𝑓)(𝑐)
𝑥 − 𝑐

= lim
𝑥→𝑐

𝑘(
𝑓(𝑥) − 𝑓(𝑐)

𝑥 − 𝑐
) = 𝑘𝑓 ′(𝑐),

where we have used Corollary 4.2.4 (i).

Exercise 5.2.2. Exactly one of the following requests is impossible. Decide which it is,
and provide examples for the other three. In each case, let’s assume the functions are
defined on all of 𝐑.

(a) Functions 𝑓 and 𝑔 not differentiable at zero but where 𝑓𝑔 is differentiable at zero.

(b) A function 𝑓 not differentiable at zero and a function 𝑔 differentiable at zero where
𝑓𝑔 is differentiable at zero.

(c) A function 𝑓 not differentiable at zero and a function 𝑔 differentiable at zero where
𝑓 + 𝑔 is differentiable at zero.

(d) A function 𝑓 differentiable at zero but not differentiable at any other point.

Solution.

(a) Let 𝑓, 𝑔 : 𝐑 → 𝐑 be given by

𝑓(𝑥) = 𝑔(𝑥) = {−1 if 𝑥 < 0,
1 if 𝑥 ≥ 0.

Notice that 𝑓 and 𝑔 are not continuous at zero and hence not differentiable at zero
(Theorem 5.2.3), however the product 𝑓𝑔 is given by (𝑓𝑔)(𝑥) = 1 for all 𝑥 ∈ 𝐑, which
is differentiable everywhere.

(b) Let 𝑓, 𝑔 : 𝐑 → 𝐑 be given by
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𝑓(𝑥) = {
−1 if 𝑥 < 0,
1 if 𝑥 ≥ 0,

and 𝑔(𝑥) = 0 for all 𝑥 ∈ 𝐑. Notice that 𝑓 is not continuous at zero and hence not dif-
ferentiable at zero (Theorem 5.2.3), however we have (𝑓𝑔)(𝑥) = 𝑔(𝑥) = 0 for all 𝑥 ∈ 𝐑,
which is differentiable everywhere.

(c) This is impossible. If 𝑔 and 𝑓 + 𝑔 are differentiable at zero then 𝑓 = 𝑓 + 𝑔 − 𝑔 must be
differentiable at zero by Theorem 5.2.4.

(d) Consider the function 𝑓 : 𝐑 → 𝐑 given by

𝑓(𝑥) = {𝑥2 if 𝑥 ∈ 𝐐,
0 if 𝑥 ∈ 𝐈.

This function is only continuous at zero and hence fails to be differentiable at each non-
zero point. We claim that 𝑓 ′(0) = 0, i.e.

lim
𝑥→0

𝑓(𝑥) − 𝑓(0)
𝑥 − 0

= lim
𝑥→0

𝑓(𝑥)
𝑥

= 0.

Indeed, for any 𝜀 > 0 let 𝛿 = 𝜀 and suppose that 𝑥 ∈ 𝐑 satisfies 0 < |𝑥| < 𝛿. Observe
that

𝑥 ∈ 𝐈 ⇒ |
𝑓(𝑥)

𝑥
| = 0 < 𝜀, and 𝑥 ∈ 𝐐 ⇒ |

𝑓(𝑥)
𝑥

| = |𝑥| < 𝛿 = 𝜀.

Thus 𝑓 ′(0) = 0.

Exercise 5.2.3.

(a) Use Definition 5.2.1 to produce the proper formula for the derivative of ℎ(𝑥) = 1/𝑥.

(b) Combine the result of part (a) with the Chain Rule (Theorem 5.2.5) to supply a
proof for part (iv) of Theorem 5.2.4.

(c) Supply a direct proof of Theorem 5.2.4 (iv) by algebraically manipulating the dif-
ference quotient for (𝑓/𝑔) in a style similar to the proof of Theorem 5.2.4 (iii).

Solution.

(a) Suppose 𝑥 ≠ 0 and observe that

ℎ′(𝑥) = lim
𝑡→𝑥

ℎ(𝑡) − ℎ(𝑥)
𝑡 − 𝑥

= lim
𝑡→𝑥

[(
1
𝑡

−
1
𝑥

)
1

𝑡 − 𝑥
]

= lim
𝑡→𝑥

[(
𝑥 − 𝑡
𝑡𝑥

)
1

𝑡 − 𝑥
] = lim

𝑡→𝑥

−1
𝑡𝑥

=
−1
𝑥2 ,

where we have used Corollary 4.2.4 (iv).
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(b) Keeping the definition of ℎ from part (a), note that 𝑓(𝑥)
𝑔(𝑥) = 𝑓(𝑥)ℎ(𝑔(𝑥)) for any 𝑥 such

that 𝑔(𝑥) ≠ 0. It follows from Theorem 5.2.4 (iii) and the Chain Rule (Theorem 5.2.5)
that

(𝑓/𝑔)′(𝑥) = 𝑓 ′(𝑥)ℎ(𝑔(𝑥)) + 𝑓(𝑥)ℎ′(𝑔(𝑥))𝑔′(𝑥).

We can use the result from part (a) to rewrite this as

(𝑓/𝑔)′(𝑥) =
𝑓 ′(𝑥)
𝑔(𝑥)

−
𝑓(𝑥)𝑔′(𝑥)
[𝑔(𝑥)]2

=
𝑓 ′(𝑥)𝑔(𝑥) − 𝑓(𝑥)𝑔′(𝑥)

[𝑔(𝑥)]2
.

(c) Suppose 𝑥 ∈ 𝐑 is such that 𝑔(𝑥) ≠ 0. For any 𝑡 ≠ 𝑥 (and such that 𝑔(𝑡) ≠ 0; since 
𝑔(𝑥) ≠ 0, the continuity of 𝑔 at 𝑥 (Theorem 5.2.3) implies that there is some neigh-
bourhood of 𝑥 where 𝑔 is non-zero), we have

𝑓(𝑡)
𝑔(𝑡) − 𝑓(𝑥)

𝑔(𝑥)

𝑡 − 𝑥
=

𝑓(𝑡)𝑔(𝑥) − 𝑓(𝑥)𝑔(𝑡)
(𝑡 − 𝑥)[𝑔(𝑡)𝑔(𝑥)]

=
𝑓(𝑡)𝑔(𝑥) − 𝑓(𝑥)𝑔(𝑥) + 𝑓(𝑥)𝑔(𝑥) − 𝑓(𝑥)𝑔(𝑡)

(𝑡 − 𝑥)[𝑔(𝑡)𝑔(𝑥)]

=
𝑓(𝑡) − 𝑓(𝑥)

𝑡 − 𝑥
𝑔(𝑥)

𝑔(𝑡)𝑔(𝑥)
−

𝑔(𝑡) − 𝑔(𝑥)
𝑡 − 𝑥

𝑓(𝑥)
𝑔(𝑡)𝑔(𝑥)

.

It follows that

(𝑓/𝑔)′(𝑥) = lim
𝑡→𝑥

𝑓(𝑡)
𝑔(𝑡) − 𝑓(𝑥)

𝑔(𝑥)

𝑡 − 𝑥

= lim
𝑡→𝑥

(
𝑓(𝑡) − 𝑓(𝑥)

𝑡 − 𝑥
) lim

𝑡→𝑥
(

𝑔(𝑥)
𝑔(𝑡)𝑔(𝑥)

) − lim
𝑡→𝑥

(
𝑔(𝑡) − 𝑔(𝑥)

𝑡 − 𝑥
) lim

𝑡→𝑥
(

𝑓(𝑥)
𝑔(𝑡)𝑔(𝑥)

)

=
𝑓 ′(𝑥)𝑔(𝑥) − 𝑔′(𝑥)𝑓(𝑥)

[𝑔(𝑥)]2
,

where we have used that 𝑓 and 𝑔 are differentiable at 𝑥, the continuity of 𝑔 at 𝑥, and
several algebraic properties of functional limits (Corollary 4.2.4).

Exercise 5.2.4. Follow these steps to provide a slightly modified proof of the Chain
Rule.

(a) Show that a function ℎ : 𝐴 → 𝐑 is differentiable at 𝑎 ∈ 𝐴 if and only if there exists
a function 𝑙 : 𝐴 → 𝐑 which is continuous at 𝑎 and satisfies

ℎ(𝑥) − ℎ(𝑎) = 𝑙(𝑥)(𝑥 − 𝑎) for all 𝑥 ∈ 𝐴.

(b) Use this criterion for differentiability (in both directions) to prove Theorem 5.2.5.

Solution.
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(a) Suppose there exists such a function 𝑙 : 𝐴 → 𝐑, so that for all 𝑥 ∈ 𝐴 such that 𝑥 ≠ 𝑎
we have

ℎ(𝑥) − ℎ(𝑎)
𝑥 − 𝑎

= 𝑙(𝑥).

Because 𝑙 is continuous at 𝑎, it follows that ℎ′(𝑎) exists and that ℎ′(𝑎) = 𝑙(𝑎).

Now suppose that ℎ : 𝐴 → 𝐑 is differentiable at 𝑎. Define 𝑙 : 𝐴 → 𝐑 by

𝑙(𝑥) =
⎩{
⎨
{⎧ℎ(𝑥)−ℎ(𝑎)

𝑥−𝑎 if 𝑥 ≠ 𝑎,
ℎ′(𝑎) if 𝑥 = 𝑎.

Notice that 𝑙 satisfies ℎ(𝑥) − ℎ(𝑎) = 𝑙(𝑥)(𝑥 − 𝑎) for all 𝑥 ∈ 𝐴. Furthermore, 𝑙 is contin-
uous at 𝑎:

lim
𝑥→𝑎

𝑙(𝑥) = lim
𝑥→𝑎

ℎ(𝑥) − ℎ(𝑎)
𝑥 − 𝑎

= ℎ′(𝑎) = 𝑙(𝑎).

(b) Suppose 𝑓 : 𝐴 → 𝐑 and 𝑔 : 𝐵 → 𝐑 are functions such that 𝑓(𝐴) ⊆ 𝐵, so that the com-
position 𝑔 ∘ 𝑓 : 𝐴 → 𝐑 is defined. Suppose 𝑓 is differentiable at 𝑐 ∈ 𝐴 and 𝑔 is differ-
entiable at 𝑓(𝑐) ∈ 𝐵. By part (a) there exist functions 𝑙 : 𝐴 → 𝐑 and 𝐿 : 𝐵 → 𝐑 such
that 𝑙 is continuous at 𝑐, 𝐿 is continuous at 𝑓(𝑐), and

𝑓(𝑥) − 𝑓(𝑐) = 𝑙(𝑥)(𝑥 − 𝑎) for all 𝑥 ∈ 𝐴,

𝑔(𝑦) − 𝑔(𝑓(𝑐)) = 𝐿(𝑦)(𝑦 − 𝑓(𝑐)) for all 𝑦 ∈ 𝐵.

In particular we have for all 𝑥 ∈ 𝐴,

𝑔(𝑓(𝑥)) − 𝑔(𝑓(𝑐)) = 𝐿(𝑓(𝑥))(𝑓(𝑥) − 𝑓(𝑐)) = 𝐿(𝑓(𝑥))𝑙(𝑥)(𝑥 − 𝑎).

Since 𝑓 is differentiable at 𝑐 it is also continuous at 𝑐 (Theorem 5.2.3), and since 𝐿 is
continuous at 𝑓(𝑐) the composition 𝐿 ∘ 𝑓 is continuous at 𝑐 (Theorem 4.3.9). Thus the
product (𝐿 ∘ 𝑓)𝑙 is continuous at 𝑐 by Theorem 4.3.4 (iii). It follows from part (a) that
𝑔 ∘ 𝑓 is differentiable at 𝑐 and furthermore that

(𝑔 ∘ 𝑓)′(𝑐) = 𝐿(𝑓(𝑐))𝑙(𝑐) = 𝑔′(𝑓(𝑐))𝑓 ′(𝑐).

Exercise 5.2.5. Let 𝑓𝑎(𝑥) = {𝑥𝑎 if 𝑥 > 0
0 if 𝑥 ≤ 0.

(a) For which values of 𝑎 is 𝑓 continuous at zero?

(b) For which values of 𝑎 is 𝑓 differentiable at zero? In this case, is the derivative
function continuous?

(c) For which values of 𝑎 is 𝑓 twice-differentiable?

Solution.
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(a) For 𝑎 > 0 we have lim𝑥→0 𝑓𝑎(𝑥) = 0 = 𝑓𝑎(0) and thus 𝑓𝑎 is continuous at zero. For 𝑎 = 0
we have

lim
𝑥→0+

𝑓𝑎(𝑥) = 1 ≠ 0 = lim
𝑥→0−

𝑓𝑎(𝑥)

and thus 𝑓𝑎 is not continuous at zero. For 𝑎 < 0 we have

lim
𝑥→0+

𝑓𝑎(𝑥) = +∞ ≠ 0 = lim
𝑥→0−

𝑓𝑎(𝑥)

and thus 𝑓𝑎 is not continuous at zero. We may conclude that 𝑓𝑎 is continuous at zero
if and only if 𝑎 > 0.

(b) As we showed in part (a), 𝑓𝑎 is not continuous, and hence not differentiable, at zero
for 𝑎 ≤ 0. For 0 < 𝑎 < 1, observe that

lim
𝑥→0+

𝑓𝑎(𝑥) − 𝑓𝑎(0)
𝑥 − 0

= lim
𝑥→0+

𝑥𝑎−1 = +∞ ≠ 0 = lim
𝑥→0−

𝑥𝑎−1 = lim
𝑥→0−

𝑓𝑎(𝑥) − 𝑓𝑎(0)
𝑥 − 0

.

Thus 𝑓𝑎 is not differentiable at zero. For 𝑎 = 1 we have

lim
𝑥→0+

𝑓𝑎(𝑥) − 𝑓𝑎(0)
𝑥 − 0

= 1 ≠ 0 = lim
𝑥→0−

𝑓𝑎(𝑥) − 𝑓𝑎(0)
𝑥 − 0

and thus 𝑓𝑎 is not differentiable at zero. For 𝑎 > 1 we have

lim
𝑥→0+

𝑓𝑎(𝑥) − 𝑓𝑎(0)
𝑥 − 0

= lim
𝑥→0+

𝑥𝑎−1 = 0 = lim
𝑥→0−

𝑥𝑎−1 = lim
𝑥→0−

𝑓𝑎(𝑥) − 𝑓𝑎(0)
𝑥 − 0

and thus 𝑓 ′
𝑎(0) = 0. The derivative function 𝑓 ′

𝑎 : 𝐑 → 𝐑 is given by

𝑓 ′
𝑎(𝑥) = {𝑎𝑥𝑎−1 if 𝑥 > 0,

0 if 𝑥 ≤ 0,

which is continuous since 𝑎 > 1.

(c) Similarly to part (b), 𝑓𝑎 is twice-differentiable if and only if 𝑎 > 2, and the second
derivative 𝑓″

𝑎 : 𝐑 → 𝐑 is given by

𝑓″
𝑎 (𝑥) = {𝑎(𝑎 − 1)𝑥𝑎−2 if 𝑥 > 0,

0 if 𝑥 ≤ 0.

0

1

0 1

𝑓1/4

0

1

0 1

𝑓1

0

1

0 1

𝑓3
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Exercise 5.2.6. Let 𝑔 be defined on an interval 𝐴, and let 𝑐 ∈ 𝐴.

(a) Explain why 𝑔′(𝑐) in Definition 5.2.1 could have been given by

𝑔′(𝑐) = lim
ℎ→0

𝑔(𝑐 + ℎ) − 𝑔(𝑐)
ℎ

.

(b) Assume 𝐴 is open. If 𝑔 is differentiable at 𝑐 ∈ 𝐴, show

𝑔′(𝑐) = lim
ℎ→0

𝑔(𝑐 + ℎ) − 𝑔(𝑐 − ℎ)
2ℎ

.

Solution.

(a) By taking 𝑥 = 𝑐 + ℎ or ℎ = 𝑥 − 𝑐, we see that the limits

lim
𝑥→𝑐

𝑔(𝑥) − 𝑔(𝑐)
𝑥 − 𝑐

and lim
ℎ→0

𝑔(𝑐 + ℎ) − 𝑔(𝑐)
ℎ

either both diverge or both converge; if they both converge then they must converge
to the same value.

(b) Let 𝜀 > 0 be given. By part (a) there is a 𝛿 > 0 such that

0 < |ℎ| < 𝛿 ⇒ |
𝑔(𝑐 + ℎ) − 𝑔(𝑐)

ℎ
− 𝑔′(𝑐)| < 𝜀.

Note that since |−ℎ| = |ℎ| we also have

0 < |ℎ| < 𝛿 ⇒ |
𝑔(𝑐 − ℎ) − 𝑔(𝑐)

−ℎ
− 𝑔′(𝑐)| < 𝜀.

For any ℎ such that 0 < |ℎ| < 𝛿 it follows that

|
𝑔(𝑐 + ℎ) − 𝑔(𝑐 − ℎ)

2ℎ
− 𝑔′(𝑐)| = |

𝑔(𝑐 + ℎ) − 𝑔(𝑐) + 𝑔(𝑐) − 𝑔(𝑐 − ℎ)
2ℎ

−
2𝑔′(𝑐)

2
|

≤
1
2
|
𝑔(𝑐 + ℎ) − 𝑔(𝑐)

ℎ
− 𝑔′(𝑐)| +

1
2
|
𝑔(𝑐 − ℎ) − 𝑔(𝑐)

−ℎ
− 𝑔′(𝑐)|

< 𝜀
2 + 𝜀

2 = 𝜀.

Thus

lim
ℎ→0

𝑔(𝑐 + ℎ) − 𝑔(𝑐 − ℎ)
2ℎ

= 𝑔′(𝑐).
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Exercise 5.2.7. Let

𝑔𝑎(𝑥) = {𝑥𝑎 sin(1/𝑥) if 𝑥 ≠ 0
0 if 𝑥 = 0.

Find a particular (potentially noninteger) value for 𝑎 so that

(a) 𝑔𝑎 is differentiable on 𝐑 but such that 𝑔′
𝑎 is unbounded on [0, 1].

(b) 𝑔𝑎 is differentiable on 𝐑 with 𝑔′
𝑎 continuous but not differentiable at zero.

(c) 𝑔𝑎 is differentiable on 𝐑 and 𝑔′
𝑎 is differentiable on 𝐑, but such that 𝑔″

𝑎 is not
continuous at zero.

Solution.

(a) Take 𝑎 = 5
3 . For 𝑥 ≠ 0 we have by the usual rules of differentiation that

𝑔′
𝑎(𝑥) =

5𝑥 sin( 1
𝑥) − 3 cos( 1

𝑥)
3 3
√

𝑥
,

and for 𝑥 = 0 we have

𝑔′
𝑎(0) = lim

𝑡→0

𝑔𝑎(𝑡)
𝑡

= lim
𝑡→0

𝑡2/3 sin(1
𝑡 ).

Since −𝑡2/3 ≤ 𝑡2/3 sin(1
𝑡 ) ≤ 𝑡2/3 for every 𝑡 ∈ 𝐑, the Squeeze Theorem implies that 

𝑔′
𝑎(0) = 0. Thus the derivative 𝑔′

𝑎 : 𝐑 → 𝐑 is given by

𝑔′
𝑎(𝑥) =

⎩
{
⎨
{
⎧5𝑥 sin( 1

𝑥) − 3 cos( 1
𝑥)

3 3
√

𝑥
if 𝑥 ≠ 0,

0 if 𝑥 = 0.

Consider the sequence (𝑥𝑛) contained in [0, 1] given by 𝑥𝑛 = 1
𝜋(1+2𝑛)  and observe that

𝑔′
𝑎(𝑥𝑛) =

5𝑥𝑛 sin(𝜋(1 + 2𝑛)) − 3 cos(𝜋(1 + 2𝑛))
3 3
√𝑥𝑛

=
1

3
√𝑥𝑛

.

It follows that lim𝑛→∞ 𝑔′
𝑎(𝑥𝑛) = +∞ since (𝑥𝑛) is positive and satisfies lim𝑛→∞ 𝑥𝑛 = 0.

Thus 𝑔′
𝑎 is unbounded on [0, 1].

(b) Take 𝑎 = 3. For 𝑥 ≠ 0 we have by the usual rules of differentiation that

𝑔′
𝑎(𝑥) = 3𝑥2 sin( 1

𝑥) − 𝑥 cos( 1
𝑥).

For 𝑥 = 0 we have

𝑔′
𝑎(0) = lim

𝑡→0

𝑔𝑎(𝑡)
𝑡

= lim
𝑡→0

𝑡2 sin(1
𝑡 ) = 0,

where we have used the Squeeze Theorem as in part (a). Thus the derivative 𝑔′
𝑎 : 𝐑 → 𝐑

is given by
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𝑔′
𝑎(𝑥) = {3𝑥2 sin( 1

𝑥) − 𝑥 cos( 1
𝑥) if 𝑥 ≠ 0,

0 if 𝑥 = 0.

Note that for 𝑥 ≠ 0 the function 𝑔′
𝑎 is given by sums, products, and compositions of

continuous functions and hence is itself continuous. For 𝑥 = 0, the Squeeze Theorem
shows that lim𝑥→0 𝑔′

𝑎(𝑥) = 0 = 𝑔′
𝑎(0) and thus 𝑔′

𝑎 is continuous everywhere.

To see that 𝑔′
𝑎 is not differentiable at zero, observe that

lim
𝑡→0

3𝑡 sin(1
𝑡 ) = 0 and lim

𝑡→0
cos(1

𝑡 ) does not exist.

It follows from Corollary 4.2.4 that

lim
𝑡→0

3𝑡2 sin(1
𝑡 ) − 𝑡 cos(1

𝑡 )
𝑡

= lim
𝑡→0

(3𝑡 sin(1
𝑡 ) − cos(1

𝑡 ))

does not exist, i.e. 𝑔′
𝑎 is not differentiable at zero.

(c) Take 𝑎 = 4. For 𝑥 ≠ 0 we have by the usual rules of differentiation that

𝑔′
𝑎(𝑥) = 4𝑥3 sin( 1

𝑥) − 𝑥2 cos( 1
𝑥).

For 𝑥 = 0 we have

𝑔′
𝑎(0) = lim

𝑡→0
𝑡3 sin(1

𝑡 ) = 0,

where we have used the Squeeze Theorem as in parts (a) and (b). The derivative
𝑔′

𝑎 : 𝐑 → 𝐑 is given by

𝑔′
𝑎(𝑥) = {4𝑥3 sin( 1

𝑥) − 𝑥2 cos( 1
𝑥) if 𝑥 ≠ 0,

0 if 𝑥 = 0.

For 𝑥 ≠ 0 we have by the usual rules of differentiation that

𝑔″
𝑎(𝑥) = (12𝑥2 − 1) sin( 1

𝑥) − 6𝑥 cos( 1
𝑥).

For 𝑥 = 0 we have by the Squeeze Theorem,

𝑔″
𝑎(0) = lim

𝑡→0
(4𝑡2 sin(1

𝑡 ) − 𝑡 cos(1
𝑡 )) = 0.

Thus the second derivative 𝑔″
𝑎 : 𝐑 → 𝐑 is given by

𝑔″
𝑎(𝑥) = {(12𝑥2 − 1) sin( 1

𝑥) − 6𝑥 cos( 1
𝑥) if 𝑥 ≠ 0,

0 if 𝑥 = 0.

To see that 𝑔″
𝑎 is not continuous at zero, note that

lim
𝑥→0

12𝑥2 sin( 1
𝑥) = 0, lim

𝑥→0
6𝑥 cos( 1

𝑥), and lim
𝑥→0

sin( 1
𝑥) does not exist.

It follows from Corollary 4.2.4 that
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lim
𝑥→0

𝑔″
𝑎(𝑥) = lim

𝑥→0
(12𝑥2 sin( 1

𝑥) − 6𝑥 cos( 1
𝑥) − sin( 1

𝑥))

does not exist.

Exercise 5.2.8. Review the definition of uniform continuity (Definition 4.4.4). Given
a differentiable function 𝑓 : 𝐴 → 𝐑, let’s say that 𝑓 is uniformly differentiable on 𝐴 if,
given 𝜀 > 0 there exists a 𝛿 > 0 such that

|
𝑓(𝑥) − 𝑓(𝑦)

𝑥 − 𝑦
− 𝑓 ′(𝑦)| < 𝜀 whenever 0 < |𝑥 − 𝑦| < 𝛿.

(a) Is 𝑓(𝑥) = 𝑥2 uniformly differentiable on 𝐑? How about 𝑔(𝑥) = 𝑥3?

(b) Show that if a function is uniformly differentiable on an interval 𝐴, then the de-
rivative must be continuous on 𝐴.

(c) Is there a theorem analogous to Theorem 4.4.7 for differentiation? Are functions
that are differentiable on a closed interval [𝑎, 𝑏] necessarily uniformly differentiable?

Solution.

(a) 𝑓 is uniformly differentiable on 𝐑. Let 𝜀 > 0 be given, let 𝛿 = 𝜀, and suppose 𝑥, 𝑦 ∈ 𝐑
are such that 0 < |𝑥 − 𝑦| < 𝛿. It follows that

|
𝑓(𝑥) − 𝑓(𝑦)

𝑥 − 𝑦
− 𝑓 ′(𝑦)| = |

𝑥2 − 𝑦2

𝑥 − 𝑦
− 2𝑦| = |𝑥 − 𝑦| < 𝛿 = 𝜀.

However, 𝑔 is not uniformly differentiable on 𝐑. To see this, we need to show that
there exists an 𝜀 > 0 such that for all 𝛿 > 0 there exist real numbers 𝑥, 𝑦 such that
0 < |𝑥 − 𝑦| < 𝛿 and

|
𝑓(𝑥) − 𝑓(𝑦)

𝑥 − 𝑦
− 𝑓 ′(𝑦)| ≥ 𝜀.

We claim that 𝜀 = 1 satisfies the previous statement. Indeed, let 𝛿 > 0 be given. Let 
𝑥 = 2

𝛿  and 𝑦 = 𝑥 + 𝛿
2 , so that 0 < |𝑥 − 𝑦| = 𝛿

2 < 𝛿, and observe that

|
𝑔(𝑥) − 𝑔(𝑦)

𝑥 − 𝑦
− 𝑔′(𝑦)| = |

𝑥3 − 𝑦3

𝑥 − 𝑦
− 3𝑦2|

= |
(𝑥 − 𝑦)(𝑥2 + 𝑥𝑦 + 𝑦2)

𝑥 − 𝑦
− 3𝑦2|

= |𝑥2 + 𝑥𝑦 − 2𝑦2|

= |𝑥 − 𝑦||𝑥 + 2𝑦|

= 𝛿
2 |3𝑥 + 𝛿|

= 𝛿
2(3𝑥 + 𝛿) =

3𝑥𝛿
2

+
𝛿2

2
>

𝑥𝛿
2

= 1.

206 / 415



(b) Suppose 𝑓 : 𝐴 → 𝐑 is uniformly differentiable. Fix 𝜀 > 0. Since 𝑓 is uniformly differ-
entiable, there exists a 𝛿 > 0 such that

0 < |𝑠 − 𝑡| < 𝛿 ⇒ |
𝑓(𝑠) − 𝑓(𝑡)

𝑠 − 𝑡
− 𝑓 ′(𝑡)| < 𝜀

2 .

Fix 𝑦 ∈ 𝐴 and suppose 𝑥 ∈ 𝐴 is such that 0 < |𝑥 − 𝑦| < 𝛿. Observe that

|𝑓 ′(𝑥) − 𝑓 ′(𝑦)| ≤ |
𝑓(𝑦) − 𝑓(𝑥)

𝑦 − 𝑥
− 𝑓 ′(𝑥)| + |

𝑓(𝑥) − 𝑓(𝑦)
𝑥 − 𝑦

− 𝑓 ′(𝑦)| < 𝜀
2 + 𝜀

2 = 𝜀.

Thus 𝑓 ′ is continuous.

(c) There is no analogous theorem. Consider the function

𝑓(𝑥) = {𝑥5/3 sin( 1
𝑥) if 𝑥 ≠ 0,

0 if 𝑥 = 0.

As we showed in Exercise 5.2.7 (a), 𝑓 is differentiable on 𝐑, and hence on [0, 1], but 𝑓 ′

is unbounded on [0, 1]. It follows that 𝑓 ′ is not continuous on [0, 1] (since continuous
functions preserve compactness) and hence by part (b) of this exercise, 𝑓 cannot be
uniformly differentiable on [0, 1].

Exercise 5.2.9. Decide whether each conjecture is true or false. Provide an argument
for those that are true and a counterexample for each one that is false.

(a) If 𝑓 ′ exists on an interval and is not constant, then 𝑓 ′ must take on some irrational
values.

(b) If 𝑓 ′ exists on an open interval and there is some point 𝑐 where 𝑓 ′(𝑐) > 0, then
there exists a 𝛿-neighborhood 𝑉𝛿(𝑐) around 𝑐 in which 𝑓 ′(𝑥) > 0 for all 𝑥 ∈ 𝑉𝛿(𝑐).

(c) If 𝑓 is differentiable on an interval containing zero and if lim𝑥→0 𝑓 ′(𝑥) = 𝐿, then
it must be that 𝐿 = 𝑓 ′(0).

Solution.

(a) This is true. If 𝑓 : 𝐼 → 𝐑 is differentiable and 𝑓 ′ is not constant, where 𝐼 is an inter-
val, then there exist distinct 𝑥, 𝑦 ∈ 𝐼 such that 𝑓 ′(𝑥) ≠ 𝑓 ′(𝑦); we may assume that
𝑓 ′(𝑥) < 𝑓 ′(𝑦). Darboux’s Theorem (Theorem 5.2.7) implies that [𝑓 ′(𝑥), 𝑓 ′(𝑦)] ⊆ 𝑓 ′(𝐼),
from which it follows that 𝑓 ′ takes on at least one irrational value in the proper interval
[𝑓 ′(𝑥), 𝑓 ′(𝑦)].

(b) This is false. Consider the function 𝑓 : 𝐑 → 𝐑 given by

𝑓(𝑥) = {
𝑥
2 + 𝑥2 sin( 1

𝑥) if 𝑥 ≠ 0,
0 if 𝑥 = 0.

By the usual rules of differentiation and the Squeeze Theorem, the derivative
𝑓 ′ : 𝐑 → 𝐑 is given by
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𝑓 ′(𝑥) =
⎩{
⎨
{⎧1

2 + 2𝑥 sin( 1
𝑥) − cos( 1

𝑥) if 𝑥 ≠ 0,
1
2 if 𝑥 = 0;

note that 𝑓 ′(0) > 0. Let (𝑥𝑛) be the sequence given by 𝑥𝑛 = 1
2𝜋𝑛 , so that

lim𝑛→∞ 𝑥𝑛 = 0, and observe that

𝑓 ′(𝑥𝑛) = −1
2 < 0

for every 𝑛 ∈ 𝐍. It follows that for every 𝛿-neighbourhood 𝑉𝛿(0) we can find some
𝑥𝑛 ∈ 𝑉𝛿(0) such that 𝑓(𝑥𝑛) < 0.

(c) This is true and we will prove it by contradiction. Suppose that 𝐿 > 𝑓 ′(0); the case
where 𝐿 < 𝑓 ′(0) is handled similarly. Let 𝜀 = 𝐿 − 𝑓 ′(0) > 0. Since lim𝑥→0 𝑓 ′(𝑥) = 𝐿,
there is a 𝛿 > 0 such that

𝑥 ∈ (−𝛿, 𝛿) and 𝑥 ≠ 0 ⇒ 𝑓 ′(𝑥) ∈ (𝐿 − 𝜀
2 , 𝐿 + 𝜀

2). (1)

In particular we have 𝑓 ′( 𝛿
2) ∈ (𝐿 − 𝜀

2 , 𝐿 + 𝜀
2). Since

𝑓 ′(0) < 𝐿 − 3𝜀
4 < 𝐿 − 𝜀

2 < 𝑓 ′( 𝛿
2),

Darboux’s Theorem (Theorem 5.2.7) implies that there is a 𝑦 ∈ (0, 𝛿
2) such that 

𝑓 ′(𝑦) = 𝐿 − 3𝜀
4 , which contradicts (1).

Exercise 5.2.10. Recall that a function 𝑓 : (𝑎, 𝑏) → 𝐑 is increasing on (𝑎, 𝑏) if
𝑓(𝑥) ≤ 𝑓(𝑦) whenever 𝑥 < 𝑦 in (𝑎, 𝑏). A familiar mantra from calculus is that a differ-
entiable function is increasing if its derivative is positive, but this statement requires
some sharpening in order to be completely accurate.

Show that the function

𝑔(𝑥) = {𝑥/2 + 𝑥2 sin(1/𝑥) if 𝑥 ≠ 0,
0 if 𝑥 = 0

is differentiable on 𝐑 and satisfies 𝑔′(0) > 0. Now, prove that 𝑔 is not increasing over
any open interval containing 0.

In the next section we will see that 𝑓 is indeed increasing on (𝑎, 𝑏) if and only if 𝑓 ′(𝑥) ≥ 0
for all 𝑥 ∈ (𝑎, 𝑏).

Solution. As we showed in Exercise 5.2.9 (b), 𝑔 is differentiable on 𝐑 and satisfies
𝑔′(0) = 1

2 > 0. For 𝑛 ∈ 𝐍 let

𝑥𝑛 =
1

2𝜋𝑛
and 𝑦𝑛 =

1
2𝜋𝑛 − 𝜋

2
.

Suppose (𝑎, 𝑏) is some open interval containing 0 and let 𝑁 ∈ 𝐍 be such that 𝑦𝑁 < 𝑏, so
that 0 < 𝑥𝑁 < 𝑦𝑁 < 𝑏. Observe that
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𝑔(𝑥𝑁) =
1

4𝜋𝑁
and 𝑔(𝑦𝑁) =

1
4𝜋𝑁 − 𝜋

−
1

(2𝜋𝑁 − 𝜋
2)2 .

Some algebraic manipulation reveals that

𝑔(𝑥𝑁) − 𝑔(𝑦𝑁) =
𝜋(8𝑁 − 3) − 4
(𝜋 − 4𝜋𝑁)2 +

𝜋
4𝑁(𝜋 − 4𝜋𝑁)2 > 0.

Thus 𝑥𝑁 , 𝑦𝑁 ∈ (𝑎, 𝑏) are such that 𝑥𝑁 < 𝑦𝑁  but 𝑔(𝑥𝑁) > 𝑔(𝑦𝑁); it follows that 𝑔 is not in-
creasing on (𝑎, 𝑏).

Exercise 5.2.11. Assume that 𝑔 is differentiable on [𝑎, 𝑏] and satisfies 𝑔′(𝑎) < 0 < 𝑔′(𝑏).

(a) Show that there exists a point 𝑥 ∈ (𝑎, 𝑏) where 𝑔(𝑎) > 𝑔(𝑥), and a point 𝑦 ∈ (𝑎, 𝑏)
where 𝑔(𝑦) < 𝑔(𝑏).

(b) Now complete the proof of Darboux’s Theorem started earlier.

Solution.

(a) We will prove the contrapositive statement:

𝑔(𝑎) ≤ 𝑔(𝑥) for all 𝑥 ∈ (𝑎, 𝑏) ⇒ 𝑔′(𝑎) ≥ 0.

Suppose that for all 𝑥 ∈ (𝑎, 𝑏) we have 𝑔(𝑎) ≤ 𝑔(𝑥). Let (𝑥𝑛) be the sequence given
by 𝑥𝑛 = 𝑎 + 𝑏−𝑎

2𝑛 , so that 𝑥𝑛 ∈ (𝑎, 𝑏) for all 𝑛 ∈ 𝐍 and lim𝑛→∞ 𝑥𝑛 = 𝑎. It follows from
Theorem 4.2.3 that

lim
𝑛→∞

𝑔(𝑥𝑛) − 𝑔(𝑎)
𝑥𝑛 − 𝑎

= 𝑔′(𝑎).

The denominator of 𝑔(𝑥𝑛)−𝑔(𝑎)
𝑥𝑛−𝑎  is positive for each 𝑛 ∈ 𝐍 and our assumption that 

𝑔(𝑎) ≤ 𝑔(𝑥) for all 𝑥 ∈ (𝑎, 𝑏) implies that the numerator is non-negative for each 𝑛 ∈ 𝐍.
The Order Limit Theorem (Theorem 2.3.4) allows us to conclude that 𝑔′(𝑎) ≥ 0.

The existence of a point 𝑦 ∈ (𝑎, 𝑏) such that 𝑔(𝑦) < 𝑔(𝑏) can be proved similarly.

(b) The function 𝑔 is differentiable and hence continuous on [𝑎, 𝑏] (Theorem 5.2.3) and thus
achieves a minimum value at some 𝑐 ∈ [𝑎, 𝑏] by the Extreme Value Theorem (Theorem
4.4.2). By part (a) we actually have 𝑐 ∈ (𝑎, 𝑏) and thus 𝑔′(𝑐) = 0 by the Interior Ex-
tremum Theorem (Theorem 5.2.6).
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Exercise 5.2.12 (Inverse functions). If 𝑓 : [𝑎, 𝑏] → 𝐑 is one-to-one, then there exists
an inverse function 𝑓−1 defined on the range of 𝑓 given by 𝑓−1(𝑦) = 𝑥 where 𝑦 = 𝑓(𝑥).
In Exercise 4.5.8 we saw that if 𝑓 is continuous on [𝑎, 𝑏] then 𝑓−1 is continuous on its
domain. Let’s add the assumption that 𝑓 is differentiable on [𝑎, 𝑏] with 𝑓 ′(𝑥) ≠ 0 for all
𝑥 ∈ [𝑎, 𝑏]. Show 𝑓−1 is differentiable with

(𝑓−1)′(𝑦) =
1

𝑓 ′(𝑥)
where 𝑦 = 𝑓(𝑥).

Solution. Since 𝑓 ′(𝑥) ≠ 0 we have

lim
𝑠→𝑥

𝑠 − 𝑥
𝑓(𝑠) − 𝑓(𝑥)

=
1

𝑓 ′(𝑥)

by Corollary 4.2.4 (iv). Let 𝜀 > 0 be given. There is a 𝛿1 > 0 such that

0 < |𝑠 − 𝑥| < 𝛿1 ⇒ |
𝑠 − 𝑥

𝑓(𝑠) − 𝑓(𝑥)
−

1
𝑓 ′(𝑥)

| < 𝜀. (1)

Because 𝑓−1 is continuous on its domain we have lim𝑡→𝑦 𝑓−1(𝑡) = 𝑓−1(𝑦) = 𝑥. Thus there
exists a 𝛿2 > 0 such that

0 < |𝑡 − 𝑦| < 𝛿2 ⇒ 0 < |𝑓−1(𝑡) − 𝑓−1(𝑦)| = |𝑓−1(𝑡) − 𝑥| < 𝛿1.

(The fact that 𝑓−1(𝑡) ≠ 𝑥 follows since 𝑡 ≠ 𝑦 and 𝑓−1 is injective.) We may now take
𝑠 = 𝑓−1(𝑡) in (1) to see that

0 < |𝑡 − 𝑦| < 𝛿2 ⇒ |
𝑓−1(𝑡) − 𝑥

𝑓(𝑓−1(𝑡)) − 𝑓(𝑥)
−

1
𝑓 ′(𝑥)

| = |
𝑓−1(𝑡) − 𝑓−1(𝑦)

𝑡 − 𝑦
−

1
𝑓 ′(𝑥)

| < 𝜀.

Thus

(𝑓−1)′(𝑦) = lim
𝑡→𝑦

𝑓−1(𝑡) − 𝑓−1(𝑦)
𝑡 − 𝑦

=
1

𝑓 ′(𝑥)
.
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5.3. The Mean Value Theorems

Exercise 5.3.1. Recall from Exercise 4.4.9 that a function 𝑓 : 𝐴 → 𝐑 is Lipschitz on 
𝐴 if there exists an 𝑀 > 0 such that

|
𝑓(𝑥) − 𝑓(𝑦)

𝑥 − 𝑦
| ≤ 𝑀

for all 𝑥 ≠ 𝑦 in 𝐴.

(a) Show that if 𝑓 is differentiable on a closed interval [𝑎, 𝑏] and if 𝑓 ′ is continuous on
[𝑎, 𝑏] then 𝑓 is Lipschitz on [𝑎, 𝑏].

(b) Review the definition of a contractive function in Exercise 4.3.11. If we add the
assumption that |𝑓 ′(𝑥)| < 1 on [𝑎, 𝑏], does it follow that 𝑓 is contractive on this set?

Solution.

(a) Note that |𝑓 ′| is continuous on [𝑎, 𝑏] since 𝑓 ′ is continuous on [𝑎, 𝑏]. The Extreme
Value Theorem (Theorem 4.4.2) then implies that |𝑓 ′| attains a maximum on [𝑎, 𝑏], say
𝑀 = |𝑓 ′(𝑡)| for some 𝑡 ∈ [𝑎, 𝑏]. Let 𝑥 < 𝑦 in [𝑎, 𝑏] be given. The Mean Value Theorem
(Theorem 5.3.2) on the interval [𝑥, 𝑦] implies that there is a 𝑐 ∈ (𝑥, 𝑦) such that

|
𝑓(𝑥) − 𝑓(𝑦)

𝑥 − 𝑦
| = |𝑓 ′(𝑐)| ≤ 𝑀.

Thus 𝑓 is Lipschitz on [𝑎, 𝑏].

(b) If |𝑓 ′(𝑥)| < 1 on [𝑎, 𝑏] then the maximum value 𝑀 = |𝑓 ′(𝑡)| from part (a) must satisfy
𝑀 < 1 and thus 𝑓 is contractive on [𝑎, 𝑏].

Exercise 5.3.2. Let 𝑓 be differentiable on an interval 𝐴. If 𝑓 ′(𝑥) ≠ 0 on 𝐴, show that
𝑓 is one-to-one on 𝐴. Provide an example to show that the converse statement need not
be true.

Solution. We will prove the contrapositive statement. If there exist points 𝑥 < 𝑦 in 𝐴
such that 𝑓(𝑥) = 𝑓(𝑦) then Rolle’s Theorem implies that there is some 𝑐 ∈ (𝑥, 𝑦) such that
𝑓 ′(𝑐) = 0.

For a counterexample to the converse statement, consider the injective function 𝑓 : 𝐑 → 𝐑
given by 𝑓(𝑥) = 𝑥3, which satisfies 𝑓 ′(0) = 0.

211 / 415



Exercise 5.3.3. Let ℎ be a differentiable function defined on the interval [0, 3], and
assume that ℎ(0) = 1, ℎ(1) = 2, and ℎ(3) = 2.

(a) Argue that there exists a point 𝑑 ∈ [0, 3] where ℎ(𝑑) = 𝑑.

(b) Argue that at some point 𝑐 we have ℎ′(𝑐) = 1/3.

(c) Argue that ℎ′(𝑥) = 1/4 at some point in the domain.

Solution.

(a) Define 𝑓 : [0, 3] → 𝐑 by 𝑓(𝑥) = ℎ(𝑥) − 𝑥 and note that 𝑓 is continuous since ℎ is con-
tinuous. Furthermore, since 𝑓(1) = ℎ(1) − 1 = 1 and 𝑓(3) = ℎ(3) − 3 = −1, the Inter-
mediate Value Theorem implies that there is some 𝑑 ∈ (1, 3) such that 𝑓(𝑑) = 0, i.e. 
ℎ(𝑑) = 𝑑.

(b) Because ℎ is differentiable on [0, 3], the Mean Value Theorem implies that there exists
some point 𝑐 ∈ (0, 3) such that

ℎ′(𝑐) =
ℎ(3) − ℎ(0)

3 − 0
=

1
3
.

(c) Similarly to part (b), the Mean Value Theorem implies the existence of some 𝑏 ∈ (1, 3)
such that

ℎ′(𝑏) =
ℎ(3) − ℎ(1)

3 − 1
= 0.

Combining this part (b), we see that ℎ′ takes the values 0 and 1
3 . Since 0 < 1

4 < 1
3 ,

Darboux’s Theorem implies that ℎ′ takes the value 1
4  at some point in (0, 1

3) ⊆ [0, 3].

Exercise 5.3.4. Let 𝑓 be differentiable on an interval 𝐴 containing zero, and assume 
(𝑥𝑛) is a sequence in 𝐴 with (𝑥𝑛) → 0 and 𝑥𝑛 ≠ 0.

(a) If 𝑓(𝑥𝑛) = 0 for all 𝑛 ∈ 𝐍, show 𝑓(0) = 0 and 𝑓 ′(0) = 0.

(b) Add the assumption that 𝑓 is twice-differentiable at zero and show that 𝑓″(0) = 0
as well.

Solution.

(a) We have

0 = lim
𝑛→∞

𝑓(𝑥𝑛) = 𝑓(0)

since 𝑓 is continuous at zero.

Note that, since 𝑥𝑛 ≠ 0 for each 𝑛 ∈ 𝐍, the difference quotient 𝑓(𝑥𝑛)−𝑓(0)
𝑥𝑛−0 = 𝑓(𝑥𝑛)

𝑥𝑛
 is

well-defined and satisfies 𝑓(𝑥𝑛)
𝑥𝑛

= 0. Since 𝑓 ′(0) exists, Theorem 4.2.3 implies that

212 / 415



𝑓 ′(0) = lim
𝑛→∞

𝑓(𝑥𝑛)
𝑥𝑛

= 0.

(b) We are given that the limit

𝑓″(0) = lim
𝑥→0

𝑓 ′(𝑥) − 𝑓 ′(0)
𝑥 − 0

= lim
𝑥→0

𝑓 ′(𝑥)
𝑥

exists. Since 𝑓(0) = 0, we may apply L’Hospital’s Rule (Theorem 5.3.6) to see that

𝑓″(0) = lim
𝑥→0

2𝑓(𝑥)
𝑥2 .

Since 𝑥𝑛 ≠ 0 for each 𝑛 ∈ 𝐍, the quotient 2𝑓(𝑥𝑛)
𝑥2

𝑛
 is well-defined and satisfies 2𝑓(𝑥𝑛)

𝑥2
𝑛

= 0.
Since lim𝑥→0

2𝑓(𝑥)
𝑥2  exists, Theorem 4.2.3 gives us

𝑓″(0) = lim
𝑛→∞

2𝑓(𝑥𝑛)
𝑥2

𝑛
= 0.

Exercise 5.3.5.

(a) Supply the details for the proof of Cauchy’s Generalized Mean Value Theorem
(Theorem 5.3.5).

(b) Give a graphical interpretation of the Generalized Mean Value Theorem analogous
to the one given for the Mean Value Theorem at the beginning of Section 5.3.
(Consider 𝑓 and 𝑔 as parametric equations for a curve.)

Solution.

(a) Define ℎ : [𝑎, 𝑏] → 𝐑 by

ℎ(𝑥) = [𝑓(𝑏) − 𝑓(𝑎)]𝑔(𝑥) − [𝑔(𝑏) − 𝑔(𝑎)]𝑓(𝑥)

and note that ℎ is continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏). Note further that 
ℎ(𝑏) − ℎ(𝑎) = 0. The Mean Value Theorem (Theorem 5.3.2) implies the existence of
some 𝑐 ∈ (𝑎, 𝑏) such that

ℎ′(𝑐) =
ℎ(𝑏) − ℎ(𝑎)

𝑏 − 𝑎
,

or equivalently

[𝑓(𝑏) − 𝑓(𝑎)]𝑔′(𝑐) − [𝑔(𝑏) − 𝑔(𝑎)]𝑓 ′(𝑐) =
ℎ(𝑏) − ℎ(𝑎)

𝑏 − 𝑎
= 0.

(b) If 𝑓 ′(𝑐) ≠ 0 and 𝑓(𝑏) ≠ 𝑓(𝑎), so that

𝑔′(𝑐)
𝑓 ′(𝑐)

=
𝑔(𝑏) − 𝑓(𝑎)
𝑓(𝑏) − 𝑓(𝑎)

,

then the Generalized Mean Value Theorem can be geometrically interpreted as as-
serting the existence of a tangent line to the planar curve 𝛾 : [𝑎, 𝑏] → 𝐑2 given by
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𝛾(𝑡) = (𝑓(𝑡), 𝑔(𝑡)) at the point 𝛾(𝑐) = (𝑓(𝑐), 𝑔(𝑐)) which is parallel to the line through
the points 𝛾(𝑎) = (𝑓(𝑎), 𝑔(𝑎)) and 𝛾(𝑏) = (𝑓(𝑏), 𝑔(𝑏)).

𝛾(𝑡) = (sin 2𝑡, cos 3
2𝑡) for 𝑡 ∈ [0, 1]

𝛾(0)

𝛾(1)

𝛾(𝑐)

Exercise 5.3.6.

(a) Let 𝑔 : [0, 𝑎] → 𝐑 be differentiable, 𝑔(0) = 0, and |𝑔′(𝑥)| ≤ 𝑀  for all 𝑥 ∈ [0, 𝑎].
Show |𝑔(𝑥)| ≤ 𝑀𝑥 for all 𝑥 ∈ [0, 𝑎].

(b) Let ℎ : [0, 𝑎] → 𝐑 be twice differentiable ℎ′(0) = ℎ(0) = 0 and |ℎ″(𝑥)| ≤ 𝑀  for all
𝑥 ∈ [0, 𝑎]. Show |ℎ(𝑥)| ≤ 𝑀𝑥2/2 for all 𝑥 ∈ [0, 𝑎].

(c) Conjecture and prove an analogous result for a function that is differentiable three
times on [0, 𝑎].

Solution.

(a) The inequality |𝑔(𝑥)| ≤ 𝑀𝑥 is clear when 𝑥 = 0, since 𝑔(0) = 0. Suppose 𝑥 ∈ (0, 𝑎]. By
the Mean Value Theorem on the interval [0, 𝑥], there exists some 𝑐 ∈ (0, 𝑥) such that

|𝑔′(𝑐)| = |
𝑔(𝑥)
𝑥

| ⇒ |𝑔(𝑥)| = |𝑔′(𝑐)|𝑥 ≤ 𝑀𝑥.

(b) The inequality |ℎ(𝑥)| ≤ 1
2𝑀𝑥2 is clear when 𝑥 = 0, since ℎ(0) = 0. Suppose 𝑥 ∈ (0, 𝑎].

Using the Generalized Mean Value Theorem on the interval [0, 𝑥] with the functions ℎ
and 1

2𝑥2, we can find some 𝑐 ∈ (0, 𝑥) such that

ℎ(𝑥)
1
2𝑥2

=
ℎ′(𝑐)

𝑐
.

Now we can use the Mean Value Theorem on the interval [0, 𝑐] with the function ℎ′ to
obtain some 𝑑 ∈ (0, 𝑐) such that
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ℎ″(𝑑) =
ℎ′(𝑐)

𝑐
.

Combining this with the previous equality, we see that

ℎ″(𝑑) =
ℎ(𝑥)
1
2𝑥2

⇒ |ℎ(𝑥)| = 1
2ℎ″(𝑑)𝑥2 ≤ 1

2𝑀𝑥2.

(c) Suppose 𝑓 : [0, 𝑎] → 𝐑 is three times differentiable, 𝑓″(0) = 𝑓 ′(0) = 𝑓(0) = 0, and 
𝑓‴(𝑥) ≤ 𝑀  for all 𝑥 ∈ [0, 𝑎]. We claim that |𝑓(𝑥)| ≤ 1

6𝑀𝑥3 for all 𝑥 ∈ [0, 𝑎].

The inequality |𝑓(𝑥)| ≤ 1
6𝑀𝑥3 is clear when 𝑥 = 0, since 𝑓(0) = 0. Suppose 𝑥 ∈ (0, 𝑎].

Using the Generalized Mean Value Theorem on the interval [0, 𝑥] with the functions 𝑓
and 1

6𝑥3, we can find some 𝑏 ∈ (0, 𝑥) such that

𝑓(𝑥)
1
6𝑥3

=
𝑓 ′(𝑏)
1
2𝑏2

.

Using the Generalized Mean Value Theorem on the interval [0, 𝑏] with the functions 𝑓 ′

and 1
2𝑥2, we can find some 𝑐 ∈ (0, 𝑏) such that

𝑓 ′(𝑏)
1
2𝑏2

=
𝑓″(𝑐)

𝑐
.

Now we can use the Mean Value Theorem on the interval [0, 𝑐] with the function 𝑓″ to
find some 𝑑 ∈ (0, 𝑐) such that

𝑓‴(𝑑) =
𝑓″(𝑐)

𝑐
.

Combining all of these equalities, we see that

𝑓‴(𝑑) =
𝑓(𝑥)
1
6𝑥3

⇒ |𝑓(𝑥)| = 1
6 |𝑓‴(𝑑)|𝑥3 ≤ 1

6𝑀𝑥3.

Exercise 5.3.7. A fixed point of a function 𝑓 is a value 𝑥 where 𝑓(𝑥) = 𝑥. Show that if 𝑓
is differentiable on an interval with 𝑓 ′(𝑥) ≠ 1, then 𝑓 can have at most one fixed point.

Solution. We will prove the contrapositive statement. Suppose that 𝑥 < 𝑦 belong to the
domain of 𝑓 and are such that 𝑓(𝑥) = 𝑥 and 𝑓(𝑦) = 𝑦. By the Mean Value Theorem on the
interval [𝑥, 𝑦], there exists some 𝑐 ∈ (𝑥, 𝑦) such that

𝑓 ′(𝑐) =
𝑓(𝑦) − 𝑓(𝑥)

𝑥 − 𝑦
=

𝑦 − 𝑥
𝑦 − 𝑥

= 1.

Exercise 5.3.8. Assume 𝑓 is continuous on an interval containing zero and differen-
tiable for all 𝑥 ≠ 0. If lim𝑥→0 𝑓 ′(𝑥) = 𝐿, show 𝑓 ′(0) exists and equals 𝐿.
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Solution. We would like to see that the limit

lim
𝑥→0

𝑓(𝑥) − 𝑓(0)
𝑥

exists and equals 𝐿. Letting 𝐼 denote the interval domain of 𝑓 , note that the numerator and
denominator of this fraction are both continuous on 𝐼 , differentiable on 𝐼 ∖ {0}, and vanish
at zero. Thus we have satisfied the hypotheses of the 0/0 case of L’Hospital’s Rule. Applying
the rule, we find that

𝑓 ′(0) = lim
𝑥→0

𝑓(𝑥) − 𝑓(0)
𝑥

= lim
𝑥→0

𝑓 ′(𝑥) = 𝐿.

Exercise 5.3.9. Assume 𝑓 and 𝑔 are as described in Theorem 5.3.6, but now add the
assumption that 𝑓 and 𝑔 are differentiable at 𝑎, and 𝑓 ′ and 𝑔′ are continuous at 𝑎 with
𝑔′(𝑎) ≠ 0. Find a short proof for the 0/0 case of L’Hospital’s Rule under this stronger
hypothesis.

Solution. Note that for all 𝑥 ≠ 𝑎 we have

𝑓(𝑥)
𝑔(𝑥)

=
𝑓(𝑥) − 𝑓(𝑎)
𝑔(𝑥) − 𝑔(𝑎)

=
𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎
𝑔(𝑥)−𝑔(𝑎)

𝑥−𝑎

.

By assumption the limits

𝑓 ′(𝑎) = lim
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)
𝑥 − 𝑎

and 𝑔′(𝑎) = lim
𝑥→𝑎

𝑔(𝑥) − 𝑔(𝑎)
𝑥 − 𝑎

both exist and 𝑔′(𝑎) ≠ 0. It follows from Corollary 4.2.4 (iv) that

lim
𝑥→𝑎

𝑓(𝑥)
𝑔(𝑥)

=
lim𝑥→𝑎

𝑓(𝑥)−𝑓(𝑎)
𝑥−𝑎

lim𝑥→𝑎
𝑔(𝑥)−𝑔(𝑎)

𝑥−𝑎

=
𝑓 ′(𝑎)
𝑔′(𝑎)

.

Now we can use our assumption that 𝑓 ′ and 𝑔′ are continuous at 𝑎 with 𝑔′(𝑎) ≠ 0 to see that

𝐿 = lim
𝑥→𝑎

𝑓 ′(𝑥)
𝑔′(𝑥)

=
𝑓 ′(𝑎)
𝑔′(𝑎)

= lim
𝑥→𝑎

𝑓(𝑥)
𝑔(𝑥)

.

Exercise 5.3.10. Let 𝑓(𝑥) = 𝑥 sin(1/𝑥4)𝑒−1/𝑥2 and 𝑔(𝑥) = 𝑒−1/𝑥2 . Using the famil-
iar properties of these functions, compute the limit as 𝑥 approaches zero of 
𝑓(𝑥), 𝑔(𝑥), 𝑓(𝑥)/𝑔(𝑥), and 𝑓 ′(𝑥)/𝑔′(𝑥). Explain why the results are surprising but not
in conflict with the content of Theorem 5.3.6.

Solution. Some algebraic manipulation reveals that

𝑓(𝑥)
𝑔(𝑥)

= 𝑥 sin( 1
𝑥4 ) and

𝑓 ′(𝑥)
𝑔′(𝑥)

= sin( 1
𝑥4 )(𝑥3

2 + 𝑥) −
2 cos( 1

𝑥4 )
𝑥

.
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Given an 𝜀 > 0, notice that

0 < |𝑥| < √
1

log(1
𝜀)

⇒ 𝑒−1/𝑥2 < 𝜀.

Thus lim𝑥→0 𝑔(𝑥) = 0. Combining this with various applications of the Squeeze Theorem, we
find that

lim
𝑥→0

𝑓(𝑥) = lim
𝑥→0

𝑔(𝑥) = lim
𝑥→0

𝑓(𝑥)
𝑔(𝑥)

= 0.

However, we claim that 𝑓′(𝑥)
𝑔′(𝑥)  does not converge to zero as 𝑥 → 0. Indeed, consider the se-

quence (𝑥𝑛) given by

𝑥𝑛 =
1

4
√

2𝑛𝜋
→ 0 as 𝑛 → ∞

and observe that

𝑓 ′(𝑥𝑛)
𝑔′(𝑥𝑛)

= −2 4
√

2𝑛𝜋 → −∞ as 𝑛 → ∞.

This does not conflict with the content of Theorem 5.3.6, which states that

lim
𝑥→0

𝑓 ′(𝑥)
𝑔′(𝑥)

= 𝐿 ⇒ lim
𝑥→0

𝑓(𝑥)
𝑔(𝑥)

= 𝐿,

and does not state that

lim
𝑥→0

𝑓(𝑥)
𝑔(𝑥)

= 𝐿 ⇒ lim
𝑥→0

𝑓 ′(𝑥)
𝑔′(𝑥)

= 𝐿.

Exercise 5.3.11.

(a) Use the Generalized Mean Value Theorem to furnish a proof of the 0/0 case of
L’Hospital’s Rule (Theorem 5.3.6).

(b) If we keep the first part of the hypothesis of Theorem 5.3.6 the same but we as-
sume that

lim
𝑥→𝑎

𝑓 ′(𝑥)
𝑔′(𝑥)

= ∞,

does it necessarily follow that

lim
𝑥→𝑎

𝑓(𝑥)
𝑔(𝑥)

= ∞?

Solution.

(a) Let 𝜀 > 0 be given. Since lim𝑥→𝑎
𝑓′(𝑥)
𝑔′(𝑥) = 𝐿, there is a 𝛿 > 0 such that
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0 < |𝑥 − 𝑎| < 𝛿 ⇒ |
𝑓 ′(𝑥)
𝑔′(𝑥)

− 𝐿| < 𝜀.

Suppose 𝑥 ∈ (𝑎 − 𝛿, 𝑎). By the Generalized Mean Value Theorem on the interval [𝑥, 𝑎],
there exists some 𝑐 ∈ (𝑥, 𝑎) such that

𝑓 ′(𝑐)
𝑔′(𝑐)

=
𝑓(𝑎) − 𝑓(𝑥)
𝑔(𝑎) − 𝑔(𝑥)

=
𝑓(𝑥)
𝑔(𝑥)

;

note we are using that 𝑔′ does not vanish on (𝑥, 𝑎). Since 𝑐 ∈ (𝑎 − 𝛿, 𝑎), we then have

0 < |𝑐 − 𝑎| < 𝛿 ⇒ |
𝑓 ′(𝑐)
𝑔′(𝑐)

− 𝐿| = |
𝑓(𝑥)
𝑔(𝑥)

− 𝐿| < 𝜀.

We can similarly handle the case where 𝑥 ∈ (𝑎, 𝑎 + 𝛿) by using the Generalized Mean
Value Theorem on the interval [𝑎, 𝑥]. In any case, we have shown that

0 < |𝑥 − 𝑎| < 𝛿 ⇒ |
𝑓(𝑥)
𝑔(𝑥)

− 𝐿| < 𝜀.

It follows that lim𝑥→𝑎
𝑓(𝑥)
𝑔(𝑥) = 𝐿.

(b) It does necessarily follow; the proof from part (a) needs only slight modifications. Let 
𝑀 > 0 be given. Since lim𝑥→𝑎

𝑓′(𝑥)
𝑔′(𝑥) = ∞, there is a 𝛿 > 0 such that

0 < |𝑥 − 𝑎| < 𝛿 ⇒
𝑓 ′(𝑥)
𝑔′(𝑥)

≥ 𝑀.

Suppose 𝑥 ∈ (𝑎 − 𝛿, 𝑎). By the Generalized Mean Value Theorem on the interval [𝑥, 𝑎]
there exists some 𝑐 ∈ (𝑥, 𝑎) such that

𝑓 ′(𝑐)
𝑔′(𝑐)

=
𝑓(𝑎) − 𝑓(𝑥)
𝑔(𝑎) − 𝑔(𝑥)

=
𝑓(𝑥)
𝑔(𝑥)

;

note we are using that 𝑔′ does not vanish on (𝑥, 𝑎). Since 𝑐 ∈ (𝑎 − 𝛿, 𝑎), we then have

0 < |𝑐 − 𝑎| < 𝛿 ⇒
𝑓 ′(𝑐)
𝑔′(𝑐)

=
𝑓(𝑥)
𝑔(𝑥)

≥ 𝑀.

We can similarly handle the case where 𝑥 ∈ (𝑎, 𝑎 + 𝛿) by using the Generalized Mean
Value Theorem on the interval [𝑎, 𝑥]. In any case, we have shown that

0 < |𝑥 − 𝑎| < 𝛿 ⇒
𝑓(𝑥)
𝑔(𝑥)

≥ 𝑀.

It follows that lim𝑥→𝑎
𝑓(𝑥)
𝑔(𝑥) = ∞.
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Exercise 5.3.12. If 𝑓 is twice differentiable on an open interval containing 𝑎 and 𝑓″ is
continuous at 𝑎, show

lim
ℎ→0

𝑓(𝑎 + ℎ) − 2𝑓(𝑎) + 𝑓(𝑎 − ℎ)
ℎ2 = 𝑓″(𝑎).

(Compare this to Exercise 5.2.6(b).)

Solution. Using the 0/0 case of L’Hospital’s Rule, we find that

lim
ℎ→0

𝑓(𝑎 + ℎ) − 2𝑓(𝑎) + 𝑓(𝑎 − ℎ)
ℎ2 = lim

ℎ→0

𝑓 ′(𝑎 + ℎ) − 𝑓 ′(𝑎 − ℎ)
2ℎ

.

Since 𝑓 ′ is differentiable at 𝑎 we may apply Exercise 5.2.6 (b) to see that

lim
ℎ→0

𝑓 ′(𝑎 + ℎ) − 𝑓 ′(𝑎 − ℎ)
2ℎ

= 𝑓″(𝑎).

219 / 415



5.4. A Continuous Nowhere-Differentiable Function

Exercise 5.4.1. Sketch a graph of (1/2)ℎ(2𝑥) on [−2, 3]. Give a qualitative description
of the functions

ℎ𝑛(𝑥) =
1
2𝑛 ℎ(2𝑛𝑥)

as 𝑛 gets larger.

Solution. Each ℎ𝑛 is a periodic “sawtooth” function; as 𝑛 gets larger, the “teeth” get more
densely packed and the peaks get lower.

0

1
2

2 −3
2 −1 −1

2 0 1
2 1 3

2 2 5
2 3

1
2ℎ(2𝑥) for 𝑥 ∈ [−2, 3]

Exercise 5.4.2. Fix 𝑥 ∈ 𝐑. Argue that the series

∑
∞

𝑛=0

1
2𝑛 ℎ(2𝑛𝑥)

converges and thus 𝑔(𝑥) is properly defined.

Solution. Since 0 ≤ ℎ(𝑥) ≤ 1 we have 0 ≤ 2−𝑛ℎ(2𝑛𝑥) ≤ 2−𝑛 for each 𝑛 ∈ 𝐍. As the series 
∑∞

𝑛=0 2−𝑛 is convergent (Example 2.7.5), the series ∑∞
𝑛=0 2−𝑛ℎ(2𝑛𝑥) is also convergent by

the Comparison Test (Theorem 2.7.4).

Exercise 5.4.3. Taking the continuity of ℎ(𝑥) as given, reference the proper theorems
from Chapter 4 that imply that the finite sum

𝑔𝑚(𝑥) = ∑
𝑚

𝑛=0

1
2𝑛 ℎ(2𝑛𝑥)

is continuous on 𝐑.

Solution. The continuity of 𝑔𝑚 follows from Theorem 4.3.4 and Theorem 4.3.9.
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Exercise 5.4.4. As the graph of Figure 5.7 suggests, the structure of 𝑔(𝑥) is quite
intricate. Answer the following questions, assuming that 𝑔(𝑥) is indeed continuous.

(a) How do we know 𝑔 attains a maximum value 𝑀  on [0, 2]? What is this value?

(b) Let 𝐷 be the set of points in [0, 2] where 𝑔 attains its maximum. That is
𝐷 = {𝑥 ∈ [0, 2] : 𝑔(𝑥) = 𝑀}. Find one point in 𝐷.

(c) Is 𝐷 finite, countable, or uncountable?

Solution.

(a) Since 𝑔 is continuous on the compact set [0, 2], we know it attains a maximum here by
the Extreme Value Theorem (Theorem 4.4.2). To find this maximum value 𝑀 , for each
non-negative integer 𝑛 let 𝑓𝑛(𝑥) = 2−2𝑛ℎ(22𝑛𝑥) + 2−2𝑛−1ℎ(22𝑛+1𝑥), so that

𝑓0(𝑥) = ℎ(𝑥) + 1
2ℎ(2𝑥), 𝑓1(𝑥) = 1

4ℎ(4𝑥) + 1
8ℎ(8𝑥), etc.

Thus 𝑔(𝑥) = ℎ(𝑥) + 1
2ℎ(2𝑥) + 1

4ℎ(4𝑥) + 1
8ℎ(8𝑥) + ⋯ = 𝑓0(𝑥) + 𝑓1(𝑥) + ⋯; for any given

𝑥 such a regrouping of terms is justified by Exercise 2.5.3. Here is a graph of 𝑓0 on
[0, 2].

0

1
4

1
2

3
4

1

5
4

3
2

0 1
4

1
2

3
4 1 5

4
3
2

7
4 2

𝑓0(𝑥) for 𝑥 ∈ [0, 2]

Note that 𝑓0(𝑥) = 1 on the interval [1
2 , 3

2]. Note further that 𝑓1(𝑥) = 1
4𝑓0(4𝑥), so that

on the interval [0, 2] the function 𝑓1 is given by four copies of 𝑓0 scaled by a factor of 
1
4 . The interval [1

2 , 3
2], where 𝑓0 is constant, contains two of the intervals of length 1

4
where 𝑓1 is also constant; see the following figure.
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0

1
4

1
2

3
4

1

5
4

3
2

0 1
4

1
2

3
4 1 5

4
3
2

7
4 2

𝑓0(𝑥) + 𝑓1(𝑥) for 𝑥 ∈ [0, 2]

On these intervals we then have 𝑓0(𝑥) = 𝑓1(𝑥) = 1 + 1
4 . Similarly, 𝑓2 is given by

𝑓2(𝑥) = 1
16𝑓0(16𝑥), and there are further subintervals of the previous subintervals where

𝑓2 is also constant. On these subintervals we have 𝑓0(𝑥) + 𝑓1(𝑥) + 𝑓2(𝑥) = 1 + 1
4 + 1

16 ;
see the following figure.

0

1
4

1
2

3
4

1

5
4

3
2

0 1
4

1
2

3
4 1 5

4
3
2

7
4 2

𝑓0(𝑥) + 𝑓1(𝑥) + 𝑓2(𝑥) for 𝑥 ∈ [0, 2]

We can continue arguing in this manner to see that 𝑀 ≥ 1 + 1
4 + 1

16 + ⋯ = 4
3 . On the

other hand, since each 𝑓𝑛 satisfies 𝑓𝑛(𝑥) ≤ 4−𝑛 on [0, 2], for each 𝑥 ∈ [0, 2] we have

𝑔(𝑥) = 𝑓0(𝑥) + 𝑓1(𝑥) + 𝑓2(𝑥) + ⋯ ≤ 1 + 1
4 + 1

16 + ⋯ = 4
3 .

We may conclude that 𝑀 = 4
3 .
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(b) First, we claim that for every non-negative integer 𝑛 we have ℎ(2𝑛+1

3 ) = 2
3 . The base

case 𝑛 = 0 is clear, so suppose that the result is true for some 𝑛 and observe that

ℎ(2𝑛+2

3 ) = ℎ(2𝑛+2

3 − 2𝑛+1) = ℎ(2𝑛+2(2−3)
3 ) = ℎ(−2𝑛+1

3 ) = ℎ(2𝑛+1

3 ) = 2
3 ,

where we have used our induction hypothesis and that ℎ is an even 2-periodic function.
Our claim follows by induction.

Now observe that

𝑔(2
3) = ∑

∞

𝑛=0

1
2𝑛 ℎ(2𝑛+1

3 ) = 2
3 ∑

∞

𝑛=0

1
2𝑛 = 4

3 = 𝑀.

Thus 2
3 ∈ 𝐷.

(c) 𝐷 is uncountable; we will show that 𝐷 is in bĳection with 𝐑. First, we will inject the
collection of binary sequences into 𝐷.

Let 𝑏 : 𝐍 → {0, 1} be a binary sequence. We claim that

𝑥𝑏 ≔ 1 + ∑
∞

𝑘=1

(−1)𝑏(𝑘)

4𝑘

belongs to 𝐷, i.e. satisfies 𝑥𝑏 ∈ [0, 2] and 𝑔(𝑥𝑏) = 𝑀 = 4
3 . For intuition, consider the

following graph of 𝑔 on [0, 2]. The binary sequence tells us whether to go left or right
at each “bump”. For example, if 𝑏(0) = 1 and 𝑏(1) = 0 then we should follow the red
“path”.

0

1
4

1
2

3
4

1

5
4

0 1
4

1
2

3
4 1 5

4
3
2

7
4 2

1 0
1 0 1 0

𝑔(𝑥) for 𝑥 ∈ [0, 2]
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First, observe that

2
3 ≤ 1 − ∑

∞

𝑘=1

1
4𝑘 ≤ 𝑥𝑏 ≤ 1 + ∑

∞

𝑘=1

1
4𝑘 = 4

3 .

Thus 𝑥𝑏 ∈ [0, 2]. To show that 𝑔(𝑥𝑏) = 4
3 , let us express 𝑔 as

𝑔(𝑥) = ∑
∞

𝑛=0

1
4𝑛 𝑓0(4𝑛𝑥).

(See part (a) for the definition of 𝑓0, the justification for this expression, and a graph
of 𝑓0 on the interval [0, 2].) Suppose that 𝐾 is a non-negative integer and 𝑛 ≥ 𝐾 + 1.
Observe that

4𝑛(1 +
(−1)𝑏(1)

4
+ ⋯ +

(−1)𝑏(𝐾)

4𝐾 )

is an even integer and thus by the 2-periodicity of 𝑓0 we have

𝑓0(4𝑛(1 +
(−1)𝑏(1)

4
+ ⋯ +

(−1)𝑏(𝐾)

4𝐾 )) = 𝑓0(0) = 0.

Furthermore, observe that

4𝐾(1 +
(−1)𝑏(1)

4
+ ⋯ +

(−1)𝑏(𝐾)

4𝐾 )

is an odd integer and thus by the 2-periodicity of 𝑓0 we have

𝑓0(4𝐾(1 +
(−1)𝑏(1)

4
+ ⋯ +

(−1)𝑏(𝐾)

4𝐾 )) = 𝑓0(1) = 1.

If 𝐾 ≥ 1, suppose that 0 ≤ 𝑛 ≤ 𝐾 − 1 and observe that

4𝑛(1 +
(−1)𝑏(1)

4
+ ⋯ +

(−1)𝑏(𝐾)

4𝐾 )

= 4𝑛 + (−1)𝑏(1)4𝑛−1 + ⋯ + (−1)𝑏(𝑛)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

odd integer

+
(−1)𝑏(𝑛+1)

4
+ ⋯ +

(−1)𝑏(𝑘)

4𝐾−𝑛 .

It follows from the 2-periodicity of 𝑓0 that

𝑓0(4𝑛(1 +
(−1)𝑏(1)

4
+ ⋯ +

(−1)𝑏(𝐾)

4𝐾 )) = 𝑓0(1 +
(−1)𝑏(𝑛+1)

4
+ ⋯ +

(−1)𝑏(𝑘)

4𝐾−𝑛 ).

Note that

2
3 ≤ 1 − ∑

∞

𝑘=1

1
4𝑘 ≤ 1 +

(−1)𝑏(𝑛+1)

4
+ ⋯ +

(−1)𝑏(𝑘)

4𝐾−𝑛 ≤ 1 + ∑
∞

𝑘=1

1
4𝑘 = 4

3 .
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Since 𝑓0(𝑥) = 1 on the interval [2
3 , 4

3], it follows that

𝑓0(1 +
(−1)𝑏(𝑛+1)

4
+ ⋯ +

(−1)𝑏(𝑘)

4𝐾−𝑛 ) = 1.

To summarize our findings, for each non-negative integer 𝐾 we have

𝑓0(4𝑛(1 + ∑
𝐾

𝑘=1

(−1)𝑏(𝑘)

4𝑘 )) = {1 if 0 ≤ 𝑛 ≤ 𝐾,
0 if 𝑛 > 𝐾.

(1)

We can now show that 𝑔(𝑥𝑏) = 4
3 :

𝑔(𝑥𝑏) = 𝑔(1 + lim
𝐾→∞

∑
𝐾

𝑘=1

(−1)𝑏(𝑘)

4𝑘 )

= lim
𝐾→∞

𝑔(1 + ∑
𝐾

𝑘=1

(−1)𝑏(𝑘)

4𝑘 )

= lim
𝐾→∞

∑
∞

𝑛=0

1
4𝑛 𝑓0(4𝑛(1 + ∑

𝐾

𝑘=1

(−1)𝑏(𝑘)

4𝑘 ))

= lim
𝐾→∞

∑
𝐾

𝑛=0

1
4𝑛

= 4
3 ;

note we have used the continuity of 𝑔 at 𝑥𝑏 for the second equality and equation (1)
for the fourth equality. If we let 𝑆 be the collection of binary sequences

𝑆 = {𝑏 : 𝐍 → {0, 1}}

and define Ψ : 𝑆 → 𝐷 by Ψ(𝑏) = 𝑥𝑏, then we have shown that Ψ is well-defined. Now
we will show that Ψ is injective. Suppose that 𝑎, 𝑏 ∈ 𝑆 are such that 𝑎 ≠ 𝑏 and let

𝐾 ≔ min{𝑘 ∈ 𝐍 : 𝑎(𝑘) ≠ 𝑏(𝑘)};

without loss of generality, we may assume that 𝑎(𝐾) = 1 and 𝑏(𝐾) = 0. Thus

𝑥𝑎 = 1 +
(−1)𝑎(1)

4
+

(−1)𝑎(2)

16
+ ⋯ −

1
4𝐾 +

(−1)𝑎(𝐾+1)

4𝐾+1 + ⋯ ,

𝑥𝑏 = 1 +
(−1)𝑏(1)

4
+

(−1)𝑏(2)

16
+ ⋯ +

1
4𝐾 +

(−1)𝑏(𝐾+1)

4𝐾+1 + ⋯ .

It follows that

𝑥𝑏 − 𝑥𝑎 =
2

4𝐾 +
(−1)𝑏(𝐾+1) − (−1)𝑎(𝐾+1)

4𝐾+1 +
(−1)𝑏(𝐾+2) − (−1)𝑎(𝐾+2)

4𝐾+2 + ⋯

225 / 415



and hence that

4−𝐾(𝑥𝑏 − 𝑥𝑎) − 2 =
(−1)𝑏(𝐾+1) − (−1)𝑎(𝐾+1)

4
+

(−1)𝑏(𝐾+2) − (−1)𝑎(𝐾+2)

16
+ ⋯

≥ −2(1
4 + 1

16 + ⋯)

= −2
3 .

Thus 4−𝐾(𝑥𝑏 − 𝑥𝑎) ≥ 4
3 > 0, whence 𝑥𝑏 > 𝑥𝑎. It follows that Ψ is injective.

As we showed in Exercise 1.6.9, 𝑆 is in bĳection with 𝐑; composing this bĳection with
Ψ gives us an injection 𝐑 → 𝐷. Certainly the inclusion 𝐷 ↪ 𝐑 is an injection and thus,
by the Schröder-Bernstein Theorem (Exercise 1.5.11), we may conclude that 𝐷 is in
bĳection with 𝐑.

Exercise 5.4.5. Show that

𝑔(𝑥𝑚) − 𝑔(0)
𝑥𝑚 − 0

= 𝑚 + 1,

and use this to prove that 𝑔′(0) does not exist.

Solution. For any 𝑚 ∈ {0, 1, 2, …} we have

ℎ(2𝑛−𝑚) = {
2𝑛−𝑚 if 0 ≤ 𝑛 ≤ 𝑚,
0 if 𝑛 > 𝑚;

if 0 ≤ 𝑛 ≤ 𝑚 we have 0 < 2𝑛−𝑚 ≤ 1 and if 𝑛 > 𝑚 then 2𝑛−𝑚 is an even integer, so that 
ℎ(2𝑛−𝑚) = ℎ(0) = 0 by the 2-periodicity of ℎ. Thus

𝑔(𝑥𝑚) = ∑
∞

𝑛=0

1
2𝑛 ℎ(2𝑛−𝑚) = ∑

𝑚

𝑛=0

1
2𝑚 =

𝑚 + 1
2𝑚 ,

which gives us

𝑔(𝑥𝑚) − 𝑔(0)
𝑥𝑚

= 2𝑚𝑔(𝑥𝑚) = 𝑚 + 1.

Since lim𝑚→∞ 𝑥𝑚 = 0 and

lim
𝑚→∞

𝑔(𝑥𝑚)
𝑥𝑚

= lim
𝑚→∞

(𝑚 + 1) = +∞,

it follows that the limit lim𝑥→0
𝑔(𝑥)

𝑥  does not exist, i.e. 𝑔′(0) does not exist.
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Exercise 5.4.6.

(a) Modify the previous argument to show that 𝑔′(1) does not exist. Show that 𝑔′(1/2)
does not exist.

(b) Show that 𝑔′(𝑥) does not exist for any rational number of the form 𝑥 = 𝑝/2𝑘 where
𝑝 ∈ 𝐙 and 𝑘 ∈ 𝐍 ∪ {0}.

Solution.

(a) These are both special cases of the result in part (b); for the sake of brevity, we omit
these proofs.

(b) Let (𝑥𝑚) be the sequence defined by 𝑥𝑚 = 𝑥 + 2−𝑚 = 𝑝2−𝑘 + 2−𝑚. Since we are inter-
ested in the limit behaviour as 𝑚 → ∞, we may assume that 𝑚 > 𝑘. Let 𝑛 ∈ {0, 1, 2, …}
be given. If 𝑛 > 𝑚 > 𝑘 then 𝑝2𝑛−𝑘 + 2𝑛−𝑚 is an even integer and it follows from the 2
-periodicity of ℎ that

ℎ(2𝑛𝑥𝑚) = ℎ(𝑝2𝑛−𝑘 + 2𝑛−𝑚) = ℎ(0) = 0.

If 𝑘 < 𝑛 ≤ 𝑚 then 𝑝2𝑛−𝑘 is an even integer and 0 < 2𝑛−𝑚 ≤ 1; the 2-periodicity of ℎ
implies that

ℎ(2𝑛𝑥𝑚) = ℎ(𝑝2𝑛−𝑘 + 2𝑛−𝑚) = ℎ(2𝑛−𝑚) = 2𝑛−𝑚.

Suppose that 0 ≤ 𝑛 ≤ 𝑘 < 𝑚. Using Euclidean division, we can find integers 𝑞 and 𝑟
such that

𝑝2𝑛−𝑘 = 𝑞 + 𝑟2𝑛−𝑘 and 0 ≤ 𝑟2𝑛−𝑘 ≤ 1
2 .

Note that 0 < 2𝑛−𝑚 ≤ 1
2 , so that

0 < 𝑟2𝑛−𝑘 + 2𝑛−𝑚 ≤ 1 and −1 < −1 + 𝑟2𝑛−𝑘 + 2𝑛−𝑚 ≤ 0.

If 𝑞 is even then

ℎ(2𝑛𝑥𝑚) = ℎ(𝑝2𝑛−𝑘 + 2𝑛−𝑚) = ℎ(𝑞 + 𝑟2𝑛−𝑘 + 2𝑛−𝑚) = ℎ(𝑟2𝑛−𝑘 + 2𝑛−𝑚)

= 𝑟2𝑛−𝑘 + 2𝑛−𝑚 = ℎ(𝑝2𝑛−𝑘) + 2𝑛−𝑚 = ℎ(2𝑛𝑥) + 2𝑛−𝑚,

and if 𝑞 is odd then

ℎ(2𝑛𝑥𝑚) = ℎ(𝑝2𝑛−𝑘 + 2𝑛−𝑚) = ℎ(𝑞 + 𝑟2𝑛−𝑘 + 2𝑛−𝑚) = ℎ(−1 + 𝑟2𝑛−𝑘 + 2𝑛−𝑚)

= 1 − 𝑟2𝑛−𝑘 − 2𝑛−𝑚 = ℎ(𝑝2𝑛−𝑘) − 2𝑛−𝑚 = ℎ(2𝑛𝑥) − 2𝑛−𝑚.

In either case we have

ℎ(2𝑛𝑥𝑚) = ℎ(2𝑛𝑥) ± 2𝑛−𝑚,

with the sign depending on the integer 𝑝; this sign will not be important. To summarize:
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ℎ(2𝑛𝑥𝑚) =

⎩{
⎨
{⎧ℎ(2𝑛𝑥) ± 2𝑛−𝑚 if 0 ≤ 𝑛 ≤ 𝑘 < 𝑚,

2𝑛−𝑚 if 𝑘 < 𝑛 ≤ 𝑚,
0 if 𝑛 > 𝑚 > 𝑘.

Notice that

𝑔(𝑥) = 𝑔(𝑝2−𝑘)

= ℎ(𝑝2−𝑘) + 2−1ℎ(𝑝21−𝑘) + ⋯ + 2−𝑘ℎ(𝑝) + 2−𝑘−1ℎ(2𝑝) + 2−𝑘−2ℎ(22𝑝) + ⋯

= ℎ(𝑝2−𝑘) + 2−1ℎ(𝑝21−𝑘) + ⋯ + 2−𝑘ℎ(𝑝)

= ∑
𝑘

𝑛=0
2−𝑛ℎ(𝑝2𝑛−𝑘)

= ∑
𝑘

𝑛=0
2−𝑛ℎ(2𝑛𝑥).

It follows that

𝑔(𝑥𝑚) = ∑
∞

𝑛=0
2−𝑛ℎ(2𝑛𝑥𝑚) = ∑

𝑘

𝑛=0
(2−𝑛ℎ(2𝑛𝑥) ± 2−𝑚) + ∑

𝑚

𝑛=𝑘+1
2−𝑚

= 𝑔(𝑥) + (𝑘 + 1)(±2−𝑚) + (𝑚 − 𝑘)(2−𝑚).

Thus

𝑔(𝑥𝑚) − 𝑔(𝑥)
𝑥𝑚 − 𝑥

= (𝑘 + 1)(±1) + 𝑚 − 𝑘 = 𝑚 + 𝐾,

where 𝐾 = (𝑘 + 1)(±1) − 𝑘 is some integer which depends only on 𝑥. Since 
lim𝑚→∞ 𝑥𝑚 = 𝑥 and

lim
𝑚→∞

𝑔(𝑥𝑚) − 𝑔(𝑥)
𝑥𝑚 − 𝑥

= lim
𝑚→∞

(𝑚 + 𝐾) = +∞,

it follows that the limit lim𝑡→𝑥
𝑔(𝑡)−𝑔(𝑥)

𝑡−𝑥  does not exist, i.e. 𝑔′(𝑥) does not exist.

Exercise 5.4.7.

(a) First prove the following general lemma: Let 𝑓 be defined on an open interval 𝐽
and assume 𝑓 is differentiable at 𝑎 ∈ 𝐽 . If (𝑎𝑛) and (𝑏𝑛) are sequences satisfying 
𝑎𝑛 < 𝑎 < 𝑏𝑛 and lim 𝑎𝑛 = lim 𝑏𝑛 = 𝑎, show

𝑓 ′(𝑎) = lim
𝑛→∞

𝑓(𝑏𝑛) − 𝑓(𝑎𝑛)
𝑏𝑛 − 𝑎𝑛

.

(b) Now use this lemma to show that 𝑔′(𝑥) does not exist.

Solution.
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(a) Let us first prove an auxiliary result. Suppose (𝑥𝑛), (𝑦𝑛), and (𝜆𝑛) are sequences such
that lim 𝑥𝑛 = lim 𝑦𝑛 = 𝑥 and |𝜆𝑛| ≤ 𝐵 for all 𝑛 ∈ 𝐍 and some 𝐵 ≥ 0. We claim that

lim(𝜆𝑛𝑥𝑛 + (1 − 𝜆𝑛)𝑦𝑛) = 𝑥.

Indeed, observe that

|𝜆𝑛𝑥𝑛 + (1 − 𝜆𝑛)𝑦𝑛 − 𝑥| = |𝜆𝑛(𝑥𝑛 − 𝑥) + (1 − 𝜆𝑛)(𝑦𝑛 − 𝑥)|

≤ |𝜆𝑛||𝑥𝑛 − 𝑥| + |1 − 𝜆𝑛||𝑦𝑛 − 𝑥|

≤ (1 + 𝐵)(|𝑥𝑛 − 𝑥| + |𝑦𝑛 − 𝑥|).

Since (1 + 𝐵)(|𝑥𝑛 − 𝑥| + |𝑦𝑛 − 𝑥|) → 0, the Squeeze Theorem proves our claim.

Returning to the exercise, Theorem 4.2.3 implies that

lim
𝑛→∞

𝑓(𝑎𝑛) − 𝑓(𝑎)
𝑎𝑛 − 𝑎

= lim
𝑛→∞

𝑓(𝑏𝑛) − 𝑓(𝑎)
𝑏𝑛 − 𝑎

= 𝑓 ′(𝑎).

Note that for each 𝑛 ∈ 𝐍 we have

1 −
𝑎𝑛 − 𝑎
𝑎𝑛 − 𝑏𝑛

=
𝑏𝑛 − 𝑎
𝑏𝑛 − 𝑎𝑛

and |
𝑎𝑛 − 𝑎
𝑎𝑛 − 𝑏𝑛

| < 1.

Furthermore,

𝑓(𝑏𝑛) − 𝑓(𝑎𝑛)
𝑏𝑛 − 𝑎𝑛

=
𝑎𝑛 − 𝑎
𝑎𝑛 − 𝑏𝑛

𝑓(𝑎𝑛) − 𝑓(𝑎)
𝑎𝑛 − 𝑎

+
𝑏𝑛 − 𝑎
𝑏𝑛 − 𝑎𝑛

𝑓(𝑏𝑛) − 𝑓(𝑎)
𝑏𝑛 − 𝑎

for each 𝑛 ∈ 𝐍. Taking

𝑥𝑛 =
𝑓(𝑎𝑛) − 𝑓(𝑎)

𝑎𝑛 − 𝑎
, 𝑦𝑛 =

𝑓(𝑏𝑛) − 𝑓(𝑎)
𝑏𝑛 − 𝑎

, and 𝜆𝑛 =
𝑎𝑛 − 𝑎
𝑎𝑛 − 𝑏𝑛

in our auxiliary result shows that

𝑓 ′(𝑎) = lim
𝑛→∞

𝑓(𝑏𝑛) − 𝑓(𝑎𝑛)
𝑏𝑛 − 𝑎𝑛

.

(b) Recall that for each 𝑛 ∈ {0, 1, 2, …} the function ℎ𝑛 : 𝐑 → 𝐑 is given by
ℎ𝑛(𝑥) = ℎ(2𝑛𝑥). Each ℎ𝑛 is a piecewise linear function which has corners, i.e. fails
to be differentiable, at each dyadic rational of the form 𝑎2−𝑛. Note that ℎ𝑛 is linear
on each interval of the form [𝑎2−𝑛, (𝑎 + 1)2−𝑛]; in particular, ℎ𝑛 is differentiable on
(𝑎2−𝑛, (𝑎 + 1)2−𝑛), with slope given by ±1. Recall also that for each 𝑚 ∈ {0, 1, 2, …},
the function 𝑔𝑚 : 𝐑 → 𝐑 is defined as

𝑔𝑚(𝑥) = ∑
𝑚

𝑛=0
2−𝑛ℎ𝑛(𝑥) = ∑

𝑚

𝑛=0
2−𝑛ℎ(2𝑛𝑥).

Each 𝑔𝑚 is a linear combination of piecewise linear functions and hence is itself a
piecewise linear function. Consider two adjacent dyadic rationals 𝑝2−𝑚 and (𝑝 + 1)2−𝑚.
By our previous discussion, for each 0 ≤ 𝑛 ≤ 𝑚, the function ℎ𝑛 is linear on

229 / 415



[𝑝2−𝑚, (𝑝 + 1)2−𝑚] and hence differentiable on (𝑝2−𝑚, (𝑝 + 1)2−𝑚). It follows that 𝑔𝑚

is linear on [𝑝2−𝑚, (𝑝 + 1)2−𝑚] and hence differentiable on (𝑝2−𝑚, (𝑝 + 1)2−𝑚), with
slope given by

𝑔′
𝑚(𝑥) =

𝑔𝑚((𝑝 + 1)2−𝑚) − 𝑔𝑚(𝑝2−𝑚)
2−𝑚

for 𝑥 ∈ (𝑝2−𝑚, (𝑝 + 1)2−𝑚).

Let 𝑥, (𝑥𝑚), and (𝑦𝑚) be defined as in the textbook. Given the previous discussion, for
each 𝑚 ∈ {0, 1, 2, …} we have

𝑔′
𝑚(𝑥) =

𝑔𝑚(𝑦𝑚) − 𝑔𝑚(𝑥𝑚)
𝑦𝑚 − 𝑥𝑚

.

In fact, since ℎ𝑛(𝑥𝑚) = ℎ𝑛(𝑦𝑚) = 0 for all 𝑛 > 𝑚, we actually have 𝑔(𝑦𝑚) = 𝑔𝑚(𝑦𝑚)
and 𝑔(𝑥𝑚) = 𝑔𝑚(𝑥𝑚), so that

𝑔(𝑦𝑚) − 𝑔(𝑥𝑚)
𝑦𝑚 − 𝑥𝑚

=
𝑔𝑚(𝑦𝑚) − 𝑔𝑚(𝑥𝑚)

𝑦𝑚 − 𝑥𝑚
= 𝑔′

𝑚(𝑥).

Now observe that

𝑔𝑚+1(𝑡) − 𝑔𝑚(𝑡) = 2−𝑚−1ℎ𝑚+1(𝑡).

As we noted earlier, each of the functions 𝑔𝑚+1, 𝑔𝑚, and ℎ𝑚+1 is differentiable at 𝑥
since 𝑥 is not a dyadic rational. It follows from the usual rules of differentiation that

|𝑔′
𝑚+1(𝑥) − 𝑔′

𝑚(𝑥)| = |ℎ′
𝑚+1(𝑥)| = |±1| = 1.

This implies that the sequence (𝑔′
𝑚(𝑥))∞

𝑚=0 is not convergent, i.e. the sequence

𝑔(𝑦𝑚) − 𝑔(𝑥𝑚)
𝑦𝑚 − 𝑥𝑚

does not converge. By the contrapositive of the result proved in part (a), we see that 
𝑔 is not differentiable at 𝑥.

Exercise 5.4.8. Review the argument for the nondifferentiability of 𝑔(𝑥) at nondyadic
points. Does the argument still work if we replace 𝑔(𝑥) with the summation 
∑∞

𝑛=0(1/2𝑛)ℎ(3𝑛𝑥)? Does the argument work for the function ∑∞
𝑛=0(1/3𝑛)ℎ(2𝑛𝑥)?

Solution. Let 𝑔(𝑥) = ∑∞
𝑛=0 2−𝑛ℎ(3𝑛𝑥) and 𝑔𝑚(𝑥) = ∑𝑚

𝑛=0 2−𝑛ℎ(3𝑛𝑥). The argument from
Exercise 5.4.7 (b) should be repeated considering 3-adic rational numbers, i.e. rationals of
the form 𝑝3−𝑘 for some 𝑝 ∈ 𝐙 and some 𝑘 ∈ {0, 1, 2, …}. The argument still works, with one
small difference. If 𝑥 is not a 3-adic rational number then similar reasoning shows that 𝑔𝑚

is differentiable at 𝑥. The difference this time is that

|𝑔′
𝑚+1(𝑥) − 𝑔′

𝑚(𝑥)| = (3
2)𝑚+1.
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Since this does not converge to zero, we see that the sequence (𝑔′
𝑚(𝑥))∞

𝑚=0 is not convergent
and we may conclude that 𝑔′(𝑥) does not exist.

Now let 𝑔(𝑥) = ∑∞
𝑛=0 3−𝑛ℎ(2𝑛𝑥) and 𝑔𝑚(𝑥) = ∑𝑚

𝑛=0 3−𝑛ℎ(2𝑛𝑥). We again consider dyadic
rationals and arrive at

|𝑔′
𝑚+1(𝑥) − 𝑔′

𝑚(𝑥)| = (2
3)𝑚+1

for an 𝑥 which is not a dyadic rational number. Since this does converge to zero, our argu-
ment breaks down here. In fact, Theorem 6.4.3 shows that 𝑔 is differentiable at every such
𝑥.
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Chapter 6. Sequences and Series of Functions

6.2. Uniform Convergence of a Sequence of Functions

Exercise 6.2.1. Let

𝑓𝑛(𝑥) =
𝑛𝑥

1 + 𝑛𝑥2 .

(a) Find the pointwise limit of (𝑓𝑛) for all 𝑥 ∈ (0, ∞).

(b) Is the convergence uniform on (0, ∞)?

(c) Is the convergence uniform on (0, 1)?

(d) Is the convergence uniform on (1, ∞)?

Solution.

(a) Fix 𝑥 ∈ (0, ∞) and observe that

lim
𝑛→∞

𝑓𝑛(𝑥) = lim
𝑛→∞

𝑛𝑥
1 + 𝑛𝑥2 = lim

𝑛→∞

𝑥
1
𝑛 + 𝑥2

=
1
𝑥

.

Thus, letting 𝑓 : (0, ∞) → 𝐑 be the function given by 𝑓(𝑥) = 1
𝑥 , we see that (𝑓𝑛) con-

verges pointwise to 𝑓 .

(b) The convergence is not uniform on (0, ∞). To argue this, let us negate the definition
of uniform convergence. A sequence of functions (𝑓𝑛 : 𝐴 → 𝐑) does not converge uni-
formly to a function 𝑓 : 𝐴 → 𝐑 if there exists an 𝜀 > 0 such that for all 𝑁 ∈ 𝐍, we can
find an 𝑥 ∈ 𝐴 and an 𝑛 ≥ 𝑁  such that |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 𝜀. In symbols:

(∃𝜀 > 0)(∀𝑁 ∈ 𝐍)(∃𝑥 ∈ 𝐴)(∃𝑛 ≥ 𝑁)(|𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 𝜀).

Let 𝑁 ∈ 𝐍 be given and observe that

1
𝑁 + 1

∈ (0, 1) ⊆ (0, ∞) and |𝑓𝑁+1( 1
𝑁+1) − 𝑓( 1

𝑁+1)| =
(𝑁 + 1)2

𝑁 + 2
≥ 4

3 .

Thus the convergence 𝑓𝑛 → 𝑓 is not uniform on (0, ∞).

(c) The convergence is not uniform on (0, 1), as part (a) shows.

(d) The convergence is uniform on (1, ∞). Let 𝜀 > 0 be given and let 𝑁 ∈ 𝐍 be such that
𝑁 > 1

𝜀 − 1. For all 𝑥 ∈ (1, ∞) and all 𝑛 ≥ 𝑁  it follows that

|𝑓𝑛(𝑥) − 𝑓(𝑥)| =
1

𝑥(1 + 𝑛𝑥2)
≤

1
1 + 𝑛

≤
1

1 + 𝑁
< 𝜀.
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Exercise 6.2.2.

(a) Define a sequence of functions on 𝐑 by

𝑓𝑛(𝑥) = {1 if 𝑥 = 1, 1
2 , 1

3 , …, 1
𝑛

0 otherwise

and let 𝑓 be the pointwise limit of 𝑓𝑛.

Is each 𝑓𝑛 continuous at zero? Does 𝑓𝑛 → 𝑓 uniformly on 𝐑? Is 𝑓 continuous at
zero?

(b) Repeat this exercise using the sequence of functions

𝑔𝑛(𝑥) = {𝑥 if 𝑥 = 1, 1
2 , 1

3 , …, 1
𝑛

0 otherwise.

(c) Repeat the exercise once more with the sequence

ℎ𝑛(𝑥) =

⎩{
{⎨
{{
⎧1 if 𝑥 = 1

𝑛

𝑥 if 𝑥 = 1, 1
2 , 1

3 , …, 1
𝑛−1

0 otherwise.

In each case, explain how the results are consistent with the content of the Con-
tinuous Limit Theorem (Theorem 6.2.6).

Solution.

(a) Define 𝑓 : 𝐑 → 𝐑 by

𝑓(𝑥) = {1 if 𝑥 = 1, 1
2 , 1

3 , …,
0 otherwise.

We claim that 𝑓𝑛 → 𝑓 pointwise. If 𝑥 ∉ {1, 1
2 , 1

3 , …} then

|𝑓𝑛(𝑥) − 𝑓(𝑥)| = |0 − 0| = 0,

and if 𝑥 = 1
𝑁  for some 𝑁 ∈ 𝐍 then for all 𝑛 ≥ 𝑁  we have

|𝑓𝑛(𝑥) − 𝑓(𝑥)| = |1 − 1| = 0.

Each 𝑓𝑛 is continuous at zero since each 𝑓𝑛 is identically zero on the interval (−∞, 1
𝑛),

however 𝑓 is not continuous at zero since 1
𝑛 → 0 and 𝑓( 1

𝑛) → 1 ≠ 0 = 𝑓(0). It follows
that the convergence 𝑓𝑛 → 𝑓 cannot be uniform. otherwise the Continuous Limit The-
orem (Theorem 6.2.6) would be violated.

(b) Define 𝑔 : 𝐑 → 𝐑 by

𝑓(𝑥) = {𝑥 if 𝑥 = 1, 1
2 , 1

3 , …,
0 otherwise.
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We claim that 𝑔𝑛 → 𝑔 pointwise. If 𝑥 ∉ {1, 1
2 , 1

3 , …} then

|𝑔𝑛(𝑥) − 𝑔(𝑥)| = |0 − 0| = 0,

and if 𝑥 = 1
𝑁  for some 𝑁 ∈ 𝐍 then for all 𝑛 ≥ 𝑁  we have

|𝑔𝑛(𝑥) − 𝑔(𝑥)| = |𝑥 − 𝑥| = 0.

Each 𝑔𝑛 is continuous at zero since each 𝑔𝑛 is identically zero on the interval (−∞, 1
𝑛).

The convergence 𝑔𝑛 → 𝑔 is uniform since for any 𝑛 ∈ 𝐍 and 𝑥 ∈ 𝐑 we have

|𝑔𝑛(𝑥) − 𝑔(𝑥)| ≤
1

𝑛 + 1
.

The Continuous Limit Theorem (Theorem 6.2.6) implies that 𝑔 must be continuous at
zero, and this is straightforward to verify directly.

(c) Define ℎ : 𝐑 → 𝐑 by

ℎ(𝑥) = {𝑥 if 𝑥 = 1, 1
2 , 1

3 , …,
0 otherwise.

We claim that ℎ𝑛 → ℎ pointwise. If 𝑥 ∉ {1, 1
2 , 1

3 , …} then

|ℎ𝑛(𝑥) − ℎ(𝑥)| = |0 − 0| = 0,

and if 𝑥 = 1
𝑁  for some 𝑁 ∈ 𝐍 then for all 𝑛 ≥ 𝑁 + 1 we have

|ℎ𝑛(𝑥) − ℎ(𝑥)| = |𝑥 − 𝑥| = 0.

Each ℎ𝑛 is continuous at zero since each ℎ𝑛 is identically zero on the interval (−∞, 1
𝑛).

The convergence here is not uniform: for any 𝑁 ∈ 𝐍 observe that

|ℎ𝑁+1( 1
𝑁+1) − ℎ( 1

𝑁+1)| = 1 −
1

𝑁 + 1
≥ 1

2 .

However, ℎ is continuous at zero. This does not contradict the Continuous Limit The-
orem (Theorem 6.2.6), but it does show that the converse does not hold.

Exercise 6.2.3. For each 𝑛 ∈ 𝐍 and 𝑥 ∈ [0, ∞), let

𝑔𝑛(𝑥) =
𝑥

1 + 𝑥𝑛 and ℎ𝑛(𝑥) = {
1 if 𝑥 ≥ 1/𝑛
𝑛𝑥 if 0 ≤ 𝑥 < 1/𝑛.

Answer the following questions for the sequences (𝑔𝑛) and (ℎ𝑛):

(a) Find the pointwise limit on [0, ∞).

(b) Explain how we know the convergence cannot be uniform on [0, ∞).

(c) Choose a smaller set over which the convergence is uniform and supply an argu-
ment to show that this is indeed the case.

Solution.
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(a) Let 𝑔 : [0, ∞) → 𝐑 be given by

𝑔(𝑥) =

⎩
{
⎨
{
⎧𝑥 if 0 ≤ 𝑥 < 1,

1
2 if 𝑥 = 1,
0 if 𝑥 > 1.

We claim that 𝑔𝑛 → 𝑔 pointwise. Observe that if 0 ≤ 𝑥 < 1 then lim𝑛→∞ 𝑥𝑛 = 0 and
thus lim𝑛→∞ 𝑔𝑛(𝑥) = 𝑥; if 𝑥 = 1 then 𝑔𝑛(𝑥) = 1

2  for all 𝑛 ∈ 𝐍; and if 𝑥 > 1 then 
lim𝑛→∞ 𝑥𝑛 = +∞ and thus lim𝑛→∞ 𝑔𝑛(𝑥) = 0. Our claim follows.

Let ℎ : [0, ∞) → 𝐑 be the function given by

ℎ(𝑥) = {1 if 𝑥 > 0,
0 if 𝑥 = 0.

We claim that ℎ𝑛 → ℎ pointwise. Indeed, ℎ𝑛(0) = ℎ(0) = 0 for all 𝑛 ∈ 𝐍, and if 𝑥 > 0
then choose 𝑁 ∈ 𝐍 such that 1

𝑁 ≤ 𝑥 and observe that

𝑛 ≥ 𝑁 ⇒ |ℎ𝑛(𝑥) − ℎ(𝑥)| = |1 − 1| = 0.

(b) The convergence cannot be uniform on [0, ∞) by the Continuous Limit Theorem (The-
orem 6.2.6): each 𝑓𝑛 and each 𝑔𝑛 is continuous on [0, ∞) but neither 𝑓 nor 𝑔 is contin-
uous on [0, ∞).

(c) Restrict each 𝑔𝑛 and 𝑔 to the domain [2, ∞), so that 𝑔 is the constant function 𝑔(𝑥) = 0.
We claim that 𝑔𝑛 → 𝑔 uniformly on [2, ∞). We will make use of the inequality

𝑥𝑛 + 1 > 𝑥𝑛 − 1 = (1 + 𝑥 + ⋯ + 𝑥𝑛−1)(𝑥 − 1) ≥ 𝑛(𝑥 − 1),

which holds for all 𝑛 ∈ 𝐍 and 𝑥 ≥ 2. Observe that

|𝑔𝑛(𝑥) − 𝑔(𝑥)| = 𝑔𝑛(𝑥) =
𝑥

𝑥𝑛 + 1
≤

𝑥
𝑛(𝑥 − 1)

≤
2
𝑛

,

where we have used that 𝑥
𝑥−1 = 1 + 1

𝑥−1 ≤ 2 for all 𝑥 ≥ 2. The uniform convergence
follows since the bound 2

𝑛  converges to zero and does not depend on 𝑥.

Restrict each ℎ𝑛 and ℎ to the domain [1, ∞), so that ℎ𝑛(𝑥) = ℎ(𝑥) = 1 for all 𝑛 ∈ 𝐍
and 𝑥 ≥ 1; certainly the convergence ℎ𝑛 → ℎ is uniform.

Exercise 6.2.4. Review Exercise 5.2.8 which includes the definition for a uniformly
differentiable function. Use the results discussed in Section 6.2 to show that if 𝑓 is uni-
formly differentiable, then 𝑓 ′ is continuous.

Solution. Suppose 𝑓 : 𝐴 → 𝐑 is uniformly differentiable, where 𝐴 is some open interval.
For each 𝑛 ∈ 𝐍 define 𝑓𝑛 : 𝐴 → 𝐑 by

𝑓𝑛(𝑥) =
𝑓(𝑥 + 1

𝑛) − 𝑓(𝑥)
𝑛−1 .

For any 𝑥 ∈ 𝐴 the existence of 𝑓 ′(𝑥) implies that
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lim
𝑛→∞

𝑓𝑛(𝑥) = lim
𝑛→∞

𝑓(𝑥 + 1
𝑛) − 𝑓(𝑥)
𝑛−1 = lim

ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ

= 𝑓 ′(𝑥).

Thus 𝑓𝑛 → 𝑓 ′ pointwise on 𝐴. We claim that this convergence is uniform. Let 𝜀 > 0 be given.
Because 𝑓 is uniformly differentiable there exists a 𝛿 > 0 such that

𝑥, 𝑦 ∈ 𝐴 and 0 < |𝑥 − 𝑦| < 𝛿 ⇒ |
𝑓(𝑦) − 𝑓(𝑥)

𝑦 − 𝑥
− 𝑓 ′(𝑥)| < 𝜀.

Let 𝑁 ∈ 𝐍 be such that 1
𝑁 < 𝛿. For any 𝑛 ≥ 𝑁  and 𝑥 ∈ 𝐴 note that |𝑥 + 1

𝑛 − 𝑥| = 1
𝑛 < 𝛿; it

follows that

|𝑓𝑛(𝑥) − 𝑓(𝑥)| = |
𝑓(𝑥 + 1

𝑛) − 𝑓(𝑥)
𝑛−1 − 𝑓 ′(𝑥)| < 𝜀.

Thus 𝑓𝑛 → 𝑓 ′ uniformly on 𝐴. Since each 𝑓𝑛 is continuous on 𝐴 the Continuous Limit The-
orem (Theorem 6.2.6) allows us to conclude that 𝑓 ′ is continuous.

Exercise 6.2.5. Using the Cauchy Criterion for convergent sequences of real numbers
(Theorem 2.6.4), supply a proof for Theorem 6.2.5. (First, define a candidate for 𝑓(𝑥),
and then argue that 𝑓𝑛 → 𝑓 uniformly.)

Solution. Let (𝑓𝑛 : 𝐴 → 𝐑) be a sequence of functions. Suppose that (𝑓𝑛) converges uni-
formly to a function 𝑓 : 𝐴 → 𝐑 and let 𝜀 > 0 be given. By uniform convergence, there is an
𝑁 ∈ 𝐍 such that

𝑥 ∈ 𝐴 and 𝑛 ≥ 𝑁 ⇒ |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀.

It follows that for any 𝑥 ∈ 𝐴 and any 𝑛, 𝑚 ≥ 𝑁  we have

|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ≤ |𝑓𝑛(𝑥) − 𝑓(𝑥)| + |𝑓𝑚(𝑥) − 𝑓(𝑥)| < 𝜀
2 + 𝜀

2 = 𝜀.

Now suppose that for any 𝜀 > 0 there exists an 𝑁 ∈ 𝐍 such that

𝑥 ∈ 𝐴 and 𝑛, 𝑚 ≥ 𝑁 ⇒ |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| < 𝜀. (1)

Note that, for any given 𝑥 ∈ 𝐴, this implies that the sequence of real numbers (𝑓𝑛(𝑥)) is
a Cauchy sequence. The completeness of 𝐑 then implies that lim𝑛→∞ 𝑓𝑛(𝑥) exists. Define
𝑓 : 𝐴 → 𝐑 by 𝑓(𝑥) = lim𝑛→∞ 𝑓𝑛(𝑥), so that 𝑓𝑛 → 𝑓 pointwise. Our claim is that this con-
vergence is uniform. Let 𝜀 > 0 be given. By assumption there exists an 𝑁 ∈ 𝐍 such that (1)
holds. Temporarily fix 𝑥 ∈ 𝐴 and 𝑛 ≥ 𝑁  and observe that for every 𝑚 ≥ 𝑁  we have

|𝑓𝑛(𝑥) − 𝑓(𝑥)| ≤ |𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| + |𝑓𝑚(𝑥) − 𝑓(𝑥)| < 𝜀
2 + |𝑓𝑚(𝑥) − 𝑓(𝑥)|.

The Order Limit Theorem (Theorem 2.3.4) applied to the inequality above, treating both
sides as sequences of 𝑚, implies that

|𝑓𝑛(𝑥) − 𝑓(𝑥)| ≤ 𝜀
2 + lim

𝑚→∞
|𝑓𝑚(𝑥) − 𝑓(𝑥)| = 𝜀

2 < 𝜀.
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It follows that

𝑥 ∈ 𝐴 and 𝑛 ≥ 𝑁 ⇒ |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀.

Thus 𝑓𝑛 → 𝑓 uniformly on 𝐴, as claimed.

Exercise 6.2.6. Assume 𝑓𝑛 → 𝑓 on a set 𝐴. Theorem 6.2.6 is an example of a typical
type of question which asks whether a trait possessed by each 𝑓𝑛 is inherited by the
limit function. Provide an example to show that all of the following propositions are
false if the convergence is only assumed to be pointwise on 𝐴. Then go back and decide
which are true under the stronger hypothesis of uniform convergence.

(a) If each 𝑓𝑛 is uniformly continuous, then 𝑓 is uniformly continuous.

(b) If each 𝑓𝑛 is bounded, then 𝑓 is bounded.

(c) If each 𝑓𝑛 has a finite number of discontinuities, then 𝑓 has a finite number of
discontinuities.

(d) If each 𝑓𝑛 has fewer than 𝑀  discontinuities (where 𝑀 ∈ 𝐍 is fixed), then 𝑓 has
fewer than 𝑀  discontinuities.

(e) If each 𝑓𝑛 has at most a countable number of discontinuities, then 𝑓 has at most
a countable number of discontinuities.

Solution.

(a) Let (𝑓𝑛 : [0, 1] → 𝐑) be the sequence of functions defined by 𝑓𝑛(𝑥) = 𝑥𝑛 and let
𝑓 : [0, 1] → 𝐑 be the function defined by

𝑓(𝑥) = {0 if 0 ≤ 𝑥 < 1,
1 if 𝑥 = 1.

As shown in Example 6.2.2 (ii), 𝑓𝑛 → 𝑓 pointwise. Each 𝑓𝑛 is a continuous function
defined on the compact domain [0, 1] and thus each 𝑓𝑛 is uniformly continuous by The-
orem 4.4.7. However, 𝑓 is not continuous and hence not uniformly continuous.

We claim that uniform convergence preserves uniform continuity. Suppose that
(𝑓𝑛 : 𝐴 → 𝐑) is a sequence of uniformly continuous functions which converges uniformly
to a function 𝑓 : 𝐴 → 𝐑. Let 𝜀 > 0 be given. By uniform convergence, there is an 𝑁 ∈ 𝐍
such that

𝑥 ∈ 𝐴 and 𝑛 ≥ 𝑁 ⇒ |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀
3 .

The function 𝑓𝑁  is uniformly continuous by assumption and thus there exists a 𝛿 > 0
such that

𝑥, 𝑦 ∈ 𝐴 and |𝑥 − 𝑦| < 𝛿 ⇒ |𝑓𝑁(𝑥) − 𝑓𝑁(𝑦)| < 𝜀
3 .

Now suppose that 𝑥, 𝑦 ∈ 𝐴 are such that |𝑥 − 𝑦| < 𝛿 and observe that
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|𝑓(𝑥) − 𝑓(𝑦)| ≤ |𝑓(𝑥) − 𝑓𝑁(𝑥)| + |𝑓𝑁(𝑥) − 𝑓𝑁(𝑦)| + |𝑓𝑁(𝑦) − 𝑓(𝑦)| < 𝜀
3 + 𝜀

3 + 𝜀
3 = 𝜀.

Thus 𝑓 is uniformly continuous.

(b) Let (𝑓𝑛 : (0, ∞) → 𝐑) be the sequence of functions defined by

𝑓𝑛(𝑥) =
𝑛𝑥

1 + 𝑛𝑥2

and let 𝑓 : (0, ∞) → 𝐑 be the function defined by 𝑓(𝑥) = 1
𝑥 . As we showed in Exercise

6.2.1, 𝑓𝑛 → 𝑓 pointwise. For any given 𝑛 ∈ 𝐍 we have

𝑓𝑛(𝑥) ≤ 𝑛𝑥 ≤ 𝑛 on (0, 1] and 𝑓𝑛(𝑥) ≤ 1 on (1, ∞).

Thus each 𝑓𝑛 is bounded, whereas 𝑓 is unbounded.

We claim that uniform convergence preserves boundedness. Suppose that (𝑓𝑛 : 𝐴 → 𝐑)
is a sequence of bounded functions (the bound may depend on 𝑛) which converges uni-
formly to a function 𝑓 : 𝐴 → 𝐑. By uniform convergence there is an 𝑁 ∈ 𝐍 such that

|𝑓𝑁(𝑥) − 𝑓(𝑥)| < 1 for all 𝑥 ∈ 𝐴.

By assumption the function 𝑓𝑁  is bounded, i.e. there is an 𝑀 > 0 such that |𝑓𝑁(𝑥)| ≤ 𝑀
for all 𝑥 ∈ 𝐴. It follows that

|𝑓(𝑥)| ≤ |𝑓𝑁(𝑥)| + |𝑓𝑁(𝑥) − 𝑓(𝑥)| < 𝑀 + 1

for every 𝑥 ∈ 𝐴. Thus 𝑓 is bounded.

(c) Let (𝑓𝑛 : 𝐑 → 𝐑) be the sequence of functions defined by

𝑓𝑛(𝑥) = {
𝑥 if 𝑥 = 1, 1

2 , 1
3 , …, 1

𝑛 ,
0 otherwise,

and let 𝑓 : 𝐑 → 𝐑 be the function defined by

𝑓(𝑥) = {𝑥 if 𝑥 = 1, 1
2 , 1

3 , …,
0 otherwise.

As we showed in Exercise 6.2.2 (b), 𝑓𝑛 → 𝑓 pointwise. For a given 𝑛 ∈ 𝐍 the function
𝑓𝑛 is discontinuous precisely on the finite set {1, 1

2 , 1
3 , …, 1

𝑛}, whereas 𝑓 is discontinuous
precisely on the infinite set {1, 1

2 , 1
3 , …}. As shown in Exercise 6.2.2 (b), the convergence

here is uniform, demonstrating that uniform convergence need not preserve the finite-
ness of the set of discontinuities.

(d) If we define (𝑓𝑛) and 𝑓 as in part (a), then each 𝑓𝑛 has zero discontinuities but 𝑓 has
a discontinuity at 𝑥 = 1.

The proposition is true if we assume uniform convergence. To see this, let us prove the
following lemma.
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Lemma L.14. Suppose (𝑓𝑛 : 𝐴 → 𝐑) is a sequence of functions converging uni-
formly to a function 𝑓 : 𝐴 → 𝐑. If 𝑓 is discontinuous at 𝑐 ∈ 𝐑 then there exists
an 𝑁 ∈ 𝐍 such that 𝑓𝑛 is discontinuous at 𝑐 ∈ 𝐑 for all 𝑛 ≥ 𝑁 .

Proof. Since 𝑓 is discontinuous at 𝑐 there exists an 𝜀 > 0 such that for all 𝛿 > 0
there is an 𝑥𝛿 ∈ 𝐴 satisfying

|𝑥𝛿 − 𝑐| < 𝛿 and |𝑓(𝑥𝛿) − 𝑓(𝑐)| ≥ 𝜀. (1)

By uniform convergence there is an 𝑁 ∈ 𝐍 such that

𝑥 ∈ 𝐴 and 𝑛 ≥ 𝑁 ⇒ |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀
4 .

Let 𝛿 > 0 be given, so that there exists an 𝑥𝛿 ∈ 𝐴 such that (1) holds. Suppose 
𝑛 ≥ 𝑁  and observe that

𝜀 ≤ |𝑓(𝑥𝛿) − 𝑓(𝑐)| ≤ |𝑓𝑛(𝑥𝛿) − 𝑓𝑛(𝑐)| + |𝑓𝑛(𝑥𝛿) − 𝑓(𝑥𝛿)| + |𝑓𝑛(𝑐) − 𝑓(𝑐)|

< |𝑓𝑛(𝑥𝛿) − 𝑓𝑛(𝑐)| + 𝜀
4 + 𝜀

4 = |𝑓𝑛(𝑥𝛿) − 𝑓𝑛(𝑐)| + 𝜀
2 .

Thus |𝑓𝑛(𝑥𝛿) − 𝑓𝑛(𝑐)| > 𝜀
2 . It follows that 𝑓𝑛 is discontinuous at 𝑐 for all 𝑛 ≥ 𝑁.

□

We can now prove the proposition, assuming uniform convergence, by proving the con-
trapositive. Suppose (𝑓𝑛 : 𝐴 → 𝐑) is a sequence of functions converging uniformly to a
function 𝑓 : 𝐴 → 𝐑 and suppose that 𝑓 has at least 𝑀  discontinuities, say 𝑥1, …, 𝑥𝑀 .
By Lemma L.14 there exist positive integers 𝑁1, …, 𝑁𝑀  such that

𝑛 ≥ 𝑁𝑚 ⇒ 𝑓𝑛 is discontinuous at 𝑥𝑚

for each 𝑚 ∈ {1, …, 𝑀}. If we let 𝑁 = max{𝑁1, …, 𝑁𝑀} then 𝑓𝑁  is discontinuous at
each point 𝑥1, …, 𝑥𝑀  and thus 𝑓𝑁  has at least 𝑀  discontinuities.

(e) Let (𝑓𝑛 : 𝐑 → 𝐑) be the sequence of functions defined by

𝑓𝑛(𝑥) = {1 if 𝑥 = 𝑎
𝑏 with 𝑏 ≤ 𝑛,

0 otherwise

(where we assume 𝑎 ∈ 𝐙, 𝑏 ∈ 𝐍, and gcd(𝑎, 𝑏) = 1), and let 𝑓 : 𝐑 → 𝐑 be Dirichlet’s
function, i.e.

𝑓(𝑥) = {
1 if 𝑥 ∈ 𝐐,
0 if 𝑥 ∉ 𝐐.

Notice that 𝑓𝑛 → 𝑓 pointwise: if 𝑥 ∉ 𝐐 then 𝑓𝑛(𝑥) = 𝑓(𝑥) = 0 for every 𝑛 ∈ 𝐍, and if
𝑥 = 𝑎

𝑏 ∈ 𝐐 then 𝑓𝑛(𝑥) = 𝑓(𝑥) = 1 for all 𝑛 ≥ 𝑏. Notice further that for a given 𝑛 ∈ 𝐍
the function 𝑓𝑛 is discontinuous precisely on the countable set
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⋃
𝑛

𝑏=1
{𝑎

𝑏 : 𝑎 ∈ 𝐙},

whereas 𝑓 is discontinuous on the uncountable set 𝐑.

The proposition is true if we assume uniform convergence. Let

𝐷𝑓 = {𝑥 ∈ 𝐑 : 𝑓 is discontinuous at 𝑥}.

It follows from Lemma L.14 that

𝐷𝑓 ⊆ ⋃
∞

𝑛=1
𝐷𝑓𝑛 .

By assumption each 𝐷𝑓𝑛 is at most countable and thus the union ⋃∞
𝑛=1 𝐷𝑓𝑛 is at most

countable by Theorem 1.5.8 (ii). It follows that 𝐷𝑓  is at most countable.

Exercise 6.2.7. Let 𝑓 be uniformly continuous on all of 𝐑, and define a sequence of
functions by 𝑓𝑛(𝑥) = 𝑓(𝑥 + 1

𝑛). Show that 𝑓𝑛 → 𝑓 uniformly. Give an example to show
that this proposition fails if 𝑓 is only assumed to be continuous and not uniformly con-
tinuous on 𝐑.

Solution. Let 𝜀 > 0 be given. By the uniform continuity of 𝑓 there exists a 𝛿 > 0 such that

|𝑥 − 𝑦| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑦)| < 𝜀.

Let 𝑁 ∈ 𝐍 be such that 1
𝑁 < 𝛿. For any 𝑛 ≥ 𝑁  and 𝑥 ∈ 𝐑 we have |𝑥 + 1

𝑛 − 𝑥| = 1
𝑛 < 𝛿

and thus

|𝑓𝑛(𝑥) − 𝑓(𝑥)| = |𝑓(𝑥 + 1
𝑛) − 𝑓(𝑥)| < 𝜀.

Hence 𝑓𝑛 → 𝑓 uniformly.

For a counterexample to the proposition assuming only continuity, consider 𝑓 : 𝐑 → 𝐑 given
by 𝑓(𝑥) = 𝑥2. Theorem 4.4.5 with the sequences 𝑥𝑛 = 𝑛 + 1

𝑛  and 𝑦𝑛 = 𝑛 shows that 𝑓 is not
uniformly continuous on 𝐑. Furthermore, for any 𝑁 ∈ 𝐍 observe that

|𝑓𝑁(𝑁) − 𝑓(𝑁)| = 2 +
1

𝑁2 > 2.

It follows that (𝑓𝑛) does not converge uniformly to 𝑓 .

Exercise 6.2.8. Let (𝑔𝑛) be a sequence of continuous functions that converges uniformly
to 𝑔 on a compact set 𝐾. If 𝑔(𝑥) ≠ 0 on 𝐾, show (1/𝑔𝑛) converges uniformly on 𝐾 to
1/𝑔.

Solution. First let us show that the sequence (𝑔𝑛) is eventually non-zero, so that the se-
quence of reciprocals (1/𝑔𝑛) is eventually well-defined. Note 𝑔 must be continuous on 𝐾 by the
Continuous Limit Theorem (Theorem 6.2.6). It follows that |𝑔| is continuous on the compact
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set 𝐾 and hence attains a minimum by the Extreme Value Theorem, say 0 < 𝑀 ≤ |𝑔(𝑥)| for
all 𝑥 ∈ 𝐾; note that 𝑀  must be strictly positive since 𝑔 ≠ 0 on 𝐾. By uniform convergence
there is an 𝑁1 ∈ 𝐍 such that

𝑥 ∈ 𝐾 and 𝑛 ≥ 𝑁1 ⇒ |𝑔𝑛(𝑥) − 𝑔(𝑥)| < 𝑀
2 ⇒ 0 < 𝑀

2 < |𝑔𝑛(𝑥)| ⇒ 𝑔𝑛(𝑥) ≠ 0.

Thus the sequence (1/𝑔𝑛) is well-defined for all 𝑛 ≥ 𝑁1.

To show that (1/𝑔𝑛) converges uniformly to 1/𝑔, observe that by uniform convergence there
is an 𝑁2 ∈ 𝐍 such that

𝑥 ∈ 𝐾 and 𝑛 ≥ 𝑁2 ⇒ |𝑔𝑛(𝑥) − 𝑔(𝑥)| < 𝑀2

2 𝜀.

Let 𝑁 = max{𝑁1, 𝑁2} and suppose 𝑥 ∈ 𝐾 and 𝑛 ≥ 𝑁 . It follows that

|
1

𝑔𝑛(𝑥)
−

1
𝑔(𝑥)

| = |
𝑔𝑛(𝑥) − 𝑔(𝑥)
𝑔𝑛(𝑥)𝑔(𝑥)

| ≤
2|𝑔𝑛(𝑥) − 𝑔(𝑥)|

𝑀2 < 𝜀.

Thus 1/𝑔𝑛 → 1/𝑔 uniformly.

Exercise 6.2.9. Assume (𝑓𝑛) and (𝑔𝑛) are uniformly convergent sequences of functions.

(a) Show that (𝑓𝑛 + 𝑔𝑛) is a uniformly convergent sequence of functions.

(b) Give an example to show that the product (𝑓𝑛𝑔𝑛) may not converge uniformly.

(c) Prove that if there exists an 𝑀 > 0 such that |𝑓𝑛| ≤ 𝑀  and |𝑔𝑛| ≤ 𝑀  for all 𝑛 ∈ 𝐍,
then (𝑓𝑛𝑔𝑛) does converge uniformly.

Solution. Suppose that each 𝑓𝑛 and each 𝑔𝑛 is defined on some domain 𝐴 ⊆ 𝐑 and suppose
that 𝑓𝑛 → 𝑓 uniformly and 𝑔𝑛 → 𝑔 uniformly for some functions 𝑓, 𝑔 : 𝐴 → 𝐑.

(a) We claim that (𝑓𝑛 + 𝑔𝑛) converges uniformly to 𝑓 + 𝑔. Let 𝜀 > 0 be given. By the uni-
form convergence of 𝑓𝑛 → 𝑓 and 𝑔𝑛 → 𝑔, there exist positive integers 𝑁1, 𝑁2 such that

𝑥 ∈ 𝐴 and 𝑛 ≥ 𝑁1 ⇒ |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀
2 ,

𝑥 ∈ 𝐴 and 𝑛 ≥ 𝑁2 ⇒ |𝑔𝑛(𝑥) − 𝑔(𝑥)| < 𝜀
2 .

It follows that for any 𝑥 ∈ 𝐴 and any 𝑛 ≥ max{𝑁1, 𝑁2} we have

|𝑓𝑛(𝑥) + 𝑔𝑛(𝑥) − 𝑓(𝑥) − 𝑔(𝑥)| ≤ |𝑓𝑛(𝑥) − 𝑓(𝑥)| + |𝑔𝑛(𝑥) − 𝑔(𝑥)| < 𝜀
2 + 𝜀

2 = 𝜀.

Thus 𝑓𝑛 + 𝑔𝑛 → 𝑓 + 𝑔 uniformly.

(b) Let (𝑓𝑛 : 𝐑 → 𝐑) be the sequence defined by 𝑓𝑛(𝑥) = 𝑥 + 1
𝑛  and let 𝑓 : 𝐑 → 𝐑 be the

function 𝑓(𝑥) = 𝑥. It is straightforward to argue that 𝑓𝑛 → 𝑓 uniformly. Observe that
𝑓2

𝑛 : 𝐑 → 𝐑 and 𝑓2 : 𝐑 → 𝐑 are given by

[𝑓𝑛(𝑥)]2 = 𝑥2 +
2𝑥
𝑛

+
1
𝑛2 and [𝑓(𝑥)]2 = 𝑥2.
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It follows that 𝑓2
𝑛 → 𝑓2 pointwise, but the convergence is not uniform: for any 𝑁 ∈ 𝐍

we have

|[𝑓𝑁(𝑁)]2 − [𝑓(𝑁)]2| = 2 +
1

𝑁2 > 2.

(c) Since each 𝑓𝑛 is bounded, Exercise 6.2.6 (b) shows that 𝑓 is bounded, say |𝑓(𝑥)| ≤ 𝐿 for
all 𝑥 ∈ 𝐴 and some 𝐿 > 0. Let 𝜀 > 0 be given. By the uniform convergence of 𝑓𝑛 → 𝑓
and 𝑔𝑛 → 𝑔, there exist positive integers 𝑁1, 𝑁2 such that

𝑥 ∈ 𝐴 and 𝑛 ≥ 𝑁1 ⇒ |𝑓𝑛(𝑥) − 𝑓(𝑥)| <
𝜀

2𝑀
,

𝑥 ∈ 𝐴 and 𝑛 ≥ 𝑁2 ⇒ |𝑔𝑛(𝑥) − 𝑔(𝑥)| <
𝜀

2𝐿
.

It follows that for any 𝑥 ∈ 𝐴 and any 𝑛 ≥ max{𝑁1, 𝑁2} we have

|𝑓𝑛(𝑥)𝑔𝑛(𝑥) − 𝑓(𝑥)𝑔(𝑥)| ≤ |𝑔𝑛(𝑥)||𝑓𝑛(𝑥) − 𝑓(𝑥)| + |𝑓(𝑥)||𝑔𝑛(𝑥) − 𝑔(𝑥)|

≤ 𝑀|𝑓𝑛(𝑥) − 𝑓(𝑥)| + 𝐿|𝑔𝑛(𝑥) − 𝑔(𝑥)| < 𝜀
2 + 𝜀

2 = 𝜀.

Thus 𝑓𝑛𝑔𝑛 → 𝑓𝑔 uniformly.

Exercise 6.2.10. This exercise and the next explore partial converses of the Continuous
Limit Theorem (Theorem 6.2.6). Assume 𝑓𝑛 → 𝑓 pointwise on [𝑎, 𝑏] and the limit func-
tion 𝑓 is continuous on [𝑎, 𝑏]. If each 𝑓𝑛 is increasing (but not necessarily continuous),
show 𝑓𝑛 → 𝑓 uniformly.

Solution. First, let us prove a couple of useful lemmas.

Lemma L.15. If (𝑓𝑛 : 𝐴 → 𝐑) is a sequence of increasing functions converging point-
wise to a function 𝑓 : 𝐴 → 𝐑 then 𝑓 is increasing.

Proof. Let 𝑥 ≤ 𝑦 in 𝐴 be given. By assumption we have 𝑓𝑛(𝑥) ≤ 𝑓𝑛(𝑦) for each 𝑛 ∈ 𝐍.
The Order Limit Theorem (Theorem 2.3.4) and the pointwise convergence 𝑓𝑛 → 𝑓 then
imply that 𝑓(𝑥) ≤ 𝑓(𝑦). □

Lemma L.16. If 𝑓, 𝑔 : [𝑐, 𝑑] → 𝐑 are increasing functions then for all 𝑥 ∈ [𝑐, 𝑑] the
following inequality holds:

|𝑓(𝑥) − 𝑔(𝑥)| ≤ max{|𝑓(𝑐) − 𝑔(𝑑)|, |𝑓(𝑑) − 𝑔(𝑐)|}.

Proof. Let 𝑥 ∈ [𝑐, 𝑑] be given. Since 𝑓 and 𝑔 are increasing we have

𝑓(𝑐) ≤ 𝑓(𝑥) ≤ 𝑓(𝑑) and 𝑔(𝑐) ≤ 𝑔(𝑥) ≤ 𝑔(𝑑).
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Together these imply that

𝑓(𝑥) − 𝑔(𝑥) ≤ 𝑓(𝑑) − 𝑔(𝑐) ≤ |𝑓(𝑑) − 𝑔(𝑐)| ≤ max{|𝑓(𝑐) − 𝑔(𝑑)|, |𝑓(𝑑) − 𝑔(𝑐)|},

𝑔(𝑥) − 𝑓(𝑥) ≤ 𝑔(𝑑) − 𝑓(𝑐) ≤ |𝑓(𝑐) − 𝑔(𝑑)| ≤ max{|𝑓(𝑐) − 𝑔(𝑑)|, |𝑓(𝑑) − 𝑔(𝑐)|}.

The desired inequality follows. □

Returning to the exercise, let 𝜀 > 0 be given. Because 𝑓 is continuous on the compact set 
[𝑎, 𝑏], it must be uniformly continuous here (Theorem 4.4.7). Consequently, there exists a 
𝛿 > 0 such that

𝑥, 𝑦 ∈ [𝑎, 𝑏] and |𝑥 − 𝑦| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑦)| < 𝜀
2 . (1)

Choose 𝐾 ∈ 𝐍 such that 𝐾−1(𝑏 − 𝑎) < 𝛿 and for 𝑖 ∈ {0, …, 𝐾} let 𝑥𝑖 = 𝑎 + 𝑖𝐾−1(𝑏 − 𝑎), so
that

𝑥0 = 𝑎, 𝑥𝐾 = 𝑏, and 𝑥𝑖+1 − 𝑥𝑖 =
𝑏 − 𝑎
𝐾

< 𝛿.

This partitions the interval [𝑎, 𝑏] into subintervals [𝑥𝑖, 𝑥𝑖+1] of equal length, such that this
length is less than 𝛿. The pointwise convergence 𝑓𝑛 → 𝑓 implies that for each 𝑖 ∈ {0, …, 𝐾}
there is an 𝑁𝑖 ∈ 𝐍 such that

𝑛 ≥ 𝑁𝑖 ⇒ |𝑓𝑛(𝑥𝑖) − 𝑓(𝑥𝑖)| < 𝜀
2 . (2)

Let 𝑁 = max{𝑁0, …, 𝑁𝐾} and suppose that 𝑛 ≥ 𝑁 . Fix 𝑥 ∈ [𝑎, 𝑏] and note that 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1]
for some 𝑖 ∈ {0, …, 𝐾 − 1}. It follows from (1) and (2) that

|𝑓𝑛(𝑥𝑖+1) − 𝑓(𝑥𝑖)| ≤ |𝑓𝑛(𝑥𝑖+1) − 𝑓(𝑥𝑖+1)| + |𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖)| < 𝜀
2 + 𝜀

2 = 𝜀.

We can similarly show that |𝑓𝑛(𝑥𝑖) − 𝑓(𝑥𝑖+1)| < 𝜀. Observe that 𝑓 is increasing by Lem-
ma L.15; it follows from Lemma L.16 that

|𝑓𝑛(𝑥) − 𝑓(𝑥)| ≤ max{|𝑓𝑛(𝑥𝑖+1) − 𝑓(𝑥𝑖)|, |𝑓𝑛(𝑥𝑖) − 𝑓(𝑥𝑖+1)|} < 𝜀.

We have now shown that if 𝑥 ∈ [𝑎, 𝑏] and 𝑛 ≥ 𝑁  then |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀. Thus 𝑓𝑛 → 𝑓 uni-
formly on [𝑎, 𝑏].

Exercise 6.2.11 (Dini's Theorem). Assume 𝑓𝑛 → 𝑓 pointwise on a compact set 𝐾
and assume that for each 𝑥 ∈ 𝐾 the sequence 𝑓𝑛(𝑥) is increasing. Follow these steps to
show that if 𝑓𝑛 and 𝑓 are continuous on 𝐾, then the convergence is uniform.

(a) Set 𝑔𝑛 = 𝑓 − 𝑓𝑛 and translate the preceding hypothesis into statements about the
sequence (𝑔𝑛).

(b) Let 𝜀 > 0 be arbitrary, and define 𝐾𝑛 = {𝑥 ∈ 𝐾 : 𝑔𝑛(𝑥) ≥ 𝜀}. Argue that
𝐾1 ⊇ 𝐾2 ⊇ 𝐾3 ⊇ ⋯, and use this observation to finish the argument.

Solution.
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(a) The sequence (𝑔𝑛) converges to zero pointwise on 𝐾; for a given 𝑥 ∈ 𝐾, the sequence of
real numbers (𝑔𝑛(𝑥)) is decreasing; and each 𝑔𝑛 is a continuous function. To complete
the proof, it will suffice to show that 𝑔𝑛 → 0 uniformly on 𝐾.

(b) Suppose 𝑥 ∈ 𝐾𝑛+1 for some 𝑛 ∈ 𝐍, so that 𝑔𝑛+1(𝑥) ≥ 𝜀. Since the sequence (𝑔𝑛(𝑥))
is decreasing we then have 𝑔𝑛(𝑥) ≥ 𝑔𝑛+1(𝑥) ≥ 𝜀 and thus 𝑥 ∈ 𝐾𝑛. It follows that
𝐾𝑛+1 ⊆ 𝐾𝑛 and hence that ⋯ ⊆ 𝐾3 ⊆ 𝐾2 ⊆ 𝐾1.

If each 𝐾𝑛 were non-empty then Theorem 3.3.5 would imply the existence of an 𝑥 ∈ 𝐾
such that 𝑔𝑛(𝑥) ≥ 𝜀 > 0 for each 𝑛 ∈ 𝐍, so that lim𝑛→∞ 𝑔𝑛(𝑥) ≠ 0. Taking the contra-
positive of this and using our assumption that lim𝑛→∞ 𝑔𝑛(𝑥) = 0 for all 𝑥 ∈ 𝐾, we see
that there exists an 𝑁 ∈ 𝐍 such that 𝐾𝑁 = ∅, which forces 𝐾𝑛 = ∅ for all 𝑛 ≥ 𝑁 . In
other words,

𝑥 ∈ 𝐾 and 𝑛 ≥ 𝑁 ⇒ 𝑔𝑛(𝑥) < 𝜀.

Since 𝑔𝑛 → 0 pointwise on 𝐾 and the sequence (𝑔𝑛(𝑥)) is decreasing for any 𝑥 ∈ 𝐾, it
must be the case that each 𝑔𝑛 is non-negative, so that |𝑔𝑛| = 𝑔𝑛. We may conclude that
𝑔𝑛 → 0 uniformly on 𝐾.

Exercise 6.2.12 (Cantor Function). Review the construction of the Cantor set
𝐶 ⊆ [0, 1] from Section 3.1. This exercise makes use of results and notation from this
discussion.

(a) Define 𝑓0(𝑥) = 𝑥 for all 𝑥 ∈ [0, 1]. Now, let

𝑓1(𝑥) =

⎩
{
⎨
{
⎧(3/2)𝑥 for 0 ≤ 𝑥 < 1/3

1/2 for 1/3 < 𝑥 < 2/3
(3/2)𝑥 − 1/2 for 2/3 ≤ 𝑥 ≤ 1.

Sketch 𝑓0 and 𝑓1 over [0, 1] and observe that 𝑓1 is continuous, increasing, and
constant on the middle third (1/3, 2/3) = [0, 1] ∖ 𝐶1.

(b) Construct 𝑓2 by imitating this process of flattening out the middle third of each
nonconstant segment of 𝑓1. Specifically, let

𝑓2(𝑥) =

⎩
{
⎨
{
⎧(1/2)𝑓1(3𝑥) for 0 ≤ 𝑥 < 1/3

𝑓1(𝑥) for 1/3 < 𝑥 < 2/3
(1/2)𝑓1(3𝑥 − 2) + 1/2 for 2/3 ≤ 𝑥 ≤ 1.

If we continue this process, show that the resulting sequence (𝑓𝑛) converges uni-
formly on [0, 1].

(c) Let 𝑓 = lim 𝑓𝑛. Prove that 𝑓 is a continuous, increasing function on [0, 1] with 
𝑓(0) = 0 and 𝑓(1) = 1 that satisfies 𝑓 ′(𝑥) = 0 for all 𝑥 in the open set [0, 1] ∖ 𝐶.
Recall that the “length” of the Cantor set 𝐶 is 0. Somehow, 𝑓 manages to increase
from 0 to 1 while remaining constant on a set of “length 1.”
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Solution.

(a) Here are graphs of 𝑓0 and 𝑓1 over [0, 1].

0

1
3

2
3

1

0 1
3

2
3 1

𝑓0(𝑥) for 𝑥 ∈ [0, 1]

0

1
3

2
3

1

0 1
3

2
3 1

𝑓1(𝑥) for 𝑥 ∈ [0, 1]

(b) The sequence (𝑓𝑛) is defined by

𝑓𝑛(𝑥) =

⎩{
{⎨
{{
⎧1

2𝑓𝑛−1(3𝑥) if 0 ≤ 𝑥 ≤ 1
3 ,

𝑓𝑛−1(𝑥) if 1
3 < 𝑥 < 2

3 ,
1
2𝑓𝑛−1(3𝑥 − 2) + 1

2 if 2
3 ≤ 𝑥 ≤ 1

for 𝑛 ≥ 2.

We will show by induction that |𝑓𝑛+1(𝑥) − 𝑓𝑛(𝑥)| ≤ 1
6 ⋅ 2−𝑛 for all 𝑥 ∈ [0, 1] and all

𝑛 ∈ 𝐍. For the base case 𝑛 = 1, it is straightforward to verify that the maximum of 
|𝑓2(𝑥) − 𝑓1(𝑥)| is 1

12 , which is achieved at 𝑥 = 1
9 , 2

9 , 7
9 , 8

9 ; see the following graph.
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Suppose that |𝑓𝑛+1(𝑥) − 𝑓𝑛(𝑥)| ≤ 1
6 ⋅ 2−𝑛 for all 𝑥 ∈ [0, 1] some 𝑛 ∈ 𝐍. There are three

cases.

Case 1. For 0 ≤ 𝑥 ≤ 1
3  we have 𝑓𝑛+2(𝑥) = 1

2𝑓𝑛+1(3𝑥) and 𝑓𝑛+1(𝑥) = 1
2𝑓𝑛(3𝑥). It follows

that

|𝑓𝑛+2(𝑥) − 𝑓𝑛+1(𝑥)| = |1
2𝑓𝑛+1(3𝑥) − 1

2𝑓𝑛(3𝑥)| = 1
2 |𝑓𝑛+1(3𝑥) − 𝑓𝑛(3𝑥)| ≤ 1

6 ⋅ 2−(𝑛+1),

where we have used the induction hypothesis for the last inequality.

Case 2. For 1
3 ≤ 𝑥 ≤ 2

3  we have 𝑓𝑛+2(𝑥) = 𝑓𝑛+1(𝑥) and thus |𝑓𝑛+2(𝑥) − 𝑓𝑛+1(𝑥)| = 0.

Case 3. For 2
3 ≤ 𝑥 ≤ 1 we have

𝑓𝑛+2(𝑥) = 1
2𝑓𝑛+1(3𝑥 − 2) + 1

2 and 𝑓𝑛+1(𝑥) = 1
2𝑓𝑛(3𝑥 − 2) + 1

2 .

It follows that

|𝑓𝑛+2(𝑥) − 𝑓𝑛+1(𝑥)| = |1
2𝑓𝑛+1(3𝑥 − 2) − 1

2𝑓𝑛(3𝑥 − 2)|

= 1
2 |𝑓𝑛+1(3𝑥 − 2) − 𝑓𝑛(3𝑥 − 2)| ≤ 1

6 ⋅ 2−(𝑛+1),

where we have used the induction hypothesis for the last inequality.

This completes the induction step and thus |𝑓𝑛+1(𝑥) − 𝑓𝑛(𝑥)| ≤ 1
6 ⋅ 2−𝑛 for each 𝑛 ∈ 𝐍.

This inequality implies that for any 𝑥 ∈ [0, 1] and any positive integers 𝑛 > 𝑚 we have

|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ≤ ∑
𝑛−1

𝑗=𝑚
|𝑓𝑗+1(𝑥) − 𝑓𝑗(𝑥)| ≤ 1

6 ∑
𝑛−1

𝑗=𝑚

1
2𝑗 .

Since ∑∞
𝑗=0 2−𝑗 is a convergent geometric series, its sequence of partial sums is a Cauchy

sequence. Combining this with the inequality above and Theorem 6.2.5, we see that 
(𝑓𝑛) converges uniformly on [0, 1].

(c) It is straightforward to argue by induction that each 𝑓𝑛 is a continuous increasing
function satisfying 𝑓(0) = 0 and 𝑓(1) = 1. It follows from the Continuous Limit Theo-
rem (Theorem 6.2.6), Lemma L.15, and the uniform convergence 𝑓𝑛 → 𝑓 that 𝑓 is a
continuous increasing function satisfying 𝑓(0) = 0 and 𝑓(1) = 1.

Let 𝑥 ∈ [0, 1] ∖ 𝐶 be given. By De Morgan’s Laws we have

[0, 1] ∖ 𝐶 = [0, 1] ∖ ( ⋂
∞

𝑚=1
𝐶𝑚) = ⋃

∞

𝑚=1
([0, 1] ∖ 𝐶𝑚).

Thus 𝑥 ∈ [0, 1] ∖ 𝐶𝑚 for some 𝑚 ∈ 𝐍. We constructed the sequence (𝑓𝑛) in such a way
that 𝑓𝑛 is constant on the open set [0, 1] ∖ 𝐶𝑚 for all 𝑛 ≥ 𝑚; the uniform convergence
𝑓𝑛 → 𝑓 then implies that 𝑓 is constant on [0, 1] ∖ 𝐶𝑚 for any 𝑚 ∈ 𝐍. The openness
of [0, 1] ∖ 𝐶𝑚 implies that there is some open interval 𝐼 contained in [0, 1] ∖ 𝐶𝑚 and
containing 𝑥 such that 𝑓 is constant on 𝐼 . It follows that that 𝑓 is differentiable at 𝑥
and moreover that 𝑓 ′(𝑥) = 0.
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Exercise 6.2.13. Recall that the Bolzano-Weierstrass Theorem (Theorem 2.5.5) states
that every bounded sequence of real numbers has a convergent subsequence. An anal-
ogous statement for bounded sequences of functions is not true in general, but under
stronger hypotheses several different conclusions are possible. One avenue is to assume
the common domain for all of the functions in the sequence is countable. (Another is
explored in the next two exercises.)

Let 𝐴 = {𝑥1, 𝑥2, 𝑥3, …} be a countable set. For each 𝑛 ∈ 𝐍, let 𝑓𝑛 be defined on 𝐴 and
assume there exists an 𝑀 > 0 such that |𝑓𝑛(𝑥)| ≤ 𝑀  for all 𝑛 ∈ 𝐍 and 𝑥 ∈ 𝐴. Follow
these steps to show that there exists a subsequence of (𝑓𝑛) that converges pointwise on
𝐴.

(a) Why does the sequence of real numbers 𝑓𝑛(𝑥1) necessarily contain a convergent
subsequence (𝑓𝑛𝑘)? To indicate that the subsequence of functions (𝑓𝑛𝑘) is gener-
ated by considering the values of the functions at 𝑥1, we will use the notation 
𝑓𝑛𝑘 = 𝑓1,𝑘.

(b) Now, explain why the sequence 𝑓1,𝑘(𝑥2) contains a convergent subsequence.

(c) Carefully construct a nested family of subsequences (𝑓𝑚,𝑘), and show how this can
be used to produce a single subsequence of (𝑓𝑛) that converges at every point of
𝐴.

Solution. For the purposes of this exercise, let us adopt some more precise, if cumbersome,
notation for sequences. A sequence in a non-empty set 𝐸 is a function 𝑎 : 𝐍 → 𝐸. A sequence
𝑏 : 𝐍 → 𝐸 is a subsequence of 𝑎 if there exists a strictly increasing function 𝜃 : 𝐍 → 𝐍 such
that 𝑏 = 𝑎 ∘ 𝜃, i.e. such that 𝑏(𝑛) = 𝑎(𝜃(𝑛)) for all 𝑛 ∈ 𝐍. We shall write 𝑏 ◃ 𝑎 to mean that
𝑏 is a subsequence of 𝑎. Given this definition, it is clear that if 𝑐 is a subsequence of 𝑏 and if
𝑏 is a subsequence of 𝑎, then 𝑐 is a subsequence of 𝑎. In other words, ◃ is transitive.

(a) Define 𝑎0 : 𝐍 → 𝐑𝐴 (where 𝐑𝐴 is the collection of all functions from 𝐴 to 𝐑)
by 𝑎0(𝑛) = 𝑓𝑛. By assumption, the sequence of real numbers whose 𝑛th term is 
[𝑎0(𝑛)](𝑥1) = 𝑓𝑛(𝑥1) is bounded. According to the Bolzano-Weierstrass Theorem there
exists a strictly increasing function 𝜃1 : 𝐍 → 𝐍 such that

lim
𝑛→∞

[𝑎0(𝜃1(𝑛))](𝑥1) = lim
𝑛→∞

𝑓𝜃1(𝑛)(𝑥1) = 𝑦1

for some 𝑦1 ∈ 𝐑. Define 𝑎1 : 𝐍 → 𝐑𝐴 by 𝑎1 = 𝑎0 ∘ 𝜃1. Note that 𝑎1 ◃ 𝑎0 and that

lim
𝑛→∞

[𝑎1(𝑛)](𝑥1) = lim
𝑛→∞

𝑓𝜃1(𝑛)(𝑥1) = 𝑦1.

(b) The sequence of real numbers whose 𝑛th term is [𝑎1(𝑛)](𝑥2) = 𝑓𝜃1(𝑛)(𝑥2) is bounded
by assumption. The Bolzano-Weierstrass Theorem implies the existence of a strictly
increasing function 𝜃2 : 𝐍 → 𝐍 such that

lim
𝑛→∞

[𝑎1(𝜃2(𝑛))](𝑥2) = lim
𝑛→∞

𝑓𝜃1(𝜃2(𝑛))(𝑥2) = 𝑦2

247 / 415



for some 𝑦2 ∈ 𝐑. Define 𝑎2 : 𝐍 → 𝐑𝐴 by 𝑎2 = 𝑎1 ∘ 𝜃2 = 𝑎0 ∘ 𝜃1 ∘ 𝜃2 and note that 
𝑎2 ◃ 𝑎1 ◃ 𝑎0. Note further that

lim
𝑛→∞

[𝑎2(𝑛)](𝑥2) = lim
𝑛→∞

𝑓𝜃1(𝜃2(𝑛))(𝑥2) = 𝑦2

and lim
𝑛→∞

[𝑎2(𝑛)](𝑥1) = lim
𝑛→∞

𝑓𝜃1(𝜃2(𝑛))(𝑥1) = 𝑦1,

since subsequences of convergent sequences converge to the same limit as the parent
sequence.

(c) We continue in this manner, obtaining for each 𝑚 ∈ 𝐍 a sequence 𝑎𝑚 : 𝐍 → 𝐑𝐴, a
strictly increasing function 𝜃𝑚 : 𝐍 → 𝐍 such that 𝑎𝑚 = 𝑎𝑚−1 ∘ 𝜃𝑚 = 𝑎0 ∘ 𝜃1 ∘ ⋯ ∘ 𝜃𝑚,
and a real number 𝑦𝑚 such that

lim
𝑛→∞

[𝑎𝑚(𝑛)](𝑥𝑚) = lim
𝑛→∞

𝑓(𝜃1∘⋯∘𝜃𝑚)(𝑛)(𝑥𝑚) = 𝑦𝑚.

It follows that 𝑎𝑚 ◃ 𝑎𝑚−1 ◃ ⋯ ◃ 𝑎1 ◃ 𝑎0, which implies that

lim
𝑛→∞

[𝑎𝑚(𝑛)](𝑥𝑘) = lim
𝑛→∞

𝑓(𝜃1∘⋯∘𝜃𝑚)(𝑛)(𝑥𝑘) = 𝑦𝑘

for each 𝑘 ∈ {1, …, 𝑚}, since subsequences of convergent sequences converge to the same
limit as the parent sequence.

Define Θ : 𝐍 → 𝐍 by Θ(𝑛) = (𝜃1 ∘ ⋯ ∘ 𝜃𝑛)(𝑛); we claim that Θ is strictly increasing.
Let 𝑚 < 𝑛 be positive integers and observe that

𝑚 < 𝑛 ≤ 𝜃𝑛(𝑛) ≤ ⋯ ≤ (𝜃𝑚+1 ∘ ⋯ ∘ 𝜃𝑛)(𝑛),

where we have used that 𝑛 ≤ 𝜃(𝑛) for any strictly increasing function 𝜃 : 𝐍 → 𝐍. Any
composition of strictly increasing functions is a strictly increasing function; it follows
that 𝜃1 ∘ ⋯ ∘ 𝜃𝑚 is a strictly increasing function and hence that

𝑚 < (𝜃𝑚+1 ∘ ⋯ ∘ 𝜃𝑛)(𝑛) ⇒ (𝜃1 ∘ ⋯ ∘ 𝜃𝑚)(𝑚) < (𝜃1 ∘ ⋯ ∘ 𝜃𝑚 ∘ ⋯ ∘ 𝜃𝑛)(𝑛),

i.e. Θ(𝑚) < Θ(𝑛), as claimed.

Define 𝑏 : 𝐍 → 𝐑𝐴 by 𝑏 = 𝑎0 ∘ Θ, so that

𝑏(𝑛) = (𝑎0 ∘ Θ)(𝑛) = (𝑎0 ∘ 𝜃1 ∘ ⋯ ∘ 𝜃𝑛)(𝑛) = 𝑎𝑛(𝑛).

This is a subsequence of 𝑎0 since Θ is a strictly increasing function. This subsequence
is sometimes known as the “diagonal subsequence”; the following visualization can ex-
plain why.

𝑎1 𝑎1(1) 𝑎1(2) 𝑎1(3) ⋯
𝑎2 𝑎2(1) 𝑎2(2) 𝑎2(3) ⋯
𝑎3 𝑎3(1) 𝑎3(2) 𝑎3(3) ⋯
⋮ ⋮ ⋮ ⋮ ⋱
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The 𝑚th row corresponds to the sequence 𝑎𝑚; note that each row is a subsequence of
the row preceding it. The sequence 𝑏 is obtained by taking the diagonal elements of
this infinite array, highlighted in red.

Our goal now is to show that 𝑏 = (𝑓Θ(𝑛))
∞
𝑛=1 converges pointwise on 𝐴 to the function

𝑓 : 𝐴 → 𝐑 given by 𝑓(𝑥𝑚) = 𝑦𝑚. Let 𝑚 ∈ 𝐍 be given and note that for 𝑛 ≥ 𝑚 + 1
we have

𝑏(𝑛) = (𝑎0 ∘ Θ)(𝑛) = (𝑎0 ∘ 𝜃1 ∘ ⋯ ∘ 𝜃𝑛)(𝑛) = (𝑎𝑚 ∘ 𝜃𝑚+1 ∘ ⋯ ∘ 𝜃𝑛)(𝑛) = (𝑎𝑚 ∘ Θ𝑚)(𝑛),

where Θ𝑚 : {𝑚 + 1, 𝑚 + 2, …} → 𝐍 is defined by

Θ𝑚(𝑛) = (𝜃𝑚+1 ∘ ⋯ ∘ 𝜃𝑛)(𝑛).

Similarly to how we showed that Θ is strictly increasing, we can show that Θ𝑚 is strictly
increasing. It follows that 𝑏 is eventually a subsequence of 𝑎𝑚 and hence that

lim
𝑛→∞

[𝑏(𝑛)](𝑥𝑚) = lim
𝑛→∞

[𝑎𝑚(𝑛)](𝑥𝑚) = 𝑦𝑚 = 𝑓(𝑥𝑚).

Exercise 6.2.14. A sequence of functions (𝑓𝑛) defined on a set 𝐸 ⊆ 𝐑 is called equicon-
tinuous if for every 𝜀 > 0 there exists a 𝛿 > 0 such that |𝑓𝑛(𝑥) − 𝑓𝑛(𝑦)| < 𝜀 for all 𝑛 ∈ 𝐍
and |𝑥 − 𝑦| < 𝛿 in 𝐸.

(a) What is the difference between saying that a sequence of functions (𝑓𝑛) is equicon-
tinuous and just asserting that each 𝑓𝑛 in the sequence is individually uniformly
continuous?

(b) Give a qualitative explanation for why the sequence 𝑔𝑛(𝑥) = 𝑥𝑛 is not equicontin-
uous on [0, 1]. Is each 𝑔𝑛 uniformly continuous on [0, 1]?

Solution.

(a) If (𝑓𝑛) is equicontinuous then for a given 𝜀 > 0 the 𝛿 > 0 that we obtain depends only
on 𝜀; if instead we only have that each 𝑓𝑛 is individually uniformly continuous, then
the 𝛿 may depend on 𝑛. In symbols, (𝑓𝑛) is equicontinuous if

(∀𝜀 > 0)(∃𝛿 > 0)(∀𝑛 ∈ 𝐍)((𝑥, 𝑦 ∈ 𝐸 and |𝑥 − 𝑦| < 𝛿) ⇒ |𝑓𝑛(𝑥) − 𝑓𝑛(𝑦)| < 𝜀),

whereas each 𝑓𝑛 is individually uniformly continuous if

(∀𝑛 ∈ 𝐍)(∀𝜀 > 0)(∃𝛿 > 0)((𝑥, 𝑦 ∈ 𝐸 and |𝑥 − 𝑦| < 𝛿) ⇒ |𝑓𝑛(𝑥) − 𝑓𝑛(𝑦)| < 𝜀);

notice the order of the quantifiers.

(b) The issue occurs near 1; no matter how small 𝛿 is taken, it is possible to take 𝑛 large
enough and 𝑥 within 𝛿 of 1 such that 𝑓𝑛(𝑥) and 𝑓𝑛(1) are far apart. Geometrically, the
slope of 𝑓𝑛 gets very steep near 1 as we increase 𝑛. To be more precise, let 𝛿 > 0 be
given, take 𝑛 ∈ 𝐍 such that 1

𝑛 < 𝛿, and let 𝑥 = 1 − 1
𝑛 . Observe that 1 − 𝑥 < 𝛿 and that

|𝑓𝑛(1) − 𝑓𝑛(𝑥)| = 1 − (1 − 1
𝑛)𝑛 ≥ 1 − 𝑒−1 > 0,
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where we have used that (1 − 1
𝑛)𝑛 is an increasing sequence which converges to 𝑒−1.

Each 𝑔𝑛 is uniformly continuous on [0, 1] by Theorem 4.4.7.

Exercise 6.2.15 (Arzela-Ascoli Theorem). For each 𝑛 ∈ 𝐍, let 𝑓𝑛 be a function
defined on [0, 1]. If (𝑓𝑛) is bounded on [0, 1]—that is, there exists an 𝑀 > 0 such
that |𝑓𝑛(𝑥)| ≤ 𝑀  for all 𝑛 ∈ 𝐍 and 𝑥 ∈ [0, 1]—and if the collection of functions (𝑓𝑛)
is equicontinuous (Exercise 6.2.14), follow these steps to show that (𝑓𝑛) contains a uni-
formly convergent subsequence.

(a) Use Exercise 6.2.13 to produce a subsequence (𝑓𝑛𝑘) that converges at every ratio-
nal point in [0, 1]. To simplify the notation, set 𝑔𝑘 = 𝑓𝑛𝑘 . It remains to show that
(𝑔𝑘) converges uniformly on all of [0, 1].

(b) Let 𝜀 > 0. By equicontinuity, there exists a 𝛿 > 0 such that

|𝑔𝑘(𝑥) − 𝑔𝑘(𝑦)| <
𝜀
3

for all |𝑥 − 𝑦| < 𝛿 and 𝑘 ∈ 𝐍. Using this 𝛿, let 𝑟1, 𝑟2, …, 𝑟𝑚 be a finite collection
of rational points with the property that the union of the neighborhoods 𝑉𝛿(𝑟𝑖)
contains [0, 1].

(c) Explain why there must exist an 𝑁 ∈ 𝐍 such that

|𝑔𝑠(𝑟𝑖) − 𝑔𝑡(𝑟𝑖)| <
𝜀
3

for all 𝑠, 𝑡 ≥ 𝑁  and 𝑟𝑖 in the finite subset of [0, 1] just described. Why does having
the set {𝑟1, 𝑟2, …, 𝑟𝑚} be finite matter?

(d) Finish the argument by showing that, for an arbitrary 𝑥 ∈ [0, 1],

|𝑔𝑠(𝑥) − 𝑔𝑡(𝑥)| < 𝜀

for all 𝑠, 𝑡 ≥ 𝑁 .

Solution.

(a) Since 𝐐 ∩ [0, 1] is countable, Exercise 6.2.13 implies the existence of the desired subse-
quence (𝑔𝑘).

(b) Consider the open cover [0, 1] ⊆ ⋃𝑟∈𝐐∩[0,1] 𝑉𝛿(𝑟). Because [0, 1] is compact, there must
exist a finite subcover, i.e. there must exist rationals 𝑟1, 𝑟2, …, 𝑟𝑚 in 𝐐 ∩ [0, 1] such that
𝑉𝛿(𝑟1) ∪ ⋯ ∪ 𝑉𝛿(𝑟𝑚) contains [0, 1].

(c) Let 𝑖 ∈ {1, …, 𝑚} be given. Since (𝑔𝑘) converges at every rational point in [0, 1], the
sequence (𝑔𝑘(𝑟𝑖)) must be a Cauchy sequence. It follows that there exists an 𝑁𝑖 ∈ 𝐍
such that

𝑠, 𝑡 ≥ 𝑁𝑖 ⇒ |𝑔𝑠(𝑟𝑖) − 𝑔𝑡(𝑟𝑖)| < 𝜀
3 .
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Thus the desired 𝑁 ∈ 𝐍 is 𝑁 = max{𝑁1, …, 𝑁𝑀}; the finiteness of {𝑟1, …, 𝑟𝑚} ensures
this maximum exists.

(d) Let 𝑥 ∈ [0, 1] be given, so that 𝑥 ∈ 𝑉𝛿(𝑟𝑖) for some 𝑖 ∈ {1, …, 𝑚}, and let 𝑠, 𝑡 ≥ 𝑁  be
given. Observe that

|𝑔𝑠(𝑥) − 𝑔𝑡(𝑥)| ≤ |𝑔𝑠(𝑥) − 𝑔𝑠(𝑟𝑖)| + |𝑔𝑡(𝑥) − 𝑔𝑡(𝑟𝑖)| + |𝑔𝑠(𝑟𝑖) − 𝑔𝑡(𝑟𝑖)| = 𝜀
3 + 𝜀

3 + 𝜀
3 = 𝜀,

where we have used that |𝑥 − 𝑟𝑖| < 𝛿. Theorem 6.2.5 allows us to conclude that (𝑔𝑘) is
a uniformly convergent subsequence of (𝑓𝑛).
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6.3. Uniform Convergence and Differentiation

Exercise 6.3.1. Consider the sequence of functions defined by

𝑔𝑛(𝑥) =
𝑥𝑛

𝑛
.

(a) Show (𝑔𝑛) converges uniformly on [0, 1] and find 𝑔 = lim 𝑔𝑛. Show that 𝑔 is differ-
entiable and compute 𝑔′(𝑥) for all 𝑥 ∈ [0, 1].

(b) Now, show that (𝑔′
𝑛) converges on [0, 1]. Is the convergence uniform? Set ℎ = lim 𝑔′

𝑛

and compare ℎ and 𝑔′. Are they the same?

Solution.

(a) The limit function 𝑔 : [0, 1] → 𝐑 is given by 𝑔(𝑥) = 0. For any 𝑥 ∈ [0, 1] we have

|𝑔𝑛(𝑥) − 𝑔(𝑥)| =
𝑥𝑛

𝑛
≤

1
𝑛

;

it follows that the convergence 𝑔𝑛 → 𝑔 is uniform. Certainly 𝑔 is differentiable on [0, 1]
and satisfies 𝑔′(𝑥) = 0 for each 𝑥 ∈ [0, 1].

(b) The sequence (𝑔′
𝑛) is given by 𝑔′

𝑛(𝑥) = 𝑥𝑛−1 for 𝑥 ∈ [0, 1]. This sequence converges
pointwise to the function ℎ : [0, 1] → 𝐑 given by

ℎ(𝑥) = {0 if 0 ≤ 𝑥 < 1,
1 if 𝑥 = 1.

The convergence cannot be uniform since each 𝑔′
𝑛 is continuous at 1 but ℎ is not. Note

that ℎ ≠ 𝑔′; this gives an alternative proof for showing that the convergence 𝑔′
𝑛 → ℎ

is not uniform, as uniform convergence 𝑔′
𝑛 → ℎ would imply that 𝑔′ = ℎ by Theorem

6.3.1/6.3.3.

Exercise 6.3.2. Consider the sequence of functions

ℎ𝑛(𝑥) = √𝑥2 +
1
𝑛

.

(a) Compute the pointwise limit of (ℎ𝑛) and then prove that the convergence is uni-
form on 𝐑.

(b) Note that each ℎ𝑛 is differentiable. Show 𝑔(𝑥) = lim ℎ′
𝑛(𝑥) exists for all 𝑥, and

explain how we can be certain that the convergence is not uniform on any neigh-
borhood of zero.

Solution.
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(a) The pointwise limit is the function ℎ : 𝐑 → 𝐑 given by ℎ(𝑥) =
√

𝑥2 = |𝑥|. For any
𝑥 ∈ 𝐑 we have

|ℎ𝑛(𝑥) − ℎ(𝑥)| = √𝑥2 + 𝑛−1 −
√

𝑥2 =
𝑛−1

√
𝑥2 + 𝑛−1 +

√
𝑥2

≤
𝑛−1

𝑛−1/2 =
1

√
𝑛

.

Thus the convergence ℎ𝑛 → ℎ is uniform on 𝐑.

(b) Observe that ℎ′
𝑛 : 𝐑 → 𝐑 is given by

ℎ′
𝑛(𝑥) =

𝑥
√

𝑥2 + 𝑛−1
.

This sequence converges pointwise to the function 𝑔 : 𝐑 → 𝐑 given by

𝑔(𝑥) =
⎩{
⎨
{⎧−1 if 𝑥 < 0,

0 if 𝑥 = 0,
1 if 𝑥 > 0.

The convergence ℎ′
𝑛 → 𝑔 cannot be uniform on any neighbourhood of zero each ℎ′

𝑛 is
continuous at zero but 𝑔 is not. Alternatively, if the convergence ℎ′

𝑛 → 𝑔 were uniform
then Theorem 6.3.1/6.3.3 would imply that ℎ is differentiable at zero—but ℎ fails to
be differentiable precisely at zero.

Exercise 6.3.3. Consider the sequence of functions

𝑓𝑛(𝑥) =
𝑥

1 + 𝑛𝑥2 .

(a) Find the points on 𝐑 where each 𝑓𝑛(𝑥) attains its maximum and minimum value.
Use this to prove (𝑓𝑛) converges uniformly on 𝐑. What is the limit function?

(b) Let 𝑓 = lim 𝑓𝑛. Compute 𝑓 ′
𝑛(𝑥) and find all the values of 𝑥 for which

𝑓 ′(𝑥) = lim 𝑓 ′
𝑛(𝑥).

Solution.

(a) From the observation

1
2
√

𝑛
−

𝑥
1 + 𝑛𝑥2 =

𝑛𝑥2 − 2
√

𝑛𝑥 + 1
2
√

𝑛(1 + 𝑛𝑥2)
=

(
√

𝑛𝑥 − 1)2

2
√

𝑛(1 + 𝑛𝑥2)
≥ 0

we can see that 0 ≤ 𝑓𝑛(𝑥) ≤ 1
2
√

𝑛  for all 𝑥 ≥ 0 and also that 𝑓𝑛(𝑥) = 1
2
√

𝑛  precisely when
𝑥 = 1√

𝑛 . Combining this with the fact that each 𝑓𝑛 is an odd function, we see that

−
1

2
√

𝑛
≤ 𝑓𝑛(𝑥) ≤

1
2
√

𝑛

for every 𝑥 ∈ 𝐑 and furthermore that

𝑓𝑛(𝑥) = −
1

2
√

𝑛
⇔ 𝑥 = −

1
√

𝑛
and 𝑓𝑛(𝑥) =

1
2
√

𝑛
⇔ 𝑥 =

1
√

𝑛
.
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The bound |𝑓𝑛(𝑥)| ≤ 1
2
√

𝑛  for all 𝑥 ∈ 𝐑 shows that 𝑓𝑛 → 0 uniformly on 𝐑.

(b) The quotient rule gives us

𝑓 ′
𝑛(𝑥) =

1 − 𝑛𝑥2

(1 + 𝑛𝑥2)2 .

For 𝑥 ≠ 0 we have

𝑓 ′
𝑛(𝑥) =

1
𝑛2𝑥4 − 1

𝑛𝑥2

( 1
𝑛𝑥2 + 1)2 → 0 as 𝑛 → ∞,

and for 𝑥 = 0 we have 𝑓 ′
𝑛(0) = 1. In part (a) we showed that the limit function

𝑓 : 𝐑 → 𝐑 was given by 𝑓(𝑥) = 0. Thus 𝑓 ′(𝑥) = lim 𝑓 ′
𝑛(𝑥) = 0 for all 𝑥 ≠ 0 and

𝑓 ′(0) = 0 ≠ 1 = lim 𝑓 ′
𝑛(0).

Exercise 6.3.4. Let

ℎ𝑛(𝑥) =
sin(𝑛𝑥)

√
𝑛

.

Show that ℎ𝑛 → 0 uniformly on 𝐑 but that the sequence of derivatives (ℎ′
𝑛) diverges

for every 𝑥 ∈ 𝐑.

Solution. The bound

|ℎ𝑛(𝑥)| ≤
1

√
𝑛

for each 𝑥 ∈ 𝐑 shows that ℎ𝑛 → 0 uniformly on 𝐑. The sequence of derivatives (ℎ′
𝑛) is given

by

𝑎𝑛 ≔ ℎ′
𝑛(𝑥) =

√
𝑛 cos(𝑛𝑥).

We claim that (𝑎𝑛) does not converge for any 𝑥 ∈ 𝐑; to see this, we will consider three cases.

Case 1. Suppose 𝑥 = 𝑘𝜋 for some even integer 𝑘. In this case we have 𝑎𝑛 =
√

𝑛, which
diverges.

Case 2. Suppose 𝑥 = 𝑘𝜋 for some odd integer 𝑘. In this case we have 𝑎𝑛 = (−1)𝑛√
𝑛, which

diverges.

Case 3. Suppose 𝑥 is not of the form 𝑘𝜋 for any integer 𝑘 and suppose by way of contradic-
tion that 𝑎𝑛 → 𝐿 for some 𝐿 ∈ 𝐑. It follows that

𝑎𝑛√
𝑛

= cos(𝑛𝑥) → 0,

which also implies that cos((𝑛 + 1)𝑥) → 0. Consider the trigonometric identity

sin(𝑛𝑥) =
cos(𝑛𝑥) cos(𝑥) − cos((𝑛 + 1)𝑥)

sin(𝑥)
;
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since 𝑥 ≠ 𝑘𝜋 for any integer 𝑘, we are not dividing by zero. Because both cos(𝑛𝑥) → 0 and 
cos((𝑛 + 1)𝑥) → 0, we see that sin(𝑛𝑥) → 0. It follows that

sin2(𝑛𝑥) + cos2(𝑛𝑥) → 0,

which contradicts that sin2(𝑛𝑥) + cos2(𝑛𝑥) = 1 for each 𝑛 ∈ 𝐍.

Exercise 6.3.5. Let

𝑔𝑛(𝑥) =
𝑛𝑥 + 𝑥2

2𝑛
,

and set 𝑔(𝑥) = lim 𝑔𝑛(𝑥). Show that 𝑔 is differentiable in two ways:

(a) Compute 𝑔(𝑥) by algebraically taking the limit as 𝑛 → ∞ and then find 𝑔′(𝑥).

(b) Compute 𝑔′
𝑛(𝑥) for each 𝑛 ∈ 𝐍 and show that the sequence of derivatives (𝑔′

𝑛)
converges uniformly on every interval [−𝑀, 𝑀]. Use Theorem 6.3.3 to conclude 
𝑔′(𝑥) = lim 𝑔′

𝑛(𝑥).

(c) Repeat parts (a) and (b) for the sequence 𝑓𝑛(𝑥) = (𝑛𝑥2 + 1)/(2𝑛 + 𝑥).

Solution.

(a) For a fixed 𝑥 ∈ 𝐑 we have

𝑔𝑛(𝑥) =
𝑥
2

+
𝑥2

2𝑛
→

𝑥
2

as 𝑛 → ∞.

It follows that 𝑔(𝑥) = 𝑥
2  and hence that 𝑔′(𝑥) = 1

2  for any 𝑥 ∈ 𝐑.

(b) The sequence of derivatives (𝑔′
𝑛) is given by

𝑔′
𝑛(𝑥) =

1
2

+
𝑥
𝑛

.

For 𝑥 ∈ [−𝑀, 𝑀] we have

|𝑔′
𝑛(𝑥) −

1
2
| =

|𝑥|
𝑛

≤
𝑀
𝑛

.

Thus 𝑔′
𝑛 → 1

2  uniformly on any interval of the form [−𝑀, 𝑀]. Observe that 0 ∈ [−𝑀, 𝑀]
and 𝑔𝑛(0) = 0 is convergent. We may now apply Theorem 6.3.3 to see that 𝑔𝑛 → 𝑔 uni-
formly on [−𝑀, 𝑀] and furthermore that 𝑔′(𝑥) = lim 𝑔′

𝑛(𝑥) = 1
2  for any 𝑥 ∈ [−𝑀, 𝑀].

By taking 𝑀  sufficiently large, this shows that 𝑔′(𝑥) = 1
2  for all 𝑥 ∈ 𝐑.

(c) The sequence (𝑓𝑛) is given by

𝑓𝑛(𝑥) =
𝑛𝑥2 + 1
2𝑛 + 𝑥

.
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(Strictly speaking this is only defined on 𝐑 ∖ {−2𝑛}, but since we are only interested
in the limit as 𝑛 → ∞, this isn’t a problem: eventually the sequence is defined on any
interval of the form [−𝑀, 𝑀].)

Note that

𝑓𝑛(𝑥) =
𝑥2 + 1

𝑛
2 + 𝑥

𝑛
→

𝑥2

2
as 𝑛 → ∞.

Thus the pointwise limit function is 𝑓(𝑥) = 𝑥2

2 , which satisfies 𝑓 ′(𝑥) = 𝑥.

The sequence of derivatives (𝑓 ′
𝑛) is given by

𝑓 ′
𝑛(𝑥) =

𝑛𝑥2 + 4𝑛2𝑥 − 1
𝑥2 + 4𝑛𝑥 + 4𝑛2 =

𝑥2

𝑛 + 4𝑥 − 1
𝑛2

𝑥2

𝑛2 + 4𝑥
𝑛 + 4

→ 𝑥 as 𝑛 → ∞.

For any 𝑥 ∈ [−𝑀, 𝑀] observe that

|𝑓 ′
𝑛(𝑥) − 𝑥| =

|𝑥3 + 3𝑛𝑥2 + 1|
(2𝑛 + 𝑥)2 ≤

𝑀3 + 3𝑀2𝑛 + 1
(2𝑛 − 𝑀)2 ,

provided 𝑛 > 𝑀
2 . Note that the numerator of this bound is linear in 𝑛 whereas the

denominator is quadratic in 𝑛; it follows that this bound converges to zero and hence
that 𝑓 ′

𝑛 → 𝑥 uniformly on [−𝑀, 𝑀]. Observe that 0 ∈ [−𝑀, 𝑀] and 𝑓𝑛(0) = 1
2𝑛 → 0 as

𝑛 → ∞. Theorem 6.3.3 then implies that 𝑓𝑛 → 𝑓 uniformly on [−𝑀, 𝑀] and further-
more that 𝑓 ′(𝑥) = lim 𝑓 ′

𝑛(𝑥) = 𝑥 for any 𝑥 ∈ [−𝑀, 𝑀]. By taking 𝑀  sufficiently large,
this shows that 𝑓 ′(𝑥) = 𝑥 for all 𝑥 ∈ 𝐑.

Exercise 6.3.6. Provide an example or explain why the request is impossible. Let’s
take the domain of the functions to be all of 𝐑.

(a) A sequence (𝑓𝑛) of nowhere differentiable functions with 𝑓𝑛 → 𝑓 uniformly and 𝑓
everywhere differentiable.

(b) A sequence (𝑓𝑛) of differentiable functions such that (𝑓 ′
𝑛) converges uniformly but

the original sequence (𝑓𝑛) does not converge for any 𝑥 ∈ 𝐑.

(c) A sequence (𝑓𝑛) of differentiable functions such that both (𝑓𝑛) and (𝑓 ′
𝑛) converge

uniformly but 𝑓 = lim 𝑓𝑛 is not differentiable at some point.

Solution.

(a) Define a sequence (𝑓𝑛 : 𝐑 → 𝐑) by

𝑓𝑛(𝑥) = {
1
𝑛 if 𝑥 ∈ 𝐐,
0 if 𝑥 ∉ 𝐐.
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Observe that 𝑓𝑛 → 0 uniformly on 𝐑 since |𝑓𝑛(𝑥)| ≤ 1
𝑛  for any 𝑥 ∈ 𝐑. Certainly the

zero function is differentiable everywhere, but each 𝑓𝑛 is nowhere continuous and hence
nowhere differentiable.

(b) Define a sequence (𝑓𝑛 : 𝐑 → 𝐑) by

𝑓𝑛(𝑥) = 𝑛.

Each 𝑓𝑛 is differentiable and the sequence (𝑓 ′
𝑛) is given by 𝑓 ′

𝑛(𝑥) = 0, which converges
uniformly to the zero function. However, (𝑓𝑛(𝑥)) is divergent for every 𝑥 ∈ 𝐑.

(c) This is impossible. Any point 𝑥 ∈ 𝐑 is contained in some interval of the form [−𝑀, 𝑀];
applying Theorem 6.3.3 to this interval shows that 𝑓 is differentiable at 𝑥.

Exercise 6.3.7. Use the Mean Value Theorem to supply a proof for Theorem 6.3.2.
To get started, observe that the triangle inequality implies that, for any 𝑥 ∈ [𝑎, 𝑏] and 
𝑚, 𝑛 ∈ 𝐍,

|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ≤ |(𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)) − (𝑓𝑛(𝑥0) − 𝑓𝑚(𝑥0))| + |𝑓𝑛(𝑥0) − 𝑓𝑚(𝑥0)|.

Solution. Let 𝜀 > 0 be given. Since the sequence (𝑓𝑛(𝑥0)) is convergent, there exists an 
𝑁1 ∈ 𝐍 such that

𝑛, 𝑚 ≥ 𝑁1 ⇒ |𝑓𝑛(𝑥0) − 𝑓𝑚(𝑥0)| < 𝜀
2 ,

and since the sequence (𝑓 ′
𝑛) converges uniformly on [𝑎, 𝑏], there exists an 𝑁2 ∈ 𝐍 such that

𝑥 ∈ [𝑎, 𝑏] and 𝑛, 𝑚 ≥ 𝑁2 ⇒ |𝑓 ′
𝑛(𝑥) − 𝑓 ′

𝑚(𝑥)| <
𝜀

2(𝑏 − 𝑎)
.

Let 𝑁 = max{𝑁1, 𝑁2} and suppose that 𝑛, 𝑚 ≥ 𝑁  and 𝑥 ∈ (𝑥0, 𝑏] (the argument is easily
modified if 𝑥 ∈ [𝑎, 𝑥0)). Note that 𝑓𝑛 − 𝑓𝑚 is differentiable on the interval [𝑥0, 𝑥]; the Mean
Value Theorem then implies that there is some 𝑐 ∈ (𝑥0, 𝑥) such that

|𝑥 − 𝑥0||𝑓 ′
𝑛(𝑐) − 𝑓 ′

𝑚(𝑐)| = |(𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)) − (𝑓𝑛(𝑥0) − 𝑓𝑚(𝑥0))|.

It follows that

|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| ≤ |(𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)) − (𝑓𝑛(𝑥0) − 𝑓𝑚(𝑥0))| + |𝑓𝑛(𝑥0) − 𝑓𝑚(𝑥0)|

= |𝑥 − 𝑥0||𝑓 ′
𝑛(𝑐) − 𝑓 ′

𝑚(𝑐)| + |𝑓𝑛(𝑥0) − 𝑓𝑚(𝑥0)|

≤ (𝑏 − 𝑎)|𝑓 ′
𝑛(𝑐) − 𝑓 ′

𝑚(𝑐)| + |𝑓𝑛(𝑥0) − 𝑓𝑚(𝑥0)|

< 𝜀
2 + 𝜀

2

= 𝜀.

We have now shown that for any 𝑛, 𝑚 ≥ 𝑁  and 𝑥 ∈ [𝑎, 𝑏],

|𝑓𝑛(𝑥) − 𝑓𝑚(𝑥)| < 𝜀;
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it follows from Theorem 6.2.5 that the sequence (𝑓𝑛) is uniformly convergent on [𝑎, 𝑏].
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6.4. Series of Functions

Exercise 6.4.1. Supply the details for the proof of the Weierstrass M-Test (Corollary
6.4.5).

Solution. Let 𝜀 > 0 be given. Since the series ∑∞
𝑛=1 𝑀𝑛 is convergent, its sequence of partial

sums is a Cauchy sequence. Consequently, there exists an 𝑁 ∈ 𝐍 such that

𝑛 > 𝑚 ≥ 𝑁 ⇒ 𝑀𝑚+1 + ⋯ + 𝑀𝑛 < 𝜀.

Suppose 𝑥 ∈ 𝐴 and 𝑛 > 𝑚 ≥ 𝑁  and observe that

|𝑓𝑚+1(𝑥) + ⋯ + 𝑓𝑛(𝑥)| ≤ |𝑓𝑚+1(𝑥)| + ⋯ + |𝑓𝑛(𝑥)| ≤ 𝑀𝑚+1 + ⋯ + 𝑀𝑛 < 𝜀.

It follows from Theorem 6.4.4 that the series ∑∞
𝑛=1 𝑓𝑛 converges uniformly on 𝐴.

Exercise 6.4.2. Decide whether each proposition is true or false, providing a short
justification or counterexample as appropriate.

(a) If ∑∞
𝑛=1 𝑔𝑛 converges uniformly, then (𝑔𝑛) converges uniformly to zero.

(b) If 0 ≤ 𝑓𝑛(𝑥) ≤ 𝑔𝑛(𝑥) and ∑∞
𝑛=1 𝑔𝑛 converges uniformly, then ∑∞

𝑛=1 𝑓𝑛 converges
uniformly.

(c) If ∑∞
𝑛=1 𝑓𝑛 converges uniformly on 𝐴, then there exist constants 𝑀𝑛 such that 

|𝑓𝑛(𝑥)| ≤ 𝑀𝑛 for all 𝑥 ∈ 𝐴 and ∑∞
𝑛=1 𝑀𝑛 converges.

Solution.

(a) This is true. Suppose that each 𝑔𝑛 is defined on some domain 𝐴 ⊆ 𝐑. Note that The-
orem 6.4.4 implies in particular that for any 𝜀 > 0 there is an 𝑁 ∈ 𝐍 such that

𝑥 ∈ 𝐴 and 𝑛 ≥ 𝑁 ⇒ |𝑔𝑛(𝑥)| ≤ 𝜀.

Thus 𝑔𝑛 converges uniformly to the zero function.

(b) This is true. Suppose that each 𝑓𝑛 and each 𝑔𝑛 is defined on some domain 𝐴 ⊆ 𝐑.
Theorem 6.4.4 implies that for any 𝜀 > 0 there is an 𝑁 ∈ 𝐍 such that

𝑥 ∈ 𝐴 and 𝑛 > 𝑚 ≥ 𝑁 ⇒ 𝑔𝑚+1(𝑥) + ⋯ + 𝑔𝑛(𝑥) < 𝜀;

note we have used the non-negativity of each 𝑔𝑛. Suppose 𝑥 ∈ 𝐴 and 𝑛 > 𝑚 ≥ 𝑁 . By
assumption we have

𝑓𝑚+1(𝑥) + ⋯ + 𝑓𝑛(𝑥) ≤ 𝑔𝑚+1(𝑥) + ⋯ + 𝑔𝑛(𝑥) < 𝜀.

By combining this inequality with the non-negativity of each 𝑓𝑛 and Theorem 6.4.4,
we see that the series ∑∞

𝑛=1 𝑓𝑛 converges uniformly on 𝐴.
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(c) This is false. For each 𝑛 ∈ 𝐍 define a function 𝑓𝑛 : 𝐑 → 𝐑 by 𝑓𝑛(𝑛) = 1
𝑛  and 𝑓𝑛(𝑥) = 0

for 𝑥 ≠ 𝑛. Let 𝑓 : 𝐑 → 𝐑 be given by

𝑓(𝑥) = {
1
𝑥 if 𝑥 ∈ 𝐍,
0 otherwise.

We claim that ∑∞
𝑛=1 𝑓𝑛 converges to 𝑓 uniformly on 𝐑. Observe that the partial sum

function is

𝑠𝑛(𝑥) = 𝑓1(𝑥) + ⋯ + 𝑓𝑛(𝑥) = {
1
𝑥 if 𝑥 ∈ {1, …, 𝑛},
0 otherwise.

It follows that |𝑠𝑛(𝑥) − 𝑓(𝑥)| ≤ 1
𝑛+1  for any 𝑥 ∈ 𝐑. Because this bound converges to

zero and does not depend on 𝑥, our claim follows.

Now observe that sup{|𝑓𝑛(𝑥)| : 𝑥 ∈ 𝐑} = 1
𝑛  for any 𝑛 ∈ 𝐍; it follows that any bound 

𝑀𝑛 such that |𝑓𝑛(𝑥)| ≤ 𝑀𝑛 for all 𝑥 ∈ 𝐴 must satisfy 𝑀𝑛 ≥ 1
𝑛 . Since the harmonic

series diverges, it must be the case that ∑∞
𝑛=1 𝑀𝑛 diverges. Thus the converse of the

Weierstrass M-Test does not hold.

Exercise 6.4.3.

(a) Show that

𝑔(𝑥) = ∑
∞

𝑛=0

cos(2𝑛𝑥)
2𝑛

is continuous on all of 𝐑.

(b) The function 𝑔 was cited in Section 5.4 as an example of a continuous nowhere
differentiable function. What happens if we try to use Theorem 6.4.3 to explore
whether 𝑔 is differentiable?

Solution.

(a) Observe that

|
cos(2𝑛𝑥)

2𝑛 | ≤
1
2𝑛

for every 𝑥 ∈ 𝐑. Since the series ∑∞
𝑛=0 2−𝑛 is convergent, the Weierstrass M-Test implies

that 𝑔(𝑥) = ∑∞
𝑛=0 2−𝑛 cos(2𝑛𝑥) converges uniformly on 𝐑. Each function 2−𝑛 cos(2𝑛𝑥)

is continuous on 𝐑 and thus 𝑔 is continuous on 𝐑 by Theorem 6.4.2.

(b) To use Theorem 6.4.3, we would need to show that the series

∑
∞

𝑛=0
(

cos(2𝑛𝑥)
2𝑛 )

′

= − ∑
∞

𝑛=0
sin(2𝑛𝑥)
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converges uniformly on 𝐑. However, this series does not even converge pointwise on 
𝐑. For example, consider the series of real numbers

∑
∞

𝑛=0
sin(2𝑛).

To show that this series is divergent, we will show that the sequence (sin(2𝑛)) does not
converge to zero. To see this, consider the following two cases.

Case 1. If there exists an 𝑁 ∈ 𝐍 such that |sin(2𝑛+1)| > |sin(2𝑛)| for all 𝑛 ≥ 𝑁 , then
it must be the case that sin(2𝑛) does not converge to zero.

Case 2. If there does not exist such an 𝑁  then there must be infinitely many 𝑛 ∈ 𝐍
such that |sin(2𝑛+1)| ≤ |sin(2𝑛)|. For such an 𝑛, the identity

sin(2𝑛+1) = 2 sin(2𝑛) cos(2𝑛)

and the fact that sin(2𝑛) ≠ 0 for any 𝑛 ∈ 𝐍 shows that |cos(2𝑛)| ≤ 1
2 . The Pythagorean

identity then implies that |sin(2𝑛)| ≥
√

3
2 . So in this case the sequence (sin(2𝑛)) satisfies

|sin(2𝑛)| ≥
√

3
2  infinitely often and hence does not converge to zero.

Thus Theorem 6.4.3 does not allow us to conclude anything about the differentiability
of 𝑔.

Exercise 6.4.4. Define

𝑔(𝑥) = ∑
∞

𝑛=0

𝑥2𝑛

(1 + 𝑥2𝑛)
.

Find the values of 𝑥 where the series converges and show that we get a continuous
function on this set.

Solution. For |𝑥| = 1 we have 𝑔(𝑥) = ∑∞
𝑛=0

1
2 , which diverges. For |𝑥| > 1 we have

𝑥2𝑛

1 + 𝑥2𝑛 =
1

𝑥−2𝑛 + 1
→ 1 as 𝑛 → ∞

and thus 𝑔(𝑥) diverges.

Now suppose that 𝑟 > 0 is such that 0 < 𝑟2 < 1 and observe that for all 𝑥 ∈ [−𝑟, 𝑟] we have

0 ≤
𝑥2𝑛

1 + 𝑥2𝑛 ≤ 𝑥2𝑛 ≤ 𝑟2𝑛.

Since ∑∞
𝑛=0 𝑟2𝑛 is a convergent geometric series, the Weierstrass M-Test implies that 𝑔 con-

verges uniformly on [−𝑟, 𝑟]. Since any 𝑥 ∈ (−1, 1) is contained inside an interval of this form,
we see that 𝑔 converges and is continuous at each 𝑥 ∈ (−1, 1) by Theorem 6.4.2. Combining
this with our previous discussion, we may conclude that 𝑔 converges pointwise precisely on
the open interval (−1, 1).
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Exercise 6.4.5.

(a) Prove that

ℎ(𝑥) = ∑
∞

𝑛=1

𝑥𝑛

𝑛2 = 𝑥 +
𝑥2

4
+

𝑥3

9
+

𝑥4

16
+ ⋯

is continuous on [−1, 1].

(b) The series

𝑓(𝑥) = ∑
∞

𝑛=1

𝑥𝑛

𝑛
= 𝑥 +

𝑥2

2
+

𝑥3

3
+

𝑥4

4
+ ⋯

converges for every 𝑥 in the half-open interval [−1, 1) but does not converge when
𝑥 = 1. For a fixed 𝑥0 ∈ (−1, 1), explain how we can still use the Weierstrass M-
Test to prove that 𝑓 is continuous at 𝑥0.

Solution.

(a) For any 𝑥 ∈ [−1, 1] we have

|
𝑥𝑛

𝑛2 | ≤
1
𝑛2 .

Since the series ∑∞
𝑛=1

1
𝑛2  is convergent, the Weierstrass M-Test implies that ℎ converges

uniformly on [−1, 1] and Theorem 6.4.2 then implies that ℎ is continuous on [−1, 1],
since each function 𝑥𝑛

𝑛2  is continuous on [−1, 1].

(b) Observe that

|
𝑥𝑛

𝑛
| ≤ |𝑥0|

𝑛

for every 𝑥 ∈ [−𝑥0, 𝑥0]. Since ∑∞
𝑛=1 |𝑥0|

𝑛 is a convergent geometric series, the Weier-
strass M-Test implies that 𝑓 converges uniformly on [−𝑥0, 𝑥0]. Theorem 6.4.2 then
implies that 𝑓 is continuous on [−𝑥0, 𝑥0] and in particular at 𝑥0, since each function 
𝑥𝑛

𝑛  is continuous on [−𝑥0, 𝑥0].

Exercise 6.4.6. Let

𝑓(𝑥) =
1
𝑥

−
1

𝑥 + 1
+

1
𝑥 + 2

−
1

𝑥 + 3
+

1
𝑥 + 4

− ⋯ .

Show 𝑓 is defined for all 𝑥 > 0. Is 𝑓 continuous on (0, ∞)? How about differentiable?

Solution. Observe that

𝑓(𝑥) = ∑
∞

𝑛=0

(−1)𝑛

𝑥 + 𝑛
.
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The term-by-term differentiated series is

−
1
𝑥2 + ∑

∞

𝑛=1

(−1)𝑛+1

(𝑥 + 𝑛)2 .

Notice that

|
(−1)𝑛+1

(𝑥 + 𝑛)2 | ≤
1
𝑛2

for any 𝑥 ∈ (0, ∞) and any 𝑛 ∈ 𝐍. Since the series ∑∞
𝑛=1

1
𝑛2  is convergent, the Weierstrass

M-Test implies that the series ∑∞
𝑛=1

(−1)𝑛+1

(𝑥+𝑛)2  converges uniformly on (0, ∞). It follows that
the term-by-term differentiated series converges uniformly on (0, ∞). Observe that

𝑓(1) = ∑
∞

𝑛=0

(−1)𝑛

1 + 𝑛

converges by the Alternating Series Test (Theorem 2.7.7). Since any 𝑥 ∈ (0, ∞) is contained
either inside an interval of the form [𝑎, 1] or inside an interval of the form [1, 𝑎], Theorem
6.4.3 allows us to conclude that 𝑓 is defined and differentiable (hence continuous) at each 
𝑥 ∈ (0, ∞).

Exercise 6.4.7. Let

𝑓(𝑥) = ∑
∞

𝑘=1

sin(𝑘𝑥)
𝑘3 .

(a) Show that 𝑓(𝑥) is differentiable and that the derivative 𝑓 ′(𝑥) is continuous.

(b) Can we determine if 𝑓 is twice-differentiable?

Solution.

(a) Let 𝑓𝑘 : 𝐑 → 𝐑 be given by 𝑓𝑘(𝑥) = sin(𝑘𝑥)
𝑘3  and observe that

|𝑓 ′
𝑘(𝑥)| = |

cos(𝑘𝑥)
𝑘2 | ≤

1
𝑘2

for any 𝑥 ∈ 𝐑. The Weierstrass M-Test then implies that the series

∑
∞

𝑘=1
𝑓 ′

𝑘(𝑥) = ∑
∞

𝑘=1

cos(𝑘𝑥)
𝑘2

converges uniformly on 𝐑; since each 𝑓 ′
𝑘 is continuous on 𝐑, Theorem 6.4.2 shows that

∑∞
𝑘=1 𝑓 ′

𝑘(𝑥) is also continuous on 𝐑. Combining our previous discussion with Theorem
6.4.3 and the fact that 𝑓(0) = 0, we see that ∑∞

𝑘=1
sin(𝑘𝑥)

𝑘3  converges uniformly on 𝐑 to
a differentiable function 𝑓 , that

𝑓 ′(𝑥) = ∑
∞

𝑘=1
𝑓 ′

𝑘(𝑥) = ∑
∞

𝑘=1

cos(𝑘𝑥)
𝑘2 ,
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and that 𝑓 ′ is continuous on 𝐑.

(b) We will show that Theorem 6.4.3 cannot be used to determine if 𝑓 is twice-differentiable
on 𝐑, by showing that the series of second derivatives

∑
∞

𝑘=1
𝑓″

𝑘 (𝑥) = − ∑
∞

𝑘=1

sin(𝑘𝑥)
𝑘

does not converge uniformly on 𝐑. To see this, we will use the negation of Theorem
6.4.4. Let 𝑁 ∈ 𝐍 be given and let 𝑥 = 𝜋

4𝑁 . For any 𝑁 + 1 ≤ 𝑘 ≤ 2𝑁  we have

𝜋
4

≤ 𝑘𝑥 ≤
𝜋
2

⇒ sin(𝑘𝑥) ≥
1

√
2
.

Now observe that

| ∑
2𝑁

𝑘=𝑁+1

sin(𝑘𝑥)
𝑘

| ≥
1

√
2

∑
2𝑁

𝑘=𝑁+1

1
𝑘

≥
1

√
2

∑
2𝑁

𝑘=𝑁+1

1
2𝑁

=
1

2
√

2
.

It follows from Theorem 6.4.4 that the convergence of the series ∑∞
𝑘=1

sin(𝑘𝑥)
𝑘  is not uni-

form on 𝐑. Consequently, we may not use Theorem 6.4.3 to conclude anything about
the twice-differentiability of 𝑓 on 𝐑.

Exercise 6.4.8. Consider the function

𝑓(𝑥) = ∑
∞

𝑘=1

sin(𝑥/𝑘)
𝑘

.

Where is 𝑓 defined? Continuous? Differentiable? Twice-differentiable?

Solution. Let 𝑓𝑘 : 𝐑 → 𝐑 be given by 𝑓𝑘(𝑥) = sin(𝑥/𝑘)
𝑘 , so that 𝑓(𝑥) = ∑∞

𝑘=1 𝑓𝑘(𝑥). Observe
that

𝑓 ′
𝑘(𝑥) =

cos(𝑥
𝑘)

𝑘2 and 𝑓″
𝑘 (𝑥) = −

sin(𝑥
𝑘)

𝑘3 .

The bound |𝑓″
𝑘 (𝑥)| ≤ 1

𝑘3  for all 𝑥 ∈ 𝐑 combined with the Weierstrass M-Test shows that the
seires ∑∞

𝑘=1 𝑓″
𝑘 (𝑥) converges uniformly on 𝐑. Since

𝑓(0) = 0 and ∑
∞

𝑘=1
𝑓 ′

𝑘(0) = ∑
∞

𝑘=1

1
𝑘2

are both convergent, Theorem 6.4.3 shows that ∑∞
𝑘=1 𝑓 ′

𝑘(𝑥) and ∑∞
𝑘=1 𝑓𝑘(𝑥) both converge

uniformly on 𝐑. Furthermore,

𝑓 ′(𝑥) = ∑
∞

𝑘=1
𝑓 ′

𝑘(𝑥) and 𝑓″(𝑥) = ∑
∞

𝑘=1
𝑓″

𝑘 (𝑥).

In particular, 𝑓 is defined and continuous on 𝐑.
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Exercise 6.4.9. Let

ℎ(𝑥) = ∑
∞

𝑛=1

1
𝑥2 + 𝑛2 .

(a) Show that ℎ is a continuous function defined on all of 𝐑.

(b) Is ℎ differentiable? If so, is the derivative function ℎ′ continuous?

Solution.

(a) We have the bound

1
𝑥2 + 𝑛2 ≤

1
𝑛2

for all 𝑥 ∈ 𝐑; the Weierstrass M-Test then implies that the series ∑∞
𝑛=1

1
𝑥2+𝑛2  converges

uniformly on 𝐑. Since each 1
𝑥2+𝑛2  is continuous on 𝐑, Theorem 6.4.2 allows us to con-

clude that ℎ is also continuous on 𝐑.

(b) The term-by-term differentiated series is

− ∑
∞

𝑛=1

2𝑥
(𝑥2 + 𝑛2)2 .

Note that

|𝑥| ≤ 1 and 𝑛 ≥ 2 ⇒ |
2𝑥

(𝑥2 + 𝑛2)2 | ≤
2
𝑛4 ≤

1
𝑛2 ,

|𝑥| > 1 ⇒ |
2𝑥

(𝑥2 + 𝑛2)2 | =
2|𝑥|

𝑥4 + 2𝑥2𝑛2 + 𝑛4 ≤
1

|𝑥|𝑛2 ≤
1
𝑛2 .

Since the series ∑∞
𝑛=1

1
𝑛2  is convergent and each summand 2𝑥

(𝑥2+𝑛2)2  is continuous on 
𝐑, the Weierstrass M-Test and Theorem 6.4.2 imply that the series ∑∞

𝑛=1
2𝑥

(𝑥2+𝑛2)2  con-
verges uniformly on 𝐑 to a continuous function. We showed in part (a) that ℎ converges
uniformly on 𝐑 and thus by Theorem 6.4.3 we have

ℎ′(𝑥) = − ∑
∞

𝑛=1

2𝑥
(𝑥2 + 𝑛2)2 .
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Exercise 6.4.10. Let {𝑟1, 𝑟2, 𝑟3, …} be an enumeration of the set of rational numbers.
For each 𝑟𝑛 ∈ 𝐐, define

𝑢𝑛(𝑥) = {
1/2𝑛 for 𝑥 > 𝑟𝑛

0 for 𝑥 ≤ 𝑟𝑛.

Now, let ℎ(𝑥) = ∑∞
𝑛=1 𝑢𝑛(𝑥). Prove that ℎ is a monotone function defined on all of 𝐑

that is continuous at every irrational point.

Solution. Observe that |𝑢𝑛(𝑥)| ≤ 2−𝑛 for all 𝑥 ∈ 𝐑. Since ∑∞
𝑛=1 2−𝑛 is a convergent geo-

metric series, the Weierstrass M-Test implies that ℎ converges uniformly on 𝐑. To see that ℎ
is strictly increasing, let 𝑥 < 𝑦 be given real numbers. There is a countable infinity of rational
numbers contained in [𝑥, 𝑦), which we can enumerate as a subsequence {𝑟𝑛1 , 𝑟𝑛2 , 𝑟𝑛3 , …} of
the sequence {𝑟1, 𝑟2, 𝑟3, …}. Now,

ℎ(𝑦) − ℎ(𝑥) = ∑
∞

𝑛=1
(𝑢𝑛(𝑦) − 𝑢𝑛(𝑥)).

Let 𝑛 ∈ 𝐍 be given and consider the following three cases.

Case 1. If 𝑟𝑛 < 𝑥 < 𝑦 then 𝑢𝑛(𝑦) = 𝑢𝑛(𝑥) = 2−𝑛 and thus 𝑢𝑛(𝑦) − 𝑢𝑛(𝑥) = 0.

Case 2. If 𝑥 < 𝑦 ≤ 𝑟𝑛 then 𝑢𝑛(𝑦) = 𝑢𝑛(𝑥) = 0 and thus 𝑢𝑛(𝑦) − 𝑢𝑛(𝑥) = 0.

Case 3. If 𝑥 ≤ 𝑟𝑛 < 𝑦 then 𝑟𝑛 ∈ {𝑟𝑛1 , 𝑟𝑛2 , 𝑟𝑛3 , …}, so that 𝑛 = 𝑛𝑘 for some unique 𝑘 ∈ 𝐍.
Thus 𝑢𝑛(𝑦) = 2−𝑛𝑘 and 𝑢𝑛(𝑥) = 0, which gives us 𝑢𝑛(𝑦) − 𝑢𝑛(𝑥) = 2−𝑛𝑘 .

It follows that

ℎ(𝑦) − ℎ(𝑥) = ∑
∞

𝑘=1
2−𝑛𝑘 > 0.

Thus ℎ(𝑦) > ℎ(𝑥) whenever 𝑦 > 𝑥, i.e. ℎ is strictly increasing.

To see that ℎ is continuous at every irrational point, let us first show that each 𝑢𝑛 is contin-
uous at every irrational point. Let 𝑛 ∈ 𝐍 and 𝑦 ∈ 𝐈 be given and let 𝛿 = |𝑦 − 𝑟𝑛|; note that
𝛿 must be positive since 𝑦 is not rational. There are two cases:

Case 1. If 𝑦 < 𝑟𝑛 then 𝑢𝑛(𝑥) = 0 for all 𝑥 ∈ (𝑦 − 𝛿, 𝑦 + 𝛿) and hence 𝑢𝑛 is continuous at 𝑦.

Case 2. If 𝑦 > 𝑟𝑛 then 𝑢𝑛(𝑥) = 2−𝑛 for all 𝑥 ∈ (𝑦 − 𝛿, 𝑦 + 𝛿) and hence 𝑢𝑛 is continuous at
𝑦.

Thus each summand 𝑢𝑛 is continuous on 𝐈, and we showed earlier that ℎ converges uniformly
on 𝐑 and so in particular uniformly on 𝐈; Theorem 6.4.2 allows us to conclude that ℎ is also
continuous on 𝐈.
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6.5. Power Series

Exercise 6.5.1. Consider the function 𝑔 defined by the power series

𝑔(𝑥) = 𝑥 −
𝑥2

2
+

𝑥3

3
−

𝑥4

4
+

𝑥5

5
− ⋯ .

(a) Is 𝑔 defined on (−1, 1)? Is it continuous on this set? Is 𝑔 defined on (−1, 1]? Is it
continuous on this set? What happens on [−1, 1]? Can the power series for 𝑔(𝑥)
possibly converge for any other points |𝑥| > 1? Explain.

(b) For what values of 𝑥 is 𝑔′(𝑥) defined? Find a formula for 𝑔′.

Solution.

(a) Observe that

𝑔(1) = 1 −
1
2

+
1
3

−
1
4

+ ⋯

is convergent by the Alternating Series Test (Theorem 2.7.7). It follows from Theorem
6.5.1 that 𝑔 converges absolutely on (−1, 1) and hence 𝑔 is defined on (−1, 1]. Theorem
6.5.7 then implies that 𝑔 is continuous on (−1, 1]. Note that

𝑔(−1) = −1 −
1
2

−
1
3

−
1
4

− ⋯

is the negated harmonic series, which diverges. Thus 𝑔(−1) is not defined. We claim
that 𝑔(𝑥) cannot possibly converge for any other points |𝑥| > 1. To see this, suppose
that 𝑔(𝑥) does converge for some 𝑥 ∈ 𝐑 such that |𝑥| > 1 and let 𝑟 ∈ 𝐑 be such that 
|𝑥| > 𝑟 > 1. It follows from Theorem 6.5.1 that 𝑔(𝑟) converges absolutely—but

𝑟 +
𝑟2

2
+

𝑟3

3
+

𝑟4

4
+ ⋯

diverges by comparison with the harmonic series.

(b) Theorem 6.5.7 guarantees that 𝑔 is differentiable on (−1, 1) and the derivative is given
by

𝑔′(𝑥) = 1 − 𝑥 + 𝑥2 − 𝑥3 + 𝑥4 − ⋯ .

Note that this series does not converge at 𝑥 = 1, despite 𝑔(1) converging.
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Exercise 6.5.2. Find suitable coefficients (𝑎𝑛) so that the resulting power series ∑ 𝑎𝑛𝑥𝑛

has the given properties, or explain why such a request is impossible.

(a) Converges for every value of 𝑥 ∈ 𝐑.

(b) Diverges for every value of 𝑥 ∈ 𝐑.

(c) Converges absolutely for all 𝑥 ∈ [−1, 1] and diverges off of this set.

(d) Converges conditionally at 𝑥 = −1 and converges absolutely at 𝑥 = 1.

(e) Converges conditionally at both 𝑥 = −1 and 𝑥 = 1.

Solution.

(a) Let 𝑎𝑛 = 0 for every 𝑛 ≥ 0.

(b) This is impossible: any power series converges to zero at 𝑥 = 0.

(c) Let 𝑎0 = 0 and 𝑎𝑛 = 1
𝑛2  for each 𝑛 ∈ 𝐍. For |𝑥| ≤ 1 we have

|
𝑥𝑛

𝑛2 | ≤
1
𝑛2

and thus ∑ 𝑎𝑛𝑥𝑛 converges absolutely. If |𝑥| > 1 then 𝑛−2𝑥𝑛 → ∞ and thus ∑ 𝑎𝑛𝑥𝑛

diverges.

(d) This is impossible. Note that

∑
∞

𝑛=0
|𝑎𝑛(−1)𝑛| = ∑

∞

𝑛=0
|𝑎𝑛| = ∑

∞

𝑛=0
|𝑎𝑛1𝑛|.

Thus a power series converges absolutely at 𝑥 = 1 if and only if it converges absolutely
at 𝑥 = −1.

(e) Let

𝑎𝑛 =

⎩
{⎨
{⎧0 if 𝑛 = 0 or 𝑛 is odd,

2(−1)1+𝑛/2

𝑛
if 𝑛 is even,

so that

∑
∞

𝑛=0
𝑎𝑛𝑥𝑛 = 𝑥2 −

𝑥4

2
+

𝑥6

3
−

𝑥8

4
+ ⋯ .

Observe that

∑
∞

𝑛=0
𝑎𝑛 = ∑

∞

𝑛=0
𝑎𝑛(−1)𝑛 = 1 −

1
2

+
1
3

−
1
4

+ ⋯

are both conditionally convergent series.
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Exercise 6.5.3. Use the Weierstrass M-Test to prove Theorem 6.5.2.

Solution. Note that for any 𝑥 ∈ 𝐑 such that |𝑥| ≤ |𝑥0| we have

|𝑎𝑛𝑥𝑛| = |𝑎𝑛||𝑥|𝑛 ≤ |𝑎𝑛||𝑥0|
𝑛.

The series ∑∞
𝑛=0|𝑎𝑛||𝑥0|

𝑛 is convergent by assumption, so the Weierstrass M-Test implies
that ∑∞

𝑛=0 𝑎𝑛𝑥𝑛 converges uniformly on [−𝑐, 𝑐], where 𝑐 = |𝑥0|.

Exercise 6.5.4 (Term-by-term Antidifferentiation). Assume 𝑓(𝑥) = ∑∞
𝑛=0 𝑎𝑛𝑥𝑛

converges on (−𝑅, 𝑅).

(a) Show

𝐹(𝑥) = ∑
∞

𝑛=0

𝑎𝑛
𝑛 + 1

𝑥𝑛+1

is defined on (−𝑅, 𝑅) and satisfies 𝐹 ′(𝑥) = 𝑓(𝑥).

(b) Antiderivatives are not unique. If 𝑔 is an arbitrary function satisfying 𝑔′(𝑥) = 𝑓(𝑥)
on (−𝑅, 𝑅), find a power series representation for 𝑔.

Solution.

(a) Let 𝑥 ∈ (−𝑅, 𝑅) be given. Theorem 6.5.1 implies that the series ∑∞
𝑛=0|𝑎𝑛||𝑥|𝑛 is con-

vergent, which implies that the series ∑∞
𝑛=0|𝑎𝑛||𝑥|𝑛+1 is convergent. Observe that

|
𝑎𝑛

𝑛 + 1
𝑥𝑛+1| =

|𝑎𝑛|
𝑛 + 1

|𝑥|𝑛+1 ≤ |𝑎𝑛||𝑥|𝑛+1

for each 𝑛 ≥ 0. Thus 𝐹(𝑥) is absolutely convergent by the Comparison Test. It follows
that 𝐹  is defined on the open interval (−𝑅, 𝑅) and it is then immediate from Theorem
6.5.7 that 𝐹 ′(𝑥) = 𝑓(𝑥) on this interval.

(b) Corollary 5.3.4 implies that 𝑔(𝑥) = 𝑘 + 𝐹(𝑥) on (−𝑅, 𝑅) for some constant 𝑘 ∈ 𝐑. Thus

𝑔(𝑥) = 𝑘 + ∑
∞

𝑛=0

𝑎𝑛
𝑛 + 1

𝑥𝑛+1 = 𝑘 + 𝑎0𝑥 +
𝑎1
2

𝑥2 +
𝑎2
3

𝑥3 + ⋯ .

Exercise 6.5.5.

(a) If 𝑠 satisfies 0 < 𝑠 < 1, show 𝑛𝑠𝑛−1 is bounded for all 𝑛 ≥ 1.

(b) Given an arbitrary 𝑥 ∈ (−𝑅, 𝑅), pick 𝑡 to satisfy |𝑥| < 𝑡 < 𝑅. Use this start to
construct a proof for Theorem 6.5.6.

Solution.

(a) Certainly 0 < 𝑛𝑠𝑛−1 for each 𝑛 ≥ 1. Let 𝑁 ∈ 𝐍 be such that 𝑠 ≤ 1 − 1
𝑁+1 . For 𝑛 ≥ 𝑁

it follows that
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𝑠 ≤ 1 −
1

𝑛 + 1
⇔ (𝑛 + 1)𝑠 ≤ 𝑛 ⇔ (𝑛 + 1)𝑠𝑛 ≤ 𝑛𝑠𝑛−1.

Thus the sequence (𝑛𝑠𝑛−1) is bounded below and eventually decreasing. It follows
from the Monotone Convergence Theorem that this sequence is convergent and hence
bounded.

(b) From part (a), there is an 𝑀 > 0 such that

𝑛|
𝑥
𝑡
|
𝑛−1

≤ 𝑀

for all 𝑛 ∈ 𝐍. Since 𝑡 ∈ (−𝑅, 𝑅), Theorem 6.5.1 implies that the series ∑∞
𝑛=0 𝑎𝑛𝑡𝑛 is

absolutely convergent. It follows that the series ∑∞
𝑛=1 𝑀|𝑎𝑛|𝑡𝑛−1 is convergent. Now

observe that

|𝑛𝑎𝑛𝑥𝑛−1| = 𝑛|𝑎𝑛||𝑥|𝑛−1 = 𝑛|
𝑥
𝑡
|
𝑛−1

|𝑎𝑛|𝑡𝑛−1 ≤ 𝑀|𝑎𝑛|𝑡𝑛−1

for each 𝑛 ∈ 𝐍. Thus by comparison with the convergent series ∑∞
𝑛=1 𝑀|𝑎𝑛|𝑡𝑛−1 we see

that the series ∑∞
𝑛=1 𝑛𝑎𝑛𝑥𝑛−1 is absolutely convergent. It follows that the power series

∑∞
𝑛=1 𝑛𝑎𝑛𝑥𝑛−1 converges on the open interval (−𝑅, 𝑅).

Exercise 6.5.6. Previous work on geometric series (Example 2.7.5) justifies the formula

1
1 − 𝑥

= 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + ⋯ , for all |𝑥| < 1.

Use the results about power series proved in this section to find values for ∑∞
𝑛=1 𝑛/2𝑛

and ∑∞
𝑛=1 𝑛2/2𝑛. The discussion in Section 6.1 may be helpful.

Solution. The power series

1
1 − 𝑥

= ∑
∞

𝑛=0
𝑥𝑛

has radius of convergence 𝑅 = 1. Theorem 6.5.6 then implies that the formula

1
(1 − 𝑥)2 = ∑

∞

𝑛=1
𝑛𝑥𝑛−1

is valid on (−1, 1), from which we obtain

𝑥
(1 − 𝑥)2 = ∑

∞

𝑛=1
𝑛𝑥𝑛 (1)

for all 𝑥 ∈ (−1, 1). Substituting 𝑥 = 1
2  gives us

2 = ∑
∞

𝑛=1

𝑛
2𝑛 .
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Differentiating the power series (1) term-by-term gives us

1 + 𝑥
(1 − 𝑥)3 = ∑

∞

𝑛=1
𝑛2𝑥𝑛−1,

valid on (−1, 1), from which we obtain

𝑥(1 + 𝑥)
(1 − 𝑥)3 = ∑

∞

𝑛=1
𝑛2𝑥𝑛,

valid on (−1, 1). Substituting 𝑥 = 1
2  gives us

6 = ∑
∞

𝑛=1

𝑛2

2𝑛 .

Exercise 6.5.7. Let ∑ 𝑎𝑛𝑥𝑛 be a power series with 𝑎𝑛 ≠ 0, and assume

𝐿 = lim
𝑛→∞

|
𝑎𝑛+1
𝑎𝑛

|

exists.

(a) Show that if 𝐿 ≠ 0, then the series converges for all 𝑥 ∈ (−1/𝐿, 1/𝐿). (The advice
in Exercise 2.7.9 may be helpful.)

(b) Show that if 𝐿 = 0, then the series converges for all 𝑥 ∈ 𝐑.

(c) Show that (a) and (b) continue to hold if 𝐿 is replaced by the limit

𝐿′ = lim
𝑛→∞

𝑠𝑛 where 𝑠𝑛 = sup{|
𝑎𝑘+1
𝑎𝑘

| : 𝑘 ≥ 𝑛}.

(General properties of the limit superior are discussed in Exercise 2.4.7.)

Solution.

(a) Certainly the power series converges if 𝑥 = 0, so suppose that 0 < |𝑥| < 1
𝐿 . It follows

that

lim
𝑛→∞

|
𝑎𝑛+1𝑥𝑛+1

𝑎𝑛𝑥𝑛 | = 𝐿|𝑥| < 1

and hence the series ∑∞
𝑛=0 𝑎𝑛𝑥𝑛 is absolutely convergent by the Ratio Test.

(b) Certainly the power series converges if 𝑥 = 0, so suppose that 𝑥 ≠ 0. It follows that

lim
𝑛→∞

|
𝑎𝑛+1𝑥𝑛+1

𝑎𝑛𝑥𝑛 | = 𝐿|𝑥| = 0

and hence the series ∑∞
𝑛=0 𝑎𝑛𝑥𝑛 is absolutely convergent by the Ratio Test.

(c) Let us refine the Ratio Test (Exercise 2.7.9) as follows. Given a series ∑∞
𝑛=1 𝑎𝑛 with 

𝑎𝑛 ≠ 0, if
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lim
𝑛→∞

𝑠𝑛 = 𝑟 < 1 where 𝑠𝑛 = sup{|
𝑎𝑘+1
𝑎𝑘

| : 𝑘 ≥ 𝑛},

then the series ∑∞
𝑛=1 𝑎𝑛 converges absolutely. To see this, let 𝑟′ be such that 𝑟 < 𝑟′ < 1.

Since lim𝑛→∞ 𝑠𝑛 = 𝑟, there is an 𝑁 ∈ 𝐍 such that

|𝑠𝑁 − 𝑟| = 𝑠𝑁 − 𝑟 < 𝑟′ − 𝑟 ⇒ 𝑠𝑁 < 𝑟′;

for the first equality we have used that the sequence (𝑠𝑛) decreases to 𝑟 (see Exercise
2.4.7). It follows from this inequality that

𝑛 ≥ 𝑁 ⇒ |
𝑎𝑛+1
𝑎𝑛

| ≤ 𝑠𝑁 < 𝑟′ ⇒ |𝑎𝑛+1| < |𝑎𝑛|𝑟′.

We may now argue as in Exercise 2.7.9 to conclude the proof of this refined ratio test.
Using this refined test, the desired results about power series follow as in parts (a)
and (b).

Exercise 6.5.8.

(a) Show that power series representations are unique. If we have

∑
∞

𝑛=0
𝑎𝑛𝑥𝑛 = ∑

∞

𝑛=0
𝑏𝑛𝑥𝑛

for all 𝑥 in an interval (−𝑅, 𝑅), prove that 𝑎𝑛 = 𝑏𝑛 for all 𝑛 = 0, 1, 2, … .

(b) Let 𝑓(𝑥) = ∑∞
𝑛=0 𝑎𝑛𝑥𝑛 converge on (−𝑅, 𝑅), and assume 𝑓 ′(𝑥) = 𝑓(𝑥) for all

𝑥 ∈ (−𝑅, 𝑅) and 𝑓(0) = 1. Deduce the values of 𝑎𝑛.

Solution.

(a) Let us show that if a power series ℎ(𝑥) = ∑∞
𝑛=0 𝑎𝑛𝑥𝑛 satisfies ℎ(𝑥) = 0 for all

𝑥 ∈ (−𝑅, 𝑅), then 𝑎𝑛 = 0 for all 𝑛 ≥ 0. Theorem 6.5.7 implies that

ℎ(𝑘)(𝑥) = ∑
∞

𝑛=𝑘
𝑛(𝑛 − 1) ⋯ (𝑛 − 𝑘 + 1)𝑎𝑛𝑥𝑛−𝑘

for all 𝑥 ∈ (−𝑅, 𝑅) and all 𝑘 ≥ 0, where ℎ(𝑘) is the 𝑘th derivative of ℎ. Since ℎ is iden-
tically zero on (−𝑅, 𝑅), it must be that ℎ(𝑘) is identically zero on (−𝑅, 𝑅) and thus

0 = ℎ(𝑘)(0) = 𝑘!𝑎𝑘 ⇔ 𝑎𝑘 = 0

for each 𝑘 ≥ 0.

Now suppose that

∑
∞

𝑛=0
𝑎𝑛𝑥𝑛 = ∑

∞

𝑛=0
𝑏𝑛𝑥𝑛

for all 𝑥 in an interval (−𝑅, 𝑅). It follows that
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∑
∞

𝑛=0
(𝑎𝑛 − 𝑏𝑛)𝑥𝑛 = 0

for all 𝑥 ∈ (−𝑅, 𝑅) and our previous discussion then shows that 𝑎𝑛 − 𝑏𝑛 = 0 for all 
𝑛 ≥ 0.

(b) Theorem 6.5.7 gives us

𝑓(𝑥) = ∑
∞

𝑛=0
𝑎𝑛𝑥𝑛 = ∑

∞

𝑛=0
(𝑛 + 1)𝑎𝑛+1𝑥𝑛 = 𝑓 ′(𝑥)

for all 𝑥 ∈ (−𝑅, 𝑅). It follows from part (a) that

𝑎𝑛+1 =
𝑎𝑛

𝑛 + 1

for all 𝑛 ≥ 0. From 𝑓(0) = 1 we obtain 𝑎0 = 1 and hence 𝑎1 = 1, 𝑎2 = 1
2 , 𝑎3 = 1

6 , and in
general

𝑎𝑛 =
1
𝑛!

.

Exercise 6.5.9. Review the definitions and results from Section 2.8 concerning products
of series and Cauchy products in particular. At the end of Section 2.9, we mentioned the
following result: If both ∑ 𝑎𝑛 and ∑ 𝑏𝑛 converge conditionally to 𝐴 and 𝐵 respectively,
then it is possible for the Cauchy product,

∑ 𝑑𝑛 where 𝑑𝑛 = 𝑎0𝑏𝑛 + 𝑎1𝑏𝑛−1 + ⋯ + 𝑎𝑛𝑏0,

to diverge. However, if ∑ 𝑑𝑛 does converge, then it must converge to 𝐴𝐵. To prove
this, set

𝑓(𝑥) = ∑ 𝑎𝑛𝑥𝑛, 𝑔(𝑥) = ∑ 𝑏𝑛𝑥𝑛, and ℎ(𝑥) = ∑ 𝑑𝑛𝑥𝑛.

Use Abel’s Theorem and the result in Exercise 2.8.7 to establish this result.

Solution. Our hypothesis is that 𝑓, 𝑔, and ℎ all converge at 𝑥 = 1. It follows from Theorem
6.5.1 that 𝑓 and 𝑔 converge absolutely for any 𝑥 ∈ (−1, 1) and hence by Exercise 2.8.7 we
have

ℎ(𝑥) = ∑
∞

𝑛=0
𝑑𝑛𝑥𝑛 = (∑

∞

𝑛=0
𝑎𝑛𝑥𝑛)(∑

∞

𝑛=0
𝑏𝑛𝑥𝑛) = 𝑓(𝑥)𝑔(𝑥) for all 𝑥 ∈ (−1, 1). (1)

Abel’s Theorem (Theorem 6.5.4) implies that 𝑓, 𝑔, and ℎ converge uniformly on [0, 1] and
hence are continuous on [0, 1]. The continuity at 𝑥 = 1 allows us to extend the equality in 
(1) to all 𝑥 ∈ (−1, 1], which gives us

ℎ(1) = ∑
∞

𝑛=0
𝑑𝑛 = (∑

∞

𝑛=0
𝑎𝑛)(∑

∞

𝑛=0
𝑏𝑛) = 𝐴𝐵.
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Exercise 6.5.10. Let 𝑔(𝑥) = ∑∞
𝑛=0 𝑏𝑛𝑥𝑛 converge on (−𝑅, 𝑅), and assume (𝑥𝑛) → 0

with 𝑥𝑛 ≠ 0. If 𝑔(𝑥𝑛) = 0 for all 𝑛 ∈ 𝐍, show that 𝑔(𝑥) must be identically zero on all
of (−𝑅, 𝑅).

Solution. Theorem 6.5.7 implies that 𝑔 is continuous at zero. It follows that

𝑏0 = 𝑔(0) = 𝑔( lim
𝑘→∞

𝑥𝑘) = lim
𝑘→∞

𝑔(𝑥𝑘) = 0.

Theorem 6.5.7 also allows us to differentiate 𝑔 term-by-term, obtaining the power series

𝑔′(𝑥) = ∑
∞

𝑛=1
𝑛𝑏𝑛𝑥𝑛−1,

valid on (−𝑅, 𝑅). It follows that

𝑏1 = 𝑔′(0) = lim
𝑘→∞

𝑔(𝑥𝑘) − 𝑔(0)
𝑥𝑘

= 0.

We can continue in this manner to see that 𝑏𝑛 = 0 for each 𝑛 ≥ 0, which by Exercise 6.5.8
implies that 𝑔 is identically zero on (−𝑅, 𝑅).

Exercise 6.5.11. A series ∑∞
𝑛=0 𝑎𝑛 is said to be Abel-summable to 𝐿 if the power series

𝑓(𝑥) = ∑
∞

𝑛=0
𝑎𝑛𝑥𝑛

converges for all 𝑥 ∈ [0, 1) and 𝐿 = lim𝑥→1− 𝑓(𝑥).

(a) Show that any series that converges to a limit 𝐿 is also Abel-summable to 𝐿.

(b) Show that ∑∞
𝑛=0 (−1)𝑛 is Abel-summable and find the sum.

Solution.

(a) Suppose ∑∞
𝑛=0 𝑎𝑛 converges to 𝐿. In other words, the power series 𝑓(𝑥) = ∑∞

𝑛=0 𝑎𝑛𝑥𝑛

converges to 𝐿 at 𝑥 = 1; Abel’s Theorem then implies that the power series is uniformly
convergent on [0, 1] and hence continuous on [0, 1]. It follows that

lim
𝑥→1−

𝑓(𝑥) = 𝑓( lim
𝑥→1−

𝑥) = 𝑓(1) = ∑
∞

𝑛=0
𝑎𝑛 = 𝐿.

(b) Let

𝑓(𝑥) = ∑
∞

𝑛=0
(−1)𝑛𝑥𝑛 = ∑

∞

𝑛=0
(−𝑥)𝑛 =

1
1 + 𝑥

;

this is valid for |𝑥| < 1. It follows that ∑∞
𝑛=0 (−1)𝑛 is Abel-summable to 1

2 :

lim
𝑥→1−

𝑓(𝑥) = lim
𝑥→1−

1
1 + 𝑥

=
1
2
.
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6.6. Taylor Series

Exercise 6.6.1. The derivation in Example 6.6.1 shows the Taylor series for arctan(𝑥)
is valid for all 𝑥 ∈ (−1, 1). Notice, however, that the series also converges when 𝑥 = 1.
Assuming that arctan(𝑥) is continuous, explain why the value of the series at 𝑥 = 1
must necessarily be arctan(1). What interesting identity do we get in this case?

Solution. The power series

𝑥 − 1
3𝑥3 + 1

5𝑥5 − 1
7𝑥7 + ⋯

converges on (−1, 1]; it follows from Theorem 6.5.7 that the power series is continuous on
this interval. Given that arctan is also continuous at 𝑥 = 1, it follows that the function
𝑓 : (−1, 1] → 𝐑 given by

𝑓(𝑥) = arctan(𝑥) − (𝑥 − 1
3𝑥3 + 1

5𝑥5 − 1
7𝑥7 + ⋯)

is continuous at 𝑥 = 1 and satisfies 𝑓(𝑥) = 0 for all 𝑥 ∈ (−1, 1). The continuity at 𝑥 = 1 then
implies that 𝑓(1) = 0 also, which gives us the identity

𝜋
4

= arctan(1) = 1 − 1
3 + 1

5 − 1
7 + ⋯

Exercise 6.6.2. Starting from one of the previously generated series in this section, use
manipulations similar to those in Example 6.6.1 to find Taylor series representations for
each of the following functions. For precisely what values of 𝑥 is each series representa-
tion valid?

(a) 𝑥 cos(𝑥2)

(b) 𝑥/(1 + 4𝑥2)2

(c) log(1 + 𝑥2)

Solution.

(a) Starting from the power series

sin(𝑥) = ∑
∞

𝑛=0

(−1)𝑛𝑥2𝑛+1

(2𝑛 + 1)!
= 𝑥 −

𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
+ ⋯,

which converges for any 𝑥 ∈ 𝐑, Theorem 6.5.6 implies that the differentiated series

cos(𝑥) = ∑
∞

𝑛=0

(−1)𝑛𝑥2𝑛

(2𝑛)!
= 1 −

𝑥2

2!
+

𝑥4

4!
−

𝑥6

6!
+ ⋯

also converges for any 𝑥 ∈ 𝐑. From this we obtain
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𝑥 cos(𝑥2) = ∑
∞

𝑛=0

(−1)𝑛𝑥4𝑛+1

(2𝑛)!
= 𝑥 −

𝑥5

2!
+

𝑥9

4!
−

𝑥13

6!
+ ⋯,

valid for all 𝑥 ∈ 𝐑.

(b) Starting from the power series

1
(1 − 𝑥)2 = 1 + 2𝑥 + 3𝑥2 + 4𝑥3 + 5𝑥4 + ⋯,

derived in Example 6.6.1 and valid for all |𝑥| < 1, we obtain

1
(1 + 𝑥)2 = 1 − 2𝑥 + 3𝑥2 − 4𝑥3 + 5𝑥4 − ⋯,

valid for all |𝑥| < 1. Substituting 4𝑥2 for 𝑥 gives us

1
(1 + 4𝑥2)2

= 1 − 2 ⋅ 4𝑥2 + 3 ⋅ 42𝑥4 − 4 ⋅ 43𝑥6 + 5 ⋅ 44𝑥8 − ⋯,

valid for all |4𝑥2| < 1, i.e. all |𝑥| < 1
2 . From this we obtain

𝑥
(1 + 4𝑥2)2

= ∑
∞

𝑛=0
(−1)𝑛(𝑛 + 1)4𝑛𝑥2𝑛+1

= 𝑥 − 2 ⋅ 4𝑥3 + 3 ⋅ 42𝑥5 − 4 ⋅ 43𝑥7 + 5 ⋅ 44𝑥9 − ⋯,

valid for all |𝑥| < 1
2 . Note that for 𝑥 = 1

2  the power series becomes

1
2 ∑

∞

𝑛=0
(−1)𝑛(𝑛 + 1),

which is divergent. Similarly, 𝑥 = −1
2  gives us the divergent series

−1
2 ∑

∞

𝑛=0
(−1)𝑛(𝑛 + 1).

Thus the power series representation
𝑥

(1 + 4𝑥2)2
= ∑

∞

𝑛=0
(−1)𝑛(𝑛 + 1)4𝑛𝑥2𝑛+1

= 𝑥 − 2 ⋅ 4𝑥3 + 3 ⋅ 42𝑥5 − 4 ⋅ 43𝑥7 + 5 ⋅ 44𝑥9 − ⋯

is valid precisely on the open interval (−1
2 , 1

2).

(c) Starting from the power series

1
1 + 𝑥

= 1 − 𝑥 + 𝑥2 − 𝑥3 + 𝑥4 − 𝑥5 + ⋯,

valid on (−1, 1), we may use Exercise 6.5.4 to take term-by-term antiderivatives:

log(1 + 𝑥) + 𝐶 = 𝑥 −
𝑥2

2
+

𝑥3

3
−

𝑥4

4
+

𝑥5

5
−

𝑥6

6
+ ⋯ = ∑

∞

𝑛=1

(−1)𝑛+1𝑥𝑛

𝑛
;
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this is valid for 𝑥 ∈ (−1, 1). Taking 𝑥 = 0 shows that 𝐶 = 0. Note that the power series
∑∞

𝑛=1 𝑛−1(−1)𝑛+1𝑥𝑛 is convergent at 𝑥 = 1 and divergent at 𝑥 = −1. Thus the power
series converges precisely on (−1, 1]. It follows from Abel’s Theorem (Theorem 6.5.4)
and the continuity of log(1 + 𝑥) at 𝑥 = 1 that the power series representation

log(1 + 𝑥) = ∑
∞

𝑛=1

(−1)𝑛+1𝑥𝑛

𝑛

is valid on the half-open interval (−1, 1]. Since 𝑥2 ∈ [0, 1] ⊆ (−1, 1] whenever 𝑥 ∈ [−1, 1],
we see that the representation

log(1 + 𝑥2) = ∑
∞

𝑛=1

(−1)𝑛+1𝑥2𝑛

𝑛
= 𝑥2 −

𝑥4

2
+

𝑥6

3
−

𝑥8

4
+

𝑥10

5
−

𝑥12

6
+ ⋯

is valid on [−1, 1].

Exercise 6.6.3. Derive the formula for the Taylor coefficients given in Theorem 6.6.2.

Solution. Suppose 𝑓 : (−𝑅, 𝑅) → 𝐑, for some 𝑅 > 0, is infinitely differentiable and has a
power series representation

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯

Theorem 6.5.7 implies that on the interval (−𝑅, 𝑅) we have

𝑓 (𝑛)(𝑥) = ∑
∞

𝑘=0
(𝑘 + 1) ⋯ (𝑘 + 𝑛)𝑎𝑘+𝑛𝑥𝑘,

from which it is immediate that 𝑓 (𝑛)(0) = 𝑛!𝑎𝑛.

Exercise 6.6.4. Explain how Lagrange’s Remainder Theorem can be modified to prove

1 −
1
2

+
1
3

−
1
4

+
1
5

−
1
6

+ ⋯ = log(2).

Solution. Let 𝑓 : (0, ∞) → 𝐑 be given by 𝑓(𝑥) = log(𝑥). Note that 𝑓 is infinitely differen-
tiable and satisfies

𝑓 (𝑛)(𝑥) =
(−1)𝑛−1(𝑛 − 1)!

𝑥𝑛

for each 𝑛 ≥ 1. Consider the Taylor series of 𝑓 centred at 𝑎 = 1:

𝑓(1) + ∑
∞

𝑛=1

𝑓 (𝑛)(1)
𝑛!

(𝑥 − 1)𝑛 = ∑
∞

𝑛=1

(−1)𝑛−1

𝑛
(𝑥 − 1)𝑛.

As noted in the textbook (p. 202), Lagrange’s Remainder Theorem implies that for each 
𝑁 ∈ 𝐍 there exists some 𝑐𝑁 ∈ (1, 2) such that
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𝐸𝑁(2) = log(2) − ∑
𝑁

𝑛=1

(−1)𝑛−1

𝑛
=

𝑓𝑁+1(𝑐𝑁)
(𝑁 + 1)!

=
(−1)𝑁

(𝑁 + 1)𝑐𝑁+1
𝑁

.

This implies that |𝐸𝑁(2)| ≤ (𝑁 + 1)−1, from which it follows that lim𝑁→∞ 𝐸𝑁(2) = 0, i.e.

log(2) = ∑
∞

𝑛=1

(−1)𝑛−1

𝑛
= 1 −

1
2

+
1
3

−
1
4

+
1
5

−
1
6

+ ⋯

Exercise 6.6.5.

(a) Generate the Taylor coefficients for the exponential function 𝑓(𝑥) = 𝑒𝑥, and then
prove that the corresponding Taylor series converges uniformly to 𝑒𝑥 on any inter-
val of the form [−𝑅, 𝑅].

(b) Verify the formula 𝑓 ′(𝑥) = 𝑒𝑥.

(c) Use a substitution to generate the series for 𝑒−𝑥, and then informally calculate
𝑒𝑥 ⋅ 𝑒−𝑥 by multiplying together the two series and collecting common powers of
𝑥.

Solution.

(a) Since 𝑓 (𝑛)(𝑥) = 𝑒𝑥 for any 𝑛 ≥ 0, the Taylor coefficients are

𝑓 (𝑛)(0)
𝑛!

=
1
𝑛!

.

Let 𝑅 > 0 be given and suppose 𝑥 ∈ [−𝑅, 𝑅]. For 𝑁 ∈ 𝐍, Lagrange’s Remainder The-
orem implies that there is some 𝑐𝑁  satisfying |𝑐𝑁 | < |𝑥| ≤ 𝑅 and

|𝐸𝑁(𝑥)| = |
𝑓𝑁+1(𝑐𝑁)
(𝑁 + 1)!

𝑥𝑁+1| =
𝑒𝑐𝑁

(𝑁 + 1)!
|𝑥|𝑁+1 ≤

𝑒𝑅𝑅𝑁+1

(𝑁 + 1)!
.

Since lim𝑁→∞ 𝑒𝑅𝑅𝑁+1[(𝑁 + 1)!]−1 = 0 (this can be seen using, for example, Stirling’s
approximation), we see that the Taylor series converges uniformly to 𝑒𝑥 on [−𝑅, 𝑅].

(b) Differentiating the Taylor series

𝑓(𝑥) = ∑
∞

𝑛=0

𝑥𝑛

𝑛!

term-by-term gives us

𝑓 ′(𝑥) = ∑
∞

𝑛=1

𝑛𝑥𝑛−1

𝑛!
= ∑

∞

𝑛=1

𝑥𝑛−1

(𝑛 − 1)!
= ∑

∞

𝑛=0

𝑥𝑛

𝑛!
= 𝑓(𝑥) = 𝑒𝑥.

(c) Informally,

𝑒𝑥 ⋅ 𝑒−𝑥 = (1 + 𝑥 +
𝑥2

2!
+ ⋯)(1 − 𝑥 +

𝑥2

2!
− ⋯)
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= 1 + (1 − 1)𝑥 + (
1
2!

+
1
2!

− 1)𝑥2 + (
1
3!

−
1
3!

+
1
2!

−
1
2!

)𝑥3 + ⋯ = 1.

Exercise 6.6.6. Review the proof that 𝑔′(0) = 0 for the function

𝑔(𝑥) = {𝑒−1/𝑥2 for 𝑥 ≠ 0,
0 for 𝑥 = 0

introduced at the end of this section.

(a) Compute 𝑔′(𝑥) for 𝑥 ≠ 0. Then use the definition of the derivative to find 𝑔″(0).

(b) Compute 𝑔″(𝑥) and 𝑔‴(𝑥) for 𝑥 ≠ 0. Use these observations and invent whatever
notation is needed to give a general description for the 𝑛th derivative 𝑔(𝑛)(𝑥) at
points different from zero.

(c) Construct a general argument for why 𝑔(𝑛)(0) = 0 for all 𝑛 ∈ 𝐍.

Solution.

(a) For 𝑥 ≠ 0 we have

𝑔′(𝑥) = (𝑒−𝑥−2)
′
= 2𝑥−3𝑒−𝑥−2 .

This gives us

𝑔″(0) = lim
𝑥→0

𝑔′(𝑥) − 𝑔′(0)
𝑥

= 2 lim
𝑥→0

𝑥−4

𝑒𝑥−2 .

Note that

lim
𝑥→0

(𝑥−4)′

(𝑒𝑥−2)′ = lim
𝑥→0

−4𝑥−5

−2𝑥−3𝑒𝑥−2 = 2 lim
𝑥→0

𝑥−2

𝑒𝑥−2 .

Note further that

lim
𝑥→0

(𝑥−2)′

(𝑒𝑥−2)′ = lim
𝑥→0

−2𝑥−3

−2𝑥−3𝑒𝑥−2 = lim
𝑥→0

𝑒−𝑥−2 = 0.

It follows from two applications of the ∞/∞ case of L’Hospital’s Rule (Theorem 5.3.8)
that 𝑔″(0) = 0.

(b) For 𝑥 ≠ 0 we have

𝑔″(𝑥) = 4𝑥−6𝑒−𝑥−2 − 6𝑥−4𝑒−𝑥−2 and 𝑔″(𝑥) = 8𝑥−9𝑒−𝑥−2 − 36𝑥−7𝑒−𝑥−2 + 24𝑥−5𝑒−𝑥−2 .

We conjecture that for 𝑥 ≠ 0 the 𝑛th derivative of 𝑔 is given by the formula

𝑔(𝑛)(𝑥) = 𝑒−𝑥−2 ∑
𝑛−1

𝑗=0
𝑐𝑛,𝑗𝑥−3𝑛+2𝑗,
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where 𝑐𝑛,0, …, 𝑐𝑛,𝑛−1 are real numbers depending only on 𝑛. We will prove this by in-
duction. The base case 𝑛 = 1 was handled in part (a). Suppose the result is true for
some 𝑛 ∈ 𝐍. For 𝑥 ≠ 0, the usual rules of differentiation give us

𝑔(𝑛+1)(𝑥) = −2𝑥−3𝑒−𝑥−2 ∑
𝑛−1

𝑗=0
𝑐𝑛,𝑗𝑥−3𝑛+2𝑗 + 𝑒−𝑥−2 ∑

𝑛−1

𝑗=0
(−3𝑛 + 2𝑗)𝑐𝑛,𝑗𝑥−3𝑛+2𝑗−1

= 𝑒−𝑥−2[∑
𝑛−1

𝑗=0
−2𝑐𝑛,𝑗𝑥−3(𝑛+1)+2𝑗 + ∑

𝑛−1

𝑗=0
(−3𝑛 + 2𝑗)𝑐𝑛,𝑗𝑥−3𝑛+2𝑗−1]

= 𝑒−𝑥−2[∑
𝑛−1

𝑗=0
−2𝑐𝑛,𝑗𝑥−3(𝑛+1)+2𝑗 + ∑

𝑛

𝑗=1
(−3𝑛 + 2𝑗 − 2)𝑐𝑛,𝑗−1𝑥−3(𝑛+1)+2𝑗]

= 𝑒−𝑥−2 ∑
𝑛

𝑗=0
𝑐𝑛+1,𝑗𝑥−3(𝑛+1)+2𝑗,

where

𝑐𝑛+1,𝑗 =

⎩{
{⎨
{{
⎧−2𝑐𝑛,0 if 𝑗 = 0,

−2𝑐𝑛,𝑗 + (−3𝑛 + 2𝑗 − 2)𝑐𝑛,𝑗−1 if 1 ≤ 𝑗 ≤ 𝑛 − 1,
(−𝑛 − 2)𝑐𝑛,𝑛−1 if 𝑗 = 𝑛.

This completes the induction step and the proof.

(c) Using L’Hospital’s Rule, it is straightforward to argue that

lim
𝑥→0

𝑥−𝑗𝑒−𝑥−2 = 0

for any positive integer 𝑗. Using this result and part (b), for any 𝑛 ∈ 𝐍 we have

𝑔(𝑛+1)(0) = lim
𝑥→0

𝑔(𝑛)(𝑥)
𝑥

= lim
𝑥→0

(∑
𝑛−1

𝑗=0
𝑐𝑛,𝑗𝑥−3𝑛+2𝑗−1𝑒−𝑥−2) = 0.

Exercise 6.6.7. Find an example of each of the following or explain why no such func-
tion exists.

(a) An infinitely differentiable function 𝑔(𝑥) on all of 𝐑 with a Taylor series that con-
verges to 𝑔(𝑥) only for 𝑥 ∈ (−1, 1).

(b) An infinitely differentiable function ℎ(𝑥) with the same Taylor series as sin(𝑥) but
such that ℎ(𝑥) ≠ sin(𝑥) for all 𝑥 ≠ 0.

(c) An infinitely differentiable function 𝑓(𝑥) on all of 𝐑 with a Taylor series that con-
verges to 𝑓(𝑥) if and only if 𝑥 ≤ 0.

Solution.

(a) Consider 𝑔 : 𝐑 → 𝐑 given by 𝑔(𝑥) = (1 + 𝑥2)−1, which satisfies
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𝑔(𝑛)(𝑥) =
𝑝𝑛(𝑥)

(1 + 𝑥2)2𝑛

for 𝑛 ∈ 𝐍 and some polynomial 𝑝𝑛. As shown in Example 6.6.1, the Taylor series of 
𝑔 is

1 − 𝑥2 + 𝑥4 − 𝑥6 + ⋯,

which converges if and only if |𝑥| < 1.

(b) As shown in the textbook and Exercise 6.6.6, the function 𝑔 : 𝐑 → 𝐑 given by

𝑔(𝑥) = {𝑒−𝑥−2 if 𝑥 ≠ 0,
0 if 𝑥 = 0

has the same Taylor series as the zero function and yet satisfies 𝑔(𝑥) ≠ 0 for all 𝑥 ≠ 0.
It follows that the function ℎ : 𝐑 → 𝐑 given by

ℎ(𝑥) = {𝑒−𝑥−2 + sin(𝑥) if 𝑥 ≠ 0,
0 if 𝑥 = 0

has the same Taylor series as sin and yet satisfies ℎ(𝑥) ≠ sin(𝑥) for all 𝑥 ≠ 0.

(c) Consider the function 𝑓 : 𝐑 → 𝐑 given by

𝑓(𝑥) = {𝑒−𝑥−2 if 𝑥 > 0,
0 if 𝑥 ≤ 0.

Slight modifications to the arguments given in the textbook and Exercise 6.6.6 show
that 𝑓 is infinitely differentiable and satisfies 𝑓 (𝑛)(0) = 0 for all 𝑛 ∈ 𝐍, so that each
Taylor coefficient of 𝑓 is zero, i.e. the Taylor series of 𝑓 is zero. Since 𝑓(𝑥) = 0 if and
only if 𝑥 ≤ 0, we see that the Taylor series of 𝑓 converges to 𝑓 if and only if 𝑥 ≤ 0.

Exercise 6.6.8. Here is a weaker form of Lagrange’s Remainder Theorem whose proof
is arguably more illuminating than the one for the stronger result.

(a) First establish a lemma: If 𝑔 and ℎ are differentiable on [0, 𝑥] with 𝑔(0) = ℎ(0) and
𝑔′(𝑡) ≤ ℎ′(𝑡) for all 𝑡 ∈ [0, 𝑥], then 𝑔(𝑡) ≤ ℎ(𝑡) for all 𝑡 ∈ [0, 𝑥].

(b) Let 𝑓, 𝑆𝑁 , and 𝐸𝑁  be as Theorem 6.6.3, and take 0 < 𝑥 < 𝑅. If |𝑓𝑁+1(𝑡)| ≤ 𝑀  for
all 𝑡 ∈ [0, 𝑥], show

|𝐸𝑁(𝑥)| ≤
𝑀𝑥𝑁+1

(𝑁 + 1)!
.

Solution.

(a) It will suffice to show that if 𝑓 is differentiable on [0, 𝑥] with 𝑓(0) = 0 and 𝑓 ′(𝑡) ≥ 0 for
all 𝑡 ∈ [0, 𝑥], then 𝑓(𝑡) ≥ 0 for all 𝑡 ∈ [0, 𝑥]; the general case then follows by considering
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𝑓 = ℎ − 𝑔. Suppose therefore that 𝑡 ∈ [0, 𝑥] is given. Applying the Mean Value Theorem
to 𝑓 on the interval [0, 𝑡] yields some 𝑐 ∈ (0, 𝑡) such that

𝑓(𝑡) − 𝑓(0) = 𝑓 ′(𝑐)(𝑡 − 0) ⇔ 𝑓(𝑡) = 𝑓 ′(𝑐)𝑡 ≥ 0.

(b) Take 𝑔(𝑡) = 𝑓 (𝑁)(𝑡) − 𝑓 (𝑁)(0) and ℎ(𝑡) = 𝑀𝑡 in the lemma of part (a) to see that

𝑓 (𝑁)(𝑡) − 𝑓 (𝑁)(0) ≤ 𝑀𝑡

for all 𝑡 ∈ [0, 𝑥]. Using this result, take 𝑔(𝑡) = 𝑓 (𝑁−1)(𝑡) − (𝑓 (𝑁−1)(0) + 𝑓 (𝑁)(0)𝑡) and 
ℎ(𝑡) = 𝑀𝑡2

2  in the lemma of part (a) to see that

𝑓 (𝑁−1)(𝑡) − (𝑓 (𝑁−1)(0) + 𝑓 (𝑁)(0)𝑡) ≤
𝑀𝑡2

2

for all 𝑡 ∈ [0, 𝑥]. If we continue in this manner we obtain the inequality

𝑓(𝑡) − (𝑓(0) + 𝑓 ′(0)𝑡 +
𝑓″(0)

2
𝑡2 + ⋯ +

𝑓 (𝑁)(0)
𝑁!

𝑡𝑁) = 𝐸𝑁(𝑡) ≤
𝑀𝑡𝑁+1

(𝑁 + 1)! (1)

for all 𝑡 ∈ [0, 𝑥]. Repeating this process, starting with 𝑔(𝑡) = −𝑀𝑡 and
ℎ(𝑡) = 𝑓𝑁(𝑡) − 𝑓𝑁(0), we obtain

−
𝑀𝑡𝑁+1

(𝑁 + 1)!
≤ 𝐸𝑁(𝑡) (2)

for all 𝑡 ∈ [0, 𝑥]. Taking 𝑡 = 𝑥 in (1) and (2) gives us

|𝐸𝑁(𝑥)| ≤
𝑀𝑥𝑁+1

(𝑁 + 1)!
.
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Exercise 6.6.9 (Cauchy's Remainder Theorem). Let 𝑓 be differentiable 𝑁 + 1
times on (−𝑅, 𝑅). For each 𝑎 ∈ (−𝑅, 𝑅), let 𝑆𝑁(𝑥, 𝑎) be the partial sum of the Taylor
series for 𝑓 centered at 𝑎; in other words, define

𝑆𝑁(𝑥, 𝑎) = ∑
𝑁

𝑛=0
𝑐𝑛(𝑥 − 𝑎)𝑛 where 𝑐𝑛 =

𝑓 (𝑛)(𝑎)
𝑛!

.

Let 𝐸𝑁(𝑥, 𝑎) = 𝑓(𝑥) − 𝑆𝑁(𝑥, 𝑎). Now fix 𝑥 ≠ 0 in (−𝑅, 𝑅) and consider 𝐸𝑁(𝑥, 𝑎) as a
function of 𝑎.

(a) Find 𝐸𝑁(𝑥, 𝑥).

(b) Explain why 𝐸𝑁(𝑥, 𝑎) is differentiable with respect to 𝑎, and show

𝐸′
𝑁(𝑥, 𝑎) =

−𝑓 (𝑁+1)(𝑎)
𝑁!

(𝑥 − 𝑎)𝑁 .

(c) Show

𝐸𝑁(𝑥) = 𝐸𝑁(𝑥, 0) =
𝑓 (𝑁+1)(𝑐)

𝑁!
(𝑥 − 𝑐)𝑁𝑥

for some 𝑐 between 0 and 𝑥. This is Cauchy’s form of the remainder for Taylor
series centered at the origin.

Solution.

(a) We have

𝐸𝑁(𝑥, 𝑥) = 𝑓(𝑥) − 𝑆𝑁(𝑥, 𝑥) = 𝑓(𝑥) − 𝑐0 = 𝑓(𝑥) − 𝑓(𝑥) = 0.

(b) We are given that 𝑓 is 𝑁 + 1 times differentiable on (−𝑅, 𝑅) and hence, by the usual
rules of differentiation,

𝐸′
𝑁(𝑥, 𝑎) =

d
d𝑎

[𝑓(𝑥) − 𝑓(𝑎) − ∑
𝑁

𝑛=1

𝑓 (𝑛)(𝑎)
𝑛!

(𝑥 − 𝑎)𝑛]

= −𝑓 ′(𝑎) − ∑
𝑁

𝑛=1

1
𝑛!

d
d𝑎

[𝑓 (𝑛)(𝑎)(𝑥 − 𝑎)𝑛]

= −𝑓 ′(𝑎) − ∑
𝑁

𝑛=1

𝑓 (𝑛+1)(𝑎)
𝑛!

(𝑥 − 𝑎)𝑛 + ∑
𝑁

𝑛=1

𝑓 (𝑛)(𝑎)
(𝑛 − 1)!

(𝑥 − 𝑎)𝑛−1

= [
−𝑓 (𝑁+1)(𝑎)

𝑁!
(𝑥 − 𝑎)𝑁 − ∑

𝑁−1

𝑛=1

𝑓 (𝑛+1)(𝑎)
𝑛!

(𝑥 − 𝑎)𝑛]

+[−𝑓 ′(𝑎) + ∑
𝑁−1

𝑛=0

𝑓 (𝑛+1)(𝑎)
𝑛!

(𝑥 − 𝑎)𝑛]
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=
−𝑓 (𝑁+1)(𝑎)

𝑁!
(𝑥 − 𝑎)𝑁 − ∑

𝑁−1

𝑛=1

𝑓 (𝑛+1)(𝑎)
𝑛!

(𝑥 − 𝑎)𝑛

+ ∑
𝑁−1

𝑛=1

𝑓 (𝑛+1)(𝑎)
𝑛!

(𝑥 − 𝑎)𝑛

=
−𝑓 (𝑁+1)(𝑎)

𝑁!
(𝑥 − 𝑎)𝑁 .

(c) Using the Mean Value Theorem on 𝐸𝑁(𝑥, 𝑎), as a function of 𝑎, on the interval [0, 𝑥]
yields some 𝑐 ∈ (0, 𝑥) such that

𝐸𝑁(𝑥, 𝑥) − 𝐸𝑁(𝑥, 0) = 𝐸′
𝑁(𝑥, 𝑐)𝑥.

By parts (a) and (b) this expression becomes

𝐸𝑁(𝑥, 0) =
𝑓 (𝑁+1)(𝑐)

𝑁!
(𝑥 − 𝑐)𝑁𝑥.

Exercise 6.6.10. Consider 𝑓(𝑥) = 1/
√

1 − 𝑥.

(a) Generate the Taylor series for 𝑓 centered at zero, and use Lagrange’s Remainder
Theorem to show the series converges to 𝑓 on [0, 1/2]. (The case 𝑥 < 1/2 is more
straightforward while 𝑥 = 1/2 requires some extra care.) What happens when we
attempt this with 𝑥 > 1/2?

(b) Use Cauchy’s Remainder Theorem proved in Exercise 6.6.9 to show the series rep-
resentation for 𝑓 holds on [0, 1).

Solution.

(a) It is a straightforward calculation to see that

𝑓 (𝑛)(𝑥) =
(2𝑛 − 1)(2𝑛 − 3) ⋯ (3)(1)

2𝑛 (1 − 𝑥)−𝑛−1/2,

which gives us

𝑓 (𝑛)(0) =
(2𝑛 − 1)(2𝑛 − 3) ⋯ (3)(1)

2𝑛 .

Thus the Taylor series for 𝑓 centered at zero is

1 + ∑
∞

𝑛=1

(2𝑛 − 1)(2𝑛 − 3) ⋯ (3)(1)
(2𝑛)(𝑛!)

𝑥𝑛 = 1 + ∑
∞

𝑛=1

(2𝑛 − 1)(2𝑛 − 3) ⋯ (3)(1)
(2𝑛)(2𝑛 − 2) ⋯ (2)(1)

𝑥𝑛

= 1 + ∑
∞

𝑛=1
(∏

𝑛

𝑗=1

2𝑗 − 1
2𝑗

)𝑥𝑛.

For 0 < 𝑥 < 1
2  and 𝑛 ≥ 2, Lagrange’s Remainder Theorem states that there is some 𝑐𝑛

such that 0 < 𝑐𝑛 < 𝑥 and
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𝐸𝑛−1(𝑥) =
𝑓 (𝑛)(𝑐𝑛)

𝑛!
𝑥𝑛 = (∏

𝑛

𝑗=1

2𝑗 − 1
2𝑗

)(
𝑥

1 − 𝑐𝑛
)

𝑛

(
1

√1 − 𝑐𝑛
).

Note that 0 < 𝑐𝑛 < 𝑥 ≤ 1
2  implies that

1
2

< 1 − 𝑐𝑛 < 1 ⇒ 1 <
1

1 − 𝑐𝑛
< 2 ⇒ 0 <

𝑥
1 − 𝑐𝑛

< 1

and thus 0 < ( 𝑥
1−𝑐𝑛

)
𝑛
( 1

√1−𝑐𝑛
) <

√
2, which gives us

0 < 𝐸𝑛−1(𝑥) <
√

2(∏
𝑛

𝑗=1

2𝑗 − 1
2𝑗

).

We showed in Exercise 2.7.10 (b) that lim𝑛→∞ ∏𝑛
𝑗=1

2𝑗−1
2𝑗 = 0. It now follows from the

Squeeze Theorem that lim𝑛→∞ 𝐸𝑛−1(𝑥) = 0. This argument breaks down when 𝑥 > 1
2

since in that case we can no longer conclude that the sequence ( 𝑥
1−𝑐𝑛

)
𝑛
( 1

√1−𝑐𝑛
) is

bounded.

(b) For 𝑥 ∈ (0, 1) and 𝑛 ∈ 𝐍, Cauchy’s Remainder Theorem (see Exercise 6.6.9) states that
there exists some 𝑐𝑛 such that 0 < 𝑐𝑛 < 𝑥 and

𝐸𝑛(𝑥) =
𝑓 (𝑛+1)(𝑐𝑛)

𝑛!
(𝑥 − 𝑐𝑛)𝑛

=
(2𝑛 + 1)(2𝑛 − 1) ⋯ (3)(1)

2𝑛+1𝑛!
(1 − 𝑐𝑛)−𝑛−3/2(𝑥 − 𝑐𝑛)𝑛𝑥

=
𝑥

(1 − 𝑐𝑛)3/2 (∏
𝑛

𝑗=1

2𝑗 − 1
2𝑗

)(𝑛 + 1)(
𝑥 − 𝑐𝑛
1 − 𝑐𝑛

)
𝑛

.

Note that the inequalities 0 < 𝑐𝑛 < 𝑥 < 1 imply that
𝑥

(1 − 𝑐𝑛)3/2 <
𝑥

(1 − 𝑥)3/2 and
𝑥 − 𝑐𝑛
1 − 𝑐𝑛

< 𝑥.

Note further that since 0 < 2𝑗−1
2𝑗 = 1 − 1

2𝑗 < 1 for each 1 ≤ 𝑗 ≤ 𝑛, the product ∏𝑛
𝑗=1

2𝑗−1
2𝑗

is strictly less than 1. It follows that

0 ≤ 𝐸𝑛(𝑥) <
𝑥

(1 − 𝑥)3/2 (𝑛 + 1)𝑥𝑛.

Since lim𝑛→∞(𝑛 + 1)𝑥𝑛 = 0 (which can be seen using, for example, L’Hospital’s Rule),
the Squeeze Theorem implies that lim𝑛→∞ 𝐸𝑛(𝑥) = 0.
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6.7. The Weierstrass Approximation Theorem

Exercise 6.7.1. Assuming WAT, show that if 𝑓 is continuous on [𝑎, 𝑏], then there exists
a sequence (𝑝𝑛) of polynomials such that 𝑝𝑛 → 𝑓 uniformly on [𝑎, 𝑏].

Solution. The Weierstrass Approximation Theorem implies that for each 𝑛 ∈ 𝐍 there exists
a polynomial 𝑝𝑛 such that

|𝑓(𝑥) − 𝑝𝑛(𝑥)| < 1
𝑛

for all 𝑥 ∈ [𝑎, 𝑏]. It follows that 𝑝𝑛 → 𝑓 uniformly on [𝑎, 𝑏].

Exercise 6.7.2. Prove Theorem 6.7.3.

Solution. Since 𝑓 is a continuous function defined on the compact set [𝑎, 𝑏], Theorem 4.4.7
implies that 𝑓 is uniformly continuous on [𝑎, 𝑏]. Thus there exists a 𝛿 > 0 such that

𝑥, 𝑦 ∈ [𝑎, 𝑏] and |𝑥 − 𝑦| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑦)| < 𝜀
2 .

Let 𝑛 ∈ 𝐍 be such that 1
𝑛 < 𝛿 and for each 0 ≤ 𝑘 ≤ 𝑛 let 𝑥𝑘 = 𝑎 + 𝑘 𝑏−𝑎

𝑛 . Let 𝜙 : [𝑎, 𝑏] → 𝐑
be the polygonal function which is linear on each subinterval [𝑥𝑘, 𝑥𝑘+1] and passes through
the points (𝑥𝑘, 𝑓(𝑥𝑘)) and (𝑥𝑘+1, 𝑓(𝑥𝑘+1)). For 𝑥 ∈ [𝑎, 𝑏] we have 𝑥 ∈ [𝑥𝑘, 𝑥𝑘+1] for some 
0 ≤ 𝑘 ≤ 𝑛 − 1. It follows that

|𝑓(𝑥) − 𝜙(𝑥)| ≤ |𝑓(𝑥) − 𝜙(𝑥𝑘)| + |𝜙(𝑥𝑘) − 𝜙(𝑥)| ≤ |𝑓(𝑥) − 𝜙(𝑥𝑘)| + |𝜙(𝑥𝑘) − 𝜙(𝑥𝑘+1)|;

for the last inequality we are using that 𝜙 is a line segment on the interval [𝑥𝑘, 𝑥𝑘+1]
and thus |𝜙(𝑥) − 𝜙(𝑦)| ≤ |𝜙(𝑥𝑘) − 𝜙(𝑥𝑘+1)| for any 𝑥 ∈ [𝑥𝑘, 𝑥𝑘+1]. By definition we have
𝜙(𝑥𝑘) = 𝑓(𝑥𝑘) for any 𝑘 and so

|𝑓(𝑥) − 𝜙(𝑥)| ≤ |𝑓(𝑥) − 𝑓(𝑥𝑘)| + |𝑓(𝑥𝑘) − 𝑓(𝑥𝑘+1)| < 𝜀
2 + 𝜀

2 = 𝜀.

Exercise 6.7.3.

(a) Find the second degree polynomial 𝑝(𝑥) = 𝑞0 + 𝑞1𝑥 + 𝑞2𝑥2 that interpolates the
three points (−1, 1), (0, 0), and (1, 1) on the graph of 𝑔(𝑥) = |𝑥|. Sketch 𝑔(𝑥) and 
𝑝(𝑥) over [−1, 1] on the same set of axes.

(b) Find the fourth degree polynomial that interpolates 𝑔(𝑥) = |𝑥| at the points
𝑥 = −1, −1/2, 0, 1/2, and 1. Add a sketch of this polynomial to the graph from (a).

Solution.

(a) It is clear that the desired second degree polynomial is 𝑝(𝑥) = 𝑥2.

(b) We are looking for a polynomial 𝑞(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 such that
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𝑞(−1) = 1, 𝑞(−1
2) = 1

2 , 𝑞(0) = 0, 𝑞(1
2) = 1

2 , and 𝑞(1) = 1.

The condition 𝑞(0) = 0 immediately gives us 𝑎0 = 0 and the remaining four conditions
give us the linear system

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛

−1
−1

2
1
2
1

1
1
4
1
4
1

−1
−1

8
1
8
1

1
1
16
1
16
1 ⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎞

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛

𝑎1

𝑎2

𝑎3

𝑎4⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎞

=

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛

1
1
2
1
2

1⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎞

.

Solving this system, we obtain 𝑎1 = 0, 𝑎2 = 7
3 , 𝑎3 = 0, and 𝑎4 = −4

3 . Thus the desired
fourth degree polynomial is 𝑞(𝑥) = 1

3𝑥2(7 − 4𝑥2).

0

1
2

1

−1 −1
2 0 1

2 1
𝑥

𝑔(𝑥) = |𝑥| 𝑝(𝑥) = 𝑥2 𝑞(𝑥) = 1
3𝑥2(7 − 4𝑥2)

Exercise 6.7.4. Show that 𝑓(𝑥) =
√

1 − 𝑥 has Taylor series coefficients 𝑎𝑛 where 𝑎0 = 1
and

𝑎𝑛 =
−1 ⋅ 3 ⋅ 5 ⋯ (2𝑛 − 3)

2 ⋅ 4 ⋅ 6 ⋯ 2𝑛

for 𝑛 ≥ 1.

Solution. We have 𝑓(0) = 𝑎0 = 1 and a straightforward calculation shows that

𝑓 (𝑛)(𝑥) =
−1 ⋅ 3 ⋅ 5 ⋯ (2𝑛 − 3)

2𝑛 (1 − 𝑥)−𝑛−1/2

for 𝑛 ≥ 1. It follows from this that

𝑎𝑛 =
𝑓 (𝑛)(0)

𝑛!
=

−1 ⋅ 3 ⋅ 5 ⋯ (2𝑛 − 3)
2𝑛𝑛!

=
−1 ⋅ 3 ⋅ 5 ⋯ (2𝑛 − 3)

2 ⋅ 4 ⋅ 6 ⋯ 2𝑛

for any 𝑛 ≥ 1.
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Exercise 6.7.5.

(a) Follow the advice in Exercise 6.6.9 to prove the Cauchy form of the remainder:

𝐸𝑁(𝑥) =
𝑓 (𝑁+1)(𝑐)

𝑁!
(𝑥 − 𝑐)𝑁𝑥

for some 𝑐 between 0 and 𝑥.

(b) Use this result to prove equation (1) is valid for all 𝑥 ∈ (−1, 1).

Solution.

(a) See Exercise 6.6.9.

(b) Suppose 0 < |𝑥| < 1. For 𝑛 ∈ 𝐍, the Cauchy Remainder Theorem implies that there
exists some 𝑐𝑛 such that 0 < |𝑐𝑛| < |𝑥| and

𝐸𝑛(𝑥) =
𝑓 (𝑛+1)(𝑐𝑛)

𝑛!
(𝑥 − 𝑐𝑛)𝑛𝑥

=
−1 ⋅ 3 ⋯ (2𝑛 − 3)(2𝑛 − 1)

2𝑛+1𝑛!
(1 − 𝑐𝑛)−𝑛−3/2(𝑥 − 𝑐𝑛)𝑛𝑥

= −
1
2

⋅
1 ⋅ 3 ⋯ (2𝑛 − 3)(2𝑛 − 1)

2 ⋅ 4 ⋯ (2𝑛 − 2)(2𝑛)
(

𝑥 − 𝑐𝑛
1 − 𝑐𝑛

)
𝑛 𝑥
(1 − 𝑐𝑛)3/2

= −
1
2
(∏

𝑛

𝑗=1

2𝑗 − 1
2𝑗

)(
𝑥 − 𝑐𝑛
1 − 𝑐𝑛

)
𝑛 𝑥
(1 − 𝑐𝑛)3/2 .

Since 2𝑗−1
2𝑗 < 1 for each 1 ≤ 𝑗 ≤ 𝑛, we have ∏𝑛

𝑗=1
2𝑗−1

2𝑗 < 1 and thus

|𝐸𝑛(𝑥)| < |
𝑥 − 𝑐𝑛
1 − 𝑐𝑛

|
𝑛 |𝑥|
(1 − 𝑐𝑛)3/2 ;

we have used that |𝑐𝑛| < 1 implies 0 < 1 − 𝑐𝑛 to obtain |1 − 𝑐𝑛| = 1 − 𝑐𝑛. Note that

𝑐𝑛 ≤ |𝑐𝑛| < |𝑥| ⇒ −|𝑥| < −𝑐𝑛 ⇒
1

(1 − 𝑐𝑛)3/2 <
1

(1 − |𝑥|)3/2 .

Note further that if 0 < 𝑐𝑛 < 𝑥 < 1 then

𝑥𝑐𝑛 < 𝑐𝑛 ⇒ 𝑥 − 𝑐𝑛 < 𝑥 − 𝑥𝑐𝑛 ⇒
𝑥 − 𝑐𝑛
1 − 𝑐𝑛

< 𝑥 ⇒ |
𝑥 − 𝑐𝑛
1 − 𝑐𝑛

| < |𝑥|,

and if −1 < 𝑥 < 𝑐𝑛 < 0 then

𝑐𝑛 < 𝑥𝑐𝑛 ⇒ 𝑐𝑛 − 𝑥 < 𝑥𝑐𝑛 − 𝑥 ⇒
𝑐𝑛 − 𝑥
1 − 𝑐𝑛

< −𝑥 ⇒ |
𝑥 − 𝑐𝑛
1 − 𝑐𝑛

| < |𝑥|.

Combining these inequalities, we see that
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|𝐸𝑛(𝑥)| <
|𝑥|𝑛+1

(1 − |𝑥|)3/2

and it follows that lim𝑛→∞ 𝐸𝑛(𝑥) = 0 since |𝑥| < 1.

Exercise 6.7.6.

(a) Let

𝑐𝑛 =
1 ⋅ 3 ⋅ 5 ⋯ (2𝑛 − 1)

2 ⋅ 4 ⋅ 6 ⋯ 2𝑛

for 𝑛 ≥ 1. Show 𝑐𝑛 < 2√
2𝑛+1 .

(b) Use (a) to show that ∑∞
𝑛=0 𝑎𝑛 converges (absolutely, in fact) where 𝑎𝑛 is the se-

quence of Taylor coefficients generated in Exercise 6.7.4.

(c) Carefully explain how this verifies that equation (1) holds for all 𝑥 ∈ [−1, 1].

Solution.

(a) We will prove this by induction. For the base case 𝑛 = 1, we have

𝑐1 =
1
2

<
2

√
3

=
2

√2(1) + 1
.

Now suppose that the inequality holds for some 𝑛 ∈ 𝐍, so that

𝑐𝑛+1 = 𝑐𝑛 ⋅
2𝑛 + 1
2𝑛 + 2

<
2

√
2𝑛 + 1

⋅
2𝑛 + 1
2𝑛 + 2

=
2
√

2𝑛 + 1
2𝑛 + 2

.

Observe that

2
√

2𝑛 + 1
2𝑛 + 2

<
2

√
2𝑛 + 3

⇔
√

2𝑛 + 1
2𝑛 + 2

<
1

√
2𝑛 + 3

⇔
2𝑛 + 1

4𝑛2 + 8𝑛 + 4
<

1
2𝑛 + 3

⇔ 4𝑛2 + 8𝑛 + 3 < 4𝑛2 + 8𝑛 + 4

⇔ 0 < 1.

Thus 𝑐𝑛+1 < 2√
2𝑛+3 . This completes the induction step and the proof.

(b) Since ∑∞
𝑛=0|𝑎𝑛| = 1 + ∑∞

𝑛=1|𝑎𝑛|, it will suffice to show that ∑∞
𝑛=1|𝑎𝑛| is convergent.

Note that for 𝑛 ≥ 1 we have, by part (a),

|𝑎𝑛| =
𝑐𝑛

2𝑛 − 1
<

2
(2𝑛 − 1)

√
2𝑛 + 1

<
2

(2𝑛 − 1)3/2 ≤
2

𝑛3/2 .

Since the series ∑∞
𝑛=1 2𝑛−3/2 is convergent by Corollary 2.4.7, we see by comparison

that the series ∑∞
𝑛=1|𝑎𝑛| is convergent.
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(c) Part (b) shows that the power series ∑∞
𝑛=0 𝑎𝑛𝑥𝑛 converges absolutely at the points 

𝑥 = −1 and 𝑥 = 1. It follows from Abel’s Theorem (Theorem 6.5.4) that the power
series converges uniformly and hence is continuous on [−1, 1]. Thus the function
ℎ : [−1, 1] → 𝐑 given by

ℎ(𝑥) =
√

1 − 𝑥 − ∑
∞

𝑛=0
𝑎𝑛𝑥𝑛

is continuous on its domain and, by Exercise 6.7.5, satisfies ℎ(𝑥) = 0 for all 𝑥 ∈ (−1, 1).
It must then be the case that ℎ(−1) = ℎ(1) = 0 also.

Exercise 6.7.7.

(a) Use the fact that |𝑎| =
√

𝑎2 to prove that, given 𝜀 > 0, there exists a polynomial 
𝑞(𝑥) satisfying

||𝑥| − 𝑞(𝑥)| < 𝜀

for all 𝑥 ∈ [−1, 1].

(b) Generalize this conclusion to an arbitrary interval [𝑎, 𝑏].

Solution.

(a) Note that 𝑥 ∈ [−1, 1] implies that 1 − 𝑥2 ∈ [0, 1] and thus by Exercise 6.7.6 we have

√1 − (1 − 𝑥)2 = ∑
∞

𝑛=0
𝑎𝑛(1 − 𝑥2)𝑛.

As we showed in Exercise 6.7.6 this convergence is uniform, so there exists an 𝑁 ∈ 𝐍
such that

|√1 − (1 − 𝑥)2 − ∑
𝑁

𝑛=0
𝑎𝑛(1 − 𝑥2)𝑛| = ||𝑥| − ∑

𝑁

𝑛=0
𝑎𝑛(1 − 𝑥2)𝑛| < 𝜀

for all 𝑥 ∈ [−1, 1]. Thus the desired polynomial is 𝑞(𝑥) = ∑𝑁
𝑛=0 𝑎𝑛(1 − 𝑥2)𝑛.

(b) For 𝑎 < 𝑏 and 𝜀 > 0, we would like to find a polynomial 𝑝 such that ||𝑥| − 𝑝(𝑥)| < 𝜀
for all 𝑥 ∈ [𝑎, 𝑏]. Let 𝑐 = max{|𝑎|, |𝑏|} and note that 𝑐 > 0. Note further that 𝑥 ∈ [𝑎, 𝑏]
implies that 𝑥

𝑐 ∈ [−1, 1] and thus by part (a) there exists a polynomial 𝑞 such that

||
𝑥
𝑐
| − 𝑞(

𝑥
𝑐
)| <

𝜀
𝑐 (1)

for all 𝑥
𝑐 ∈ [−1, 1], i.e. for all 𝑥 ∈ [−𝑐, 𝑐]. Let 𝑝 be the polynomial given by 𝑝(𝑥) = 𝑐𝑞(𝑥

𝑐 ).
It follows from (1) that

||𝑥| − 𝑝(𝑥)| < 𝜀

for all 𝑥 ∈ [−𝑐, 𝑐] and hence in particular for all 𝑥 ∈ [𝑎, 𝑏].
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Exercise 6.7.8.

(a) Fix 𝑎 ∈ [−1, 1] and sketch

ℎ𝑎(𝑥) =
1
2
(|𝑥 − 𝑎| + (𝑥 − 𝑎))

over [−1, 1]. Note that ℎ𝑎 is polygonal and satisfies ℎ𝑎(𝑥) = 0 for all 𝑥 ∈ [−1, 𝑎].

(b) Explain why we know ℎ𝑎(𝑥) can be uniformly approximated with a polynomial on
[−1, 1].

(c) Let 𝜙 be a polygonal function that is linear on each subinterval of the partition

−1 = 𝑎0 < 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛 = 1.

Show there exist constants 𝑏0, 𝑏1, …, 𝑏𝑛−1 so that

𝜙(𝑥) = 𝜙(−1) + 𝑏0ℎ𝑎0(𝑥) + 𝑏1ℎ𝑎1(𝑥) + ⋯ + 𝑏𝑛−1ℎ𝑎𝑛−1(𝑥)

for all 𝑥 ∈ [−1, 1].

(d) Complete the proof of WAT for the interval [−1, 1], and then generalize to an
arbitrary interval [𝑎, 𝑏].

Solution.

(a) Below is a sketch of ℎ1/2, ℎ0, and ℎ−1/2 on [−1, 1].

0

1
2

1

3
2

−1 −1
2 0 1

2 1
𝑥

ℎ1/2 ℎ0 ℎ−1/2

(b) From Exercise 6.7.7 (b), for a given 𝜀 > 0 we know that there exists a polynomial 𝑞
such that

||𝑥 − 𝑎| − 𝑞(𝑥 − 𝑎)| < 2𝜀
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for all 𝑥 ∈ [−1, 1]. Let 𝑝(𝑥) = 1
2𝑞(𝑥 − 𝑎) + 1

2(𝑥 − 𝑎) and observe that

|ℎ𝑎(𝑥) − 𝑝(𝑥)| = 1
2 ||𝑥 − 𝑎| − 𝑞(𝑥 − 𝑎)| < 𝜀

for all 𝑥 ∈ [−1, 1].

(c) For 0 ≤ 𝑗 ≤ 𝑛 − 1, the polygonal function 𝜙 is given by a line segment on the subinter-
val [𝑎𝑗, 𝑎𝑗+1]; let 𝑚𝑗 be the slope of this line segment, i.e.

𝑚𝑗 =
𝜙(𝑎𝑗+1) − 𝜙(𝑎𝑗)

𝑎𝑗+1 − 𝑎𝑗
.

Now set 𝑏0 = 𝑚0 and 𝑏𝑗 = 𝑚𝑗 − 𝑚𝑗−1 for 𝑗 ∈ {1, …, 𝑛 − 1} and let 𝜓 : [−1, 1] → 𝐑 be
given by

𝜓(𝑥) = 𝜙(𝑎0) + 𝑏0ℎ𝑎0(𝑥) + 𝑏1ℎ𝑎1(𝑥) + ⋯ + 𝑏𝑛−1ℎ𝑎𝑛−1(𝑥).

Our aim is to show that 𝜙(𝑥) = 𝜓(𝑥) for all 𝑥 ∈ [−1, 1]. For such an 𝑥, we have
𝑥 ∈ [𝑎𝑗, 𝑎𝑗+1] for some 𝑗 ∈ {1, …, 𝑛 − 1}. Note that, since 𝜙 is linear on the subinterval
[𝑎𝑗, 𝑎𝑗+1] with slope 𝑚𝑗,

𝜙(𝑥) = 𝜙(𝑎𝑗) + 𝑚𝑗(𝑥 − 𝑎𝑗).

Note further that

ℎ𝑎0(𝑥) = 𝑥 − 𝑎0, …, ℎ𝑎𝑗(𝑥) = 𝑥 − 𝑎𝑗, and ℎ𝑎𝑗+1 = ⋯ = ℎ𝑎𝑛−1(𝑥) = 0.

Thus

𝜓(𝑥) = 𝜙(𝑎0) + 𝑏0ℎ𝑎0(𝑥) + 𝑏1ℎ𝑎1 + ⋯ + 𝑏𝑗ℎ𝑎𝑗(𝑥)

= 𝜙(𝑎0) + 𝑚0(𝑥 − 𝑎0) + (𝑚1 − 𝑚0)(𝑥 − 𝑎1) + ⋯ + (𝑚𝑗 − 𝑚𝑗−1)(𝑥 − 𝑎𝑗)

= 𝜙(𝑎0) + 𝑚0(𝑎1 − 𝑎0)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜙(𝑎1)

+ 𝑚1(𝑎2 − 𝑎1) + ⋯ + 𝑚𝑗−1(𝑎𝑗 − 𝑎𝑗−1) + 𝑚𝑗(𝑥 − 𝑎𝑗)

= 𝜙(𝑎1) + 𝑚1(𝑎2 − 𝑎1)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜙(𝑎2)

+ ⋯ + 𝑚𝑗−1(𝑎𝑗 − 𝑎𝑗−1) + 𝑚𝑗(𝑥 − 𝑎𝑗)

= ⋯

= 𝜙(𝑎𝑗) + 𝑚𝑗(𝑥 − 𝑎𝑗)

= 𝜙(𝑥).

(d) Let 𝑓 : [−1, 1] → 𝐑 be continuous and let 𝜀 > 0 be given. By Theorem 6.7.3 (see
Exercise 6.7.2), there exists a polygonal function 𝜙 : [−1, 1] → 𝐑 which is linear on each
subinterval of some partition

−1 = 𝑎0 < 𝑎1 < ⋯ < 𝑎𝑛 = 1

and which satisfies |𝑓(𝑥) − 𝜙(𝑥)| < 𝜀
2  for all 𝑥 ∈ [−1, 1]. By part (c), there exist con-

stants 𝑏0, …, 𝑏𝑛−1 such that
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𝜙(𝑥) = 𝜙(𝑎0) + 𝑏0ℎ𝑎0(𝑥) + 𝑏1ℎ𝑎1(𝑥) + ⋯ + 𝑏𝑛−1ℎ𝑎𝑛−1(𝑥)

for all 𝑥 ∈ [−1, 1]. Furthermore, by part (b), for each 𝑗 ∈ {0, …, 𝑛 − 1} there exists a
polynomial 𝑝𝑗 such that

|ℎ𝑎𝑗(𝑥) − 𝑝𝑗(𝑥)| <
𝜀

2𝑛(1 + |𝑏𝑗|)
.

Let 𝑝 be the polynomial given by

𝑝(𝑥) = 𝜙(𝑎0) + 𝑏0𝑝0(𝑥) + ⋯ + 𝑏𝑛−1𝑝𝑛−1(𝑥)

and observe that for any 𝑥 ∈ [−1, 1] we have

|𝜙(𝑥) − 𝑝(𝑥)| = |𝑏0ℎ𝑎0(𝑥) + ⋯ + 𝑏𝑛−1ℎ𝑎𝑛−1(𝑥) − 𝑏0𝑝0(𝑥) − ⋯ − 𝑏𝑛−1𝑝𝑛−1(𝑥)|

≤ |𝑏0||ℎ𝑎0(𝑥) − 𝑝0(𝑥)| + ⋯ + |𝑏𝑛−1||ℎ𝑎𝑛−1(𝑥) − 𝑝𝑛−1(𝑥)|

<
𝜀|𝑏0|

2𝑛(1 + |𝑏0|)
+ ⋯ +

𝜀|𝑏𝑛−1|
2𝑛(1 + |𝑏𝑛−1|)

< 𝜀
2𝑛 + ⋯ + 𝜀

2𝑛

= 𝜀
2 .

It now follows that for any 𝑥 ∈ [−1, 1] we have

|𝑓(𝑥) − 𝑝(𝑥)| ≤ |𝑓(𝑥) − 𝜙(𝑥)| + |𝜙(𝑥) − 𝑝(𝑥)| < 𝜀
2 + 𝜀

2 = 𝜀.

We can now prove the general case. For 𝑎 < 𝑏, let 𝑓 : [𝑎, 𝑏] → 𝐑 be continuous and let
𝜀 > 0 be given. We would like to find a polynomial 𝑝 such that |𝑓(𝑥) − 𝑝(𝑥)| < 𝜀 for all
𝑥 ∈ [𝑎, 𝑏]. Note that the function

[−1, 1] → [𝑎, 𝑏]

𝑥 ↦ 𝑏 − 𝑎
2

(𝑥 + 1) + 𝑎

is a continuous bĳection with continuous inverse

[𝑎, 𝑏] → [−1, 1]

𝑥 ↦ 2(𝑥 − 𝑎)
𝑏 − 𝑎

− 1.

Thus 𝑔 : [−1, 1] → 𝐑 given by

𝑔(𝑥) = 𝑓(
𝑏 − 𝑎

2
(𝑥 + 1) + 𝑎)

is well-defined and, as a composition of continuous functions, is continuous on [−1, 1].
It follows from our previous discussion that there exists a polynomial 𝑞 such that
|𝑔(𝑥) − 𝑞(𝑥)| < 𝜀 for all 𝑥 ∈ [−1, 1]. Let 𝑝 be the polynomial defined by
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𝑝(𝑥) = 𝑞(
2(𝑥 − 𝑎)

𝑏 − 𝑎
− 1).

Since 𝑥 ∈ [𝑎, 𝑏] implies that 2(𝑥−𝑎)
𝑏−𝑎 − 1 ∈ [−1, 1], we have

|𝑔(
2(𝑥 − 𝑎)

𝑏 − 𝑎
− 1) − 𝑞(

2(𝑥 − 𝑎)
𝑏 − 𝑎

− 1)| = |𝑓(𝑥) − 𝑝(𝑥)| < 𝜀

for all 𝑥 ∈ [𝑎, 𝑏].

Exercise 6.7.9.

(a) Find a counterexample which shows that WAT is not true if we replace the closed
interval [𝑎, 𝑏] with the open interval (𝑎, 𝑏).

(b) What happens if we replace [𝑎, 𝑏] with the closed set [𝑎, ∞). Does the theorem
still hold?

Solution.

(a) Consider 𝑓 : (0, 1) → 𝐑 given by 𝑓(𝑥) = 𝑥−1. Since any polynomial is bounded on 
(0, 1), if we could uniformly approximate 𝑓 with a polynomial on (0, 1) then we would
have that 𝑓 is bounded on (0, 1), which is not true.

(b) The theorem does not hold. Consider 𝑔 : [0, ∞) → 𝐑 given by 𝑔(𝑥) = sin(𝑥). Evidently
𝑔 cannot be uniformly approximated by a constant polynomial on [0, ∞), and for a
non-constant polynomial 𝑝 we have lim𝑥→∞|𝑝(𝑥)| = +∞, whereas |𝑔(𝑥)| ≤ 1 for all
𝑥 ∈ [0, ∞) it follows that we cannot uniformly approximate 𝑔 with a non-constant poly-
nomial on [0, ∞) either.

Exercise 6.7.10. Is there a countable subset of polynomials 𝒞 with the property that
every continuous function on [𝑎, 𝑏] can be uniformly approximated by polynomials from
𝒞?

Solution. There is such a countable subset. Let 𝒫(𝐑) be the collection of polynomials with
real coefficients, let 𝒫(𝐐) ⊆ 𝒫(𝐑) be the collection of polynomials with rational coefficients,
and for each 𝑛 ≥ 0 let 𝒫𝑛(𝐐) ⊆ 𝒫(𝐐) be the collection of polynomials of degree 𝑛 with ra-
tional coefficients. Observe that 𝒫0(𝐐) is in bĳection with 𝐐 ∖ {0} and 𝒫𝑛(𝐐) is in bĳection
with (𝐐 ∖ {0}) × 𝐐𝑛−1 for each 𝑛 ≥ 1. Thus each 𝒫𝑛(𝐐) is countable and it follows from
the expression

𝒫(𝐐) = {0} ∪ ⋃
∞

𝑛=0
𝒫𝑛(𝐐)

(by 0 we mean the zero polynomial) and Theorem 1.5.8 (ii) that 𝒫(𝐐) is countable.

Now let 𝑎 < 𝑏 be given and let 𝑀 = max{|𝑎|, |𝑏|, 1}. Suppose 𝑓 : [𝑎, 𝑏] → 𝐑 is continuous and
let 𝜀 > 0 be given. By the Weierstrass Approximation Theorem, there exists a polynomial
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𝑝(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 ∈ 𝒫(𝐑)

such that |𝑓(𝑥) − 𝑝(𝑥)| < 𝜀
2  for all 𝑥 ∈ [𝑎, 𝑏]. By the density of 𝐐 in 𝐑, we can choose rational

numbers 𝑏𝑛, 𝑏𝑛−1, …, 𝑏1, 𝑏0 such that |𝑎𝑗 − 𝑏𝑗| < 𝜀(2𝑀𝑛(𝑛 + 1))−1 for each 𝑗 ∈ {0, …, 𝑛}. Let

𝑞(𝑥) = 𝑏𝑛𝑥𝑛 + 𝑏𝑛−1𝑥𝑛−1 + ⋯ + 𝑏1𝑥 + 𝑏0 ∈ 𝒫(𝐐)

and observe that for any 𝑥 ∈ [𝑎, 𝑏] we have

|𝑝(𝑥) − 𝑞(𝑥)| = |(𝑎𝑛 − 𝑏𝑛)𝑥𝑛 + (𝑎𝑛−1 − 𝑏𝑛−1)𝑥𝑛−1 + ⋯ + (𝑎1 − 𝑏1)𝑥 + (𝑎0 − 𝑏0)|

≤ |𝑎𝑛 − 𝑏𝑛||𝑥|𝑛 + |𝑎𝑛−1 − 𝑏𝑛−1||𝑥|𝑛−1 + ⋯ + |𝑎1 − 𝑏1||𝑥| + |𝑎0 − 𝑏0|

≤ |𝑎𝑛 − 𝑏𝑛|𝑀𝑛 + |𝑎𝑛−1 − 𝑏𝑛−1|𝑀𝑛−1 + ⋯ + |𝑎1 − 𝑏1|𝑀 + |𝑎0 − 𝑏0|

≤ |𝑎𝑛 − 𝑏𝑛|𝑀𝑛 + |𝑎𝑛−1 − 𝑏𝑛−1|𝑀𝑛 + ⋯ + |𝑎1 − 𝑏1|𝑀𝑛 + |𝑎0 − 𝑏0|𝑀𝑛

≤
𝜀

2(𝑛 + 1)
+

𝜀
2(𝑛 + 1)

+ ⋯ +
𝜀

2(𝑛 + 1)
+

𝜀
2(𝑛 + 1)

= 𝜀
2 .

It follows that

|𝑓(𝑥) − 𝑞(𝑥)| ≤ |𝑓(𝑥) − 𝑝(𝑥)| + |𝑝(𝑥) − 𝑞(𝑥)| < 𝜀
2 + 𝜀

2 = 𝜀

for any 𝑥 ∈ [𝑎, 𝑏]. Thus the desired countable subset 𝒞 is 𝒫(𝐐).

Exercise 6.7.11. Assume that 𝑓 has a continuous derivative on [𝑎, 𝑏]. Show that there
exists a polynomial 𝑝(𝑥) such that

|𝑓(𝑥) − 𝑝(𝑥)| < 𝜀 and |𝑓 ′(𝑥) − 𝑝′(𝑥)| < 𝜀

for all 𝑥 ∈ [𝑎, 𝑏].

Solution. By assumption 𝑓 ′ is continuous on [𝑎, 𝑏], so the Weierstrass Approximation The-
orem yields a polynomial 𝑞 such that

|𝑓 ′(𝑥) − 𝑞(𝑥)| < min{𝜀,
𝜀

𝑏 − 𝑎
}

for all 𝑥 ∈ [𝑎, 𝑏]. Let 𝑝 be the polynomial which satisfies 𝑝′ = 𝑞 and 𝑝(𝑎) = 𝑓(𝑎) and
observe that |𝑓 ′(𝑥) − 𝑝′(𝑥)| = |𝑓 ′(𝑥) − 𝑞(𝑥)| < 𝜀 for each 𝑥 ∈ [𝑎, 𝑏]. Now let 𝑔 : [𝑎, 𝑏] → 𝐑
be given by 𝑔(𝑥) = 𝑓(𝑥) − 𝑝(𝑥). Observe that 𝑔(𝑎) = 0 and 𝑔′(𝑥) = 𝑓 ′(𝑥) − 𝑞(𝑥), so that
|𝑔′(𝑥)| < 𝜀(𝑏 − 𝑎)−1 for all 𝑥 ∈ [𝑎, 𝑏]. Let 𝑥 ∈ (𝑎, 𝑏] be given. By the Mean Value Theorem
(Theorem 5.3.2), there exists some 𝑐 ∈ (𝑎, 𝑥) such that

|𝑓(𝑥) − 𝑝(𝑥)| = |𝑔(𝑥) − 𝑔(𝑎)| = |𝑔′(𝑐)(𝑥 − 𝑎)| ≤
𝜀

𝑏 − 𝑎
(𝑏 − 𝑎) = 𝜀.

Thus 𝑝 is the desired polynomial.
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Chapter 7. The Riemann Integral

7.2. The Definition of the Riemann Integral

Exercise 7.2.1. Let 𝑓 be a bounded function on [𝑎, 𝑏] and let 𝑃  be an arbitrary parti-
tion of [𝑎, 𝑏]. First, explain why 𝑈(𝑓) ≥ 𝐿(𝑓, 𝑃 ). Now, prove Lemma 7.2.6.

Solution. Lemma 7.2.4 implies that 𝐿(𝑓, 𝑃 ) is a lower bound of the set {𝑈(𝑓, 𝑄) : 𝑄 ∈ 𝒫}
and thus 𝑈(𝑓) ≥ 𝐿(𝑓, 𝑃 ). Since 𝑃  was an arbitrary partition of [𝑎, 𝑏], we have now shown
that 𝑈(𝑓) is an upper bound of the set {𝐿(𝑓, 𝑃 ) : 𝑃 ∈ 𝒫} and thus 𝑈(𝑓) ≥ 𝐿(𝑓).

Exercise 7.2.2. Consider 𝑓(𝑥) = 1/𝑥 over the interval [1, 4]. Let 𝑃  be the partition
consisting of the points {1, 3/2, 2, 4}.

(a) Compute 𝐿(𝑓, 𝑃 ), 𝑈(𝑓, 𝑃 ), and 𝑈(𝑓, 𝑃 ) − 𝐿(𝑓, 𝑃 ).

(b) What happens to the value of 𝑈(𝑓, 𝑃 ) − 𝐿(𝑓, 𝑃 ) when we add the point 3 to the
partition?

(c) Find a partition 𝑃 ′ of [1, 4] for which 𝑈(𝑓, 𝑃 ′) − 𝐿(𝑓, 𝑃 ′) < 2/5.

Solution.

(a) Since 𝑓 is strictly decreasing over [1, 4] we have

𝑚1 = 𝑓(3
2) = 2

3 , 𝑚2 = 𝑓(2) = 1
2 , 𝑚3 = 𝑓(4) = 1

4 ,

𝑀1 = 𝑓(1) = 1, 𝑀2 = 𝑓(3
2) = 2

3 , 𝑀3 = 𝑓(2) = 1
2 .

1
4

1
2

2
3

1

1 3
2 2 4

𝑥

𝑀1

𝑚1 = 𝑀2

𝑚2 = 𝑀3

𝑚3

𝑓(𝑥) = 1
𝑥
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Thus 𝐿(𝑓, 𝑃 ) = 13
12 , 𝑈(𝑓, 𝑃 ) = 11

6 , and 𝑈(𝑓, 𝑃 ) − 𝐿(𝑓, 𝑃 ) = 3
4 .

(b) Letting 𝑃 = {1, 3
2 , 2, 3, 4}, a similar calculation to part (a) shows that

𝑈(𝑓, 𝑃 ) − 𝐿(𝑓, 𝑃 ) = 1
2 .

(c) Letting 𝑃 ′ = {1, 5
4 , 3

2 , 7
4 , 2, 3, 4}, a straightforward calculation shows that

𝑈(𝑓, 𝑃 ′) − 𝐿(𝑓, 𝑃 ′) = 3
8 < 2

5 .

Exercise 7.2.3 (Sequential Criterion for Integrability).

(a) Prove that a bounded function 𝑓 is integrable on [𝑎, 𝑏] if and only if there exists a
sequence of partitions (𝑃𝑛)∞

𝑛=1 satisfying

lim
𝑛→∞

[𝑈(𝑓, 𝑃𝑛) − 𝐿(𝑓, 𝑃𝑛)] = 0,

and in this case ∫𝑏
𝑎

𝑓 = lim𝑛→∞ 𝑈(𝑓, 𝑃𝑛) = lim𝑛→∞ 𝐿(𝑓, 𝑃𝑛).

(b) For each 𝑛, let 𝑃𝑛 be the partition of [0, 1] into 𝑛 equal subintervals. Find formulas
for 𝑈(𝑓, 𝑃𝑛) and 𝐿(𝑓, 𝑃𝑛) if 𝑓(𝑥) = 𝑥. The formula 1 + 2 + 3 + ⋯ + 𝑛 = 𝑛(𝑛 + 1)/2
will be useful.

(c) Use the sequential criterion for integrability from (a) to show directly that 𝑓(𝑥) = 𝑥
is integrable on [0, 1] and compute ∫1

0
𝑓 .

Solution.

(a) In light of Theorem 7.2.8, it will suffice to show the equivalence of the following two
statements.

(i) There exists a sequence of partitions (𝑃𝑛)∞
𝑛=1 satisfying

lim
𝑛→∞

[𝑈(𝑓, 𝑃𝑛) − 𝐿(𝑓, 𝑃𝑛)] = 0.

(ii) For every 𝜀 > 0 there exists a partition 𝑃𝜀 of [𝑎, 𝑏] such that

𝑈(𝑓, 𝑃𝜀) − 𝐿(𝑓, 𝑃𝜀) < 𝜀.

Suppose that (i) holds and let 𝜀 > 0 be given. There exists an 𝑁 ∈ 𝐍 such that

|𝑈(𝑓, 𝑃𝑛) − 𝐿(𝑓, 𝑃𝑛)| = 𝑈(𝑓, 𝑃𝑛) − 𝐿(𝑓, 𝑃𝑛) < 𝜀

for all 𝑛 ≥ 𝑁 . Hence we can take 𝑃𝜀 = 𝑃𝑁 . Thus (ii) holds.

Suppose that (ii) holds. For each 𝑛 ∈ 𝐍 there exists a partition 𝑃𝑛 of [𝑎, 𝑏] such that 
𝑈(𝑓, 𝑃𝑛) − 𝐿(𝑓, 𝑃𝑛) < 1

𝑛 , from which it is clear that

lim
𝑛→∞

[𝑈(𝑓, 𝑃𝑛) − 𝐿(𝑓, 𝑃𝑛)] = 0.

Now suppose that such a sequence of partitions exists, so that 𝑓 is integrable on [𝑎, 𝑏].
For each 𝑛 ∈ 𝐍 we have the inequalities

𝐿(𝑓, 𝑃𝑛) ≤ 𝐿(𝑓), 𝑈(𝑓) ≤ 𝑈(𝑓, 𝑃𝑛), and 𝐿(𝑓, 𝑃𝑛) ≤ 𝑈(𝑓, 𝑃𝑛).
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These imply that

𝐿(𝑓, 𝑃𝑛) − 𝑈(𝑓, 𝑃𝑛) ≤ 𝐿(𝑓) − 𝑈(𝑓, 𝑃𝑛) = 𝑈(𝑓) − 𝑈(𝑓, 𝑃𝑛) ≤ 𝑈(𝑓, 𝑃𝑛) − 𝐿(𝑓, 𝑃𝑛).

The squeeze theorem then shows that lim𝑛→∞ 𝑈(𝑓, 𝑃𝑛) = 𝑈(𝑓) = ∫𝑏
𝑎

𝑓 and a similar
argument shows that lim𝑛→∞ 𝐿(𝑓, 𝑃𝑛) = 𝐿(𝑓) = ∫𝑏

𝑎
𝑓 .

(b) For each 0 ≤ 𝑘 ≤ 𝑛 − 1, let 𝑥𝑘 = 𝑘
𝑛−1 , and let 𝑃𝑛 = {𝑥0, 𝑥1, …, 𝑥𝑛−1}. Since 𝑓 is strictly

increasing on [0, 1], we then have

𝑚𝑘 = 𝑥𝑘−1 =
𝑘 − 1
𝑛 − 1

and 𝑀𝑘 = 𝑥𝑘 =
𝑘

𝑛 − 1

for each 1 ≤ 𝑘 ≤ 𝑛 − 1. It follows that

𝑈(𝑓, 𝑃𝑛) = ∑
𝑛−1

𝑘=1
𝑀𝑘(𝑥𝑘 − 𝑥𝑘−1) = ∑

𝑛−1

𝑘=1

𝑘
(𝑛 − 1)2 =

𝑛
2(𝑛 − 1)

,

𝐿(𝑓, 𝑃𝑛) = ∑
𝑛−1

𝑘=1
𝑚𝑘(𝑥𝑘 − 𝑥𝑘−1) = ∑

𝑛−1

𝑘=1

𝑘 − 1
(𝑛 − 1)2 =

𝑛
2(𝑛 − 1)

−
1

𝑛 − 1
.

(c) From part (b) we have

𝑈(𝑓, 𝑃𝑛) − 𝐿(𝑓, 𝑃𝑛) =
1

𝑛 − 1
→ 0.

It then follows from part (a) that 𝑓 is integrable on [0, 1] and that

∫
1

0
𝑓 = lim

𝑛→∞
𝑈(𝑓, 𝑃𝑛) = lim

𝑛→∞

𝑛
2(𝑛 − 1)

= 1
2 .

Exercise 7.2.4. Let 𝑔 be bounded on [𝑎, 𝑏] and assume there exists a partition 𝑃  with
𝐿(𝑔, 𝑃 ) = 𝑈(𝑔, 𝑃 ). Describe 𝑔. Is it integrable? If so, what is the value of ∫𝑏

𝑎
𝑔?

Solution. Suppose 𝑃 = {𝑥0, 𝑥1, …, 𝑥𝑛} is such that 𝐿(𝑔, 𝑃 ) = 𝑈(𝑔, 𝑃 ). Given that 𝑚𝑘 ≤ 𝑀𝑘

for all 1 ≤ 𝑘 ≤ 𝑛, we have the implication

𝑚𝑘 < 𝑀𝑘 for some 𝑘 ∈ {1, …, 𝑛} ⇒ 𝐿(𝑔, 𝑃 ) < 𝑈(𝑔, 𝑃 ).

Since 𝐿(𝑔, 𝑃 ) ≤ 𝑈(𝑔, 𝑃 ), the contrapositive of the implication above is

𝐿(𝑔, 𝑃 ) = 𝑈(𝑔, 𝑃 ) ⇒ 𝑚𝑘 = 𝑀𝑘 for all 𝑘 ∈ {1, …, 𝑛}.

Consider a subinterval [𝑥𝑘−1, 𝑥𝑘] for some 𝑘 ∈ {1, …, 𝑛}. Since 𝑚𝑘 = 𝑀𝑘, it must be the case
that 𝑔 is constant on this subinterval, say 𝑔(𝑥) = 𝑐𝑘 for all 𝑥 ∈ [𝑥𝑘−1, 𝑥𝑘]. In fact, since 
𝑔(𝑥𝑘) = 𝑐𝑘 = 𝑐𝑘+1, we see that 𝑐1 = ⋯ = 𝑐𝑛. Denoting this common value by 𝑐, we then have
𝑔(𝑥) = 𝑐 for all 𝑥 ∈ [𝑎, 𝑏].

Since 𝑈(𝑔, 𝑃 ) − 𝐿(𝑔, 𝑃 ) = 0, an appeal to Theorem 7.2.8 shows that 𝑔 is integrable.
Let 𝑆 = 𝑈(𝑔, 𝑃 ) = 𝐿(𝑔, 𝑃 ). On one hand, 𝑆 = 𝐿(𝑔, 𝑃 ) is a lower bound of the set
{𝑈(𝑔, 𝑄) : 𝑄 ∈ 𝒫)}, as we noted in Exercise 7.2.1. On the other hand, 𝑆 = 𝑈(𝑔, 𝑃 ) belongs to
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the set {𝑈(𝑔, 𝑄) : 𝑄 ∈ 𝒫)} and hence must be the minimum of this set. Since the minimum
and the infimum of a set necessarily coincide when they both exist, we see that

∫
𝑏

𝑎
𝑔 = 𝑈(𝑔) = 𝑈(𝑔, 𝑃 ) = ∑

𝑛

𝑘=1
𝑀𝑘(𝑥𝑘 − 𝑥𝑘−1) = 𝑐 ∑

𝑛

𝑘=1
(𝑥𝑘 − 𝑥𝑘−1) = 𝑐(𝑥𝑛 − 𝑥0) = 𝑐(𝑏 − 𝑎).

Exercise 7.2.5. Assume that, for each 𝑛, 𝑓𝑛 is an integrable function on [𝑎, 𝑏]. If
(𝑓𝑛) → 𝑓 uniformly on [𝑎, 𝑏], prove that 𝑓 is also integrable on this set. (We will see that
this conclusion does not necessarily follow if the convergence is pointwise.)

Solution. Let 𝜀 > 0 be given. Because 𝑓𝑛 → 𝑓 uniformly, there exists an 𝑁 ∈ 𝐍 such that

𝑛 ≥ 𝑁 and 𝑥 ∈ [𝑎, 𝑏] ⇒ |𝑓𝑛(𝑥) − 𝑓(𝑥)| <
𝜀

3(𝑏 − 𝑎)
. (1)

By hypothesis the function 𝑓𝑁  is integrable on [𝑎, 𝑏] and thus by Theorem 7.2.8 there exists
a partition 𝑃 = {𝑥0, …, 𝑥𝑚} of [𝑎, 𝑏] such that 𝑈(𝑓𝑁 , 𝑃 ) − 𝐿(𝑓𝑁 , 𝑃 ) < 𝜀

3 . Consider a subin-
terval [𝑥𝑘−1, 𝑥𝑘] for some 𝑘 ∈ {1, …, 𝑚}, and let

𝑀𝑘,𝑁 = sup{𝑓𝑁(𝑥) : 𝑥 ∈ [𝑥𝑘−1, 𝑥𝑘]} and 𝑀𝑘 = sup{𝑓(𝑥) : 𝑥 ∈ [𝑥𝑘−1, 𝑥𝑘]}.

Inequality (1) implies that

|𝑀𝑘,𝑁 − 𝑀𝑘| ≤
𝜀

3(𝑏 − 𝑎)
,

which gives us

|𝑈(𝑓𝑁 , 𝑃 ) − 𝑈(𝑓, 𝑃 )| ≤ ∑
𝑚

𝑘=1
|𝑀𝑘,𝑁 − 𝑀𝑘|(𝑥𝑘−1 − 𝑥𝑘) ≤

𝜀
3(𝑏 − 𝑎)

∑
𝑚

𝑘=1
(𝑥𝑘−1 − 𝑥𝑘) = 𝜀

3 .

We can similarly show that |𝐿(𝑓𝑁 , 𝑃 ) − 𝐿(𝑓, 𝑃 )| ≤ 𝜀
3 . It follows that

𝑈(𝑓, 𝑃 ) − 𝐿(𝑓, 𝑃 ) ≤ |𝑈(𝑓𝑁 , 𝑃 ) − 𝑈(𝑓, 𝑃 )| + |𝐿(𝑓𝑁 , 𝑃 ) − 𝐿(𝑓, 𝑃 )|

+ |𝑈(𝑓𝑁 , 𝑃 ) − 𝐿(𝑓𝑁 , 𝑃 )| < 𝜀
3 + 𝜀

3 + 𝜀
3 = 𝜀,

and an appeal to Theorem 7.2.8 allows us to conclude that 𝑓 is integrable on [𝑎, 𝑏].
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Exercise 7.2.6. A tagged partition (𝑃 , {𝑐𝑘}) is one where in addition to a partition 𝑃
we choose a sampling point 𝑐𝑘 in each of the subintervals [𝑥𝑘−1, 𝑥𝑘]. The corresponding
Riemann sum,

𝑅(𝑓, 𝑃 ) = ∑
𝑛

𝑘=1
𝑓(𝑐𝑘)Δ𝑥𝑘,

is discussed in Section 7.1, where the following definition is alluded to.

Riemann’s Original Definition of the Integral: A bounded function 𝑓 is integrable
on [𝑎, 𝑏] with ∫𝑏

𝑎
𝑓 = 𝐴 if for all 𝜀 > 0 there exists a 𝛿 > 0 such that for any tagged

partition (𝑃 , {𝑐𝑘}) satisfying Δ𝑥𝑘 < 𝛿 for all 𝑘, it follows that

|𝑅(𝑓, 𝑃 ) − 𝐴| < 𝜀.

Show that if 𝑓 satisfies Riemann’s definition above, then 𝑓 is integrable in the sense of
Definition 7.2.7. (The full equivalence of these two characterizations of integrability is
proved in Section 8.1.)

Solution. Let 𝜀 > 0 be given. Since 𝑓 satisfies Riemann’s definition of integrability, there
exists a 𝛿 > 0 such that for any tagged partition (𝑃 , {𝑐𝑘}) satisfying Δ𝑥𝑘 < 𝛿 for all 𝑘, it
follows that

|𝑅(𝑓, 𝑃 ) − 𝐴| < 𝜀
2 .

Let 𝑁 ∈ 𝐍 be such that 𝑏−𝑎
𝑁 < 𝛿, for each 𝑘 ∈ {0, …, 𝑁} let 𝑦𝑘 = 𝑎 + 𝑘 𝑏−𝑎

𝑁 , and let 𝑄1 be
the partition {𝑦0, …, 𝑦𝑁} of [𝑎, 𝑏]; note that Δ𝑦𝑘 = 𝑏−𝑎

𝑁 < 𝛿. Since 𝑈(𝑓) is the infimum of the
set {𝑈(𝑓, 𝑄) : 𝑄 ∈ 𝒫}, there exists a partition 𝑄2 of [𝑎, 𝑏] such that

𝑈(𝑓) ≤ 𝑈(𝑓, 𝑄2) < 𝑈(𝑓) + 𝜀
4 .

Let 𝑃  be the common refinement of 𝑄1 and 𝑄2, say

𝑃 = 𝑄1 ∪ 𝑄2 = {𝑥0, …, 𝑥𝑛}.

Note that Δ𝑥𝑘 ≤ Δ𝑦𝑘 = 𝑏−𝑎
𝑁 < 𝛿, so that for any choice of sampling points we have

|𝑅(𝑓, 𝑃 ) − 𝐴| < 𝜀
2 . (1)

Note further that since 𝑄2 ⊆ 𝑃 , Lemma 7.2.3 gives us

𝑈(𝑓) ≤ 𝑈(𝑓, 𝑃 ) ≤ 𝑈(𝑓, 𝑄2) < 𝑈(𝑓) + 𝜀
4 . (2)

For each 𝑘 ∈ {1, …, 𝑛}, since 𝑀𝑘 is the supremum of 𝑓 over [𝑥𝑘−1, 𝑥𝑘], there exists some 
𝑐𝑘 ∈ [𝑥𝑘−1, 𝑥𝑘] such that

𝑀𝑘 −
𝜀

4(𝑏 − 𝑎)
< 𝑓(𝑐𝑘) ≤ 𝑀𝑘.

Take the collection {𝑐𝑘} as the sampling points for the partition 𝑃 . It follows that
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0 ≤ 𝑈(𝑓, 𝑃 ) − 𝑅(𝑓, 𝑃 ) = ∑
𝑛

𝑘=1
(𝑀𝑘 − 𝑓(𝑐𝑘))Δ𝑥𝑘 <

𝜀
4(𝑏 − 𝑎)

∑
𝑛

𝑘=1
Δ𝑥𝑘 = 𝜀

4 . (3)

Now observe that by (1), (2), and (3) we have

|𝑈(𝑓) − 𝐴| ≤ |𝑈(𝑓) − 𝑅(𝑓, 𝑃 )| + |𝑅(𝑓, 𝑃 ) − 𝐴|

≤ |𝑈(𝑓) − 𝑈(𝑓, 𝑃 )| + |𝑈(𝑓, 𝑃 ) − 𝑅(𝑓, 𝑃 )| + |𝑅(𝑓, 𝑃 ) − 𝐴| < 𝜀
4 + 𝜀

4 + 𝜀
2 = 𝜀.

Since 𝜀 > 0 was arbitrary it follows that 𝑈(𝑓) = 𝐴. An analogous argument shows that 
𝐿(𝑓) = 𝐴 and thus 𝑈(𝑓) = 𝐿(𝑓), i.e. 𝑓 is integrable in the sense of Definition 7.2.7.

Exercise 7.2.7. Let 𝑓 : [𝑎, 𝑏] → 𝐑 be increasing on the set [𝑎, 𝑏] (i.e., 𝑓(𝑥) ≤ 𝑓(𝑦) when-
ever 𝑥 < 𝑦). Show that 𝑓 is integrable on [𝑎, 𝑏].

Solution. Let 𝜀 > 0 be given and let 𝑛 ∈ 𝐍 be such that

(𝑏 − 𝑎)(𝑓(𝑏) − 𝑓(𝑎))
𝑛

< 𝜀.

For 𝑘 ∈ {0, …, 𝑛} let 𝑥𝑘 = 𝑎 + 𝑘 𝑏−𝑎
𝑛  and let 𝑃  be the partition {𝑥0, …, 𝑥𝑛} of [𝑎, 𝑏]. Note that,

since 𝑓 is increasing on [𝑎, 𝑏], we have

𝑚𝑘 = 𝑓(𝑥𝑘−1) and 𝑀𝑘 = 𝑓(𝑥𝑘)

for each 𝑘 ∈ {1, …, 𝑛}. Hence

𝑈(𝑓, 𝑃 ) − 𝐿(𝑓, 𝑃 ) = ∑
𝑛

𝑘=1
(𝑀𝑘 − 𝑚𝑘)(𝑥𝑘 − 𝑥𝑘−1)

=
𝑏 − 𝑎

𝑛
∑

𝑛

𝑘=1
(𝑓(𝑥𝑘) − 𝑓(𝑥𝑘−1)) =

(𝑏 − 𝑎)(𝑓(𝑏) − 𝑓(𝑎))
𝑛

< 𝜀

and it follows from Theorem 7.2.8 that 𝑓 is integrable on [𝑎, 𝑏].
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7.3. Integrating Functions with Discontinuities

Exercise 7.3.1. Consider the function

ℎ(𝑥) = {1 for 0 ≤ 𝑥 < 1
2 for 𝑥 = 1

over the interval [0, 1].

(a) Show that 𝐿(𝑓, 𝑃 ) = 1 for every partition 𝑃  of [0, 1].

(b) Construct a partition 𝑃  for which 𝑈(𝑓, 𝑃 ) < 1 + 1/10.

(c) Given 𝜀 > 0, construct a partition 𝑃𝜀 for which 𝑈(𝑓, 𝑃𝜀) < 1 + 𝜀.

Solution.

(a) Let 𝑃 = {𝑥0, 𝑥1, …, 𝑥𝑛} be a partition of [0, 1]. For any 1 ≤ 𝑘 ≤ 𝑛 we have

𝑚𝑘 = inf{𝑓(𝑥) : 𝑥 ∈ [𝑥𝑘−1, 𝑥𝑘]} = 1

and thus

𝐿(𝑓, 𝑃 ) = ∑
𝑛

𝑘=1
𝑚𝑘Δ𝑥𝑘 = ∑

𝑛

𝑘=1
Δ𝑥𝑘 = 1 − 0 = 1.

(b) Let 𝑥0 = 0, 𝑥1 = 19
20 , 𝑥2 = 1, and let 𝑃  be the partition {𝑥0, 𝑥1, 𝑥2} of [0, 1]. Observe

that 𝑀1 = 1 and 𝑀2 = 2; it follows that

𝑈(𝑓, 𝑃 ) = 𝑀1(𝑥1 − 𝑥0) + 𝑀2(𝑥2 − 𝑥1) = 2 − 𝑥1 = 21
20 = 1 + 1

20 < 1 + 1
10 .

(c) Let 𝑥0 = 0, 𝑥1 = max{1
2 , 1 − 𝜀

2}, 𝑥2 = 1, and let 𝑃  be the partition {𝑥0, 𝑥1, 𝑥2} of [0, 1].
Observe that 𝑀1 = 1 and 𝑀2 = 2; it follows that

𝑈(𝑓, 𝑃 ) = 𝑀1(𝑥1 − 𝑥0) + 𝑀2(𝑥2 − 𝑥1) = 2 − 𝑥1 ≤ 1 + 𝜀
2 < 1 + 𝜀.
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Exercise 7.3.2. Recall that Thomae’s function

𝑡(𝑥) =

⎩{
⎨
{⎧1 if 𝑥 = 0

1/𝑛 if 𝑥 = 𝑚/𝑛 ∈ 𝐐 ∖ {0} is in lowest terms with 𝑛 > 0
0 if 𝑥 ∉ 𝐐

has a countable set of discontinuities occurring at precisely every rational number. Fol-
low these steps to prove 𝑡(𝑥) is integrable on [0, 1] with ∫1

0
𝑡 = 0.

(a) First argue that 𝐿(𝑡, 𝑃 ) = 0 for any partition 𝑃  of [0, 1].

(b) Let 𝜀 > 0, and consider the set of points 𝐷𝜀/2 = {𝑥 ∈ [0, 1] : 𝑡(𝑥) ≥ 𝜀/2}. How big
is 𝐷𝜀/2?

(c) To complete the argument, explain how to construct a partition 𝑃𝜀 of [0, 1] so that
𝑈(𝑡, 𝑃𝜀) < 𝜀.

Solution.

(a) Let 𝑃 = {𝑥0, 𝑥1, …, 𝑥𝑛} be an arbitrary partition of [0, 1]. The irrationals are dense in
𝐑, so any subinterval [𝑥𝑘−1, 𝑥𝑘] contains an irrational number 𝑦. Since 𝑡(𝑦) = 0 and 
𝑡(𝑥) ≥ 0 for all 𝑥 ∈ [0, 1], it follows that 𝑚𝑘 = 0 and hence that 𝐿(𝑡, 𝑃 ) = 0.

(b) Since 0 ≤ 𝑡(𝑥) ≤ 1 for all 𝑥 ∈ [0, 1], if 𝜀
2 > 1 then 𝐷𝜀/2 is empty. Suppose therefore that

0 < 𝜀
2 ≤ 1 and let 𝑁  be the smallest positive integer such that 1

𝑁 < 𝜀
2 . It follows that

𝐷𝜀/2 consists precisely of those rational numbers 𝑚𝑛 ∈ [0, 1] (in lowest terms with 𝑛 > 0)
with 1 ≤ 𝑛 ≤ 𝑁 , of which there are only finitely many. Thus 𝐷𝜀/2 is finite for any 𝜀 > 0.

(c) Let 𝜀 > 0 be given. If 𝐷𝜀/2 is empty, i.e. if 0 ≤ 𝑡(𝑥) < 𝜀
2  for all 𝑥 ∈ [0, 1], then let 𝑃𝜀 be

the partition {0, 1} of [0, 1]. For this partition we have

𝑈(𝑡, 𝑃𝜀) = sup{𝑡(𝑥) : 𝑥 ∈ [0, 1]} ≤ 𝜀
2 < 𝜀.

Now suppose that 𝐷𝜀/2 is not empty; by part (b) it must be the case that 𝐷𝜀/2 is finite,
say 𝐷𝜀/2 = {𝑦1, …, 𝑦𝑚} for some 𝑚 ∈ 𝐍 and some 𝑦1, …, 𝑦𝑚 ∈ [0, 1]. Let 𝑃𝜀 be the evenly
spaced partition {𝑥0, …, 𝑥𝑛} of [0, 1] satisfying Δ𝑥𝑘 < 𝜀

2(𝑚+1)  for each 𝑘 ∈ {1, …, 𝑛}.
Decompose the set {1, …, 𝑛} into the disjoint union 𝐴 ∪ 𝐴c, where

𝐴 = {𝑘 ∈ {1, …, 𝑛} : there exists 𝑗 ∈ {1, …, 𝑚} such that 𝑦𝑗 ∈ [𝑥𝑘−1, 𝑥𝑘]}.

Observe that

𝑈(𝑡, 𝑃𝜀) = ∑
𝑛

𝑘=1
𝑀𝑘Δ𝑥𝑘 = ∑

𝑘∈𝐴
𝑀𝑘Δ𝑥𝑘 + ∑

𝑘∉𝐴
𝑀𝑘Δ𝑥𝑘. (1)

Note that 𝐴 can contain at most 𝑚 + 1 elements and also that 𝑀𝑘 ≤ 1 for any
𝑘 ∈ {1, …, 𝑛}. It follows that

∑
𝑘∈𝐴

𝑀𝑘Δ𝑥𝑘 < ∑
𝑘∈𝐴

𝜀
2(𝑚 + 1)

≤ (𝑚 + 1)
𝜀

2(𝑚 + 1)
= 𝜀

2 . (2)
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Now suppose that 𝑘 ∈ {1, …, 𝑛} is such that 𝑘 ∉ 𝐴, so that 𝑓(𝑥) < 𝜀
2  for all

𝑥 ∈ [𝑥𝑘−1, 𝑥𝑘]. Then 𝑀𝑘 ≤ 𝜀
2  and it follows that

∑
𝑘∉𝐴

𝑀𝑘Δ𝑥𝑘 ≤ 𝜀
2 ∑

𝑘∉𝐴
Δ𝑥𝑘 ≤ 𝜀

2 ∑
𝑛

𝑘=1
Δ𝑥𝑘 = 𝜀

2 . (3)

Combining (1), (2), and (3), we see that 𝑈(𝑡, 𝑃𝜀) < 𝜀.

We have now shown that for any 𝜀 > 0 there exists a partition 𝑃𝜀 of [0, 1] such that
𝑈(𝑡, 𝑃𝜀) < 𝜀. From part (a) we have 𝐿(𝑡, 𝑃𝜀) = 0 and hence 𝑈(𝑡, 𝑃𝜀) − 𝐿(𝑡, 𝑃𝜀) < 𝜀.
Thus 𝑡 is integrable on [0, 1]. Part (a) also shows that ∫1

0
𝑡 = 𝐿(𝑡) = 0.

Exercise 7.3.3. Let

𝑓(𝑥) = {1 if 𝑥 = 1/𝑛 for some 𝑛 ∈ 𝐍
0 otherwise.

Show that 𝑓 is integrable on [0, 1] and compute ∫1
0

𝑓 .

Solution. Let 𝑃 = {𝑥0, …, 𝑥𝑛} be an arbitrary partition of [0, 1]. The irrationals are dense
in 𝐑, so any subinterval [𝑥𝑘−1, 𝑥𝑘] contains an irrational number 𝑦. Since 𝑓(𝑦) = 0 and 
𝑓(𝑥) ≥ 0 for all 𝑥 ∈ [0, 1], it follows that 𝑚𝑘 = 0 and hence that 𝐿(𝑡, 𝑃 ) = 0. Because 𝑃  was
an arbitrary partition of [0, 1], we have also shown that 𝐿(𝑓) = 0; once we show that 𝑓 is
integrable on [0, 1] it will follow that ∫1

0
𝑓 = 0.

Let 𝑐 ∈ (0, 1) be given and let 𝑁  be the smallest natural number such that 1
𝑁+1 < 𝑐. Observe

that the restriction of 𝑓 to [𝑐, 1] is the function

𝑓(𝑥) = {1 if 𝑥 = 1, 1
2 , …, 1

𝑁 ,
0 otherwise.

For 𝑛 ∈ 𝐍, let 𝑃𝑛 = {𝑥0, …, 𝑥𝑛} be the evenly spaced partition of [𝑐, 1] satisfying Δ𝑥𝑘 ≤ 1
𝑛 .

If we take 𝑛 large enough so that 𝑛 ≥ 𝑁  and each of the points 1, 1
2 , …, 1

𝑁  belongs to exactly
one of the subintervals [𝑥𝑘−1, 𝑥𝑘], then 𝑀𝑘 = 1 for exactly 𝑁  indices 𝑘 and 𝑀𝑘 = 0 otherwise;
it follows that 𝑈(𝑓, 𝑃𝑛) eventually satisfies

𝑈(𝑓, 𝑃𝑛) = ∑
𝑛

𝑘=1
𝑀𝑘Δ𝑥𝑘 ≤

𝑁
𝑛

.

Since 𝐿(𝑓, 𝑃𝑛) = 0 by our previous discussion, the squeeze theorem gives us

lim
𝑛→∞

[𝑈(𝑓, 𝑃𝑛) − 𝐿(𝑓, 𝑃𝑛)] = 0.

Thus, by Exercise 7.2.3, 𝑓 is integrable on [𝑐, 1]. Theorem 7.3.2 allows us to conclude that 
𝑓 is integrable on [0, 1].
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Exercise 7.3.4. Let 𝑓 and 𝑔 be functions defined on (possibly different) closed intervals,
and assume the range of 𝑓 is contained in the domain of 𝑔 so that the composition 𝑔 ∘ 𝑓
is properly defined.

(a) Show, by example, that it is not the case that if 𝑓 and 𝑔 are integrable, then 𝑔 ∘ 𝑓
is integrable.

Now decide on the validity of each of the following conjectures, supplying a proof
or counterexample as appropriate.

(b) If 𝑓 is increasing and 𝑔 is integrable, then 𝑔 ∘ 𝑓 is integrable.

(c) If 𝑓 is integrable and 𝑔 is increasing, then 𝑔 ∘ 𝑓 is integrable.

Solution.

(a) Let 𝑓 : [0, 1] → 𝐑 be Thomae’s function as defined in Exercise 7.3.2 as we showed there,
𝑓 is integrable. Let 𝑔 : [0, 1] → 𝐑 be given by

𝑔(𝑥) = {0 if 𝑥 = 0,
1 if 0 < 𝑥 ≤ 1.

Theorem 7.3.2 shows that 𝑔 is also integrable. However, note that since 𝑓(𝑥) = 0 for
irrational 𝑥 and 0 < 𝑓(𝑥) ≤ 1 for rational 𝑥, the composition 𝑔 ∘ 𝑓 : [0, 1] → 𝐑 is in fact
Dirichlet’s function, which was shown to be non-integrable in Example 7.3.3.

(b) This is false, however the only counterexample I know of is quite involved and uses
material from Section 7.6.

(c) See part (a) for a counterexample.

Exercise 7.3.5. Provide an example or give a reason why the request is impossible.

(a) A sequence (𝑓𝑛) → 𝑓 pointwise, where each 𝑓𝑛 has at most a finite number of
discontinuities but 𝑓 is not integrable.

(b) A sequence (𝑔𝑛) → 𝑔 uniformly where each 𝑔𝑛 has at most a finite number of dis-
continuities and 𝑔 is not integrable.

(c) A sequence (ℎ𝑛) → ℎ uniformly where each ℎ𝑛 is not integrable but ℎ is integrable.

Solution.

(a) Define 𝑓 : [0, 1] → 𝐑 and, for each 𝑛 ∈ 𝐍, 𝑓𝑛 : [0, 1] → 𝐑 by

𝑓𝑛(𝑥) =
⎩{
⎨
{⎧ 1

𝑥 if 𝑥 ∈ [ 1
𝑛 , 1],

0 if 𝑥 ∈ [0, 1
𝑛),

𝑓(𝑥) = {
1
𝑥 if 𝑥 ∈ (0, 1],
0 if 𝑥 = 0.

Then (𝑓𝑛) → 𝑓 pointwise, each 𝑓𝑛 has exactly one discontinuity at 𝑥 = 1
𝑛 , but 𝑓 is not

bounded and hence is not integrable.
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(b) This is impossible. As discussed after Theorem 7.3.2, each 𝑔𝑛 must be integrable.
Exercise 7.2.5 then shows that 𝑔 is integrable.

(c) For each 𝑛 ∈ 𝐍 define ℎ𝑛 : [0, 1] → 𝐑 by

ℎ𝑛(𝑥) = {
1
𝑛 if 𝑥 ∈ 𝐐,
0 if 𝑥 ∉ 𝐐,

and let ℎ : [0, 1] → 𝐑 be identically zero. Then ℎ is certainly integrable and a small
modification of the argument given in Example 7.3.3 shows that each ℎ𝑛 is not inte-
grable. Furthermore, since

sup{|ℎ𝑛(𝑥) − ℎ(𝑥)| : 𝑥 ∈ [0, 1]} = 1
𝑛 → 0,

we have uniform convergence (ℎ𝑛) → ℎ.

Exercise 7.3.6. Let {𝑟1, 𝑟2, 𝑟3, …} be an enumeration of all the rationals in [0, 1], and
define

𝑔𝑛(𝑥) = {1 if 𝑥 = 𝑟𝑛,
0 otherwise.

(a) Is 𝐺(𝑥) = ∑∞
𝑛=1 𝑔𝑛(𝑥) integrable on [0, 1]?

(b) Is 𝐹(𝑥) = ∑∞
𝑛=1 𝑔𝑛(𝑥)/𝑛 integrable on [0, 1]?

Solution.

(a) For irrational 𝑥 ∈ [0, 1] we have 𝑔𝑛(𝑥) = 0 for all 𝑛 ∈ 𝐍 and thus 𝐺(𝑥) = 0. If 𝑥 ∈ [0, 1]
is rational then 𝑥 = 𝑟𝑁  for some 𝑁 ∈ 𝐍. Since 𝑔𝑁(𝑟𝑁) = 1 and 𝑔𝑛(𝑟𝑁) = 0 for 𝑛 ≠ 𝑁 ,
we have 𝐺(𝑟𝑁) = 1. Hence 𝐺 is in fact Dirichlet’s function, which is not integrable
(Example 7.3.3).

(b) We claim that 𝐹  is integrable on [0, 1]; notice that

𝐹(𝑥) = {
1
𝑛 if 𝑥 = 𝑟𝑛 ∈ 𝐐,
0 if 𝑥 ∉ 𝐐

The density of the irrationals in 𝐑 implies that 𝐿(𝐹 , 𝑃 ) = 0 for any partition 𝑃  of 
[0, 1]. Let 𝜀 > 0 be given and let 𝐷 = {𝑥 ∈ [0, 1] : 𝐹 (𝑥) ≥ 𝜀

2}. If 𝜀
2 > 1 then 𝐷 is empty,

since 0 ≤ 𝐹(𝑥) ≤ 1 for all 𝑥 ∈ [0, 1]. If 𝜀
2 ≤ 1 then let 𝑁  be the smallest positive integer

such that 1
𝑁 < 𝜀

2 ; note that 𝑁 ≥ 2. It follows that 𝐷 = {𝑟1, …, 𝑟𝑁−1}, so that 𝐷 is finite.
We may now argue as in Exercise 7.3.2 (c) to obtain a partition 𝑃𝜀 of [0, 1] such that 
𝑈(𝐹 , 𝑃𝜀) < 𝜀. Since 𝐿(𝐹 , 𝑃𝜀) = 0 it follows that

𝑈(𝐹 , 𝑃𝜀) − 𝐿(𝐹 , 𝑃𝜀) < 𝜀.

Thus 𝐹  is integrable on [0, 1]. Furthermore, ∫1
0

𝐹 = 𝐿(𝐹) = 0.

306 / 415



Exercise 7.3.7. Assume 𝑓 : [𝑎, 𝑏] → 𝐑 is integrable.

(a) Show that if 𝑔 satisfies 𝑔(𝑥) = 𝑓(𝑥) for all but a finite number of points in [𝑎, 𝑏]
then 𝑔 is integrable as well.

(b) Find an example to show that 𝑔 may fail to be integrable if it differs from 𝑓 at a
countable number of points.

Solution.

(a) Let 𝐷 = {𝑥 ∈ [𝑎, 𝑏] : 𝑓(𝑥) ≠ 𝑔(𝑥)}. If 𝐷 is empty then it is clear that 𝑔 is integrable, so
suppose that 𝐷 = {𝑐1, …, 𝑐𝑑} for some 𝑑 ∈ 𝐍 and 𝑐1, …, 𝑐𝑑 ∈ [𝑎, 𝑏]. Let 𝜀 > 0 be given.
Because 𝑓 is integrable, there exists a partition 𝑄1 of [𝑎, 𝑏] such that

𝑈(𝑓, 𝑄) − 𝐿(𝑓, 𝑄) < 𝜀.

The integrability of 𝑓 also implies that 𝑓 is bounded; since 𝑔 differs from 𝑓 at only
finitely many points, 𝑔 must also be bounded, say by 𝑅 > 0. Let 𝑄2 be the evenly
spaced partition of [𝑎, 𝑏] whose subintervals have length less than 𝜀

4𝑅(𝑑+1)  and let

𝑃 = 𝑄1 ∪ 𝑄2 = {𝑥0, …, 𝑥𝑛}

be the common refinement of 𝑄1 and 𝑄2. Note that Δ𝑥𝑘 < 𝜀
4𝑅(𝑑+1) . Let

𝑀𝑔
𝑘 = sup{𝑔(𝑥) : 𝑥 ∈ [𝑥𝑘−1, 𝑥𝑘]} and 𝑚𝑔

𝑘 = inf{𝑔(𝑥) : 𝑥 ∈ [𝑥𝑘−1, 𝑥𝑘]}

and define 𝑀𝑓
𝑘  and 𝑚𝑓

𝑘 similarly. Decompose the set {1, …, 𝑛} into the disjoint union 
𝐴 ∪ 𝐴c, where

𝐴 = {𝑘 ∈ {1, …, 𝑛} : there exists 𝑗 ∈ {1, …, 𝑑} such that 𝑐𝑘 ∈ [𝑥𝑘−1, 𝑥𝑘]},

so that

𝑈(𝑔, 𝑃 ) − 𝐿(𝑔, 𝑃 ) = ∑
𝑘∈𝐴

(𝑀𝑔
𝑘 − 𝑚𝑔

𝑘)Δ𝑥𝑘 + ∑
𝑘∉𝐴

(𝑀𝑔
𝑘 − 𝑚𝑔

𝑘)Δ𝑥𝑘. (1)

Note that 𝐴 can contain at most 𝑑 + 1 elements and also that 𝑀𝑔
𝑘 − 𝑚𝑔

𝑘 ≤ 2𝑅 for any
𝑘 ∈ {1, …, 𝑛}. It follows that

∑
𝑘∈𝐴

(𝑀𝑔
𝑘 − 𝑚𝑔

𝑘)Δ𝑥𝑘 < ∑
𝑘∈𝐴

2𝑅
𝜀

4𝑅(𝑑 + 1)
≤ (𝑑 + 1)

𝜀
2(𝑑 + 1)

= 𝜀
2 . (2)

Now suppose that 𝑘 ∈ {1, …, 𝑛} is such that 𝑘 ∉ 𝐴, so that 𝑓(𝑥) = 𝑔(𝑥) for all
𝑥 ∈ [𝑥𝑘−1, 𝑥𝑘]. It follows that 𝑀𝑔

𝑘 − 𝑚𝑔
𝑘 = 𝑀𝑓

𝑘 − 𝑚𝑓
𝑘 and thus

∑
𝑘∉𝐴

(𝑀𝑔
𝑘 − 𝑚𝑔

𝑘)Δ𝑥𝑘 = ∑
𝑘∉𝐴

(𝑀𝑓
𝑘 − 𝑚𝑓

𝑘)Δ𝑥𝑘 ≤ ∑
𝑛

𝑘=1
(𝑀𝑓

𝑘 − 𝑚𝑓
𝑘)Δ𝑥𝑘

= 𝑈(𝑓, 𝑃 ) − 𝐿(𝑓, 𝑃 ) ≤ 𝑈(𝑓, 𝑄1) − 𝐿(𝑓, 𝑄1) < 𝜀
2 .

Combining this inequality with (1) and (2), we see that 𝑈(𝑔, 𝑃 ) − 𝐿(𝑔, 𝑃 ) < 𝜀. Thus 𝑔
is integrable on [𝑎, 𝑏].
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(b) Let 𝑓 : [0, 1] → 𝐑 be identically zero, so that 𝑓 is certainly integrable, and let
𝑔 : [0, 1] → 𝐑 be Dirichlet’s function. Then 𝑔 differs from 𝑓 precisely on the countable
set 𝐐 ∩ [0, 1] and yet 𝑔 is not integrable.

Exercise 7.3.8. As in Exercise 7.3.6, let {𝑟1, 𝑟2, 𝑟3, …} be an enumeration of the ratio-
nals in [0, 1], but this time define

ℎ𝑛(𝑥) = {
1 if 𝑟𝑛 < 𝑥 ≤ 1
0 if 0 ≤ 𝑥 ≤ 𝑟𝑛.

Show 𝐻(𝑥) = ∑∞
𝑛=1 ℎ𝑛(𝑥)/2𝑛 is integrable on [0, 1] even though it has discontinuities

at every rational point.

Solution. For a given 𝑁 ∈ 𝐍 let ∑𝑁
𝑛=1 ℎ𝑛(𝑥)/2𝑛 and order the rationals {𝑟1, …, 𝑟𝑁} as

0 ≤ 𝑟𝑖1 < ⋯ < 𝑟𝑖𝑁 ≤ 1. Then

𝐻𝑁(𝑥) =

⎩
{{
{{
⎨
{{
{{
⎧0 if 𝑥 ∈ [0, 𝑟𝑖1 ],

1
2 if 𝑥 ∈ (𝑟𝑖1 , 𝑟𝑖2 ],
3
4 if 𝑥 ∈ (𝑟𝑖2 , 𝑟𝑖3 ],
⋮ ⋮
1 − 2−𝑁 if 𝑥 ∈ (𝑟𝑖𝑁 , 1].

Thus 𝐻𝑁  is piecewise-constant on [0, 1]. It is straightforward to argue that such functions
are integrable (this is implied by Theorem 7.3.2 or Theorem 7.4.1). Now observe that

|
ℎ𝑛(𝑥)

2𝑛 | ≤
1
2𝑛

for each 𝑛 ∈ 𝐍. The Weierstrass M-Test (Corollary 6.4.5) now implies that 𝐻𝑁  converges
uniformly to 𝐻; it follows from Exercise 7.2.5 that 𝐻 is integrable on [0, 1].
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Exercise 7.3.9 (Content Zero). A set 𝐴 ⊆ [𝑎, 𝑏] has content zero if for every 𝜀 > 0
there exists a finite collection of open intervals {𝑂1, 𝑂2, …, 𝑂𝑁} that contain 𝐴 in their
union and whose lengths sum to 𝜀 or less. Using |𝑂𝑛| to refer to the length of each
interval, we have

𝐴 ⊆ ⋃
𝑁

𝑛=1
𝑂𝑛 and ∑

𝑁

𝑛=1
|𝑂𝑛| ≤ 𝜀.

(a) Let 𝑓 be bounded on [𝑎, 𝑏]. Show that if the set of discontinuous points of 𝑓 has
content zero, then 𝑓 is integrable.

(b) Show that any finite set has content zero.

(c) Content zero sets do not have to be finite. They do not have to be countable. Show
that the Cantor set 𝐶 defined in Section 3.1 has content zero.

(d) Prove that

ℎ(𝑥) = {1 if 𝑥 ∈ 𝐶
0 if 𝑥 ∉ 𝐶,

is integrable, and find the value of the integral.

Solution.

(a) Suppose 𝑓 is bounded by 𝑅 > 0 on [𝑎, 𝑏] and let 𝜀 > 0 be given. Because the set of
discontinuous points of 𝑓 has content zero, we can choose a partition 𝑄 of [𝑎, 𝑏] such
that the discontinuities of 𝑓 are contained in the interiors of subintervals whose total
length is strictly less than 𝜀

4𝑅 . Letting 𝐾 be the union of the remaining subintervals,
we have that 𝑓 is continuous on 𝐾 and also that 𝐾 is compact, being a finite union of
closed and bounded intervals. Thus 𝑓 is uniformly continuous on 𝐾 and, as in the proof
of Theorem 7.2.9, we may refine the partition 𝑄, subdividing 𝐾 as necessary, to obtain
a partition 𝑃 = {𝑥0, …, 𝑥𝑛} of [𝑎, 𝑏] such that the indices {1, …, 𝑛} can be expressed as
the disjoint union 𝐴 ∪ 𝐵, where

(i) 𝑓 is continuous on ⋃𝑘∈𝐴[𝑥𝑘−1, 𝑥𝑘] and 𝑀𝑘 − 𝑚𝑘 < 𝜀
2(𝑏−𝑎)  for 𝑘 ∈ 𝐴;

(ii) the discontinuities of 𝑓 are contained inside ⋃𝑘∈𝐵(𝑥𝑘−1, 𝑥𝑘) and ∑𝑘∈𝐵 Δ𝑥𝑘 < 𝜀
4𝑅 .

It follows that

𝑈(𝑓, 𝑃 ) − 𝐿(𝑓, 𝑃 ) = ∑
𝑛

𝑘=1
(𝑀𝑘 − 𝑚𝑘)Δ𝑥𝑘

= ∑
𝑘∈𝐴

(𝑀𝑘 − 𝑚𝑘)Δ𝑥𝑘 + ∑
𝑘∈𝐵

(𝑀𝑘 − 𝑚𝑘)Δ𝑥𝑘

<
𝜀

2(𝑏 − 𝑎)
∑
𝑘∈𝐴

Δ𝑥𝑘 + 2𝑅 ∑
𝑘∈𝐵

Δ𝑥𝑘

< 𝜀
2 + 𝜀

2 = 𝜀.
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Thus 𝑓 is integrable on [𝑎, 𝑏].

(b) Let 𝐴 ⊆ 𝐑 be finite and let 𝜀 > 0 be given. If 𝐴 is empty then the open interval (−𝜀
2 , 𝜀

2)
suffices to show that 𝐴 has content zero. Suppose therefore that 𝐴 is not empty, say 
𝐴 = {𝑥1, …, 𝑥𝑁}. For each 𝑛 ∈ {1, …, 𝑛} let

𝑂𝑛 = (𝑥𝑛 − 𝜀
2𝑁 , 𝑥𝑛 + 𝜀

2𝑁 ).

Then 𝐴 ⊆ ⋃𝑁
𝑛=1 𝑂𝑛 and

∑
𝑁

𝑛=1
|𝑂𝑛| = ∑

𝑁

𝑛=1

𝜀
𝑁

= 𝜀.

Thus 𝐴 has content zero.

(c) Recall from Section 3.1 that the Cantor set 𝐶 is defined as the intersection
𝐶 = ⋂∞

𝑛=0 𝐶𝑛, where each 𝐶𝑛 consists of 2𝑛 closed intervals each of length 3−𝑛 and
such that

⋯ ⊆ 𝐶2 ⊆ 𝐶1 ⊆ 𝐶0 = [0, 1].

Let 𝜀 > 0 be given and choose 𝑁 ∈ 𝐍 such that

(
2
3
)

𝑁

+ (
1
10

)
𝑁

< 𝜀.

The set 𝐶𝑁  consists of 2𝑁  closed intervals each of length 3−𝑁 ; suppose there intervals
are [𝑥𝑘, 𝑦𝑘] for 1 ≤ 𝑘 ≤ 2𝑁 , so that 𝑦𝑘 − 𝑥𝑘 = 3−𝑁 . For each 1 ≤ 𝑘 ≤ 2𝑁 , let

𝑂𝑘 = (𝑥𝑘 −
1

2𝑁+110𝑁 , 𝑦𝑘 +
1

2𝑁+110𝑁 ),

so that [𝑥𝑘, 𝑦𝑘] ⊆ 𝑂𝑘 and

|𝑂𝑘| =
1

3𝑁 +
1

2𝑁10𝑁 .

Now observe that

𝐶 = ⋂
∞

𝑛=0
𝐶𝑛 ⊆ 𝐶𝑁 = ⋃

2𝑁

𝑘=1
[𝑥𝑘, 𝑦𝑘] ⊆ ⋃

2𝑁

𝑘=1
𝑂𝑘

and ∑
2𝑁

𝑘=1
|𝑂𝑘| = ∑

2𝑁

𝑘=1
(

1
3𝑁 +

1
2𝑁10𝑁 ) = (

2
3
)

𝑁

+ (
1
10

)
𝑁

< 𝜀.

Thus 𝐶 has content zero.

(d) Let

𝐷ℎ = {𝑥 ∈ 𝐑 : ℎ is not continuous at 𝑥}.

We claim that 𝐷ℎ = 𝐶. First, suppose that 𝑥 ∉ 𝐶. Since 𝐶 is closed, the complement
of 𝐶 is open and thus there exists some 𝛿 > 0 such that (𝑥 − 𝛿, 𝑥 + 𝛿) ⊆ 𝐶c. Thus ℎ is
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constant on the proper interval (𝑥 − 𝛿, 𝑥 + 𝛿); it follows that ℎ is continuous at 𝑥. Now
suppose that 𝑥 ∈ 𝐶. To show that ℎ is not continuous at 𝑥, it will suffice to show that
for any 𝛿 > 0 there exists some 𝑦 ∈ (𝑥 − 𝛿, 𝑥 + 𝛿) such that 𝑦 ∉ 𝐶. The existence of
some 𝛿 such that this does not hold implies that 𝐶 contains a proper interval. However,
𝐶 cannot contain any proper intervals since it is totally disconnected (Exercise 3.4.8).
Thus ℎ is not continuous at 𝑥 and our claim follows.

Abbott does not specify an interval to integrate ℎ over, but in fact ℎ is integrable over
any interval [𝑎, 𝑏] for 𝑎 < 𝑏. Let 𝑔 : [𝑎, 𝑏] → 𝐑 be the restriction of ℎ to [𝑎, 𝑏]. Then

𝐷𝑔 = {𝑥 ∈ [𝑎, 𝑏] : 𝑔 is not continuous at 𝑥} = 𝐷ℎ ∩ [𝑎, 𝑏] = 𝐶 ∩ [𝑎, 𝑏].

It is straightforward to verify that if a set has content zero then the intersection of
that set with any other set also has content zero. Thus, by part (c), 𝐷𝑔 has content
zero and it follows from part (a) that 𝑔 is integrable. To calculate the integral of 𝑔,
let 𝑃  be any partition of [𝑎, 𝑏]. As we noted before, 𝐶 does not contain any proper
intervals. It follows that any subinterval [𝑥𝑘−1, 𝑥𝑘] of the partition 𝑃  contains some 
𝑥 ∉ 𝐶, whence 𝑔(𝑥) = 0. Thus 𝐿(𝑔, 𝑃 ) = 0 and, because 𝑃  was an arbitrary partition
of [𝑎, 𝑏], it follows that

∫
𝑏

𝑎
𝑔 = 𝐿(𝑔) = 0.
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7.4. Properties of the Integral

Exercise 7.4.1. Let 𝑓 be a bounded function on a set 𝐴, and set

𝑀 = sup{𝑓(𝑥) : 𝑥 ∈ 𝐴}, 𝑚 = inf{𝑓(𝑥) : 𝑥 ∈ 𝐴},

𝑀 ′ = sup{|𝑓(𝑥)| : 𝑥 ∈ 𝐴}, and 𝑚′ = inf{|𝑓(𝑥)| : 𝑥 ∈ 𝐴}.

(a) Show that 𝑀 − 𝑚 ≥ 𝑀 ′ − 𝑚′.

(b) Show that if 𝑓 is integrable on the interval [𝑎, 𝑏], then |𝑓| is also integrable on this
interval.

(c) Provide the details for the argument that in this case we have |∫𝑏
𝑎

𝑓| ≤ ∫𝑏
𝑎
|𝑓|.

Solution.

(a) Let 𝜀 > 0 be given. By Lemma 1.3.8 and Exercise 1.3.1 (b), there exist 𝑥, 𝑦 ∈ 𝐴 such
that

𝑀 ′ − 𝜀
2 < |𝑓(𝑥)| and |𝑓(𝑦)| < 𝑚′ + 𝜀

2 .

It follows that

𝑀 ′ − 𝑚′ − 𝜀 < |𝑓(𝑥)| − |𝑓(𝑦)| ≤ |𝑓(𝑥) − |𝑓(𝑦)|| ≤ |𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑀 − 𝑚;

we have used the reverse triangle inequality (Exercise 1.2.6 (d)) for the third inequality.
We have now shown that for all 𝜀 > 0 the inequality 𝑀 ′ − 𝑚′ ≤ 𝑀 − 𝑚 − 𝜀 holds and
hence, by Exercise 1.2.10 (c), we may conclude that 𝑀 ′ − 𝑚′ ≤ 𝑀 − 𝑚.

(b) Let 𝜀 > 0 be given. Because 𝑓 is integrable on [𝑎, 𝑏] there exists a partition 𝑃  of [𝑎, 𝑏]
such that 𝑈(𝑓, 𝑃 ) − 𝐿(𝑓, 𝑃 ) < 𝜀. By part (a) we then have

𝑈(|𝑓|, 𝑃 ) − 𝐿(|𝑓|, 𝑃 ) ≤ 𝑈(𝑓, 𝑃 ) − 𝐿(𝑓, 𝑃 ) < 𝜀.

Thus |𝑓| is integrable on [𝑎, 𝑏].

(c) Since 𝑓(𝑥) ≤ |𝑓(𝑥)| for all 𝑥 ∈ [𝑎, 𝑏], Theorem 7.4.2 (iv) implies that

∫
𝑏

𝑎
𝑓 ≤ ∫

𝑏

𝑎
|𝑓|. (1)

Similarly, since −𝑓(𝑥) ≤ |𝑓(𝑥)| for all 𝑥 ∈ [𝑎, 𝑏] we have ∫𝑏
𝑎

−𝑓 ≤ ∫𝑏
𝑎
|𝑓| and it follows

from Theorem 7.4.2 (ii) that

− ∫
𝑏

𝑎
𝑓 ≤ ∫

𝑏

𝑎
|𝑓|. (2)

Combining (1) and (2), we see that |∫𝑏
𝑎

𝑓| ≤ ∫𝑏
𝑎
|𝑓|.
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Exercise 7.4.2.

(a) Let 𝑔(𝑥) = 𝑥3, and classify each of the following as positive, negative, or zero.

(i) ∫
−1

0
𝑔 + ∫

1

0
𝑔 (ii) ∫

0

1
𝑔 + ∫

1

0
𝑔 (iii) ∫

−2

1
𝑔 + ∫

1

0
𝑔.

(b) Show that if 𝑏 ≤ 𝑎 ≤ 𝑐 and 𝑓 is integrable on the interval [𝑏, 𝑐], then it is still the
case that ∫𝑏

𝑎
𝑓 = ∫𝑐

𝑎
𝑓 + ∫𝑏

𝑐
𝑓 .

Solution.

(a) For (i) we have, by Definition 7.4.3,

∫
−1

0
𝑔 + ∫

1

0
𝑔 = − ∫

0

−1
𝑔 + ∫

1

0
𝑔.

By Theorem 7.4.1:

∫
1

0
𝑔 = ∫

1/2

0
𝑔 + ∫

1

1/2
𝑔.

As 𝑔(𝑥) ≥ 0 for all 𝑥 ∈ [0, 1
2], Theorem 7.4.2 (iv) implies that ∫1/2

0
𝑔 ≥ 0. Similarly,

since 𝑔(𝑥) ≥ 1
8  for all 𝑥 ∈ [1

2 , 1], we have by Theorem 7.4.2 (iv):

∫
1

1/2
𝑔 ≥ 1

8(1 − 1
2) = 1

16 > 0.

It follows that ∫1
0

𝑔 > 0. By splitting the integral ∫0
−1

𝑔 into ∫−1/2
−1

𝑔 + ∫0
−1/2

𝑔, we can
similarly show that ∫0

−1
𝑔 < 0. We may conclude that

∫
−1

0
𝑔 + ∫

1

0
𝑔 = − ∫

0

−1
𝑔 + ∫

1

0
𝑔 > 0.

For (ii) we have, by Definition 7.4.3,

∫
0

1
𝑔 + ∫

1

0
𝑔 = − ∫

1

0
𝑔 + ∫

1

0
𝑔 = 0.

For (iii) we have, by Definition 7.4.3 and Theorem 7.4.1,

∫
−2

1
𝑔 + ∫

1

0
𝑔 = − ∫

1

−2
𝑔 + ∫

1

0
𝑔 = −(∫

0

−2
+ ∫

1

0
𝑔) + ∫

1

0
𝑔

= − ∫
0

−2
𝑔 = −(∫

−1

−2
𝑔 + ∫

0

−1
𝑔).

Because 𝑔(𝑥) ≤ 0 for all 𝑥 ∈ [−1, 0], Theorem 7.4.2 (iv) implies that ∫0
−1

𝑔 ≤ 0. Simi-
larly, since 𝑔(𝑥) ≤ −1 for all 𝑥 ∈ [−2, −1], Theorem 7.4.2 (iv) gives us ∫−1

−2
𝑔 ≤ −1. It

follows that
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∫
−2

1
𝑔 + ∫

1

0
𝑔 = −(∫

−1

−2
𝑔 + ∫

0

−1
𝑔) ≥ 1 > 0.

(b) By Theorem 7.4.1 we have

∫
𝑐

𝑏
𝑓 = ∫

𝑎

𝑏
𝑓 + ∫

𝑐

𝑎
𝑓.

By Definition 7.4.3 this is equivalent to

− ∫
𝑏

𝑐
𝑓 = − ∫

𝑏

𝑎
𝑓 + ∫

𝑐

𝑎
𝑓,

which gives us

∫
𝑏

𝑎
𝑓 = ∫

𝑐

𝑎
𝑓 + ∫

𝑏

𝑐
𝑓.

Exercise 7.4.3. Decide which of the following conjectures is true and supply a short
proof. For those that are not true, give a counterexample.

(a) If |𝑓| is integrable on [𝑎, 𝑏], then 𝑓 is also integrable on this set.

(b) Assume 𝑔 is integrable and 𝑔(𝑥) ≥ 0 on [𝑎, 𝑏]. If 𝑔(𝑥) > 0 for an infinite number of
points 𝑥 ∈ [𝑎, 𝑏], then ∫𝑏

𝑎
𝑔 > 0.

(c) If 𝑔 is continuous on [𝑎, 𝑏] and 𝑔(𝑥) ≥ 0 with 𝑔(𝑦0) > 0 for at least one point
𝑦0 ∈ [𝑎, 𝑏], then ∫𝑏

𝑎
𝑔 > 0.

Solution.

(a) This is false. For a counterexample, let 𝑓 : [0, 1] → 𝐑 be given by

𝑓(𝑥) = {
1 if 𝑥 ∈ 𝐐,
−1 if 𝑥 ∉ 𝐐.

Then |𝑓(𝑥)| = 1 for all 𝑥 ∈ [0, 1], so that |𝑓| is integrable on [0, 1], but if 𝑓 were inte-
grable on [0, 1] then 𝑔(𝑥) = 1

2(𝑓(𝑥) + 1) would be integrable on [0, 1] by Theorem 7.4.2
—but 𝑔 is Dirichlet’s function, which is non-integrable on [0, 1] by Example 7.3.3.

(b) This is false. For a counterexample, see Exercise 7.3.3.

(c) This is true. Since 𝑔 is continuous at 𝑦0 there exists a 𝛿 > 0 such that

𝑔(𝑥) ∈ (𝑔(𝑦0) − 𝜀, 𝑔(𝑦0) + 𝜀)

for all 𝑥 ∈ 𝐼 , where 𝜀 = 𝑔(𝑦0)/2 > 0 and 𝐼 = [𝑎, 𝑏] ∩ (𝑦0 − 𝛿, 𝑦0 + 𝛿). In particular,

𝑔(𝑥) > 𝑔(𝑦0) − 𝜀 = 𝜀 > 0 for all 𝑥 ∈ 𝐼.

Let 𝑐 = inf 𝐼, 𝑑 = sup 𝐼 , and note that 0 < 2𝛿 ≤ 𝑑 − 𝑐 ≤ 𝑏 − 𝑎. By Theorem 7.4.1 we
have
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∫
𝑏

𝑎
𝑔 = ∫

𝑐

𝑎
𝑔 + ∫

𝑑

𝑐
𝑔 + ∫

𝑏

𝑑
𝑔.

Because 𝑔 is non-negative, Theorem 7.4.2 (iv) implies that ∫𝑐
𝑎

𝑔 ≥ 0 and ∫𝑏
𝑑

𝑔 ≥ 0. Fur-
thermore, Theorem 7.4.2 (iii) gives us

∫
𝑑

𝑐
𝑔 ≥ 𝜀(𝑑 − 𝑐) > 0.

We may conclude that ∫𝑏
𝑎

𝑔 = ∫𝑐
𝑎

𝑔 + ∫𝑑
𝑐

𝑔 + ∫𝑏
𝑑

𝑔 > 0.

Exercise 7.4.4. Show that if 𝑓(𝑥) > 0 for all 𝑥 ∈ [𝑎, 𝑏] and 𝑓 is integrable, then ∫𝑏
𝑎

𝑓 > 0.

Solution. Let us first prove the following lemma.

Lemma L.17. Suppose 𝑓 : [𝑎, 𝑏] → 𝐑 is integrable and satisfies ∫𝑏
𝑎

𝑓 = 0. Then for
every 𝜀 > 0 there exists a closed and bounded interval 𝐼 ⊆ [𝑎, 𝑏] such that 𝑓(𝑥) < 𝜀 for
all 𝑥 ∈ 𝐼 .

Proof. Because ∫𝑏
𝑎

𝑓 = 𝑈(𝑓) = 0, there exists a partition 𝑃 = {𝑥0, …, 𝑥𝑛} of [𝑎, 𝑏] such
that 0 ≤ 𝑈(𝑓, 𝑃 ) < 𝜀(𝑏 − 𝑎). If 𝑀𝑘 ≥ 𝜀 for all 𝑘 ∈ {1, …, 𝑛} then

𝑈(𝑓, 𝑃 ) = ∑
𝑛

𝑘=1
𝑀𝑘Δ𝑥𝑘 ≥ 𝜀 ∑

𝑛

𝑘=1
Δ𝑥𝑘 = 𝜀(𝑏 − 𝑎).

Given that 𝑈(𝑓, 𝑃 ) < 𝜀(𝑏 − 𝑎), it must be the case that there is some 𝑘 ∈ {1, …, 𝑛}
such that 𝑀𝑘 < 𝜀. The desired interval is then 𝐼 = [𝑥𝑘−1, 𝑥𝑘]. □

Now let us return to the exercise. It is immediate from Theorem 7.4.2 (iv) that ∫𝑏
𝑎

𝑓 ≥ 0.
Suppose that ∫𝑏

𝑎
𝑓 = 0; we will show that this leads to a contradiction. By Lemma L.17, there

exists a closed and bounded interval 𝐼1 ⊆ [𝑎, 𝑏] such that 𝑓(𝑥) < 1 for all 𝑥 ∈ 𝐼1. Theorem
7.4.1 shows that 𝑓 is integrable on 𝐼1. Furthermore, since 𝑓 is positive and ∫𝑏

𝑎
𝑓 = 0, the

integral of 𝑓 over 𝐼1 must also be zero. Lemma L.17 then implies that there is some closed
and bounded interval 𝐼2 ⊆ 𝐼1 such that 𝑓(𝑥) < 1

2  for all 𝑥 ∈ 𝐼2. Continuing in this manner,
we obtain a nested sequence of closed and bounded intervals

⋯ ⊆ 𝐼3 ⊆ 𝐼2 ⊆ 𝐼1 ⊆ [𝑎, 𝑏]

such that if 𝑥 ∈ 𝐼𝑛 then 𝑓(𝑥) < 1
𝑛 . The Nested Interval Property (Theorem 1.4.1) implies

that the intersection ⋂∞
𝑛=1 𝐼𝑛 is non-empty, so that there exists some 𝑥0 ∈ 𝐼𝑛 for each 𝑛 ∈ 𝐍,

which implies that 𝑓(𝑥0) < 1
𝑛  for all 𝑛 ∈ 𝐍. It follows that 𝑓(𝑥0) ≤ 0, contradicting the pos-

itivity of 𝑓 . We may conclude that ∫𝑏
𝑎

𝑓 > 0.

315 / 415



Exercise 7.4.5. Let 𝑓 and 𝑔 be integrable functions on [𝑎, 𝑏].

(a) Show that if 𝑃  is any partition of [𝑎, 𝑏], then

𝑈(𝑓 + 𝑔, 𝑃 ) ≤ 𝑈(𝑓, 𝑃 ) + 𝑈(𝑔, 𝑃 ).

Provide a specific example where the inequality is strict. What does the corre-
sponding inequality for lower sums look like?

(b) Review the proof of Theorem 7.4.2 (ii), and provide an argument for part (i) of
this theorem.

Solution.

(a) Let 𝑃 = {𝑥0, …, 𝑥𝑛} be a partition of [𝑎, 𝑏] and, for each 𝑘 ∈ {1, …, 𝑛}, let

𝑀𝑓
𝑘 = sup{𝑓(𝑥) : 𝑥 ∈ [𝑥𝑘−1, 𝑥𝑘]};

define 𝑀𝑔
𝑘  and 𝑀𝑓+𝑔

𝑘  similarly. Let 𝑘 ∈ {1, …, 𝑛} be given. For any 𝜀 > 0, Lemma 1.3.8
implies that there is some 𝑥 ∈ [𝑥𝑘−1, 𝑥𝑘] such that

𝑀𝑓+𝑔
𝑘 − 𝜀 < 𝑓(𝑥) + 𝑔(𝑥) ≤ 𝑀𝑓

𝑘 + 𝑀𝑔
𝑘 .

So for any 𝜀 > 0 we have 𝑀𝑓+𝑔
𝑘 ≤ 𝑀𝑓

𝑘 + 𝑀𝑔
𝑘 + 𝜀; Exercise 1.2.10 (c) allows us to con-

clude that 𝑀𝑓+𝑔
𝑘 ≤ 𝑀𝑓

𝑘 + 𝑀𝑔
𝑘 . It follows that

𝑈(𝑓 + 𝑔, 𝑃 ) ≤ 𝑈(𝑓, 𝑃 ) + 𝑈(𝑔, 𝑃 ).

For an example where this inequality is strict, let 𝑓, 𝑔 : [0, 1] → 𝐑 be given by

𝑓(𝑥) =

⎩{
⎨
{⎧0 if 𝑥 = 0,

2 if 0 < 𝑥 < 1,
3 if 𝑥 = 1,

and 𝑔(𝑥) =

⎩{
⎨
{⎧3 if 𝑥 = 0,

2 if 0 < 𝑥 < 1,
0 if 𝑥 = 1,

so that

𝑓(𝑥) + 𝑔(𝑥) = {3 if 𝑥 = 0 or 𝑥 = 1,
4 if 0 < 𝑥 < 1.

For the partition 𝑃 = {0, 1} of [0, 1] we then have

𝑈(𝑓 + 𝑔, 𝑃 ) = sup{𝑓(𝑥) + 𝑔(𝑥) : 𝑥 ∈ [0, 1]} = 4,

𝑈(𝑓, 𝑃 ) = sup{𝑓(𝑥) : 𝑥 ∈ [0, 1]} = 3, and 𝑈(𝑔, 𝑃 ) = sup{𝑔(𝑥) : 𝑥 ∈ [0, 1]} = 3.

Thus 𝑈(𝑓 + 𝑔, 𝑃 ) = 4 < 6 = 𝑈(𝑓, 𝑃 ) + 𝑈(𝑔, 𝑃 ).

The corresponding inequality for lower sums is

𝐿(𝑓, 𝑃 ) + 𝐿(𝑔, 𝑃 ) ≤ 𝐿(𝑓 + 𝑔, 𝑃 ),

which can be proved similarly; we can also find an analogous example showing that
this inequality can be strict.
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(b) Because 𝑓 and 𝑔 are integrable on [𝑎, 𝑏], Exercise 7.2.3 implies that there are sequences
(𝑄𝑛) and (𝑅𝑛) of partitions of [𝑎, 𝑏] such that

lim
𝑛→∞

[𝑈(𝑓, 𝑄𝑛) − 𝐿(𝑓, 𝑄𝑛)] = lim
𝑛→∞

[𝑈(𝑔, 𝑅𝑛) − 𝐿(𝑔, 𝑅𝑛)] = 0.

For each 𝑛 ∈ 𝐍 let 𝑃𝑛 = 𝑄𝑛 ∪ 𝑅𝑛 be the common refinement of 𝑄𝑛 and 𝑅𝑛. Lemma
7.2.3 then gives us the inequalities

0 ≤ 𝑈(𝑓, 𝑃𝑛) − 𝐿(𝑓, 𝑃𝑛) ≤ 𝑈(𝑓, 𝑄𝑛) − 𝐿(𝑓, 𝑄𝑛)

and 0 ≤ 𝑈(𝑔, 𝑃𝑛) − 𝐿(𝑔, 𝑃𝑛) ≤ 𝑈(𝑔, 𝑅𝑛) − 𝐿(𝑔, 𝑅𝑛);

together with the Squeeze Theorem, these imply that

lim
𝑛→∞

[𝑈(𝑓, 𝑃𝑛) − 𝐿(𝑓, 𝑃𝑛)] = lim
𝑛→∞

[𝑈(𝑔, 𝑃𝑛) − 𝐿(𝑔, 𝑃𝑛)] = 0.

By part (a) we have the inequality

0 ≤ 𝑈(𝑓 + 𝑔, 𝑃𝑛) − 𝐿(𝑓 + 𝑔, 𝑃𝑛) ≤ 𝑈(𝑓, 𝑃𝑛) − 𝐿(𝑓, 𝑃𝑛) + 𝑈(𝑔, 𝑃𝑛) − 𝐿(𝑔, 𝑃𝑛)

and so another application of the Squeeze Theorem gives us

lim
𝑛→∞

[𝑈(𝑓 + 𝑔, 𝑃𝑛) − 𝐿(𝑓 + 𝑔, 𝑃𝑛)] = 0.

Exercise 7.2.3 then implies that 𝑓 + 𝑔 is integrable on [𝑎, 𝑏] and also that

∫
𝑏

𝑎
(𝑓 + 𝑔) = lim

𝑛→∞
𝑈(𝑓 + 𝑔, 𝑃𝑛) = lim

𝑛→∞
𝐿(𝑓 + 𝑔, 𝑃𝑛).

Again by part (a) and Exercise 7.2.3 we have

∫
𝑏

𝑎
(𝑓 + 𝑔) = lim

𝑛→∞
𝑈(𝑓 + 𝑔, 𝑃𝑛) ≤ lim

𝑛→∞
[𝑈(𝑓, 𝑃𝑛) + 𝑈(𝑔, 𝑃𝑛)] = ∫

𝑏

𝑎
𝑓 + ∫

𝑏

𝑎
𝑔.

Similarly,

∫
𝑏

𝑎
𝑓 + ∫

𝑏

𝑎
𝑔 = lim

𝑛→∞
[𝐿(𝑓, 𝑃𝑛) + 𝐿(𝑔, 𝑃𝑛)] ≤ lim

𝑛→∞
𝐿(𝑓 + 𝑔, 𝑃𝑛) = ∫

𝑏

𝑎
(𝑓 + 𝑔).

We may conclude that

∫
𝑏

𝑎
(𝑓 + 𝑔) = ∫

𝑏

𝑎
𝑓 + ∫

𝑏

𝑎
𝑔.
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Exercise 7.4.6. Although not part of Theorem 7.4.2, it is true that the product of
integrable functions is integrable. Provide the details for each step in the following proof
of this fact:

(a) If 𝑓 satisfies |𝑓(𝑥)| ≤ 𝑀  on [𝑎, 𝑏], show

|(𝑓(𝑥))2 + (𝑓(𝑦))2| ≤ 2𝑀|𝑓(𝑥) − 𝑓(𝑦)|.

(b) Prove that if 𝑓 is integrable on [𝑎, 𝑏], then so is 𝑓2.

(c) Now show that if 𝑓 and 𝑔 are integrable, then 𝑓𝑔 is integrable. (Consider (𝑓 + 𝑔)2.)

Solution.

(a) For any 𝑥, 𝑦 ∈ [𝑎, 𝑏] we have

|(𝑓(𝑥))2 − (𝑓(𝑦))2| = |𝑓(𝑥) + 𝑓(𝑦)||𝑓(𝑥) − 𝑓(𝑦)|

≤ (|𝑓(𝑥)| + |𝑓(𝑦)|)|𝑓(𝑥) − 𝑓(𝑦)| ≤ 2𝑀|𝑓(𝑥) − 𝑓(𝑦)|.

(b) Because 𝑓 is integrable on [𝑎, 𝑏] it is bounded on [𝑎, 𝑏], say by 𝑅 > 0. Suppose
𝑃 = {𝑥0, …, 𝑥𝑛} is an arbitrary partition of [𝑎, 𝑏]. For 𝑘 ∈ {1, …, 𝑛} define

𝑀(𝑘, 𝑓) = sup{𝑓(𝑥) : 𝑥 ∈ [𝑥𝑘−1, 𝑥𝑘]} and 𝑚(𝑘, 𝑓) = inf{𝑓(𝑥) : 𝑥 ∈ [𝑥𝑘−1, 𝑥𝑘]};

define 𝑀(𝑘, 𝑓2) and 𝑚(𝑘, 𝑓2) similarly. Let 𝑘 ∈ {1, …, 𝑛} and 𝛿 > 0 be given. By Lemma
1.3.8 and Exercise 1.3.1 (b), there exist 𝑥, 𝑦 ∈ [𝑥𝑘−1, 𝑥𝑘] such that

𝑀(𝑘, 𝑓2) − 𝛿
2 < (𝑓(𝑥))2 and (𝑓(𝑦))2 < 𝑚(𝑘, 𝑓2) + 𝛿

2 .

Together with part (a) these inequalities give us

𝑀(𝑘, 𝑓2) − 𝑚(𝑘, 𝑓2) < (𝑓(𝑥))2 − (𝑓(𝑦))2 ≤ |(𝑓(𝑥))2 − (𝑓(𝑦))2|

≤ 2𝑅|𝑓(𝑥) − 𝑓(𝑦)| ≤ 2𝑅(𝑀(𝑘, 𝑓) − 𝑚(𝑘, 𝑓)).

We have now shown that 𝑀(𝑘, 𝑓2) − 𝑚(𝑘, 𝑓2) ≤ 2𝑅(𝑀(𝑘, 𝑓) − 𝑚(𝑘, 𝑓)) + 𝛿 for all 𝛿 >
0. It follows from Exercise 1.2.10 (c) that

𝑀(𝑘, 𝑓2) − 𝑚(𝑘, 𝑓2) ≤ 2𝑅(𝑀(𝑘, 𝑓) − 𝑚(𝑘, 𝑓)),

which implies that 𝑈(𝑓2, 𝑃 ) − 𝐿(𝑓2, 𝑃 ) ≤ 2𝑅[𝑈(𝑓, 𝑃 ) − 𝐿(𝑓, 𝑃 )].

Now let 𝜀 > 0 be given. Since 𝑓 is integrable on [𝑎, 𝑏] there exists a partition 𝑃  of [𝑎, 𝑏]
such that

𝑈(𝑓, 𝑃 ) − 𝐿(𝑓, 𝑃 ) <
𝜀

2𝑅
.

By our previous discussion, it follows that

𝑈(𝑓2, 𝑃 ) − 𝐿(𝑓2, 𝑃 ) ≤ 2𝑅[𝑈(𝑓, 𝑃 ) − 𝐿(𝑓, 𝑃 )] < 𝜀.

Thus 𝑓2 is integrable on [𝑎, 𝑏].
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(c) Since 𝑓𝑔 = 1
2[(𝑓 + 𝑔)2 − 𝑓2 − 𝑔2], it follows from part (b), Theorem 7.4.2 (i), and The-

orem 7.4.2 (ii) that 𝑓𝑔 is integrable on [𝑎, 𝑏].

Exercise 7.4.7. Review the discussion immediately preceding Theorem 7.4.4.

(a) Produce an example of a sequence 𝑓𝑛 → 0 pointwise on [0, 1] where lim𝑛→∞ ∫1
0

𝑓𝑛

does not exist.

(b) Produce an example of a sequence 𝑔𝑛 with ∫1
0

𝑔𝑛 → 0 but 𝑔𝑛(𝑥) does not converge
to zero for any 𝑥 ∈ [0, 1]. To make it more interesting, let’s insist that 𝑔𝑛(𝑥) ≥ 0
for all 𝑥 and 𝑛.

Solution.

(a) Let (𝑓𝑛) be the sequence given by

𝑓𝑛(𝑥) =
⎩{
⎨
{⎧(−1)𝑛𝑛 if 0 < 𝑥 < 1

𝑛 ,

0 if 𝑥 = 0 or 1
𝑛 ≤ 𝑥 ≤ 1.

Then 𝑓𝑛 → 0 pointwise on [0, 1], but

lim
𝑛→∞

∫
1

0
𝑓𝑛 = lim

𝑛→∞
(−1)𝑛

does not exist.

(b) For subsets 𝐴 ⊆ 𝐵 ⊆ 𝐑, denote by 𝜒𝐴 : 𝐵 → 𝐑 the indicator/characteristic function
of 𝐴 within 𝐵, i.e.

𝜒𝐴(𝑥) = {
1 if 𝑥 ∈ 𝐴,
0 if 𝑥 ∉ 𝐴.

Define a sequence of functions (𝑔𝑛 : [0, 1] → 𝐑) by
𝑔1 = 𝜒[0,1],

𝑔2 = 𝜒[0,1
2 ], 𝑔3 = 𝜒[1

2,1],

𝑔4 = 𝜒[0,1
3 ], 𝑔5 = 𝜒[1

3,2
3 ], 𝑔6 = 𝜒[2

3,1],

and so on; this sequence is sometimes called the typewriter sequence (see here for a
variant of this sequence). Observe that

∫
1

0
𝑔1 = 1, ∫

1

0
𝑔2 = ∫

1

0
𝑔3 = 1

2 , ∫
1

0
𝑔4 = ∫

1

0
𝑔5 = ∫

1

0
𝑔6 = 1

3 , etc.,

so that ∫1
0

𝑔𝑛 → 0. However, for any 𝑥 ∈ [0, 1] and any 𝑁 ∈ 𝐍, there always exists some
natural number 𝑛 ≥ 𝑁  such that 𝑔𝑛(𝑥) = 1; it follows that (𝑔𝑛(𝑥)) does not converge
to zero.
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Exercise 7.4.8. For each 𝑛 ∈ 𝐍, let

ℎ𝑛(𝑥) = {
1/2𝑛 if 1/2𝑛 < 𝑥 ≤ 1
0 if 0 ≤ 𝑥 ≤ 1/2𝑛,

and set 𝐻(𝑥) = ∑∞
𝑛=1 ℎ𝑛(𝑥). Show 𝐻 is integrable and compute ∫1

0
𝐻.

Solution. For each 𝑁 ∈ 𝐍, let 𝐻𝑁 : [0, 1] → 𝐑 be the 𝑁 th partial sum of 𝐻. Observe that

𝐻𝑁(𝑥) =

⎩{
{{
⎨
{{
{⎧0 if 𝑥 ∈ [0,

1
2𝑁 ],

2𝑘 − 1
2𝑁 if 𝑥 ∈ (

1
2𝑁−𝑘+1 ,

1
2𝑁−𝑘 ], 1 ≤ 𝑘 ≤ 𝑁.

Thus each 𝐻𝑁  is piecewise-constant. Theorem 7.4.1 then implies that each 𝐻𝑁  is integrable
and furthermore that

∫
1

0
𝐻𝑁 = ∑

𝑁

𝑘=1
∫

2−(𝑁−𝑘)

2−(𝑁−𝑘+1)

𝐻𝑁 = ∑
𝑁

𝑘=1
(

2𝑘 − 1
2𝑁 )(

1
2𝑁−𝑘 −

1
2𝑁−𝑘+1 ).

Some calculations reveal that

∫
1

0
𝐻𝑁 =

2
3

−
1

6 ⋅ 4𝑁−1 −
1

4𝑁 +
1

2𝑁+1 ,

so that lim𝑁→∞ ∫1
0

𝐻𝑁 = 2
3 . The Weierstrass M-Test implies that 𝐻𝑁  converges uniformly

to 𝐻 on [0, 1]. It follows from Theorem 7.4.4 that 𝐻 is integrable on [0, 1] and also that

∫
1

0
𝐻 = lim

𝑁→∞
∫

1

0
𝐻𝑁 = 2

3 .

Exercise 7.4.9. Let 𝑔𝑛 and 𝑔 be uniformly bounded on [0, 1], meaning that there ex-
ists a single 𝑀 > 0 satisfying |𝑔(𝑥)| ≤ 𝑀  and |𝑔𝑛(𝑥)| ≤ 𝑀  for all 𝑛 ∈ 𝐍 and 𝑥 ∈ [0, 1].
Assume 𝑔𝑛 → 𝑔 pointwise on [0, 1] and uniformly on any set of the form [0, 𝛼], where
0 < 𝛼 < 1.

If all the functions are integrable, show that lim𝑛→∞ ∫1
0

𝑔𝑛 = ∫1
0

𝑔.

Solution. Let 𝜀 > 0 be given and let 𝛼 = max{1
2 , 1 − 𝜀

4𝑀 }. Because 𝑔𝑛 → 𝑔 uniformly on 
[0, 𝛼], there exists an 𝑁 ∈ 𝐍 such that

𝑥 ∈ [0, 𝛼] and 𝑛 ≥ 𝑁 ⇒ |𝑔𝑛(𝑥) − 𝑔(𝑥)| <
𝜀

2𝛼
.

Then, provided 𝑛 ≥ 𝑁 , we have
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|∫
1

0
𝑔𝑛(𝑥) d𝑥 − ∫

1

0
𝑔(𝑥) d𝑥| = |∫

1

0
𝑔𝑛(𝑥) − 𝑔(𝑥) d𝑥|

≤ ∫
1

0
|𝑔𝑛(𝑥) − 𝑔(𝑥)| d𝑥

= ∫
𝛼

0
|𝑔𝑛(𝑥) − 𝑔(𝑥)| d𝑥 + ∫

1

𝛼
|𝑔𝑛(𝑥) − 𝑔(𝑥)| d𝑥

≤ 𝜀
2 + 2𝑀(1 − 𝛼)

≤ 𝜀,

where we have used Theorem 7.4.2 for the first, second, and fourth lines, and Theorem 7.4.1
for the third line. It follows that lim𝑛→∞ ∫1

0
𝑔𝑛 = ∫1

0
𝑔.

Exercise 7.4.10. Assume 𝑔 is integrable on [0, 1] and continuous at 0. Show

lim
𝑛→∞

∫
1

0
𝑔(𝑥𝑛) 𝑑𝑥 = 𝑔(0).

Solution. Since 𝑔 is integrable on [0, 1] it is bounded on [0, 1], say by 𝑀 > 0. Let 𝜀 > 0
be given and let 𝛼 = max{1

2 , 1 − 𝜀
4𝑀 }. Because 𝑔 is continuous at 0 there exists a 𝛿 > 0

such that

𝑥 ∈ [0, 𝛿) ∩ [0, 1] ⇒ |𝑔(𝑥) − 𝑔(0)| <
𝜀

2𝛼
.

Since 1
2 ≤ 𝛼 < 1, we have lim𝑛→∞ 𝛼𝑛 = 0. Thus there exists an 𝑁 ∈ 𝐍 such that

𝑛 ≥ 𝑁 ⇒ 0 ≤ 𝛼𝑛 < 𝛿.

Suppose 𝑛 ≥ 𝑁  and 𝑥 ∈ [0, 𝛼]. Then by the previous discussion we have

0 ≤ 𝑥𝑛 ≤ 𝛼𝑛 < 𝛿 ⇒ |𝑔(𝑥𝑛) − 𝑔(0)| <
𝜀

2𝛼
.

It follows that for 𝑛 ≥ 𝑁  we have

|∫
1

0
𝑔(𝑥𝑛) d𝑥 − 𝑔(0)| = |∫

1

0
𝑔(𝑥𝑛) − 𝑔(0) d𝑥|

≤ ∫
1

0
|𝑔(𝑥𝑛) − 𝑔(0)| d𝑥

= ∫
𝛼

0
|𝑔(𝑥𝑛) − 𝑔(0)| d𝑥 + ∫

1

𝛼
|𝑔(𝑥𝑛) − 𝑔(0)| d𝑥

≤ 𝜀
2 + 2𝑀(1 − 𝛼)

= 𝜀,

321 / 415



where the first, second, and fourth lines follow from Theorem 7.4.2 and the third line follows
from Theorem 7.4.1. Thus lim𝑛→∞ ∫1

0
𝑔(𝑥𝑛) d𝑥 = 𝑔(0).

Exercise 7.4.11. Review the original definition of integrability in Section 7.2, and in
particular the definition of the upper integral 𝑈(𝑓). One reasonable suggestion might be
to bypass the complications introduced in Definition 7.2.7 and simply define the integral
to be the value of 𝑈(𝑓). Then every bounded function is integrable! Although tempting,
proceeding in this way has some significant drawbacks. Show by example that several
of the properties in Theorem 7.4.2 no longer hold if we replace our current definition of
integrability with the proposal that ∫𝑏

𝑎
𝑓 = 𝑈(𝑓) for every bounded function 𝑓 .

Solution. We will consider each of the properties in Theorem 7.4.2.

(i) This property no longer holds. For example, consider 𝑓, 𝑔 : [0, 1] → 𝐑 given by

𝑓(𝑥) = {
1 if 𝑥 ∈ 𝐐,
0 if 𝑥 ∉ 𝐐,

and 𝑔(𝑥) = {
0 if 𝑥 ∈ 𝐐,
1 if 𝑥 ∉ 𝐐,

so that (𝑓 + 𝑔)(𝑥) = 1 for all 𝑥 ∈ [0, 1]. In this case we have

𝑈(𝑓) = 𝑈(𝑔) = 𝑈(𝑓 + 𝑔) = 1

and thus 𝑈(𝑓 + 𝑔) ≠ 𝑈(𝑓) + 𝑈(𝑔).

(ii) This property no longer holds. For example, take 𝑓 to be Dirichlet’s function on [0, 1].
Then 𝑈(−𝑓) = 0 ≠ −1 = −𝑈(𝑓).

(iii) This property still holds, and follows as in the textbook, i.e. by observing that

𝐿(𝑓, 𝑃 ) ≤ 𝑈(𝑓) ≤ 𝑈(𝑓, 𝑃 )

for any partition 𝑃  and then taking 𝑃  to be the partition {𝑎, 𝑏}.

(iv) This property still holds. Let 𝑃 = {𝑥0, …, 𝑥𝑛} be a partition of [𝑎, 𝑏] and note that the
inequality 𝑓(𝑥) ≤ 𝑔(𝑥) for all 𝑥 ∈ [𝑎, 𝑏] implies that

sup{𝑓(𝑥) : 𝑥 ∈ [𝑥𝑘−1, 𝑥𝑘]} ≤ sup{𝑔(𝑥) : 𝑥 ∈ [𝑥𝑘−1, 𝑥𝑘]}

for any 𝑘 ∈ {1, …, 𝑛}. It follows that 𝑈(𝑓, 𝑃 ) ≤ 𝑈(𝑔, 𝑃 ). Since 𝑃  was an arbitrary par-
tition, we may conclude that 𝑈(𝑓) ≤ 𝑈(𝑔).

(v) This property still holds. Since 𝑓 is bounded if and only if |𝑓| is bounded, |𝑓| is “inte-
grable” (in the sense of this exercise). The inequality −|𝑓(𝑥)| ≤ 𝑓(𝑥) ≤ |𝑓(𝑥)| for all
𝑥 ∈ [𝑎, 𝑏], combined with property (iv), gives us the inequalities 𝑈(𝑓) ≤ 𝑈(|𝑓|) and
𝑈(−𝑓) ≤ 𝑈(|𝑓|). Now, for any 𝜀 > 0, there exists a partition 𝑃  such that

𝑈(−𝑓) ≤ 𝑈(−𝑓, 𝑃 ) < 𝑈(−𝑓) + 𝜀

⇒ −𝑈(−𝑓) − 𝜀 < −𝑈(−𝑓, 𝑃 ) = 𝐿(𝑓, 𝑃 ) ≤ 𝐿(𝑓) ≤ 𝑈(𝑓).
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It follows that −𝑈(−𝑓) ≤ 𝑈(𝑓), which gives us −𝑈(𝑓) ≤ 𝑈(−𝑓) and hence, by our
previous discussion, −𝑈(𝑓) ≤ 𝑈(|𝑓|). This inequality, together with the inequality
𝑈(𝑓) ≤ 𝑈(|𝑓|), allows us to conclude that |𝑈(𝑓)| ≤ 𝑈(|𝑓|).
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7.5. The Fundamental Theorem of Calculus

Exercise 7.5.1.

(a) Let 𝑓(𝑥) = |𝑥| and define 𝐹(𝑥) = ∫𝑥
−1

𝑓 . Find a piecewise algebraic formula for 
𝐹(𝑥) for all 𝑥. Where is 𝐹  continuous? Where is 𝐹  differentiable? Where does
𝐹 ′(𝑥) = 𝑓(𝑥)?

(b) Repeat part (a) for the function

𝑓(𝑥) = {1 if 𝑥 < 0
2 if 𝑥 ≥ 0.

Solution.

(a) Some calculations reveal that 𝐹 : [−1, ∞) → 𝐑 is given by

𝐹(𝑥) =
⎩{
⎨
{⎧1

2(1 − 𝑥2) if − 1 ≤ 𝑥 ≤ 0,
1
2(1 + 𝑥2) if 𝑥 > 0.

It is straightforward to manually check that 𝐹  is differentiable (and hence continuous)
on its domain, with derivative given by 𝐹 ′(𝑥) = 𝑓(𝑥). However, note that the Funda-
mental Theorem of Calculus part (ii) (FToC, Theorem 7.5.1 (ii)) immediately implies
that 𝐹  is continuous on any interval of the form [−1, 𝑏] for 𝑏 ∈ 𝐑 (in fact, Lipschitz on
such intervals) and hence is continuous on its domain. Furthermore, as 𝑓 is continuous
everywhere, the FToC also implies that 𝐹  is differentiable on its domain with derivative
given by 𝐹 ′(𝑥) = 𝑓(𝑥).

(b) In this case, the function 𝐹 : [−1, ∞) → 𝐑 is given by

𝐹(𝑥) = {1 + 𝑥 if − 1 ≤ 𝑥 ≤ 0,
1 + 2𝑥 if 𝑥 > 0.

As in part (a), the FToC part (ii) implies that 𝐹  is continuous on its domain. Further-
more, since 𝑓 is continuous on 𝐴 = [−1, 0) ∪ (0, ∞), the FToC implies that 𝐹  is differ-
entiable on 𝐴 with derivative given by 𝐹 ′(𝑥) = 𝑓(𝑥). However, since 𝑓 is not continuous
at 0 the FToC does not allow us to conclude that 𝐹  is differentiable at 0. Indeed, 𝐹
fails to be differentiable here:

lim
𝑥→0−

𝐹(𝑥) − 𝐹(0)
𝑥

= 1 ≠ 2 = lim
𝑥→0+

𝐹(𝑥) − 𝐹(0)
𝑥

.
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Exercise 7.5.2. Decide whether each statement is true or false, providing a short jus-
tification for each conclusion.

(a) If 𝑔 = ℎ′ for some ℎ on [𝑎, 𝑏], then 𝑔 is continuous on [𝑎, 𝑏].

(b) If 𝑔 is continuous on [𝑎, 𝑏], then 𝑔 = ℎ′ for some ℎ on [𝑎, 𝑏].

(c) If 𝐻(𝑥) = ∫𝑥
𝑎

ℎ is differentiable at 𝑐 ∈ [𝑎, 𝑏], then ℎ is continuous at 𝑐.

Solution.

(a) This is false. For a counterexample, consider the function ℎ : [−1, 1] → 𝐑 given by

ℎ(𝑥) = {𝑥5/3 sin( 1
𝑥) if 𝑥 ≠ 0,

0 if 𝑥 = 0.

Then, as we showed in Exercise 5.2.7 (a), ℎ is differentiable but ℎ′ is not continuous at
0.

(b) This is true. Theorem 7.2.9 implies that 𝑔 is integrable on [𝑎, 𝑏] and so we are justified
in defining ℎ : [𝑎, 𝑏] → 𝐑 by ℎ(𝑥) = ∫𝑥

𝑎
𝑔. The continuity of 𝑔 on [𝑎, 𝑏] then allows us to

use the FToC part (ii) to conclude that 𝑔 = ℎ′.

(c) This is false. For a counterexample, consider ℎ : [−1, 1] → 𝐑 given by

ℎ(𝑥) = {0 if 𝑥 ≠ 0,
1 if 𝑥 = 0.

Then 𝐻 : [−1, 1] → 𝐑 defined by 𝐻(𝑥) = ∫𝑥
−1

ℎ(𝑡) d𝑡 is identically zero and hence dif-
ferentiable at 0, but ℎ is not continuous at 0.

Exercise 7.5.3. The hypothesis in Theorem 7.5.1 (i) that 𝐹 ′(𝑥) = 𝑓(𝑥) for all 𝑥 ∈ [𝑎, 𝑏]
is slightly stronger than it needs to be. Carefully read the proof and state exactly what
needs to be assumed with regard to the relationship between 𝑓 and 𝐹  for the proof to
be valid.

Solution. In light of Theorem 7.4.1 and the fact that the Mean Value Theorem only requires
differentiability on an open interval, it would suffice for 𝐹  to be continuous on [𝑎, 𝑏] and
𝐹 ′(𝑥) = 𝑓(𝑥) to hold for all but finitely many 𝑥 ∈ [𝑎, 𝑏].

Exercise 7.5.4. Show that if 𝑓 : [𝑎, 𝑏] → 𝐑 is continuous and ∫𝑥
𝑎

𝑓 = 0 for all 𝑥 ∈ [𝑎, 𝑏],
then 𝑓(𝑥) = 0 everywhere on [𝑎, 𝑏]. Provide an example to show that this conclusion
does not follow if 𝑓 is not continuous.

Solution. Define 𝐹 : [𝑎, 𝑏] → 𝐑 by 𝐹(𝑥) = ∫𝑥
𝑎

𝑓 . On one hand, since by assumption 𝐹  is
identically zero on [𝑎, 𝑏], we have that 𝐹  is differentiable on [𝑎, 𝑏] and satisfies 𝐹 ′(𝑥) = 0 for
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all 𝑥 ∈ [𝑎, 𝑏]. On the other hand, because 𝑓 is continuous on [𝑎, 𝑏], the FToC part (ii) implies
that 𝐹 ′(𝑥) = 𝑓(𝑥) for all 𝑥 ∈ [𝑎, 𝑏]. Thus 𝑓 is identically zero on [𝑎, 𝑏].

For an example demonstrating that this conclusion does not follow if 𝑓 is not continuous,
consider 𝑓 : [0, 1] → 𝐑 defined by

𝑓(𝑥) = {0 if 0 ≤ 𝑥 < 1,
1 if 𝑥 = 1.

Then ∫𝑥
0

𝑓 = 0 for all 𝑥 ∈ [0, 1], but 𝑓 is not identically zero.

Exercise 7.5.5. The Fundamental Theorem of Calculus can be used to supply a shorter
argument for Theorem 6.3.1 under the additional assumption that the sequence of de-
rivatives is continuous.

Assume 𝑓𝑛 → 𝑓 pointwise and 𝑓 ′
𝑛 → 𝑔 uniformly on [𝑎, 𝑏]. Assuming each 𝑓 ′

𝑛 is contin-
uous, we can apply Theorem 7.5.1 (i) to get

∫
𝑥

𝑎
𝑓 ′

𝑛 = 𝑓𝑛(𝑥) − 𝑓𝑛(𝑎)

for all 𝑥 ∈ [𝑎, 𝑏]. Show that 𝑔(𝑥) = 𝑓 ′(𝑥).

Solution. Let 𝑥 ∈ [𝑎, 𝑏] be given. Because 𝑓 ′
𝑛 → 𝑔 uniformly on [𝑎, 𝑥], Theorem 7.4.4 shows

that

lim
𝑛→∞

∫
𝑥

𝑎
𝑓 ′

𝑛 = ∫
𝑥

𝑎
𝑔.

We can then take the limit as 𝑛 → ∞ on both sides of the equation ∫𝑥
𝑎

𝑓 ′
𝑛 = 𝑓𝑛(𝑥) − 𝑓𝑛(𝑎)

and use the pointwise convergence 𝑓𝑛 → 𝑓 to see that

𝑓(𝑥) = 𝑓(𝑎) + ∫
𝑥

𝑎
𝑔

for all 𝑥 ∈ [𝑎, 𝑏]. Since 𝑔 is the uniform limit of a sequence of continuous functions it is
itself continuous (Theorem 6.2.6) and so we may invoke the FToC part (ii) to conclude that
𝑓 ′(𝑥) = 𝑔(𝑥) for all 𝑥 ∈ [𝑎, 𝑏].

Exercise 7.5.6 (Integration-by-parts).

(a) Assume ℎ(𝑥) and 𝑘(𝑥) have continuous derivatives on [𝑎, 𝑏] and derive the familiar
integration-by-parts formula

∫
𝑏

𝑎
ℎ(𝑡)𝑘′(𝑡) 𝑑𝑡 = ℎ(𝑏)𝑘(𝑏) − ℎ(𝑎)𝑘(𝑎) − ∫

𝑏

𝑎
ℎ′(𝑡)𝑘(𝑡) 𝑑𝑡.

(b) Explain how the result in Exercise 7.4.6 can be used to slightly weaken the hy-
pothesis in part (a).
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Solution.

(a) By assumption the functions ℎ, ℎ′, 𝑘, and 𝑘′ are continuous on [𝑎, 𝑏]; it follows that 
(ℎ𝑘)′ = ℎ𝑘′ + ℎ′𝑘 is continuous on [𝑎, 𝑏]. Theorem 7.2.9 then implies that (ℎ𝑘)′ is inte-
grable on [𝑎, 𝑏] and so we may use the FToC part (i) to see that

∫
𝑏

𝑎
ℎ(𝑡)𝑘′(𝑡) + ℎ′(𝑡)𝑘(𝑡) d𝑡 = ∫

𝑏

𝑎
(ℎ(𝑡)𝑘(𝑡))′ d𝑡 = ℎ(𝑏)𝑘(𝑏) − ℎ(𝑎)𝑘(𝑎).

(b) In light of Exercise 7.4.6, we need only assume that ℎ′ and 𝑘′ are integrable on [𝑎, 𝑏].

Exercise 7.5.7. Use part (ii) of Theorem 7.5.1 to construct another proof of part (i) of
Theorem 7.5.1 under the stronger hypothesis that 𝑓 is continuous. (To get started, set 
𝐺(𝑥) = ∫𝑥

𝑎
𝑓 .)

Solution. It will suffice to show that 𝐺(𝑏) = 𝐹(𝑏) − 𝐹(𝑎). Because 𝑓 is continuous on 
[𝑎, 𝑏], the FToC part (ii) implies that 𝐺′(𝑥) = 𝑓(𝑥) = 𝐹 ′(𝑥) for all 𝑥 ∈ [𝑎, 𝑏]. It follows from
Corollary 5.3.4 that 𝐺(𝑥) = 𝐹(𝑥) + 𝑘 for some constant 𝑘. Substituting 𝑥 = 𝑎, we see that
𝑘 = −𝐹(𝑎) and thus 𝐺(𝑏) = 𝐹(𝑏) − 𝐹(𝑎), as desired.

Exercise 7.5.8 (Natural Logarithm and Euler's Constant). Let

𝐿(𝑥) = ∫
𝑥

1

1
𝑡

𝑑𝑡,

where we consider only 𝑥 > 0.

(a) What is 𝐿(1)? Explain why 𝐿 is differentiable and find 𝐿′(𝑥).

(b) Show that 𝐿(𝑥𝑦) = 𝐿(𝑥) + 𝐿(𝑦). (Think of 𝑦 as a constant and differentiate
𝑔(𝑥) = 𝐿(𝑥𝑦).)

(c) Show 𝐿(𝑥/𝑦) = 𝐿(𝑥) − 𝐿(𝑦).

(d) Let

𝛾𝑛 = (1 +
1
2

+
1
3

+ ⋯ +
1
𝑛

) − 𝐿(𝑛).

Prove that (𝛾𝑛) converges. The constant 𝛾 = lim 𝛾𝑛 is called Euler’s constant.

(e) Show how consideration of the sequence 𝛾2𝑛 − 𝛾𝑛 leads to the interesting identity

𝐿(2) = 1 −
1
2

+
1
3

−
1
4

+
1
5

−
1
6

+ ⋯ .

Solution.

(a) We have 𝐿(1) = 0. Because 𝑡−1 is continuous on (0, ∞), the FToC part (ii) shows that
𝐿 is differentiable on (0, ∞) and satisfies 𝐿′(𝑥) = 𝑥−1.

327 / 415



(b) Note that, by part (a),

d
d𝑥

𝐿(𝑥𝑦) = 𝑦𝐿′(𝑥𝑦) =
𝑦
𝑥𝑦

=
1
𝑥

= 𝐿′(𝑥).

Corollary 5.3.4 then implies that 𝐿(𝑥𝑦) = 𝐿(𝑥) + 𝑘 for some constant 𝑘. Substituting 
𝑥 = 1 we see that 𝑘 = 𝐿(𝑦) and thus 𝐿(𝑥𝑦) = 𝐿(𝑥) + 𝐿(𝑦), as desired.

(c) Observe that, by parts (a) and (b),

0 = 𝐿(1) = 𝐿(
𝑦
𝑦
) = 𝐿(𝑦) + 𝐿(

1
𝑦
),

so that 𝐿(1/𝑦) = −𝐿(𝑦) for any 𝑦 > 0. Combining this with part (b) shows that
𝐿(𝑥/𝑦) = 𝐿(𝑥) − 𝐿(𝑦).

(d) Let 𝑛 ≥ 2 be given and consider the partition 𝑃 = {1, …, 𝑛} of [1, 𝑛]. Observe that

1 +
1
2

+ ⋯ +
1
𝑛

> 1 +
1
2

+ ⋯ +
1

𝑛 − 1
= 𝑈(

1
𝑡
, 𝑃) ≥ 𝑈(

1
𝑡
) = 𝐿(𝑛).

Thus 𝛾𝑛 ≥ 0 for each 𝑛 ∈ 𝐍, so that (𝛾𝑛) is bounded below.

Now let 𝑛 ∈ 𝐍 be given and observe that

𝛾𝑛 − 𝛾𝑛+1 = 𝐿(1 +
1
𝑛

) −
1

𝑛 + 1
.

Since 𝑡−1 ≥ 𝑛(𝑛 + 1)−1 on [1, 1 + 𝑛−1], Theorem 7.42 (iii) shows that

𝐿(1 +
1
𝑛

) ≥
1

𝑛 + 1

and hence 𝛾𝑛 ≥ 𝛾𝑛+1 for each 𝑛 ∈ 𝐍, so that (𝛾𝑛) is decreasing. We can now appeal to
the Monotone Convergence Theorem (Theorem 2.4.2) to conclude that (𝛾𝑛) converges.

(e) For 𝑛 ∈ 𝐍, observe that

𝛾2𝑛 − 𝛾𝑛 = (1 +
1
2

+
1
3

+
1
4

+ ⋯ +
1
2𝑛

) − (1 +
1
2

+ ⋯ +
1
𝑛

) − 𝐿(2𝑛) + 𝐿(𝑛)

= (1 +
1
2

+
1
3

+
1
4

+ ⋯ +
1
2𝑛

) − (
2
2

+
2
4

+ ⋯ +
2
2𝑛

) − 𝐿(2) − 𝐿(𝑛) + 𝐿(𝑛)

= (1 −
1
2

+
1
3

−
1
4

+ ⋯ −
1
2𝑛

) − 𝐿(2).

Taking the limit as 𝑛 → ∞ on both sides gives the desired equality.
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Exercise 7.5.9. Given a function 𝑓 on [𝑎, 𝑏], define the total variation of 𝑓 to be

𝑉 𝑓 = sup{∑
𝑛

𝑘=1
|𝑓(𝑥𝑘) − 𝑓(𝑥𝑘−1)|},

where the supremum is taken over all partitions 𝑃  of [𝑎, 𝑏].

(a) If 𝑓 is continuously differentiable (𝑓 ′ exists as a continuous function), use the Fun-
damental Theorem of Calculus to show 𝑉 𝑓 ≤ ∫𝑏

𝑎
|𝑓 ′|.

(b) Use the Mean Value Theorem to establish the reverse inequality and conclude that
𝑉 𝑓 = ∫𝑏

𝑎
|𝑓 ′|.

Solution.

(a) Let 𝑃 = {𝑥0, …, 𝑥𝑛} be an arbitrary partition of [𝑎, 𝑏]. Because 𝑓 ′ is continuous on 
[𝑎, 𝑏] it is integrable on [𝑎, 𝑏] and so we may use the FToC part (i) and Theorem 7.4.2
(v) to see that

∑
𝑛

𝑘=1
|𝑓(𝑥𝑘) − 𝑓(𝑥𝑘−1)| = ∑

𝑛

𝑘=1
|∫

𝑥𝑘

𝑥𝑘−1

𝑓 ′| ≤ ∑
𝑛

𝑘=1
∫

𝑥𝑘

𝑥𝑘−1

|𝑓 ′| = ∫
𝑏

𝑎
|𝑓 ′|.

As 𝑃  was arbitrary, it follows that 𝑉 𝑓 ≤ ∫𝑏
𝑎
|𝑓 ′|.

(b) For any 𝜀 > 0 there exists a partition 𝑃 = {𝑥0, …, 𝑥𝑛} of [𝑎, 𝑏] such that

(∫
𝑏

𝑎
|𝑓 ′|) − 𝜀 = 𝐿(|𝑓 ′|) − 𝜀 < 𝐿(|𝑓 ′|, 𝑃 ).

For any 𝑘 ∈ {1, …, 𝑛}, apply the Mean Value Theorem on the interval [𝑥𝑘−1, 𝑥𝑘] to
obtain some 𝑡𝑘 ∈ (𝑥𝑘−1, 𝑥𝑘) such that

|𝑓 ′(𝑡𝑘)|(𝑥𝑘 − 𝑥𝑘−1) = |𝑓(𝑥𝑘) − 𝑓(𝑥𝑘−1)|.

It follows that

𝐿(|𝑓 ′|, 𝑃 ) = ∑
𝑛

𝑘=1
inf{|𝑓 ′(𝑡)| : 𝑡 ∈ [𝑥𝑘−1, 𝑥𝑘]}(𝑥𝑘 − 𝑥𝑘−1)

≤ ∑
𝑛

𝑘=1
|𝑓 ′(𝑡𝑘)|(𝑥𝑘 − 𝑥𝑘−1)

= ∑
𝑛

𝑘=1
|𝑓(𝑥𝑘) − 𝑓(𝑥𝑘−1)|

≤ 𝑉 𝑓.

We have now shown that for every 𝜀 > 0,

∫
𝑏

𝑎
|𝑓 ′| ≤ 𝑉 𝑓 + 𝜀
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and thus we obtain the inequality ∫𝑏
𝑎
|𝑓 ′| ≤ 𝑉 𝑓 . Given part (a), we may conclude that

𝑉 𝑓 = ∫𝑏
𝑎
|𝑓 ′|.

Exercise 7.5.10 (Change-of-variable Formula). Let 𝑔 : [𝑎, 𝑏] → 𝐑 be differentiable
and assume 𝑔′ is continuous. Let 𝑓 : [𝑐, 𝑑] → 𝐑 be continuous, and assume that the
range of 𝑔 is contained in [𝑐, 𝑑] so that the composition 𝑓 ∘ 𝑔 is properly defined.

(a) Why are we sure 𝑓 is the derivative of some function? How about (𝑓 ∘ 𝑔)𝑔′?

(b) Prove the change-of-variable formula

∫
𝑏

𝑎
𝑓(𝑔(𝑥))𝑔′(𝑥) 𝑑𝑥 = ∫

𝑔(𝑏)

𝑔(𝑎)
𝑓(𝑡) 𝑑𝑡.

Solution.

(a) Since 𝑓 is continuous on [𝑐, 𝑑] it is integrable on [𝑐, 𝑑] and thus, letting 𝐹(𝑥) = ∫𝑥
𝑐

𝑓 ,
the FToC part (ii) gives us 𝐹 ′(𝑥) = 𝑓(𝑥) for each 𝑥 ∈ [𝑐, 𝑑]. Similarly, note that 𝑓 ∘
𝑔 is continuous on [𝑎, 𝑏], being a composition of continuous functions, and hence is
integrable on [𝑎, 𝑏]. By assumption 𝑔′ is continuous on [𝑎, 𝑏] and thus 𝑔′ is integrable on
[𝑎, 𝑏]. We can now use Exercise 7.4.6 to see that (𝑓 ∘ 𝑔)𝑔′ is integrable on [𝑎, 𝑏]. Thus,
letting 𝐺(𝑥) = ∫𝑥

𝑎
(𝑓 ∘ 𝑔)𝑔′, the FToC part (ii) shows that 𝐺′(𝑥) = 𝑓(𝑔(𝑥))𝑔′(𝑥) for each

𝑥 ∈ [𝑎, 𝑏].

(b) Define 𝐹 : [𝑐, 𝑑] → 𝐑 and 𝐺 : [𝑎, 𝑏] → 𝐑 by

𝐹(𝑡) = ∫
𝑡

𝑔(𝑎)
𝑓(𝑥) d𝑥 and 𝐺(𝑡) = ∫

𝑡

𝑎
𝑓(𝑔(𝑥))𝑔′(𝑥) d𝑥.

Then 𝐹 ′(𝑡) = 𝑓(𝑡), so that [𝐹 (𝑔(𝑡))]′ = 𝑓(𝑔(𝑡))𝑔′(𝑡), and 𝐺′(𝑡) = 𝑓(𝑔(𝑡))𝑔′(𝑡). It follows
that 𝐹(𝑔(𝑡)) = 𝐺(𝑡) + 𝑘 on [𝑎, 𝑏] for some constant 𝑘. Substituting 𝑡 = 𝑎, we see that 
𝑘 = 0 and thus 𝐹(𝑔(𝑏)) = 𝐺(𝑏), i.e.

∫
𝑔(𝑏)

𝑔(𝑎)
𝑓(𝑥) d𝑥 = ∫

𝑏

𝑎
𝑓(𝑔(𝑥))𝑔′(𝑥) d𝑥.

330 / 415



Exercise 7.5.11. Assume 𝑓 is integrable on [𝑎, 𝑏] and has a “jump discontinuity” at 
𝑐 ∈ (𝑎, 𝑏). This means that both one-sided limits exist as 𝑥 approaches 𝑐 from the left
and from the right, but that

lim
𝑥→𝑐−

𝑓(𝑥) ≠ lim
𝑥→𝑐+

𝑓(𝑥).

(This phenomenon is discussed in more detail in Section 4.6.)

(a) Show that, in this case, 𝐹(𝑥) = ∫𝑥
𝑎

𝑓 is not differentiable at 𝑥 = 𝑐.

(b) The discussion in Section 5.5 mentions the existence of a continuous monotone
function that fails to be differentiable on a dense subset of 𝐑. Combine the results
of part (a) with Exercise 6.4.10 to show how to construct such a function.

Solution.

(a) Let 𝐴 = lim𝑥→𝑐− 𝑓(𝑥) and 𝐵 = lim𝑥→𝑐+ 𝑓(𝑥). A small modification of the proof of the
FToC part (ii) shows that

lim
𝑥→𝑐−

𝐹(𝑥) − 𝐹(𝑐)
𝑥 − 𝑐

= 𝐴 and lim
𝑥→𝑐+

𝐹(𝑥) − 𝐹(𝑐)
𝑥 − 𝑐

= 𝐵.

Since 𝐴 ≠ 𝐵, we see that lim𝑥→𝑐
𝐹(𝑥)−𝐹(𝑐)

𝑥−𝑐  does not exist, i.e. 𝐹  is not differentiable at
𝑐.

(b) As in Exercise 6.4.10, let {𝑟1, 𝑟2, 𝑟3, …} be an enumeration of the rationals and for each
𝑛 ∈ 𝐍 define 𝑢𝑛 : 𝐑 → 𝐑 by

𝑢𝑛(𝑥) = {
2−𝑛 if 𝑟𝑛 < 𝑥,
0 if 𝑥 ≤ 𝑟𝑛.

Now define ℎ : 𝐑 → 𝐑 by ℎ(𝑥) = ∑∞
𝑛=1 𝑢𝑛(𝑥). Let [𝑎, 𝑏] be a given interval and note

that for each 𝑁 ∈ 𝐍 the partial sum function ℎ𝑁(𝑥) = ∑𝑁
𝑛=1 𝑢𝑛(𝑥) has at most 𝑁

discontinuities on [𝑎, 𝑏]. It follows from Theorem 7.4.1 that ℎ𝑁  is integrable on [𝑎, 𝑏]. In
Exercise 6.4.10 we showed that ℎ𝑁 → ℎ uniformly on 𝐑 and hence by Theorem 7.4.4
we see that ℎ is integrable on [𝑎, 𝑏]. We can now define 𝐻 : 𝐑 → 𝐑 by 𝐻(𝑥) = ∫𝑥

0
ℎ.

The FToC part (ii) shows that 𝐻 is continuous, and we can use Theorem 7.4.1 and the
fact that ℎ is non-negative to see that 𝐻 is monotone increasing.

Now we will prove that ℎ has a jump discontinuity at each rational number. Let 𝑟𝑚 ∈ 𝐐
be given; we have two claims.

(i) Our first claim is that lim𝑥→𝑟−
𝑚

ℎ(𝑥) = ℎ(𝑟𝑚). To see this, let 𝜀 > 0 be given and
choose 𝑁 ∈ 𝐍 such that 2−𝑁 < 𝜀. Because the set {𝑟1, …, 𝑟𝑁} is finite, we can
choose a 𝛿 > 0 such that the intersection (𝑟𝑚 − 𝛿, 𝑟𝑚) ∩ {𝑟1, …, 𝑟𝑁} is empty, i.e.
if 𝑟𝑛 ∈ (𝑟𝑚 − 𝛿, 𝑟𝑚), then 𝑛 > 𝑁 .

Now suppose that 𝑥 ∈ (𝑟𝑚 − 𝛿, 𝑟𝑚) and enumerate the rationals in [𝑥, 𝑟𝑚) as a
subsequence {𝑟𝑛1 , 𝑟𝑛2 , 𝑟𝑛3 , …} of the sequence {𝑟1, 𝑟2, 𝑟3, …}; by our previous dis-
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cussion we must have 𝑛𝑘 > 𝑁  for each 𝑘 ∈ 𝐍. As we showed in Exercise 6.4.10, 
ℎ is strictly increasing and ℎ(𝑟𝑚) − ℎ(𝑥) = ∑∞

𝑘=1 2−𝑛𝑘 . Thus

|ℎ(𝑟𝑚) − ℎ(𝑥)| = 2−𝑁 ∑
∞

𝑘=1
2−𝑛𝑘+𝑁 ≤ 2−𝑁 ∑

∞

𝑛=1
2−𝑛 = 2−𝑁 < 𝜀

and our claim follows.

(ii) Our second claim is that lim𝑥→𝑟+
𝑚

ℎ(𝑥) = ℎ(𝑟𝑚) + 2−𝑚. Again, let 𝜀 > 0 be given
and choose 𝑁 ∈ 𝐍 such that 2−𝑁 < 𝜀. Similarly to (i), we can choose a 𝛿 > 0 such
that if 𝑟𝑛 ∈ (𝑟𝑚, 𝑟𝑚 + 𝛿) then 𝑛 > 𝑁 . For 𝑥 ∈ (𝑟𝑚, 𝑟𝑚 + 𝛿), enumerate the ratio-
nals in (𝑟𝑚, 𝑥) as a subsequence {𝑟𝑛1 , 𝑟𝑛2 , 𝑟𝑛3 , …} of the sequence {𝑟1, 𝑟2, 𝑟3, …},
so that

[𝑟𝑚, 𝑥) = {𝑟𝑚, 𝑟𝑛1 , 𝑟𝑛2 , 𝑟𝑛3 , …};

by our previous discussion, we must have 𝑛𝑘 > 𝑁  for each 𝑘 ∈ 𝐍. Thus

ℎ(𝑥) − ℎ(𝑟𝑚) = 2−𝑚 + ∑
𝑛

𝑘=1
2−𝑛𝑘 .

Arguing as in (i), it follows that

|ℎ(𝑥) − ℎ(𝑟𝑚) − 2−𝑚| = ∑
∞

𝑘=1
2−𝑛𝑘 ≤ 2−𝑁 < 𝜀.

This proves our second claim.

We have now shown that if 𝑟𝑚 ∈ 𝐐 then

lim
𝑥→𝑟−

𝑚
ℎ(𝑥) = ℎ(𝑟𝑚) < ℎ(𝑟𝑚) + 2−𝑚 = lim

𝑥→𝑟+
𝑚

ℎ(𝑥),

so that ℎ has a jump discontinuity at each rational number. It follows from part (a)
that 𝐻 fails to be differentiable at each rational number.
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7.6. Lebesgue’s Criterion for Riemann Integrability

Exercise 7.6.1.

(a) First, argue that 𝐿(𝑡, 𝑃 ) = 0 for any partition 𝑃  of [0, 1].

(b) Consider the set of points 𝐷𝜀/2 = {𝑥 : 𝑡(𝑥) ≥ 𝜀/2}. How big is 𝐷𝜀/2?

(c) To complete the argument, explain how to construct a partition 𝑃𝜀 of [0, 1] so that
𝑈(𝑡, 𝑃𝜀) < 𝜀.

Solution. See Exercise 7.3.2.

Exercise 7.6.2. Define

ℎ(𝑥) = {1 if 𝑥 ∈ 𝐶
0 if 𝑥 ∉ 𝐶 .

(a) Show ℎ has discontinuities at each point of 𝐶 and is continuous at every point of
the complement of 𝐶. Thus, ℎ is not continuous on an uncountably infinite set.

(b) Now prove that ℎ is integrable on [0, 1].

Solution. See Exercise 7.3.9.

Exercise 7.6.3. Show that any countable set has measure zero.

Solution. Let 𝐴 ⊆ 𝐑 be a countable set, i.e. 𝐴 = {𝑎1, 𝑎2, 𝑎3, …}, and let 𝜀 > 0 be given.
Choose 𝑁 ∈ 𝐍 such that 2−𝑁 < 𝜀. For each 𝑛 ∈ 𝐍, let

𝑂𝑛 = (𝑎𝑛 −
𝜀

2𝑁+𝑛+1 , 𝑎𝑛 +
𝜀

2𝑁+𝑛+1 ).

Then 𝐴 ⊆ ∪∞𝑛=1 𝑂𝑛 and |𝑂𝑛| = 2−𝑁−𝑛, so that

∑
∞

𝑛=1
|𝑂𝑛| = ∑

∞

𝑛=1
2−𝑁−𝑛 = 2−𝑁 ∑

∞

𝑛=1
2−𝑛 = 2−𝑁 < 𝜀.

Thus 𝐴 has measure zero.

Exercise 7.6.4. Prove that the Cantor set has measure zero.

Solution. See Exercise 7.3.9.
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Exercise 7.6.5. Show that if two sets 𝐴 and 𝐵 each have measure zero, then 𝐴 ∪ 𝐵 has
measure zero as well. In addition, discuss the proof of the stronger statement that the
countable union of sets of measure zero also has measure zero. (This second statement
is true, but a completely rigorous proof requires a result about double summations dis-
cussed in Section 2.8.)

Solution. Let 𝜀 > 0 be given. Because 𝐴 and 𝐵 have measure zero, there are countable
collections {𝑂1, 𝑂2, 𝑂3, …} and {𝑈1, 𝑈2, 𝑈3, …} of open intervals such that

𝐴 ⊆ ⋃
∞

𝑛=1
𝑂𝑛, ∑

∞

𝑛=1
|𝑂𝑛| ≤ 𝜀

2 , 𝐵 = ⋃
∞

𝑛=1
𝑈𝑛, and ∑

∞

𝑛=1
|𝑈𝑛| ≤ 𝜀

2 .

By Theorem 1.5.8 (i) the union {𝑂1, 𝑂2, 𝑂3, …} ∪ {𝑈1, 𝑈2, 𝑈3, …} is a countable collection
of open intervals, say

{𝑂1, 𝑂2, 𝑂3, …} ∪ {𝑈1, 𝑈2, 𝑈3, …} = {𝑉1, 𝑉2, 𝑉3, …}.

Is is then immediate that

𝐴 ∪ 𝐵 ⊆ (⋃
∞

𝑛=1
𝑂𝑛) ∪ (⋃

∞

𝑛=1
𝑈𝑛) = ⋃

∞

𝑛=1
𝑉𝑛.

Now, for any 𝑁 ∈ 𝐍 we can express the set {𝑉1, …, 𝑉𝑁} as a disjoint union 𝐎 ∪ 𝐔, where

𝐎 ⊊ {𝑂1, 𝑂2, 𝑂3, …} and 𝐔 ⊊ {𝑈1, 𝑈2, 𝑈3, …};

𝐎 and 𝐔 are both finite and either (but not both) of them can be empty. The decomposition
{𝑉1, …, 𝑉𝑁} = 𝐎 ∪ 𝐔 implies that

∑
𝑁

𝑛=1
|𝑉𝑁 | = ∑

𝑂∈𝐎
|𝑂| + ∑

𝑈∈𝐔
|𝑈| ≤ ∑

∞

𝑛=1
|𝑂𝑛| + ∑

∞

𝑛=1
|𝑈𝑛| ≤ 𝜀.

Since 𝑁  was arbitrary, we see that the sum ∑∞
𝑛=1|𝑉𝑛| is convergent and satisfies

∑∞
𝑛=1|𝑉𝑛| ≤ 𝜀. Thus 𝐴 ∪ 𝐵 has measure zero.

Now suppose that {𝐴𝑚 : 𝑚 ∈ 𝐍} is a countable collection of sets of measure zero; we will
show that ⋃∞

𝑚=1 𝐴𝑚 also has measure zero. Let 𝜀 > 0 and 𝑚 ∈ 𝐍 be given. Because 𝐴𝑚

has measure zero, there is a countable collection {𝑂𝑚,1, 𝑂𝑚,2, 𝑂𝑚,3, …} of open intervals
such that

𝐴𝑚 ⊆ ⋃
∞

𝑛=1
𝑂𝑚,𝑛 and ∑

∞

𝑛=1
|𝑂𝑚,𝑛| ≤ 2−𝑚𝜀.

By Theorem 1.5.8 (ii), the union ⋃∞
𝑚=1{𝑂𝑚,1, 𝑂𝑚,2, 𝑂𝑚,3, …} is a countable collection of

open intervals, say

⋃
∞

𝑚=1
{𝑂𝑚,1, 𝑂𝑚,2, 𝑂𝑚,3, …} = {𝑈1, 𝑈2, 𝑈3, …}.
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It is straightforward to verify that

⋃
∞

𝑚=1
𝐴𝑚 ⊆ ⋃

∞

𝑚=1
⋃
∞

𝑛=1
𝑂𝑚,𝑛 = ⋃

∞

𝑚=1
𝑈𝑚.

Now let 𝑀 ∈ 𝐍 be given and consider the collection {𝑈1, …, 𝑈𝑀}. Each 𝑈𝑘 in this collection
is equal to 𝑂𝑚,𝑛 for some positive integers 𝑚 and 𝑛. If we let 𝐾 be the maximum of these
positive integers 𝑚 and 𝑛, then because each |𝑂𝑚,𝑛| is non-negative we have the inequality

∑
𝑀

𝑚=1
|𝑈𝑚| ≤ ∑

𝐾

𝑚=1
∑
𝐾

𝑛=1
|𝑂𝑚,𝑛|. (1)

Keeping in mind that all the terms |𝑂𝑚,𝑛| are non-negative, by assumption the sum 
∑∞

𝑛=1|𝑂𝑚,𝑛| is convergent for each fixed 𝑚 ∈ 𝐍 and satisfies ∑∞
𝑛=1|𝑂𝑚,𝑛| ≤ 2−𝑚𝜀; by com-

parison we see that the iterated sum ∑∞
𝑚=1 ∑∞

𝑛=1|𝑂𝑚,𝑛| converges and satisfies

∑
∞

𝑚=1
∑
∞

𝑛=1
|𝑂𝑚,𝑛| ≤ ∑

∞

𝑚=1
2−𝑚𝜀 = 𝜀. (2)

We can now use (1), (2), and Theorem 2.8.1 to see that

∑
𝑀

𝑚=1
|𝑈𝑚| ≤ ∑

𝐾

𝑚=1
∑
𝐾

𝑛=1
|𝑂𝑚,𝑛| ≤ ∑

∞

𝑚=1
∑
∞

𝑛=1
|𝑂𝑚,𝑛| ≤ 𝜀.

Thus the sum ∑∞
𝑚=1|𝑈𝑚| is convergent and does not exceed 𝜀. We may conclude that 

⋃∞
𝑚=1 𝐴𝑚 has measure zero.

Exercise 7.6.6. If 𝛼 < 𝛼′, show that 𝐷𝛼′ ⊆ 𝐷𝛼.

Solution. See Exercise 4.6.9.

Exercise 7.6.7.

(a) Let 𝛼 > 0 be given. Show that if 𝑓 is continuous at 𝑥 ∈ [𝑎, 𝑏], then it is 𝛼-contin-
uous at 𝑥 as well. Explain how it follows that 𝐷𝛼 ⊆ 𝐷.

(b) Show that if 𝑓 is not continuous at 𝑥, then 𝑓 is not 𝛼-continuous for some 𝛼 > 0.
Now, explain why this guarantees that

𝐷 = ⋃
∞

𝑛=1
𝐷𝛼𝑛 where 𝛼𝑛 = 1/𝑛.

Solution.

(a) See Exercise 4.6.10.

(b) See Exercise 4.6.11.
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Exercise 7.6.8. Prove that for a fixed 𝛼 > 0, the set 𝐷𝛼 is closed.

Solution. See Exercise 4.6.8.

Exercise 7.6.9. Show that there exists a finite collection of disjoint open intervals

{𝐺1, 𝐺2, …, 𝐺𝑁}

whose union contains 𝐷𝛼 and that satisfies

∑
𝑁

𝑛=1
|𝐺𝑛| <

𝜀
4𝑀

.

Solution. Because 𝐷 has measure zero, there exists a countable collection {𝑈𝑛 : 𝑛 ∈ 𝐍} of
open intervals such that

𝐷 ⊆ ⋃
∞

𝑛=1
𝑈𝑛 and ∑

∞

𝑛=1
|𝑈𝑛| <

𝜀
4𝑀

.

Observe that:

(i) 𝐷𝛼 is closed by Exercise 7.6.8;

(ii) 𝐷𝛼 is bounded since 𝐷𝛼 ⊆ [𝑎, 𝑏];

(iii) 𝐷𝛼 ⊆ 𝐷 ⊆ ⋃∞
𝑛=1 𝑈𝑛 by Exercise 7.6.7 (a).

It follows from Theorem 7.6.4 that there is a finite subcollection {𝐺1, …, 𝐺𝑁} of {𝑈𝑛 : 𝑛 ∈ 𝐍}
such that 𝐷𝛼 ⊆ ⋃𝑁

𝑛=1 𝐺𝑛. Note that, for 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 , if the intersection 𝐺𝑖 ∩ 𝐺𝑗 is non-
empty then the union 𝐺𝑖 ∪ 𝐺𝑗 is also an open interval. Thus, by replacing 𝐺𝑖 and 𝐺𝑗 with
their union if necessary, we can assume that the collection {𝐺1, …, 𝐺𝑁} is pairwise-disjoint
(although it may no longer be a subset of {𝑈𝑛 : 𝑛 ∈ 𝐍} after this replacement process;
this is not important for the proof). Because each 𝐺𝑖 originally came from the collection
{𝑈𝑛 : 𝑛 ∈ 𝐍}, and the replacement process described previously will not increase the total
length of the intervals (since |𝐺𝑖 ∪ 𝐺𝑗| ≤ |𝐺𝑖| + |𝐺𝑗|), we must have the inequality

∑
𝑁

𝑛=1
|𝐺𝑛| ≤ ∑

∞

𝑛=1
|𝑈𝑛| <

𝜀
4𝑀

.

Exercise 7.6.10. Let 𝐾 be what remains of the interval [𝑎, 𝑏] after the open intervals 
𝐺𝑛 are all removed; that is, 𝐾 = [𝑎, 𝑏] ∖ ⋃𝑁

𝑛=1 𝐺𝑛. Argue that 𝑓 is uniformly 𝛼-contin-
uous on 𝐾.

Solution. Since 𝐷𝛼 is contained in the union ⋃𝑁
𝑛=1 𝐺𝑛, it must be the case that 𝑓 is 𝛼-

continuous on 𝐾, and since 𝐾 is compact (being closed and bounded), it follows from the
discussion after Exercise 7.6.8 in the textbook that 𝑓 is uniformly 𝛼-continuous on 𝐾.
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Exercise 7.6.11. Finish the proof in this direction by explaining how to construct a
partition 𝑃𝜀 of [𝑎, 𝑏] such that 𝑈(𝑓, 𝑃𝜀) − 𝐿(𝑓, 𝑃𝜀) ≤ 𝜀. It will be helpful to break the
sum

𝑈(𝑓, 𝑃𝜀) − 𝐿(𝑓, 𝑃𝜀) = ∑
𝑛

𝑘=1
(𝑀𝑘 − 𝑚𝑘)Δ𝑥𝑘

into two parts—one over those subintervals that contain points of 𝐷𝛼 and the other
over subintervals that do not.

Solution. Since 𝑓 is uniformly 𝛼-continuous on 𝐾 (Exercise 7.6.10), there exists a 𝛿 > 0
such that

𝑥, 𝑦 ∈ 𝐾 and |𝑥 − 𝑦| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑦)| < 𝛼. (1)

Notice that 𝐾 is a finite union of closed and bounded intervals. We can subdivide these
intervals to obtain a partition {𝑡0, …, 𝑡𝑚} of 𝐾 such that Δ𝑡𝑘 < 𝛿. Suppose that 𝐺𝑗 = (𝑦𝑗, 𝑧𝑗)
and define the following partition of [𝑎, 𝑏]:

𝑃𝜀 = {𝑡0, …, 𝑡𝑚, 𝑦1, 𝑧1, 𝑦2, 𝑧2, …, 𝑦𝑁 , 𝑧𝑁} = {𝑥0, 𝑥1, …, 𝑥𝑛};

here we are relabeling so that the set {𝑥0, 𝑥1, …, 𝑥𝑛} is ordered, i.e. 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛.

Now decompose the indices {1, …, 𝑛} into the disjoint union 𝐴 ∪ 𝐴c, where

𝐴 = {𝑘 ∈ {1, …, 𝑛} : [𝑥𝑘−1, 𝑥𝑘] ∩ 𝐷𝛼 ≠ ∅},

i.e. 𝐴 consists of those indices 𝑘 such that the interval [𝑥𝑘−1, 𝑥𝑘] contains points of 𝐷𝛼. In
other words, from the construction of 𝑃𝜀, we have (𝑥𝑘−1, 𝑥𝑘) = 𝐺𝑗 for some 𝑗. It follows from
Exercise 7.6.9 that ∑𝑘∈𝐴 Δ𝑥𝑘 < 𝜀

4𝑀 . Because 𝑓 is bounded by 𝑀  on [𝑎, 𝑏] we then have

∑
𝑘∈𝐴

(𝑀𝑘 − 𝑚𝑘)Δ𝑥𝑘 ≤ 2𝑀 ∑
𝑘∈𝐴

Δ𝑥𝑘 < 𝜀
2 . (2)

Now observe that the union ⋃𝑘∉𝐴[𝑥𝑘−1, 𝑥𝑘] is the set 𝐾 from Exercise 7.6.10, so that for 
𝑘 ∉ 𝐴 we have Δ𝑥𝑘 = Δ𝑡𝑗 < 𝛿 for some 𝑗. It follows from (1) that 𝑀𝑘 − 𝑚𝑘 ≤ 𝛼 and thus

∑
𝑘∉𝐴

(𝑀𝑘 − 𝑚𝑘)Δ𝑥𝑘 ≤ 𝛼 ∑
𝑘∉𝐴

Δ𝑥𝑘 ≤ 𝛼 ∑
𝑛

𝑘=1
Δ𝑥𝑘 =

𝜀
2(𝑏 − 𝑎)

(𝑏 − 𝑎) = 𝜀
2 . (3)

Combining (2) and (3), we see that

𝑈(𝑓, 𝑃𝜀) − 𝐿(𝑓, 𝑃𝜀) = ∑
𝑛

𝑘=1
(𝑀𝑘 − 𝑚𝑘)Δ𝑥𝑘 = ∑

𝑘∈𝐴
(𝑀𝑘 − 𝑚𝑘)Δ𝑥𝑘 + ∑

𝑘∉𝐴
(𝑀𝑘 − 𝑚𝑘)Δ𝑥𝑘 < 𝜀.
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Exercise 7.6.12.

(a) Prove that 𝐷𝛼 has measure zero. Point out that it is possible to choose a cover for
𝐷𝛼 that consists of a finite number of open intervals.

(b) Show how this implies that 𝐷 has measure zero.

Solution.

(a) If 𝐷𝛼 is finite then we are done. Otherwise, suppose 𝑃𝜀 = {𝑥0, …, 𝑥𝑛} and let

𝐴 = {𝑘 ∈ {1, …, 𝑛} : (𝑥𝑘−1, 𝑥𝑘) ∩ 𝐷𝛼 ≠ ∅};

note that 𝐴 must be non-empty since 𝐷𝛼 is not finite. For 𝑘 ∈ 𝐴, there exists some
𝑥 ∈ (𝑥𝑘−1, 𝑥𝑘) such that 𝑓 is not 𝛼-continuous at 𝑥. It follows that there exist points 𝑦
and 𝑧 in (𝑥𝑘−1, 𝑥𝑘) such that |𝑓(𝑦) − 𝑓(𝑧)| ≥ 𝛼, which implies that 𝑀𝑘 − 𝑚𝑘 ≥ 𝛼. Given
this, it must be the case that ∑𝑘∈𝐴 Δ𝑥𝑘 < 𝜀. Indeed, if this were not the case then

𝑈(𝑓, 𝑃𝜀) − 𝐿(𝑓, 𝑃𝜀) = ∑
𝑛

𝑘=1
(𝑀𝑘 − 𝑚𝑘)Δ𝑥𝑘 ≥ ∑

𝑘∈𝐴
(𝑀𝑘 − 𝑚𝑘)Δ𝑥𝑘 ≥ 𝛼𝜀.

Thus {(𝑥𝑘−1, 𝑥𝑘) : 𝑘 ∈ 𝐴} is a finite collection of open intervals whose total length is
strictly less than 𝜀.

Now observe that the union ⋃𝑘∈𝐴(𝑥𝑘−1, 𝑥𝑘) covers all but finitely many of the points
of 𝐷𝛼; it may fail to cover the elements of 𝑃𝜀, if any of these belong to 𝐷𝛼. Letting 
𝐸 = 𝑃𝜀 ∩ 𝐷𝛼, we then have

𝐷𝛼 ⊆ 𝐸 ∪ ⋃
𝑘∈𝐴

(𝑥𝑘−1, 𝑥𝑘).

If 𝐸 is empty then we are done, since {(𝑥𝑘−1, 𝑥𝑘) : 𝑘 ∈ 𝐴} is finite,

𝐷𝛼 ⊆ ⋃
𝑘∈𝐴

(𝑥𝑘−1, 𝑥𝑘), and ∑
𝑘∈𝐴

Δ𝑥𝑘 < 𝜀.

Otherwise, suppose 𝐸 = {𝑥𝑘1 , …, 𝑥𝑘𝑚}. Define

𝑟 =
𝜀 − ∑𝑘∈𝐴 Δ𝑥𝑘

2𝑚
and 𝑈𝑗 = (𝑥𝑘𝑗 − 𝑟

2 , 𝑥𝑘𝑗 + 𝑟
2).

Then

∑
𝑚

𝑗=1
|𝑈𝑗| = ∑

𝑚

𝑗=1
𝑟 =

𝜀 − ∑𝑘∈𝐴 Δ𝑥𝑘

2
⇒ ∑

𝑘∈𝐴
Δ𝑥𝑘 + ∑

𝑚

𝑗=1
|𝑈𝑗| =

𝜀 + ∑𝑘∈𝐴 Δ𝑥𝑘

2
< 𝜀.

Thus {(𝑥𝑘−1, 𝑥𝑘) : 𝑘 ∈ 𝐴} ∪ {𝑈1, …, 𝑈𝑚} is a finite collection of open intervals whose
union contains 𝐷𝛼 and whose total length is strictly less than 𝜀. We may conclude that
𝐷𝛼 has measure zero.

(b) By Exercise 7.6.7 (b), we may express 𝐷 as the countable union
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𝐷 = ⋃
∞

𝑛=1
𝐷1/𝑛;

by part (a) each 𝐷1/𝑛 has measure zero and so we may use Exercise 7.6.5 to conclude
that 𝐷 has measure zero.

Exercise 7.6.13.

(a) Show that if 𝑓 and 𝑔 are integrable on [𝑎, 𝑏], then so is the product 𝑓𝑔. (This result
was requested in Exercise 7.4.6, but notice how much easier the argument is now.)

(b) Show that if 𝑔 is integrable on [𝑎, 𝑏] and 𝑓 is continuous on the range of 𝑔, then
the composition 𝑓 ∘ 𝑔 is integrable on [𝑎, 𝑏].

Solution.

(a) Let 𝐷𝑓  be the set of discontinuities of 𝑓 ; define 𝐷𝑔 and 𝐷𝑓𝑔 similarly. The contrapositive
of Theorem 4.3.4 (iii) shows that 𝐷𝑓𝑔 ⊆ 𝐷𝑓 ∪ 𝐷𝑔. Because 𝑓 and 𝑔 are integrable on 
[𝑎, 𝑏], Lebesgue’s Theorem (Theorem 7.6.5) shows that 𝐷𝑓  and 𝐷𝑔 have measure zero
and it then follows from Exercise 7.6.5 that 𝐷𝑓 ∪ 𝐷𝑔 has measure zero. It is straight-
forward to verify that any subset of a measure zero set also has measure zero and thus
𝐷𝑓𝑔 has measure zero. Lebesgue’s Theorem allows us to conclude that 𝑓𝑔 is integrable
on [𝑎, 𝑏].

(b) Let 𝐷𝑔 be the set of discontinuities of 𝑔 and 𝐷𝑓∘𝑔 similarly. Given that 𝑓 is continuous
on the range of 𝑔, the contrapositive of Theorem 4.3.9 shows that 𝐷𝑓∘𝑔 ⊆ 𝐷𝑔. Because
𝑔 is integrable on [𝑎, 𝑏], Lebesgue’s Theorem (Theorem 7.6.5) shows that 𝐷𝑔 has mea-
sure zero and it follows that 𝐷𝑓∘𝑔 has measure zero; Lebesgue’s Theorem allows us to
conclude that 𝑓 ∘ 𝑔 is integrable on [𝑎, 𝑏].

Exercise 7.6.14.

(a) Find 𝑔′(0).

(b) Use the standard rules of differentiation to compute 𝑔′(𝑥) for 𝑥 ≠ 0.

(c) Explain why, for every 𝛿 > 0, 𝑔′(𝑥) attains every value between 1 and −1 as 𝑥
ranges over the set (−𝛿, 𝛿). Conclude that 𝑔′ is not continuous at 𝑥 = 0.

Solution.

(a) The Squeeze Theorem shows that

𝑔′(0) = lim
𝑥→0

𝑔(𝑥) − 𝑔(0)
𝑥

= lim
𝑥→0

𝑥 sin( 1
𝑥) = 0.

(b) The standard rules of differentiation give us

𝑔′(𝑥) = 2𝑥 sin( 1
𝑥) − cos( 1

𝑥)
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for 𝑥 ≠ 0.

(c) For 𝑛 ∈ 𝐍 define

𝑥𝑛 =
1

2𝜋𝑛 + 𝜋
and 𝑦𝑛 =

1
2𝜋𝑛

.

Notice that:
(i) lim𝑛→∞ 𝑦𝑛 = 0;
(ii) 0 < 𝑥𝑛 < 𝑦𝑛;
(iii) 𝑔′(𝑥𝑛) = 1;
(iv) 𝑔′(𝑦𝑛) = −1.

Let 𝛿 > 0 be given. By (i) there exists an 𝑁 ∈ 𝐍 such that 𝑦𝑁 < 𝛿; combined with (ii),
we see that 𝑥𝑁 , 𝑦𝑁 ∈ (−𝛿, 𝛿). It now follows from (iii), (iv), and Darboux’s Theorem
(Theorem 5.2.7) that 𝑔′ attains every value in [−1, 1] on the interval [𝑥𝑁 , 𝑦𝑁 ] ⊆ (−𝛿, 𝛿).
Because 𝛿 > 0 was arbitrary, we see that 𝑔′ cannot be continuous at 0.

Exercise 7.6.15.

(a) If 𝑐 ∈ 𝐶, what is lim𝑛→∞ 𝑓𝑛(𝑐)?

(b) Why does lim𝑛→∞ 𝑓𝑛(𝑥) exist for 𝑥 ∉ 𝐶?

Solution.

(a) Since 𝑓𝑛 vanishes on 𝐶𝑛, and hence on 𝐶, for each 𝑛 ∈ 𝐍, we see that lim𝑛→∞ 𝑓𝑛(𝑐) = 0.

(b) If 𝑥 ∉ 𝐶, then 𝑥 ∈ 𝐶c
𝑁  for some 𝑁 ∈ 𝐍. The sequence (𝑓𝑛) is constructed so that

𝑓𝑁(𝑦) = 𝑓𝑁+1(𝑦) = 𝑓𝑁+2(𝑦) = ⋯

for all 𝑦 ∈ 𝐶c
𝑁 . Thus the sequence (𝑓𝑛(𝑥)) is eventually constant and hence convergent.

Exercise 7.6.16.

(a) Explain why 𝑓 ′(𝑥) exists for all 𝑥 ∉ 𝐶.

(b) If 𝑐 ∈ 𝐶, argue that |𝑓(𝑥)| ≤ (𝑥 − 𝑐)2 for all 𝑥 ∈ [0, 1]. Show how this implies 
𝑓 ′(𝑐) = 0.

(c) Give a careful argument for why 𝑓 ′(𝑥) fails to be continuous on 𝐶. Remember
that 𝐶 contains many points besides the endpoints of the intervals that make up
𝐶1, 𝐶2, 𝐶3, ….

Solution.

(a) If 𝑥 ∉ 𝐶 then 𝑥 ∈ 𝐶c
𝑁  for some 𝑁 ∈ 𝐍. The sequence (𝑓𝑛) is constructed so that

𝑓𝑁(𝑦) = 𝑓𝑁+1(𝑦) = 𝑓𝑁+2(𝑦) = ⋯
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for all 𝑦 ∈ 𝐶c
𝑁 . Because 𝑓 is the pointwise limit of (𝑓𝑛), we see that 𝑓(𝑦) = 𝑓𝑁(𝑦) for all

𝑦 ∈ 𝐶c
𝑁 . Since 𝐶c

𝑁  is open, there exists some open interval 𝑈  containing 𝑥 and contained
inside 𝐶c

𝑁 , so that 𝑓 and 𝑓𝑁  agree on 𝑈 ; the differentiability of 𝑓𝑁  on 𝑈  then implies
that 𝑓 ′(𝑥) = 𝑓 ′

𝑁(𝑥).

(b) As we showed in Exercise 3.4.3, there is a sequence (𝑥𝑛), where each 𝑥𝑛 is an endpoint
of one of the intervals making up 𝐶𝑛, such that lim𝑛→∞ 𝑥𝑛 = 𝑐. Let 𝑥 ∈ [0, 1] be given.
The sequence (𝑓𝑛) is constructed so that

|𝑓𝑛(𝑥)| ≤ (𝑥 − 𝑥𝑛)2.

Taking the limit as 𝑛 → ∞ on both sides of this inequality gives us |𝑓(𝑥)| ≤ (𝑥 − 𝑐)2.

Now observe that, since 𝑓(𝑐) = 0 (by Exercise 7.6.15 (a)),

|
𝑓(𝑥) − 𝑓(𝑐)

𝑥 − 𝑐
| =

|𝑓(𝑥)|
|𝑥 − 𝑐|

≤ |𝑥 − 𝑐|.

It follows from the Squeeze Theorem that

lim
𝑥→𝑐

|
𝑓(𝑥) − 𝑓(𝑐)

𝑥 − 𝑐
| = 0,

which implies that 𝑓 ′(𝑐) = 0.

(c) Suppose 𝑥 ∈ [0, 1] is an endpoint of one of the intervals making up some 𝐶𝑛. We con-
structed 𝑓 so that its behaviour near 𝑥 is the same as the behaviour of 𝑔 near 0. Thus,
by a similar argument to the one given in Exercise 7.6.14 (c), for each 𝛿 > 0 the deriv-
ative 𝑓 ′ attains every value between 1 and −1 on the interval (𝑥 − 𝛿, 𝑥 + 𝛿).

Now, as we showed in Exercise 3.4.3, there is a sequence (𝑥𝑛), where each 𝑥𝑛 is an
endpoint of one of the intervals making up 𝐶𝑛, such that lim𝑛→∞ 𝑥𝑛 = 𝑐. Let 𝛿 > 0 be
given. There is an 𝑁 ∈ 𝐍 such that 𝑥𝑁 ∈ (𝑐 − 𝛿

2 , 𝑐 + 𝛿
2), which implies that

(𝑥𝑁 − 𝛿
2 , 𝑥𝑁 + 𝛿

2) ⊆ (𝑐 − 𝛿, 𝑐 + 𝛿).

As we noted in the previous paragraph, 𝑓 ′ must attain every value between 1 and −1
on the interval (𝑥𝑁 − 𝛿

2 , 𝑥𝑁 + 𝛿
2) and hence on the interval (𝑐 − 𝛿, 𝑐 + 𝛿). As 𝛿 > 0 was

arbitrary, we see that 𝑓 ′ is not continuous at 𝑐.

Exercise 7.6.17. Why is 𝑓 ′(𝑥) Riemann-integrable on [0, 1]?

Solution. Suppose 𝑥 ∉ 𝐶. As we showed in Exercise 7.6.16 (a), there exists some open inter-
val 𝑈  containing 𝑥 and some 𝑁 ∈ 𝐍 such that 𝑓 and 𝑓𝑁  agree on 𝑈 . Since 𝑓𝑁  is continuously
differentiable on 𝑈 , it follows that 𝑓 ′ is continuous at 𝑥. Combined with Exercise 7.6.16 (c),
this shows that the set of discontinuities of 𝑓 ′ is precisely 𝐶, which has measure zero by
Exercise 7.6.4. Lebesgue’s Theorem now implies that 𝑓 ′ is integrable on [0, 1].
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Exercise 7.6.18. Show that, under these circumstances, the sum of the lengths of the
intervals making up each 𝐶𝑛 no longer tends to zero as 𝑛 → ∞. What is this limit?

Solution. The sum of the lengths of the intervals being removed is now

∑
∞

𝑛=1
2𝑛−1(

1
3𝑛+1 ) =

1
3

and hence the sum of the lengths of the intervals making up each 𝐶𝑛 now tends to 2
3 .

Exercise 7.6.19. As a final gesture, provide the example advertised in Exercise 7.6.13
of an integrable function 𝑓 and a continuous function 𝑔 where the composition 𝑓 ∘ 𝑔 is
properly defined but not integrable. Exercise 4.3.12 may be useful.

Solution. Let 𝐹 ⊆ [0, 1] be the non-zero measure Cantor-type set defined in the text (such
sets are sometimes called Smith-Volterra-Cantor sets, or fat Cantor sets). Define 𝑓 : 𝐑 → 𝐑
by

𝑓(𝑥) = {
1 if 𝑥 = 0,
0 if 𝑥 ≠ 0,

and note that 𝑓 is integrable on any interval [𝑎, 𝑏]. Define 𝑔 : [0, 1] → 𝐑 by

𝑔(𝑥) = inf{|𝑥 − 𝑎| : 𝑎 ∈ 𝐹}.

Exercise 4.3.12 shows that 𝑔 is continuous and, because 𝐹  is closed, satisfies 𝑔(𝑥) = 0 if and
only if 𝑥 ∈ 𝐹 . It follows that 𝑓 ∘ 𝑔 : [0, 1] → 𝐑 is given by

𝑓(𝑔(𝑥)) = {
1 if 𝑥 ∈ 𝐹 ,
0 if 𝑥 ∉ 𝐹 .

Using that 𝐹  is closed and does not contain any intervals, we can argue as we did in Exercise
7.3.9 (d) to show that the set of discontinuities of 𝑓 ∘ 𝑔 is precisely 𝐹 . As 𝐹  does not have
measure zero, Lebesgue’s Theorem allows us to conclude that 𝑓 ∘ 𝑔 is not integrable on [0, 1].
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Chapter 8. Additional Topics

8.1. The Generalized Riemann Integral

Exercise 8.1.1.

(a) Explain why both the Riemann sum 𝑅(𝑓, 𝑃 ) and ∫𝑏
𝑎

𝑓 fall between 𝐿(𝑓, 𝑃 ) and
𝑈(𝑓, 𝑃 ).

(b) Explain why 𝑈(𝑓, 𝑃 ′) − 𝐿(𝑓, 𝑃 ′) < 𝜀/3.

Solution.

(a) The inequality 𝐿(𝑓, 𝑃 ) ≤ 𝑅(𝑓, 𝑃 ) ≤ 𝑈(𝑓, 𝑃 ) follows as 𝑚𝑘 ≤ 𝑓(𝑐𝑘) ≤ 𝑀𝑘 for each 𝑘
and the inequality 𝐿(𝑓, 𝑃 ) ≤ ∫𝑏

𝑎
𝑓 ≤ 𝑈(𝑓, 𝑃 ) follows by observing that:

• 𝐿(𝑓, 𝑃 ) ≤ 𝐿(𝑓);

• 𝑈(𝑓) ≤ 𝑈(𝑓, 𝑃 );

• ∫𝑏
𝑎

𝑓 = 𝐿(𝑓) = 𝑈(𝑓) (as 𝑓 is integrable on [𝑎, 𝑏]).

(b) Because 𝑃 ′ is a refinement of 𝑃 , Lemma 7.2.3 shows that 𝑈(𝑓, 𝑃 ′) − 𝐿(𝑓, 𝑃 ′) < 𝜀/3.

Exercise 8.1.2. Explain why 𝑈(𝑓, 𝑃 ) − 𝑈(𝑓, 𝑃 ′) ≥ 0.

Solution. This follows from Lemma 7.2.3, as 𝑃 ′ is a refinement of 𝑃 .

Exercise 8.1.3.

(a) In terms of 𝑛, what is the largest number of terms of the form 𝑀𝑘(𝑥𝑘 − 𝑥𝑘−1) that
could appear in one of 𝑈(𝑓, 𝑃 ) or 𝑈(𝑓, 𝑃 ′) but not the other?

(b) Finish the proof in this direction by arguing that

𝑈(𝑓, 𝑃 ) − 𝑈(𝑓, 𝑃 ′) < 𝜀/3.

Solution.

(a) Note that

|𝑃 ′| = |𝑃𝜀| + |𝑃 | − |𝑃𝜀 ∩ 𝑃 | = 𝑛 + 1 + |𝑃 | − |𝑃𝜀 ∩ 𝑃 |.

To maximize the number of points in 𝑃 ′, the above expression shows that |𝑃𝜀 ∩ 𝑃 |
should be minimized. Since both 𝑃𝜀 and 𝑃  must contain the points 𝑎 and 𝑏, the smallest
this intersection could be is |𝑃𝜀 ∩ 𝑃 | = 2 and thus

|𝑃 ′| = 𝑛 − 1 + |𝑃 |
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is the largest that |𝑃 ′| could be. In other words, after forming 𝑃 ′ by adding new points
from 𝑃𝜀 to 𝑃 , the largest number of points that could have been added is 𝑛 − 1. For
each of these new points added, two terms are added to 𝑈(𝑓, 𝑃 ′) which do not appear in
𝑈(𝑓, 𝑃 ) and there is one term in 𝑈(𝑓, 𝑃 ) which does not appear in 𝑈(𝑓, 𝑃 ′). It follows
that the largest number of terms that could appear in one of 𝑈(𝑓, 𝑃 ) or 𝑈(𝑓, 𝑃 ′) but
not the other is 3(𝑛 − 1).

(b) Let us write 𝑈(𝑓, 𝑃 ) − 𝑈(𝑓, 𝑃 ′) as

∑ 𝑀𝑘(𝑥𝑘 − 𝑥𝑘−1) − ∑ 𝑀𝑘(𝑥𝑘 − 𝑥𝑘−1),

where the sum on the left consists of those terms appearing in 𝑈(𝑓, 𝑃 ) but not in 
𝑈(𝑓, 𝑃 ′) and the sum on the right consists of those terms appearing in 𝑈(𝑓, 𝑃 ′) but
not in 𝑈(𝑓, 𝑃 ); terms which appear in both 𝑈(𝑓, 𝑃 ) and 𝑈(𝑓, 𝑃 ′) cancel. By part (a),
there can be at most 3(𝑛 − 1) terms in total across both sums. Exercise 8.1.2 shows
that the quantity 𝑈(𝑓, 𝑃 ) − 𝑈(𝑓, 𝑃 ′) is non-negative and thus

𝑈(𝑓, 𝑃 ) − 𝑈(𝑓, 𝑃 ′) = |𝑈(𝑓, 𝑃 ) − 𝑈(𝑓, 𝑃 ′)|

= |∑ 𝑀𝑘(𝑥𝑘 − 𝑥𝑘−1) − ∑ 𝑀𝑘(𝑥𝑘 − 𝑥𝑘−1)|

≤ ∑|𝑀𝑘|(𝑥𝑘 − 𝑥𝑘−1) + ∑|𝑀𝑘|(𝑥𝑘 − 𝑥𝑘−1).

Now we can use the fact that both partitions 𝑃  and 𝑃 ′ are 𝛿-fine, that 𝑀  is a bound
on |𝑓|, and that there are at most 3(𝑛 − 1) terms in total across both sums to see that

𝑈(𝑓, 𝑃 ) − 𝑈(𝑓, 𝑃 ′) ≤ 3(𝑛 − 1)𝑀𝛿 < 𝜀
3 .

Exercise 8.1.4.

(a) Show that if 𝑓 is continuous, then it is possible to pick tags {𝑐𝑘}𝑛
𝑘=1 so that

𝑅(𝑓, 𝑃 ) = 𝑈(𝑓, 𝑃 ).

Similarly, there are tags for which 𝑅(𝑓, 𝑃 ) = 𝐿(𝑓, 𝑃 ) as well.

(b) If 𝑓 is not continuous, it may not be possible to find tags for which

𝑅(𝑓, 𝑃 ) = 𝑈(𝑓, 𝑃 ).

Show, however, that given an arbitrary 𝜀 > 0, it is possible to pick tags for 𝑃
so that

𝑈(𝑓, 𝑃 ) − 𝑅(𝑓, 𝑃 ) < 𝜀.

The analogous statement holds for lower sums.

Solution.

(a) For 𝑘 ∈ {1, …, 𝑛}, the Extreme Value Theorem (Theorem 4.4.2) implies that 𝑓 attains
its maximum on the compact set [𝑥𝑘−1, 𝑥𝑘], i.e. there is some 𝑐𝑘 ∈ [𝑥𝑘−1, 𝑥𝑘] such that
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𝑓(𝑐𝑘) = 𝑀𝑘. Thus choosing the collection of tags {𝑐𝑘}𝑛
𝑘=1 gives us 𝑅(𝑓, 𝑃 ) = 𝑈(𝑓, 𝑃 ).

Similarly, the Extreme Value Theorem implies that 𝑓 attains its minimum on [𝑥𝑘−1, 𝑥𝑘]
at some 𝑐𝑘 ∈ [𝑥𝑘−1, 𝑥𝑘]; choosing the tags {𝑐𝑘}𝑛

𝑘=1 gives us 𝑅(𝑓, 𝑃 ) = 𝐿(𝑓, 𝑃 ).

(b) Suppose 𝑃 = {𝑥0, …, 𝑥𝑛}. By Lemma 1.3.8, for each 𝑘 ∈ {1, …, 𝑛}, there exists some 
𝑐𝑘 ∈ [𝑥𝑘−1, 𝑥𝑘] such that

𝑀𝑘 −
𝜀

𝑏 − 𝑎
< 𝑓(𝑐𝑘) ≤ 𝑀𝑘.

Choose the tags {𝑐𝑘}𝑛
𝑘=1 and then observe that

𝑈(𝑓, 𝑃 ) − 𝑅(𝑓, 𝑃 ) = ∑
𝑛

𝑘=1
(𝑀𝑘 − 𝑓(𝑐𝑘))Δ𝑥𝑘 <

𝜀
𝑏 − 𝑎

∑
𝑛

𝑘=1
Δ𝑥𝑘 = 𝜀.

The analogous statement for lower sums can be proved similarly.

Exercise 8.1.5. Use the results of the previous exercise to finish the proof of Theorem
8.1.2.

Solution. See Exercise 7.2.6.

Exercise 8.1.6. Consider the interval [0, 1].

(a) If 𝛿(𝑥) = 1/9, find a 𝛿(𝑥)-fine tagged partition of [0, 1]. Does the choice of tags
matter in this case?

(b) Let

𝛿(𝑥) = {
1/4 if 𝑥 = 0
𝑥/3 if 0 < 𝑥 ≤ 1.

Construct a 𝛿(𝑥)-fine tagged partition of [0, 1].

Solution.

(a) Take 𝑃 = {0, 1
10 ,

2
10 , …, 9

10 , 1} and for each 𝑘 ∈ {1, …, 10} choose the tag 𝑐𝑘 = 𝑘
10 . Then

Δ𝑥𝑘 = 1
10 < 1

9 = 𝛿(𝑐𝑘).

The choice of tags is irrelevant here since the gauge 𝛿 is constant.

(b) Let 𝑃 = {0, 3
15 ,

4
15 ,

5
15 , …, 14

15 , 1} and choose the tags 𝑐1 = 0 and 𝑐𝑘 = 𝑘+2
15  for 2 ≤ 𝑘 ≤ 13.

Some tedious calculations show that this tagged partition is 𝛿(𝑥)-fine.

Exercise 8.1.7. Finish the proof of Theorem 8.1.5.

Solution. Denote the two halves by
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𝐽1 = [𝑎,
𝑎 + 𝑏

2
] and 𝐽2 = [

𝑎 + 𝑏
2

, 𝑏].

If there exists a 𝑐1 ∈ 𝐽1 and a 𝑐2 ∈ 𝐽2 such that 𝑏−𝑎
2 < 𝛿(𝑐1) and 𝑏−𝑎

2 < 𝛿(𝑐2), then the tagged
partition

({𝑎,
𝑎 + 𝑏

2
, 𝑏}, {𝑐1, 𝑐2})

is 𝛿(𝑥)-fine. Otherwise, at least one of the following statements is true:

• for all 𝑥 ∈ 𝐽1, 𝛿(𝑥) ≤ 𝑏−𝑎
2 ;

• for all 𝑥 ∈ 𝐽2, 𝛿(𝑥) ≤ 𝑏−𝑎
2 .

For each of the subintervals for which the relevant statement above is true, we perform the
same procedure: bisect the interval into two equal halves and look for valid tags. By contin-
uing this algorithm, we form a “tree” like so:

[𝑎, 𝑏]

F

F F

F

F F

F

Each node of this tree (other than the topmost) represents a closed and bounded interval
which is exactly half of its parent node: the left half if the node is to the left of its parent
and the right half if the node is to the right of its parent; note that the length of each node
is exactly half of the length of its parent node. An “F” indicates that we found a valid tag at
that node, i.e. if the node is an interval 𝐽 , then we found some 𝑐 ∈ 𝐽  such that |𝐽 | < 𝛿(𝑐).

If this algorithm stops after a finite number of steps, i.e. if the tree is finite, then we may
take the collection of endpoints of the terminal nodes and the tags we found there as our
𝛿(𝑥)-fine partition. The alternative is that the algorithm does not terminate after a finite
number of steps, like so:

𝐼0 = [𝑎, 𝑏]

F

F F

𝐼1

F 𝐼2

𝐼3

F ⋮

F
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We will show that this cannot happen. Indeed, if the algorithm fails to terminate, then we
obtain a nested sequence of closed and bounded intervals (𝐼𝑛) (by following the branches of
the tree downwards, e.g. the red path in the figure above; there may be more than one such
path) such that:

(i) |𝐼𝑛| = 2−𝑛(𝑏 − 𝑎) → 0;

(ii) for all 𝑥 ∈ 𝐼𝑛 we have 𝛿(𝑥) ≤ |𝐼𝑛|.

It then follows from the Nested Interval Property (Theorem 1.4.1) that there exists some
𝑥0 ∈ ⋂∞

𝑛=1 𝐼𝑛. Property (ii) shows that 𝛿(𝑥0) ≤ |𝐼𝑛| for all 𝑛 ∈ 𝐍 and property (i) then shows
that 𝛿(𝑥0) ≤ 0, contradicting that 𝛿 is a gauge. Hence it must be the case that the algorithm
stops after a finite number of steps, yielding a 𝛿(𝑥)-fine tagged partition.

Exercise 8.1.8. Finish the argument.

Solution. Let 𝜀 > 0 be given. Because 𝑓 has generalized Riemann integrals 𝐴1 and 𝐴2, there
exist gauges 𝛿1 and 𝛿2 such that

(i) for each tagged partition (𝑃 , {𝑐𝑘}𝑛
𝑘=1) that is 𝛿1-fine, the inequality |𝑅(𝑓, 𝑃 ) − 𝐴1| < 𝜀

2
holds;

(ii) for each tagged partition (𝑃 , {𝑐𝑘}𝑛
𝑘=1) that is 𝛿2-fine, the inequality |𝑅(𝑓, 𝑃 ) − 𝐴2| < 𝜀

2
holds;

Let 𝛿 : [𝑎, 𝑏] → 𝐑 be the gauge on [𝑎, 𝑏] given by 𝛿(𝑥) = min{𝛿1(𝑥), 𝛿2(𝑥)}. By Theorem 8.1.5,
there exists a tagged partition (𝑃 , {𝑐𝑘}𝑛

𝑘=1) that is 𝛿-fine; it is straightforward to verify that
this tagged partition is also 𝛿1- and 𝛿2-fine. It then follows from (i) and (ii) that

|𝐴1 − 𝐴2| ≤ |𝑅(𝑓, 𝑃 ) − 𝐴1| + |𝑅(𝑓, 𝑃 ) − 𝐴2| < 𝜀.

Since 𝜀 > 0 was arbitrary we may conclude that 𝐴1 = 𝐴2.

Exercise 8.1.9. Explain why every function that is Riemann-integrable with ∫𝑏
𝑎

𝑓 = 𝐴
must also have generalized Riemann integral 𝐴.

Solution. For any 𝜀 > 0 we can simply take the gauge on [𝑎, 𝑏] to be the constant function
whose value is the 𝛿 supplied by Theorem 8.1.2.

Exercise 8.1.10. Show that if (𝑃 , {𝑐𝑘}𝑛
𝑘=1) is a 𝛿(𝑥)-fine tagged partition, then

𝑅(𝑔, 𝑃 ) < 𝜀.

Solution. Suppose 𝑃 = {𝑥0, …, 𝑥𝑛}. If each 𝑐𝑘 is irrational then 𝑅(𝑔, 𝑃 ) = 0 < 𝜀. Other-
wise, let {𝑐𝑘1 , …, 𝑐𝑘𝑚} be the collection of rational tags, so that for each 1 ≤ 𝑗 ≤ 𝑚 we have
𝑐𝑘𝑗 = 𝑟𝑖𝑗 for some (not necessarily unique) 𝑖𝑗. It follows that
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𝑅(𝑔, 𝑃 ) = ∑
𝑛

𝑘=1
𝑔(𝑐𝑘)Δ𝑥𝑘 = ∑

𝑚

𝑗=1
Δ𝑥𝑘𝑗 < ∑

𝑚

𝑗=1
𝛿(𝑐𝑘𝑗) = ∑

𝑚

𝑗=1
𝛿(𝑟𝑖𝑗) = ∑

𝑚

𝑗=1

𝜀
2𝑖𝑗+1 .

Since a tag can appear in at most two subintervals, any given rational number 𝑟𝑖 can appear
at most twice in the collection {𝑟𝑖1 , …, 𝑟𝑖𝑚}. Thus

𝑅(𝑔, 𝑃 ) < ∑
𝑚

𝑗=1

𝜀
2𝑖𝑗+1 ≤ 2 ∑

∞

𝑖=1

𝜀
2𝑖+1 = 𝜀.

Exercise 8.1.11. Show that

𝐹(𝑏) − 𝐹(𝑎) = ∑
𝑛

𝑘=1
[𝐹 (𝑥𝑘) − 𝐹(𝑥𝑘−1)].

Solution. This is a telescoping sum:

∑
𝑛

𝑘=1
[𝐹 (𝑥𝑘) − 𝐹(𝑥𝑘−1)] = 𝐹(𝑥𝑛) − 𝐹(𝑥0) = 𝐹(𝑏) − 𝐹(𝑎).

Exercise 8.1.12. For each 𝑐 ∈ [𝑎, 𝑏], explain why there exists a 𝛿(𝑐) > 0 (a 𝛿 > 0 de-
pending on 𝑐) such that

|
𝐹 (𝑥) − 𝐹(𝑐)

𝑥 − 𝑐
− 𝑓(𝑐)| < 𝜀

for all 0 < |𝑥 − 𝑐| < 𝛿(𝑐).

Solution. By assumption the function 𝐹  is differentiable at 𝑐 and satisfies 𝐹 ′(𝑐) = 𝑓(𝑐); the
existence of such a 𝛿(𝑐) is then immediate from the definition of 𝐹 ′(𝑐) as

lim
𝑥→

𝐹(𝑥) − 𝐹(𝑐)
𝑥 − 𝑐

.

Exercise 8.1.13.

(a) For a particular 𝑐𝑘 ∈ [𝑥𝑘−1, 𝑥𝑘] of 𝑃 , show that

|𝐹 (𝑥𝑘) − 𝐹(𝑐𝑘) − 𝑓(𝑐𝑘)(𝑥𝑘 − 𝑐𝑘)| < 𝜀(𝑥𝑘 − 𝑐𝑘)

and

|𝐹 (𝑐𝑘) − 𝐹(𝑥𝑘−1) − 𝑓(𝑐𝑘)(𝑐𝑘 − 𝑥𝑘−1)| < 𝜀(𝑐𝑘 − 𝑥𝑘−1).

(b) Now, argue that

|𝐹 (𝑥𝑘) − 𝐹(𝑥𝑘−1) − 𝑓(𝑐𝑘)(𝑥𝑘 − 𝑥𝑘−1)| < 𝜀(𝑥𝑘 − 𝑥𝑘−1),

and use this fact to complete the proof of the theorem.
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Solution.

(a) The inequalities here should not be strict; the first strict inequality fails if 𝑐𝑘 = 𝑥𝑘 and
the second fails if 𝑐𝑘 = 𝑥𝑘−1. Instead, we’ll show that

|𝐹 (𝑥𝑘) − 𝐹(𝑐𝑘) − 𝑓(𝑐𝑘)(𝑥𝑘 − 𝑐𝑘)| ≤ 𝜀(𝑥𝑘 − 𝑐𝑘)

and |𝐹(𝑐𝑘) − 𝐹(𝑥𝑘−1) − 𝑓(𝑐𝑘)(𝑐𝑘 − 𝑥𝑘−1)| ≤ 𝜀(𝑐𝑘 − 𝑥𝑘−1),

which is sufficient for the proof. For the first inequality, note that both sides are
zero if 𝑐𝑘 = 𝑥𝑘. Suppose therefore that 𝑥𝑘−1 ≤ 𝑐𝑘 < 𝑥𝑘 and notice that, because the
tagged partition (𝑃 , {𝑐𝑘}) is 𝛿-fine, we have 0 < 𝑥𝑘 − 𝑐𝑘 ≤ Δ𝑥𝑘 < 𝛿(𝑐𝑘). It follows from
Exercise 8.1.12 that

|
𝐹 (𝑥𝑘) − 𝐹(𝑐𝑘)

𝑥𝑘 − 𝑐𝑘
− 𝑓(𝑐𝑘)| < 𝜀.

Multiplying through by 𝑥𝑘 − 𝑐𝑘, which is positive, gives the desired inequality. The
second inequality is obtained similarly.

(b) Expressing the inequalities from part (a) as

−𝜀(𝑥𝑘 − 𝑐𝑘) ≤ 𝐹(𝑥𝑘) − 𝐹(𝑐𝑘) − 𝑓(𝑐𝑘)(𝑥𝑘 − 𝑐𝑘) ≤ 𝜀(𝑥𝑘 − 𝑐𝑘)

− 𝜀(𝑐𝑘 − 𝑥𝑘−1) ≤ 𝐹(𝑐𝑘) − 𝐹(𝑥𝑘−1) − 𝑓(𝑐𝑘)(𝑐𝑘 − 𝑥𝑘−1) ≤ 𝜀(𝑐𝑘 − 𝑥𝑘−1)

and adding the rows together, we see that

−𝜀(𝑥𝑘 − 𝑥𝑘−1) ≤ 𝐹(𝑥𝑘) − 𝐹(𝑥𝑘−1) − 𝑓(𝑐𝑘)(𝑥𝑘 − 𝑥𝑘−1) ≤ 𝜀(𝑥𝑘 − 𝑥𝑘−1).

Thus

|𝐹 (𝑏) − 𝐹(𝑎) − 𝑅(𝑓, 𝑃 )| ≤ ∑
𝑛

𝑘=1
|𝐹 (𝑥𝑘) − 𝐹(𝑥𝑘−1) − 𝑓(𝑐𝑘)(𝑥𝑘 − 𝑥𝑘−1)|

≤ ∑
𝑛

𝑘=1
𝜀(𝑥𝑘 − 𝑥𝑘−1) = 𝜀(𝑏 − 𝑎)

By replacing 𝜀 in the proof with 𝜀
2(𝑏−𝑎) , we obtain

|𝐹 (𝑏) − 𝐹(𝑎) − 𝑅(𝑓, 𝑃 )| < 𝜀,

as desired.

Exercise 8.1.14.

(a) Why are we sure that 𝑓 and (𝐹 ∘ 𝑔)′ have generalized Riemann integrals?

(b) Use Theorem 8.1.9 to finish the proof.

Solution.

(a) Both 𝑓 = 𝐹 ′ and (𝐹 ∘ 𝑔)′ are derivatives. Theorem 8.1.9 shows that any derivative is
generalized-Riemann-integrable.
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(b) By the chain rule and Theorem 8.1.9:

∫
𝑏

𝑎
(𝑓 ∘ 𝑔) ⋅ 𝑔′ = ∫

𝑏

𝑎
(𝐹 ′ ∘ 𝑔) ⋅ 𝑔′ = ∫

𝑏

𝑎
(𝐹 ∘ 𝑔)′ = 𝐹(𝑔(𝑏)) − 𝐹(𝑔(𝑎)) = ∫

𝑔(𝑏)

𝑔(𝑎)
𝐹 ′ = ∫

𝑔(𝑏)

𝑔(𝑎)
𝑓.
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8.2. Metric Spaces and the Baire Category Theorem

Exercise 8.2.1. Decide which of the following are metrics on 𝑋 = 𝐑2. For each, we let
𝑥 = (𝑥1, 𝑥2) and 𝑦 = (𝑦1, 𝑦2) be points in the plane.

(a) 𝑑(𝑥, 𝑦) = √(𝑥1 − 𝑦1)
2 + (𝑥2 − 𝑦2)

2.

(b) 𝑑(𝑥, 𝑦) = max{|𝑥1 − 𝑦1|, |𝑥2 − 𝑦2|}.

(c) 𝑑(𝑥, 𝑦) = |𝑥1𝑥2 + 𝑦1𝑦2|.

Solution.

(a) This is a metric on 𝐑2. To see this, we shall verify each property in Definition 8.2.1.
Let 𝑥 = (𝑥1, 𝑥2) and 𝑦 = (𝑦1, 𝑦2) in 𝐑2 be given.

(i) It is clear that 𝑑(𝑥, 𝑦) ≥ 0. Observe that

𝑑(𝑥, 𝑦) = 0 ⇔ √(𝑥1 − 𝑦1)
2 + (𝑥2 − 𝑦2)

2 = 0

⇔ (𝑥1 − 𝑦1)
2 + (𝑥2 − 𝑦2)

2 = 0

⇔ (𝑥1 − 𝑦1)
2 = 0 and (𝑥2 − 𝑦2)

2 = 0

⇔ 𝑥1 = 𝑦1 and 𝑥2 = 𝑦2

⇔ 𝑥 = 𝑦.

(ii) We have

𝑑(𝑥, 𝑦) = √(𝑥1 − 𝑦1)
2 + (𝑥2 − 𝑦2)

2 = √(𝑦1 − 𝑥1)
2 + (𝑦2 − 𝑥2)

2 = 𝑑(𝑦, 𝑥).

(iii) For 𝑎 = (𝑎1, 𝑎2) and 𝑏 = (𝑏1, 𝑏2) in 𝐑2, observe that

√(𝑎1 + 𝑏1)
2 + (𝑎2 + 𝑏2)

2 ≤ √𝑎2
1 + 𝑎2

2 + √𝑏2
1 + 𝑏2

2

⇔ (𝑎1 + 𝑏1)
2 + (𝑎2 + 𝑏2)

2 ≤ 𝑎2
1 + 𝑎2

2 + 𝑏2
1 + 𝑏2

2 + 2√𝑎2
1 + 𝑎2

2√𝑏2
1 + 𝑏2

2

⇔ 𝑎1𝑏1 + 𝑎2𝑏2 ≤ √𝑎2
1 + 𝑎2

2√𝑏2
1 + 𝑏2

2.

This last inequality follows from the Cauchy-Schwarz inequality. The desired tri-
angle inequality for 𝑑 can now be obtained by taking 𝑎 = 𝑥 − 𝑧 and 𝑏 = 𝑧 − 𝑦.

(b) This is a metric on 𝐑2. To see this, we shall verify each property in Definition 8.2.1.
Let 𝑥 = (𝑥1, 𝑥2) and 𝑦 = (𝑦1, 𝑦2) in 𝐑2 be given.

(i) It is clear that 𝑑(𝑥, 𝑦) ≥ 0. Observe that
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𝑑(𝑥, 𝑦) = 0 ⇔ max{|𝑥1 − 𝑦1|, |𝑥2 − 𝑦2|} = 0

⇔ |𝑥1 − 𝑦1| = 0 and |𝑥2 − 𝑦2| = 0

⇔ 𝑥1 = 𝑦1 and 𝑥2 = 𝑦2

⇔ 𝑥 = 𝑦.

(ii) We have

𝑑(𝑥, 𝑦) = max{|𝑥1 − 𝑦1|, |𝑥2 − 𝑦2|} = max{|𝑦1 − 𝑥1|, |𝑦2 − 𝑥2|} = 𝑑(𝑦, 𝑥).

(iii) Let 𝑧 = (𝑧1, 𝑧2) ∈ 𝐑2 be given. Suppose that 𝑑(𝑥, 𝑦) = |𝑥1 − 𝑦1| (the case where
𝑑(𝑥, 𝑦) = |𝑥2 − 𝑦2| is handled similarly) and observe that

𝑑(𝑥, 𝑦) = |𝑥1 − 𝑦1| ≤ |𝑥1 − 𝑧1| + |𝑧1 − 𝑦1| ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦).

(c) This is not a metric on 𝐑2. To see this, observe that by taking 𝑥 = (1, 1) and 𝑦 = (−1, 1)
we obtain 𝑑(𝑥, 𝑦) = 0, but 𝑥 ≠ 𝑦. Thus property (i) of Definition 8.2.1 is not satisfied.

Exercise 8.2.2. Let 𝐶[0, 1] be the collection of continuous functions on the closed in-
terval [0, 1]. Decide which of the following are metrics on 𝐶[0, 1].

(a) 𝑑(𝑓, 𝑔) = sup{|𝑓(𝑥) − 𝑔(𝑥)| : 𝑥 ∈ [0, 1]}.

(b) 𝑑(𝑓, 𝑔) = |𝑓(1) − 𝑔(1)|.

(c) 𝑑(𝑓, 𝑔) = ∫1
0
|𝑓 − 𝑔|.

Solution.

(a) This is a metric on 𝐶[0, 1]. Note that by the Extreme Value Theorem (Theorem 4.4.2),
the supremum is actually a maximum.

(i) Because each element of {|𝑓(𝑥) − 𝑔(𝑥)| : 𝑥 ∈ [0, 1]} is non-negative, we must have
𝑑(𝑓, 𝑔) ≥ 0. Observe that

𝑑(𝑓, 𝑔) = 0 ⇔ max{|𝑓(𝑥) − 𝑔(𝑥)| : 𝑥 ∈ [0, 1]} = 0

⇔ |𝑓(𝑥) − 𝑔(𝑥)| = 0 for all 𝑥 ∈ [0, 1]

⇔ 𝑓(𝑥) = 𝑔(𝑥) for all 𝑥 ∈ [0, 1]

⇔ 𝑓 = 𝑔.

(ii) As |𝑓(𝑥) − 𝑔(𝑥)| = |𝑔(𝑥) − 𝑓(𝑥)| for each 𝑥 ∈ [0, 1], we see that 𝑑(𝑓, 𝑔) = 𝑑(𝑔, 𝑓).

(iii) Let ℎ ∈ 𝐶[0, 1] be given and suppose that |𝑓 − 𝑔| attains its maximum at some 
𝑡 ∈ [0, 1], so that 𝑑(𝑓, 𝑔) = |𝑓(𝑡) − 𝑔(𝑡)|. Then:

𝑑(𝑓, 𝑔) = |𝑓(𝑡) − 𝑔(𝑡)| ≤ |𝑓(𝑡) − ℎ(𝑡)| + |ℎ(𝑡) − 𝑔(𝑡)| ≤ 𝑑(𝑓, ℎ) + 𝑑(ℎ, 𝑔).

(b) This is not a metric on 𝐶[0, 1]. To see this, let 𝑓, 𝑔 ∈ 𝐶[0, 1] be given by 𝑓(𝑥) = 0 and
𝑔(𝑥) = 1 − 𝑥. Then
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𝑑(𝑓, 𝑔) = |𝑓(1) − 𝑔(1)| = 0

but 𝑓 ≠ 𝑔. Thus 𝑑 does not satisfy property (i) in Definition 8.2.1.

(c) This is a metric on 𝐶[0, 1]:

(i) As |𝑓 − 𝑔| ≥ 0, Theorem 7.4.2 (iv) shows that 𝑑(𝑓, 𝑔) ≥ 0. Observe that

𝑑(𝑓, 𝑔) = 0 ⇔ ∫
1

0
|𝑓 − 𝑔| = 0

⇔ |𝑓(𝑥) − 𝑔(𝑥)| = 0 for all 𝑥 ∈ [0, 1]

⇔ 𝑓(𝑥) = 𝑔(𝑥) for all 𝑥 ∈ [0, 1]

⇔ 𝑓 = 𝑔,

where we have used the contrapositive of Exercise 7.4.3 (c) for the second equiv-
alence.

(ii) We have 𝑑(𝑓, 𝑔) = 𝑑(𝑔, 𝑓) since |𝑓 − 𝑔| = |𝑔 − 𝑓|.

(iii) Let ℎ ∈ 𝐶[0, 1] be given. For any 𝑥 ∈ [0, 1] we have the inequality

|𝑓(𝑥) − 𝑔(𝑥)| ≤ |𝑓(𝑥) − ℎ(𝑥)| + |ℎ(𝑥) − 𝑔(𝑥)|.

Theorem 7.4.2 (iv) then implies that

∫
1

0
|𝑓 − 𝑔| ≤ ∫

1

0
|𝑓 − ℎ| + ∫

1

0
|ℎ − 𝑔|,

i.e. 𝑑(𝑓, 𝑔) ≤ 𝑑(𝑓, ℎ) + 𝑑(ℎ, 𝑔).

Exercise 8.2.3. Verify that the discrete metric is actually a metric.

Solution. Properties (i) and (ii) in Definition 8.2.1 are clear. For the triangle inequality, let
𝑥, 𝑦, 𝑧 ∈ 𝑋 be given and suppose that all three are distinct. Then

𝜌(𝑥, 𝑦) = 1 < 2 = 𝜌(𝑥, 𝑧) + 𝜌(𝑧, 𝑦).

Now suppose that 𝑥 ≠ 𝑦 and 𝑦 = 𝑧. Then

𝜌(𝑥, 𝑦) = 1 = 𝜌(𝑥, 𝑧) + 𝜌(𝑧, 𝑦).

The other cases are handled similarly.

Exercise 8.2.4. Show that a convergent sequence is Cauchy.

Solution. Suppose that (𝑥𝑛) is sequence in a metric space (𝑋, 𝑑) converging to some 𝑥 ∈ 𝑋
and let 𝜀 > 0 be given. There exists an 𝑁 ∈ 𝐍 such that 𝑑(𝑥𝑛, 𝑥) < 𝜀

2  whenever 𝑛 ≥ 𝑁 .
Suppose that 𝑚, 𝑛 ≥ 𝑁  and observe that, by the triangle inequality for 𝑑,

𝑑(𝑥𝑛, 𝑥𝑚) ≤ 𝑑(𝑥𝑛, 𝑥) + 𝑑(𝑥𝑚, 𝑥) < 𝜀.
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Thus (𝑥𝑛) is Cauchy.

Exercise 8.2.5.

(a) Consider 𝐑2 with the discrete metric 𝜌(𝑥, 𝑦) examined in Exercise 8.2.3. What
do Cauchy sequences look like in this space? Is 𝐑2 complete with respect to this
metric?

(b) Show that 𝐶[0, 1] is complete with respect to the metric in Exercise 8.2.2 (a).

(c) Define 𝐶1[0, 1] to be the collection of differentiable functions on [0, 1] whose deriv-
atives are also continuous. Is 𝐶1[0, 1] complete with respect to the metric defined
in Exercise 8.2.2 (a)?

Solution.

(a) Suppose (𝑥𝑛) is a Cauchy sequence in (𝐑2, 𝜌). There exists an 𝑁 ∈ 𝐍 such that
𝜌(𝑥𝑚, 𝑥𝑛) < 1

2  for any 𝑚, 𝑛 ≥ 𝑁 . Since 𝜌(𝑥, 𝑦) ∈ {0, 1}, we have 𝜌(𝑥, 𝑦) < 1
2  if and only

if 𝜌(𝑥, 𝑦) = 0, which is the case if and only if 𝑥 = 𝑦. Thus 𝑥𝑚 = 𝑥𝑛 for all 𝑚, 𝑛 ≥ 𝑁 .
In particular, 𝑥𝑛 = 𝑥𝑁  for all 𝑛 ≥ 𝑁 , i.e. the sequence (𝑥𝑛) is eventually constant. It is
straightforward to prove that eventually constant sequences converge to that constant
(in any metric space) and thus (𝐑2, 𝜌) is a complete metric space.

(b) Let 𝑑 be the metric from Exercise 8.2.2 (a). Here is a useful lemma, the proof of which
is essentially immediate from the definitions.

Lemma L.18. Suppose (𝑓𝑛) is a sequence of functions in 𝐶[𝑎, 𝑏] and 𝑓 ∈ 𝐶[𝑎, 𝑏].
Then (𝑓𝑛) converges to 𝑓 in the metric space (𝐶[𝑎, 𝑏], 𝑑) (in the sense of Definition
8.2.2) if and only if (𝑓𝑛) converges to 𝑓 uniformly (in the sense of Definition 6.2.3).

Now suppose that (𝑓𝑛) is a Cauchy sequence in (𝐶[0, 1], 𝑑) and let 𝜀 > 0 be given. There
exists an 𝑁 ∈ 𝐍 such that 𝑑(𝑓𝑚, 𝑓𝑛) < 𝜀 whenever 𝑚, 𝑛 ≥ 𝑁 . Thus, for any 𝑚, 𝑛 ≥ 𝑁
and any 𝑥 ∈ [0, 1], we have

|𝑓𝑚(𝑥) − 𝑓𝑛(𝑥)| ≤ 𝑑(𝑓𝑚, 𝑓𝑛) < 𝜀.

It follows from Theorem 6.2.5 that there is a function 𝑓 : [0, 1] → 𝐑 such that 𝑓𝑛 → 𝑓
uniformly; note that 𝑓 must belong to 𝐶[0, 1] by Theorem 6.2.6. Lemma L.18 now
implies that (𝑓𝑛) converges to 𝑓 in the metric space (𝐶[0, 1], 𝑑) and we may conclude
that this metric space is complete.

(c) This metric space is not complete. To see this, consider the sequence of functions 
(𝑓𝑛) in 𝐶1[0, 1] given by 𝑓𝑛(𝑥) = √𝑥 + 1

𝑛 . We claim that this is a Cauchy sequence in
(𝐶1[0, 1], 𝑑). For a given 𝜀 > 0 let 𝑁 ∈ 𝐍 be such that 𝑁 > 4𝜀−2 and suppose that 
𝑛 ≥ 𝑚 ≥ 𝑁 . Then for any 𝑥 ∈ [0, 1] we have
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|𝑓𝑚(𝑥) − 𝑓𝑛(𝑥)| = √𝑥 +
1
𝑚

− √𝑥 +
1
𝑛

=
1
𝑚 − 1

𝑛

√𝑥 + 1
𝑚 + √𝑥 + 1

𝑛

≤
1
𝑚

1√
𝑚 + 1√

𝑛

=
1√
𝑚

1 +
√

𝑚√
𝑛

≤
1

√
𝑚

< 𝜀
2 .

As 𝑥 ∈ [0, 1] was arbitrary, we see that

𝑛 ≥ 𝑚 ≥ 𝑁 ⇒ 𝑑(𝑓𝑚, 𝑓𝑛) ≤ 𝜀
2 < 𝜀

and our claim follows.

Next we claim that (𝑓𝑛) is not a convergent sequence in (𝐶1[0, 1], 𝑑). To see this, we will
argue by contradiction: suppose that there is some 𝑓 ∈ 𝐶1[0, 1] such that 𝑑(𝑓𝑛, 𝑓) → 0.
Fix 𝑥 ∈ [0, 1] and observe that |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≤ 𝑑(𝑓𝑛, 𝑓); the Squeeze Theorem then
implies that the sequence of real numbers (𝑓𝑛(𝑥)) converges to 𝑓(𝑥) (i.e. in the metric
space 𝐑 with the usual metric). On the other hand, it is evident that

lim
𝑛→∞

𝑓𝑛(𝑥) = lim
𝑛→∞

√𝑥 + 1
𝑛 =

√
𝑥.

Since limits are unique (Theorem 2.2.7; this actually holds in any metric space), we
must have 𝑓(𝑥) =

√
𝑥 for each 𝑥 ∈ [0, 1]—but this implies that 𝑓 is not differentiable at

𝑥 = 0, contradicting that 𝑓 ∈ 𝐶1[0, 1]. We must conclude that (𝑓𝑛) does not converge
in the metric space (𝐶1[0, 1], 𝑑).

Exercise 8.2.6. Which of these functions from 𝐶[0, 1] to 𝐑 (with the usual metric) are
continuous?

(a) 𝑔(𝑓) = ∫1
0

𝑓𝑘, where 𝑘 is some fixed function in 𝐶[0, 1].

(b) 𝑔(𝑓) = 𝑓(1/2).

(c) 𝑔(𝑓) = 𝑓(1/2), but this time with respect to the metric on 𝐶[0, 1] from Exercise
8.2.2 (c).

Solution.

(a) This function is continuous. Fix 𝑓 ∈ 𝐶[0, 1], let 𝜀 > 0 be given, and let

𝛿 =
𝜀

1 + ∫1
0
|𝑘|

.

Then for any ℎ ∈ 𝐶[0, 1] satisfying 𝑑(𝑓, ℎ) < 𝛿 we have

|𝑔(𝑓) − 𝑔(ℎ)| = |∫
1

0
𝑓𝑘 − ∫

1

0
ℎ𝑘| = |∫

1

0
(𝑓 − ℎ)𝑘| ≤ 𝑑(𝑓, ℎ) ∫

1

0
|𝑘| < 𝛿 ∫

1

0
|𝑘| < 𝜀.

Thus 𝑔 is continuous at any 𝑓 ∈ 𝐶[0, 1].
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(b) This function is continuous. Fix 𝑓 ∈ 𝐶[0, 1], let 𝜀 > 0 be given, and let 𝛿 = 𝜀. Then for
any ℎ ∈ 𝐶[0, 1] satisfying 𝑑(𝑓, ℎ) < 𝛿 we have

|𝑔(𝑓) − 𝑔(ℎ)| = |𝑓(1
2) − ℎ(1

2)| ≤ 𝑑(𝑓, ℎ) < 𝜀.

Thus 𝑔 is continuous at any 𝑓 ∈ 𝐶[0, 1].

(c) This function is not continuous: we will show that 𝑔 is not continuous at the constant
function 𝑓(𝑥) = 0. For any 𝛿 > 0 let 𝑛 ∈ 𝐍 be such that 1

𝑛 < 𝛿 and 𝑛 ≥ 3. Define
ℎ : [0, 1] → 𝐑 to be the continuous piecewise-linear function passing through the points
(0, 0), (1

2 − 1
𝑛 , 0), (1

2 , 1), (1
2 + 1

𝑛 , 0), and (1, 0); see the figure below.

0 1
2 − 1

𝑛
1
2

1
2 + 1

𝑛 1

ℎ(1
2) = 1

Then

𝑑(𝑓, ℎ) = ∫
1

0
|𝑓 − ℎ| = ∫

1

0
ℎ =

1
𝑛

< 𝛿

but |𝑔(𝑓) − 𝑔(ℎ)| = |𝑓(1
2) − ℎ(1

2)| = 1. Thus 𝑔 is not continuous at 𝑓 .

Exercise 8.2.7. Describe the 𝜀-neighborhoods in 𝐑2 for each of the different metrics
described in Exercise 8.2.1. How about for the discrete metric?

Solution. Let 𝑑 be the metric from Exercise 8.2.1 (a) and let 𝑑′ be the metric from Exercise
8.2.1 (b). With respect to 𝑑, a typical 𝜀-neighborhood of some 𝑥 = (𝑥1, 𝑥2) ∈ 𝐑2 is the set

𝑉𝜀(𝑥) = {𝑦 = (𝑦1, 𝑦2) ∈ 𝐑2 : √(𝑥1 − 𝑦1)
2 − (𝑥2 − 𝑦2)

2 < 𝜀}.

This consists of all the points contained strictly inside the circle of radius 𝜀 centred at 𝑥; see
the following figure, which shows 𝑉1(0) with respect to 𝑑.
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(1, 0)

(0, 1)

(−1, 0)

(0, −1)

With respect to 𝑑′, a typical 𝜀-neighborhood of some 𝑥 = (𝑥1, 𝑥2) ∈ 𝐑2 is the set

𝑉𝜀(𝑥) = {𝑦 = (𝑦1, 𝑦2) ∈ 𝐑2 : max{|𝑥1 − 𝑦1|, |𝑥2 − 𝑦2|} < 𝜀}.

This consists of all the points contained strictly inside the square of side length 2𝜀 centred
at 𝑥; see the figure below, which shows 𝑉1(0) with respect to 𝑑′.

(1, 1)(−1, 1)

(−1, −1) (1, −1)
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For the discrete metric 𝜌, we have

𝑉𝜀(𝑥) = {{𝑥} if 0 < 𝜀 ≤ 1,
𝐑2 if 𝜀 > 1.

This situation is typical for a discrete metric space.

Exercise 8.2.8. Let (𝑋, 𝑑) be a metric space.

(a) Verify that a typical 𝜀-neighborhood 𝑉𝜀(𝑥) is an open set. Is the set

𝐶𝜀(𝑥) = {𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) ≤ 𝜀}

a closed set?

(b) Show that a set 𝐸 ⊆ 𝑋 is open if and only if its complement is closed.

Solution.

(a) Let 𝜀 > 0 and 𝑥 ∈ 𝑋 be given. For 𝑦 ∈ 𝑉𝜀(𝑥), let 𝛿 = 𝜀 − 𝑑(𝑥, 𝑦) > 0. We claim that 
𝑉𝛿(𝑦) ⊆ 𝑉𝜀(𝑥). Indeed, suppose that 𝑧 ∈ 𝑉𝛿(𝑦), so that

𝑑(𝑧, 𝑦) < 𝛿 = 𝜀 − 𝑑(𝑥, 𝑦) ⇔ 𝑑(𝑧, 𝑦) + 𝑑(𝑥, 𝑦) < 𝜀.

The triangle inequality then gives us

𝑑(𝑧, 𝑥) ≤ 𝑑(𝑧, 𝑦) + 𝑑(𝑥, 𝑦) < 𝜀.

Thus 𝑧 ∈ 𝑉𝜀(𝑥) and it follows that 𝑉𝛿(𝑦) ⊆ 𝑉𝜀(𝑥). Hence 𝑉𝜀(𝑥) is an open set.

Now we will show that, for 𝜀 > 0 and 𝑥 ∈ 𝑋, the set 𝐶𝜀(𝑥) is closed. To see this, let us
prove the following:

if 𝑦 ∈ 𝑋 is such that 𝑑(𝑥, 𝑦) > 𝜀 then 𝑦 is not a limit point of 𝐶𝜀(𝑥).

Let 𝛿 = 𝑑(𝑥, 𝑦) − 𝜀 > 0 and suppose 𝑧 ∈ 𝑉𝛿(𝑦), so that

𝑑(𝑧, 𝑦) < 𝛿 = 𝑑(𝑥, 𝑦) − 𝜀 ⇔ 𝑑(𝑥, 𝑦) − 𝑑(𝑧, 𝑦) > 𝜀.

It follows from the triangle inequality that

𝑑(𝑥, 𝑦) ≤ 𝑑(𝑧, 𝑥) + 𝑑(𝑧, 𝑦) ⇒ 𝑑(𝑧, 𝑥) ≥ 𝑑(𝑥, 𝑦) − 𝑑(𝑧, 𝑦) > 𝜀.

Thus 𝑑(𝑧, 𝑥) > 𝜀, so that 𝑧 ∉ 𝐶𝜀(𝑥). We have now shown that there is a 𝛿 > 0 such
that 𝑉𝛿(𝑦) ∩ 𝐶𝜀(𝑥) = ∅. It follows that 𝑦 is not a limit point of 𝐶𝜀(𝑥), as desired. The
contrapositive of this statement is

if 𝑦 ∈ 𝑋 is a limit point of 𝐶𝜀(𝑥) then 𝑑(𝑥, 𝑦) ≤ 𝜀.

In other words, if 𝑦 is a limit point of 𝐶𝜀(𝑥) then 𝑦 belongs to 𝐶𝜀(𝑥). We may conclude
that 𝐶𝜀(𝑥) is a closed set.

(b) Observe that

358 / 415



𝐸 is not open ⇔ (∃𝑥 ∈ 𝐸)(∀𝜀 > 0)(𝑉𝜀(𝑥) ⊈ 𝐸)

⇔ (∃𝑥 ∈ 𝐸)(∀𝜀 > 0)(𝑉𝜀(𝑥) ∩ 𝐸c ≠ ∅)

⇔ (∃𝑥 ∈ 𝐸)(∀𝜀 > 0)(𝑉𝜀(𝑥) ∩ (𝐸c ∖ {𝑥}) ≠ ∅)

⇔ (∃𝑥 ∈ 𝐸)(𝑥 is a limit point of 𝐸c)

⇔ 𝐸c does not contain all of its limit points

⇔ 𝐸c is not closed.

Exercise 8.2.9.

(a) Show that the set 𝑌 = {𝑓 ∈ 𝐶[0, 1] : ‖𝑓‖∞ ≤ 1} is closed in 𝐶[0, 1].

(b) Is the set 𝑇 = {𝑓 ∈ 𝐶[0, 1] : 𝑓(0) = 0} open, closed, or neither in 𝐶[0, 1]?

Solution.

(a) Using the notation of Exercise 8.2.8 (a), observe that 𝑌 = 𝐶1(0) (by 0 we mean the
function that is identically zero on [0, 1]). Thus, by Exercise 8.2.8 (a), 𝑌  is closed.

(b) 𝑇  is not open. To see this, first observe that 0 ∈ 𝑇 . Now let 𝜀 > 0 be given and define
𝑓𝜀 ∈ 𝐶[0, 1] by 𝑓𝜀(𝑥) = 𝜀

2 . Then

𝑑(𝑓𝜀, 0) = 𝜀
2 < 𝜀,

so that 𝑓𝜀 ∈ 𝑉𝜀(0). However, 𝑓𝜀 ∉ 𝑇  and so 𝑉𝜀(0) ⊈ 𝑇 . Since 𝜀 > 0 was arbitrary, we
see that 𝑇  is not open.

𝑇  is closed. To see this, suppose that 𝑔 ∈ 𝐶[0, 1] is a limit point of 𝑇  and let 𝜀 > 0 be
given. There exists some 𝑓 ∈ 𝑉𝜀(𝑔) ∩ 𝑇  such that 𝑓 ≠ 𝑔 and it follows that

|𝑔(0)| = |𝑔(0) − 𝑓(0)| ≤ 𝑑(𝑔, 𝑓) < 𝜀.

Since 𝜀 > 0 was arbitrary, we see that 𝑔(0) = 0, so that 𝑔 ∈ 𝑇 . Thus 𝑇  contains each of
its limit points, i.e. 𝑇  is closed.

Exercise 8.2.10.

(a) Supply a definition for bounded subsets of a metric space (𝑋, 𝑑).

(b) Show that if 𝐾 is a compact subset of the metric space (𝑋, 𝑑), then 𝐾 is closed
and bounded.

(c) Show that 𝑌 ⊆ 𝐶[0, 1] from Exercise 8.2.9 (a) is closed and bounded but not com-
pact.

Solution.
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(a) A subset 𝐸 ⊆ 𝑋 is bounded if there exists some 𝑦 ∈ 𝑋 and some 𝑀 > 0 such that 
𝑑(𝑥, 𝑦) ≤ 𝑀  for all 𝑥 ∈ 𝐸, i.e. 𝐸 ⊆ 𝐶𝑀(𝑦).

(b) We will prove the contrapositive statement. First, suppose that 𝐾 is not closed. Then
there exists some 𝑦 ∉ 𝐾 such that 𝑦 is a limit point of 𝐾. Thus, for each 𝑛 ∈ 𝐍, there
exists some 𝑥𝑛 ∈ 𝑉𝑛−1(𝑦) ∩ 𝐾, i.e. there is some 𝑥𝑛 ∈ 𝐾 such that 𝑑(𝑥𝑛, 𝑦) < 1

𝑛 . Given
this, it is clear that (𝑥𝑛) converges to 𝑦 and hence any subsequence of (𝑥𝑛) converges
to 𝑦 (the proof of this is essentially the same as the proof of Theorem 2.5.2). Since 𝑦
does not belong to 𝐾, it follows that 𝐾 is not compact.

Next, suppose that 𝐾 is not bounded and pick some 𝑥1 ∈ 𝐾. Because 𝐾 is not bounded,
it must be the case that 𝐾 is not contained in 𝐶1(𝑥1) and thus there exists some 𝑥2 ∈ 𝐾
satisfying 𝑑(𝑥1, 𝑥2) > 1. Similarly, it must be the case that 𝐾 is not contained in

𝐶1(𝑥1) ∪ 𝐶1(𝑥2).

Thus there exists some 𝑥3 ∈ 𝐾 satisfying 𝑑(𝑥1, 𝑥3) > 1 and 𝑑(𝑥2, 𝑥3) > 1. If we continue
in this manner we obtain a sequence (𝑥𝑛) in 𝐾 such that 𝑑(𝑥𝑚, 𝑥𝑛) > 1 for all 𝑛 > 𝑚.
Suppose that (𝑥𝑛𝑘) is a subsequence of (𝑥𝑛) and observe that for any 𝐾 ∈ 𝐍 we have
𝑑(𝑥𝑛𝐾 , 𝑥𝑛𝐾+1) > 1. It follows that (𝑥𝑛𝑘) is not Cauchy and hence not convergent (by
Exercise 8.2.4). As (𝑥𝑛𝑘) was an arbitrary subsequence, we see that 𝐾 is not compact.

(c) We showed in Exercise 8.2.9 (a) that 𝑌  is closed, and it is clearly bounded. To see that
𝑌  is not compact, consider the sequence of functions (𝑓𝑛) given by 𝑓𝑛(𝑥) = 𝑥𝑛, each
of which is continuous on [0, 1], satisfies ‖𝑓𝑛‖∞ = 1, and hence belongs to 𝑌 . We will
argue by contradiction to show that (𝑓𝑛) has no convergent subsequence. If (𝑓𝑛𝑘) is a
subsequence converging to some 𝑓 ∈ 𝐶[0, 1], then in particular 𝑓 is the pointwise limit
of (𝑓𝑛𝑘) on [0, 1]. However, we can see directly that the pointwise limit of (𝑓𝑛𝑘) is the
function

𝑥 ↦ {0 if 0 ≤ 𝑥 < 1,
1 if 𝑥 = 1.

Since limits are unique, it must be the case that 𝑓 is given by the function above, which
is not continuous at 𝑥 = 1. This contradicts 𝑓 ∈ 𝐶[0, 1].

Exercise 8.2.11.

(a) Show that 𝐸 is closed if and only if 𝐸 = 𝐸. Show that 𝐸 is open if and only if 
𝐸o = 𝐸.

(b) Show that 𝐸c = (𝐸c)o, and similarly that (𝐸o)c = 𝐸c.

Solution.

(a) See Exercise 3.2.14 (a).

(b) See Exercise 3.2.14 (b).
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Exercise 8.2.12.

(a) Show

𝑉𝜀(𝑥) ⊆ {𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) ≤ 𝜀},

in an arbitrary metric space (𝑋, 𝑑).

(b) To keep things from sounding too familiar, find an example of a specific metric
space where

𝑉𝜀(𝑥) ≠ {𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) ≤ 𝜀}.

Solution.

(a) Using the notation from Exercise 8.2.8, note that {𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) ≤ 𝜀} = 𝐶𝜀(𝑥). Clearly
𝑉𝜀(𝑥) ⊆ 𝐶𝜀(𝑥) and thus if 𝑦 is a limit point of 𝑉𝜀(𝑥) then 𝑦 is also a limit point of
𝐶𝜀(𝑥). As we showed in Exercise 8.2.8, 𝐶𝜀(𝑥) is closed and hence 𝑦 ∈ 𝐶𝜀(𝑥). We may
conclude that 𝑉𝜀(𝑥) ⊆ 𝐶𝜀(𝑥).

(b) Consider the metric space (𝐑, 𝜌), where 𝜌 is the discrete metric. Then

𝑉1(0) = {0} = 𝐶1/2(0) = 𝐶1/2(0) = {0} ≠ 𝐑 = 𝐶1(0).

Exercise 8.2.13. If 𝐸 is a subset of a metric space (𝑋, 𝑑), show that 𝐸 is nowhere-
dense in 𝑋 if and only if 𝐸c is dense in 𝑋.

Solution. For the purposes of this exericse, let us denote by 𝜅𝐸 the closure of 𝐸, by 𝜄𝐸 the
interior of 𝐸, and by 𝑐𝐸 the complement of 𝐸. Observe that

𝑐𝜅𝐸 is dense in 𝑋 ⇔ 𝜅𝑐𝜅𝐸 = 𝑋

⇔ 𝑐𝜅𝑐𝜅𝐸 = ∅

⇔ 𝜄𝑐𝑐𝜅𝐸 = ∅

⇔ 𝜄𝜅𝐸 = ∅

⇔ 𝐸 is nowhere-dense ∈ 𝑋,

where we have used Exercise 8.2.11 (b) for the third equivalence.
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Exercise 8.2.14.

(a) Give the details for why we know there exists a point 𝑥2 ∈ 𝑉𝜀1(𝑥1) ∩ 𝑂2 and an 
𝜀2 > 0 satisfying 𝜀2 < 𝜀1/2 with 𝑉𝜀2(𝑥2) contained in 𝑂2 and

𝑉𝜀2(𝑥2) ⊆ 𝑉𝜀1(𝑥1).

(b) Proceed along this line and use the completeness of (𝑋, 𝑑) to product a single point
𝑥 ∈ 𝑂𝑛 for every 𝑛 ∈ 𝐍.

Solution.

(a) Note that 𝑥1 must be a limit point of 𝑂2 as 𝑂2 is dense in 𝑋 and thus there exists some
𝑥2 ∈ 𝑉𝜀1(𝑥1) ∩ 𝑂2. Since 𝑂2 is open there exists some 𝛿 > 0 such that 𝑉𝛿(𝑥2) ⊆ 𝑂2. If
we let

𝜀2 = min{𝛿,
𝜀1
4

, 𝑟 ≔
𝜀1 − 𝑑(𝑥1, 𝑥2)

2
},

then:

• 𝑉𝜀2(𝑥2) ⊆ 𝑉𝛿(𝑥2) ⊆ 𝑂2;

• 𝜀2 < 𝜀1/2;

• 𝑉𝜀2(𝑥2) ⊆ 𝑉𝑟(𝑥2) ⊆ 𝐶𝑟(𝑥2) ⊆ 𝑉𝜀1(𝑥1), where we have used Exercise 8.2.12 (a) for
the second inclusion.

(b) By continuing this process, we obtain a sequence (𝑥𝑛) of points in 𝑋 and a sequence 
(𝜀𝑛) of positive real numbers such that:

(i) 𝜀𝑛 < 𝜀1/2𝑛−1 for each 𝑛 ≥ 2;

(ii) 𝑉𝜀𝑛(𝑥𝑛) ⊆ 𝑂𝑛 for each 𝑛 ∈ 𝐍;

(iii) the following chain of inclusions holds:

⋯ ⊆ 𝑉𝜀𝑛(𝑥𝑛) ⊆ 𝑉𝜀𝑛(𝑥𝑛) ⊆ 𝑉𝜀𝑛−1(𝑥𝑛−1) ⊆ 𝑉𝜀𝑛−1(𝑥𝑛−1)

⊆ ⋯ ⊆ 𝑉𝜀2(𝑥2) ⊆ 𝑉𝜀2(𝑥2) ⊆ 𝑉𝜀1(𝑥1) ⊆ 𝑉𝜀1(𝑥1).

By (i), for any 𝜀 > 0 we can choose an 𝑁 ≥ 2 such that 2𝜀𝑁 < 𝜀. Suppose 𝑛 ≥ 𝑚 ≥ 𝑁 .
By (iii) we have 𝑥𝑚, 𝑥𝑛 ∈ 𝑉𝜀𝑁(𝑥𝑁) and thus

𝑑(𝑥𝑚, 𝑥𝑛) ≤ 𝑑(𝑥𝑚, 𝑥𝑁) + 𝑑(𝑥𝑛, 𝑥𝑁) < 2𝜀𝑁 < 𝜀.

It follows that (𝑥𝑛) is a Cauchy sequence. By assumption the metric space (𝑋, 𝑑) is
complete and thus there exists some 𝑥0 such that lim 𝑥𝑛 = 𝑥0.

For any 𝑚 ∈ 𝐍, (iii) implies that the sequence (𝑥𝑛) is eventually contained inside the
set 𝑉𝜀𝑚+1(𝑥𝑚+1); it follows that 𝑥0 is a limit point of 𝑉𝜀𝑚+1(𝑥𝑚+1). Since this set is
closed, we have by (ii) and (iii):
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𝑥0 ∈ 𝑉𝜀𝑚+1(𝑥𝑚+1) ⊆ 𝑉𝜀𝑚(𝑥𝑚) ⊆ 𝑂𝑚.

Thus 𝑥0 ∈ ⋂∞
𝑚=1 𝑂𝑚.

Exercise 8.2.15. Complete the proof of the theorem.

Solution. Let (𝑋, 𝑑) be a complete metric space and suppose {𝐸𝑛 : 𝑛 ∈ 𝐍} is a countable
collection of nowhere-dense sets. Notice that each 𝐸𝑛

c is open (Exercise 8.2.8 (b)) and dense
(Exercise 8.2.13); it follows from Theorem 8.2.10 that ⋂∞

𝑛=1 𝐸𝑛
c ≠ ∅. Now observe that

𝐸𝑛 ⊆ 𝐸𝑛 for each 𝑛 ∈ 𝐍 ⇒ 𝐸𝑛
c ⊆ 𝐸c

𝑛 for each 𝑛 ∈ 𝐍 ⇒ ⋂
∞

𝑛=1
𝐸𝑛

c ⊆ ⋂
∞

𝑛=1
𝐸c

𝑛.

Thus ⋂∞
𝑛=1 𝐸c

𝑛 ≠ ∅, which implies that

𝑋 ≠ (⋂
∞

𝑛=1
𝐸c

𝑛)
c

= ⋃
∞

𝑛=1
𝐸𝑛.

Exercise 8.2.16. Show that if 𝑓 ∈ 𝐶[0, 1] is differentiable at a point 𝑥 ∈ [0, 1], then 
𝑓 ∈ 𝐴𝑚,𝑛 for some pair 𝑚, 𝑛 ∈ 𝐍.

Solution. By assumption we have

𝑓 ′(𝑥) = lim
𝑡→𝑥

𝑓(𝑥) − 𝑓(𝑡)
𝑥 − 𝑡

and thus there exists a 𝛿 > 0 such that

0 < |𝑥 − 𝑡| < 𝛿 ⇒ |
𝑓(𝑥) − 𝑓(𝑡)

𝑥 − 𝑡
− 𝑓 ′(𝑥)| < 1.

Let 𝑚 ∈ 𝐍 be such that 1
𝑚 < 𝛿 and let 𝑛 ∈ 𝐍 be such that 1 + |𝑓 ′(𝑥)| ≤ 𝑛. Then:

0 < |𝑥 − 𝑡| < 1
𝑚 < 𝛿 ⇒ |

𝑓(𝑥) − 𝑓(𝑡)
𝑥 − 𝑡

| ≤ |
𝑓(𝑥) − 𝑓(𝑡)

𝑥 − 𝑡
− 𝑓 ′(𝑥)| + |𝑓 ′(𝑥)|

< 1 + |𝑓 ′(𝑥)| ≤ 𝑛.

Thus 𝑓 ∈ 𝐴𝑚,𝑛.

Exercise 8.2.17.

(a) The sequence (𝑥𝑘) does not necessarily converge, but explain why there exists a
subsequence (𝑥𝑘𝑙) that is convergent. Let 𝑥 = lim(𝑥𝑘𝑙).

(b) Prove that 𝑓𝑘𝑙(𝑥𝑘𝑙) → 𝑓(𝑥).

(c) Now finish the proof that 𝐴𝑚,𝑛 is closed.

Solution.
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(a) The sequence (𝑥𝑛) is contained in the interval [0, 1] and thus by the Bolzano-Weierstrass
Theorem (Theorem 2.5.5) there exists a convergent subsequence (𝑥𝑘𝑙).

(b) Let 𝜀 > 0 be given. As 𝑓𝑘 → 𝑓 in 𝐶[0, 1], there is an 𝐿1 ∈ 𝐍 such that

𝑙 ≥ 𝐿1 ⇒ 𝑑(𝑓𝑘𝑙 , 𝑓) < 𝜀
2 .

The continuity of 𝑓 at 𝑥 implies that lim𝑙→∞ 𝑓(𝑥𝑘𝑙) = 𝑓(𝑥) and thus there is an 𝐿2 ∈ 𝐍
such that

𝑙 ≥ 𝐿2 ⇒ |𝑓(𝑥𝑘𝑙) − 𝑓(𝑥)| < 𝜀
2 .

Now observe that for 𝑙 ≥ max{𝐿1, 𝐿2} we have

|𝑓𝑘𝑙(𝑥𝑘𝑙) − 𝑓(𝑥)| ≤ |𝑓𝑘𝑙(𝑥𝑘𝑙) − 𝑓(𝑥𝑘𝑙)| + |𝑓(𝑥𝑘𝑙) − 𝑓(𝑥)| ≤ 𝑑(𝑓𝑘𝑙 , 𝑓) + 𝜀
2 < 𝜀.

It follows that 𝑓𝑘𝑙(𝑥𝑘𝑙) → 𝑓(𝑥).

(c) Suppose 𝑡 is such that 0 < |𝑥 − 𝑡| < 1
𝑚 . Because 𝑥𝑘𝑙 → 𝑥, there is an 𝐿 ∈ 𝐍 such that

𝑙 ≥ 𝐿 ⇒ |𝑥 − 𝑥𝑘𝑙 | < 1
𝑚 − |𝑥 − 𝑡| ⇒ |𝑥𝑘𝑙 − 𝑡| ≤ |𝑥 − 𝑥𝑘𝑙 | + |𝑥 − 𝑡| < 1

𝑚 .

This implies that

|
𝑓𝑘𝑙(𝑥𝑘𝑙) − 𝑓𝑘𝑙(𝑡)

𝑥𝑘𝑙 − 𝑡
| ≤ 𝑛 for all 𝑙 ≥ 𝐿.

Taking the limit as 𝑙 → ∞ on both sides of this inequality and using part (b), we see
that

|
𝑓(𝑥) − 𝑓(𝑡)

𝑥 − 𝑡
| ≤ 𝑛

and hence 𝑓 ∈ 𝐴𝑚,𝑛. We may conclude that 𝐴𝑚,𝑛 contains its limit points and hence
is closed.

Exercise 8.2.18. A continuous function is called polygonal if its graph consists of a
finite number of line segments.

(a) Show that there exists a polygonal function 𝑝 ∈ 𝐶[0, 1] satisfying ‖𝑓 − 𝑝‖∞ < 𝜀/2.

(b) Show that if ℎ is any function in 𝐶[0, 1] that is bounded by 1, then the function

𝑔(𝑥) = 𝑝(𝑥) +
𝜀
2
ℎ(𝑥)

satisfies 𝑔 ∈ 𝑉𝜀(𝑓).

(c) Construct a polygonal function ℎ(𝑥) in 𝐶[0, 1] that is bounded by 1 and leads to
the conclusion 𝑔 ∉ 𝐴𝑚,𝑛, where 𝑔 is defined as in (b). Explain how this completes
the argument for Theorem 8.2.12.
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Solution.

(a) This follows from Theorem 6.7.3, which we proved in Exercise 6.7.2.

(b) Observe that

‖𝑓 − 𝑔‖∞ = ‖𝑓 − 𝑝 − 𝜀
2ℎ‖∞ ≤ ‖𝑓 − 𝑝‖∞ + ‖𝜀

2ℎ‖∞ < 𝜀.

(c) Because 𝑝 is polygonal, there are points 0 = 𝑥0 < ⋯ < 𝑥𝑁 = 1 such that 𝑝 is a line
segment on [𝑥𝑘−1, 𝑥𝑘]; for each 1 ≤ 𝑘 ≤ 𝑁 , let 𝑀𝑘 be the slope of this line segment.
Define 𝑀 = max{|𝑀1|, …, |𝑀𝑁 |} and let ℎ ∈ 𝐶[0, 1] be the sawtooth function whose
slope has absolute value 2

𝜀(𝑀 + 𝑛 + 1) as in the following figure.

0 1

1

slope = 2
𝜀(𝑀 + 𝑛 + 1)

slope = −2
𝜀(𝑀 + 𝑛 + 1)

For any given 𝑥 ∈ [0, 1], we have 𝑥 ∈ [𝑥𝑘−1, 𝑥𝑘] for some 1 ≤ 𝑘 ≤ 𝑁 . Note that we can
always choose some 𝑡 ∈ [0, 1] such that:

• 0 < |𝑥 − 𝑡| < 1
𝑚 ;

• 𝑡 ∈ [𝑥𝑘−1, 𝑥𝑘], so that 𝑥 and 𝑡 belong to the same line segment of 𝑝;

• 𝑥 and 𝑡 belong to the same line segment of ℎ.

There are two cases. If 𝑥 and 𝑡 belong to a line segment of ℎ which has slope
2
𝜀(𝑀 + 𝑛 + 1), then

|
𝑔(𝑥) − 𝑔(𝑡)

𝑥 − 𝑡
| = |

𝑝(𝑥) − 𝑝(𝑡)
𝑥 − 𝑡

+
𝜀
2

ℎ(𝑥) − ℎ(𝑡)
𝑥 − 𝑡

|
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= |𝑀𝑘 + 𝑀 + 𝑛 + 1| = 𝑀𝑘 + 𝑀 + 𝑛 + 1 ≥ 𝑛 + 1 > 𝑛.

Similarly, if 𝑥 and 𝑡 belong to a line segment of ℎ which has slope −2
𝜀(𝑀 + 𝑛 + 1), then

|
𝑔(𝑥) − 𝑔(𝑡)

𝑥 − 𝑡
| = |

𝑝(𝑥) − 𝑝(𝑡)
𝑥 − 𝑡

+
𝜀
2

ℎ(𝑥) − ℎ(𝑡)
𝑥 − 𝑡

|

= |𝑀𝑘 − 𝑀 − 𝑛 − 1| = 𝑛 + 1 + 𝑀 − 𝑀𝑘 ≥ 𝑛 + 1 > 𝑛.

To summarize: for any 𝑥 ∈ [0, 1] there exists a 𝑡 ∈ [0, 1] such that 0 < |𝑥 − 𝑡| < 1
𝑚  and

|
𝑔(𝑥) − 𝑔(𝑡)

𝑥 − 𝑡
| > 𝑛;

it follows that 𝑔 ∉ 𝐴𝑚,𝑛.

We have now shown that any 𝜀-neighbourhood of 𝑓 contains some function 𝑔 which
does not belong to 𝐴𝑚,𝑛. As 𝑓 was arbitrary, this implies that each 𝐴𝑚,𝑛 has empty
interior. We showed in Exercise 8.2.17 that each 𝐴𝑚,𝑛 is a closed set and thus each 
𝐴𝑚,𝑛 is nowhere-dense in 𝐶[0, 1]. It follows that the countable union

⋃
∞

𝑚=1
⋃
∞

𝑛=1
𝐴𝑚,𝑛

is a set of first category. We showed in Exercise 8.2.16 that this union contains 𝐷 and
thus 𝐷 is a set of first category, since any subset of a set of first category is itself a set
of first category:

Lemma L.19. Let (𝑋, 𝑑) be a metric space and suppose 𝐴 ⊆ 𝑋 is a set of first
category. If 𝐵 is a subset of 𝐴 then 𝐵 is also a set of first category.

Proof. There is a countable collection {𝐸𝑛 : 𝑛 ∈ 𝐍} of nowhere-dense sets such
that 𝐴 = ⋃∞

𝑛=1 𝐸𝑛. For each 𝑛 ∈ 𝐍, note that

𝐵 ∩ 𝐸𝑛 ⊂ 𝐸𝑛 ⇒ 𝐵 ∩ 𝐸𝑛 ⊆ 𝐸𝑛 ⇒ (𝐵 ∩ 𝐸𝑛)
o

⊆ (𝐸𝑛)o = ∅.

Thus (𝐵 ∩ 𝐸𝑛)
o

= ∅, so that each 𝐵 ∩ 𝐸𝑛 is nowhere-dense in 𝑋. Now observe
that

𝐵 = 𝐵 ∩ 𝐴 = 𝐵 ∩ ⋃
∞

𝑛=1
𝐸𝑛 = ⋃

∞

𝑛=1
(𝐵 ∩ 𝐸𝑛).

This shows that 𝐵 can be expressed as a countabtle union of nowhere-dense sets,
i.e. 𝐵 is a set of first category. □
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8.3. Euler’s Sum

Exercise 8.3.1. Supply the details to show that when 𝑥 = 𝜋/2 the product formula in
(2) is equivalent to

𝜋
2

= lim
𝑛→∞

(
2 ⋅ 2
1 ⋅ 3

)(
4 ⋅ 4
3 ⋅ 5

)(
6 ⋅ 6
5 ⋅ 7

) ⋯ (
2𝑛 ⋅ 2𝑛

(2𝑛 − 1)(2𝑛 + 1)
),(3)

where the infinite product in (2) is interpreted as a limit of partial products. (Although
it is not necessary for what follows, it might be useful to review the treatment of infinite
products in Exercises 2.4.10 and 2.7.10.)

Solution. Let us express the product in (2) as

sin(𝑥) = 𝑥(1 −
𝑥
𝜋

)(1 +
𝑥
𝜋

)(1 −
𝑥
2𝜋

)(1 +
𝑥
2𝜋

) ⋯ = 𝑥 lim
𝑛→∞

∏
𝑛

𝑘=1
(1 −

𝑥
𝑘𝜋

)(1 +
𝑥
𝑘𝜋

).

Taking 𝑥 = 𝜋
2  gives us

1 =
𝜋
2

lim
𝑛→∞

∏
𝑛

𝑘=1
(1 −

1
2𝑘

)(1 +
1
2𝑘

) =
𝜋
2

lim
𝑛→∞

∏
𝑛

𝑘=1

(2𝑘 − 1)(2𝑘 + 1)
2𝑘 ⋅ 2𝑘

.

If we let 𝑝𝑛 = ∏𝑛
𝑘=1

(2𝑘−1)(2𝑘+1)
2𝑘⋅2𝑘 , then the equation above becomes 2

𝜋 = lim𝑛→∞ 𝑝𝑛. Note that
each 𝑝𝑛 is positive; using the continuity of 𝑥 ↦ 1

𝑥 , we then have

𝜋
2

=
1

lim𝑛→∞ 𝑝𝑛
= lim

𝑛→∞

1
𝑝𝑛

= lim
𝑛→∞

∏
𝑛

𝑘=1

2𝑘 ⋅ 2𝑘
(2𝑘 − 1)(2𝑘 + 1)

.

Exercise 8.3.2. Assume ℎ(𝑥) and 𝑘(𝑥) have continuous derivatives on [𝑎, 𝑏] and derive
the integration-by-parts formula

∫
𝑏

𝑎
ℎ(𝑡)𝑘′(𝑡) 𝑑𝑡 = ℎ(𝑏)𝑘(𝑏) − ℎ(𝑎)𝑘(𝑎) − ∫

𝑏

𝑎
ℎ′(𝑡)𝑘(𝑡) 𝑑𝑡 .

Solution. See Exercise 7.5.6 (a).
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Exercise 8.3.3.

(a) Using the simple identity sin𝑛(𝑥) = sin𝑛−1(𝑥) sin(𝑥) and the previous exercise, de-
rive the recurrence relation

𝑏𝑛 =
𝑛 − 1

𝑛
𝑏𝑛−2 for all 𝑛 ≥ 2.

(b) Use this relation to generate the first three even terms and the first three odd
terms of the sequence (𝑏𝑛).

(c) Write a general expression for 𝑏2𝑛 and 𝑏2𝑛+1.

Solution.

(a) Using integration-by-parts, we have

𝑏𝑛 = ∫
𝜋
2

0
sin𝑛(𝑥) d𝑥

= ∫
1

0
sin𝑛−1(𝑥) sin(𝑥) d𝑥

= ∫
𝜋
2

0
sin𝑛−1(𝑥)(− cos(𝑥))′ d𝑥

= − sin𝑛−1(𝜋
2 ) cos(𝜋

2 ) + sin𝑛−1(0) cos(0) + (𝑛 − 1) ∫
𝜋
2

0
sin𝑛−2(𝑥) cos2(𝑥) d𝑥

= (𝑛 − 1) ∫
𝜋
2

0
sin𝑛−2(𝑥)[1 − sin2(𝑥)] d𝑥

= (𝑛 − 1) ∫
𝜋
2

0
sin𝑛−2(𝑥) d𝑥 − (𝑛 − 1) ∫

𝜋
2

0
sin𝑛(𝑥) d𝑥

= (𝑛 − 1)𝑏𝑛−2 − (𝑛 − 1)𝑏𝑛.

The desired recurrence relation follows.

(b) Some calculations reveal that

𝑏0 =
𝜋
2
, 𝑏2 =

𝜋
2

⋅
1
2
, 𝑏4 =

𝜋
2

⋅
1 ⋅ 3
2 ⋅ 4

and 𝑏1 = 1, 𝑏3 =
2

1 ⋅ 3
, 𝑏5 =

2 ⋅ 4
1 ⋅ 3 ⋅ 5

.

(c) Simple induction arguments show that

𝑏2𝑛 =
𝜋
2

⋅
1 ⋅ 3 ⋅ 5 ⋯ (2𝑛 − 1)

2 ⋅ 4 ⋅ 6 ⋯ (2𝑛)
and 𝑏2𝑛+1 =

2 ⋅ 4 ⋅ 6 ⋯ (2𝑛)
1 ⋅ 3 ⋅ 5 ⋯ (2𝑛 + 1)

.
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Exercise 8.3.4. Show

lim
𝑛→∞

𝑏2𝑛
𝑏2𝑛+1

= 1,

and use this fact to finish the proof of Wallis’s product formula in (3).

Solution. As noted in the textbook, the sequence (𝑏𝑛) is decreasing and thus

0 < 𝑏2𝑛+1 ≤ 𝑏2𝑛 ≤ 𝑏2𝑛−1 ⇒ 1 ≤
𝑏2𝑛

𝑏2𝑛+1
≤

𝑏2𝑛−1
𝑏2𝑛+1

(∗)

for each 𝑛 ∈ 𝐍. Using the recurrence relation from Exercise 8.3.3 (a), we have

𝑏2𝑛−1
𝑏2𝑛+1

= 1 +
1
2𝑛

→ 1.

It follows from (∗) and the Squeeze Theorem that lim𝑛→∞
𝑏2𝑛

𝑏2𝑛+1
= 1.

Now let 𝑞𝑛 = ∏𝑛
𝑘=1

2𝑘⋅2𝑘
(2𝑘−1)⋅(2𝑘+1) . Our goal is to show that 𝜋

2 = lim𝑛→∞ 𝑞𝑛. Using the expres-
sions for 𝑏2𝑛 and 𝑏2𝑛+1 derived in Exercise 8.3.3 (c), we find that

𝑏2𝑛
𝑏2𝑛+1

=
𝜋
2

⋅
1
𝑞𝑛

⇔ 𝑞𝑛 =
𝜋
2

⋅
𝑏2𝑛+1
𝑏2𝑛

.

It follows from the previous paragraph that lim𝑛→∞ 𝑞𝑛 = 𝜋
2 .

Exercise 8.3.5. Derive the following alternative form of Wallis’s product formula:

√
𝜋 = lim

𝑛→∞

22𝑛(𝑛!)2

(2𝑛)!
√

𝑛
.

Solution. Letting 𝑞𝑛 = ∏𝑛
𝑘=1

2𝑘⋅2𝑘
(2𝑘−1)⋅(2𝑘+1) , some calculations reveal that

𝑞𝑛 =
1
2

⋅
24𝑛(𝑛!)4

[(2𝑛)!]2𝑛
⋅

2𝑛
2𝑛 + 1

,

from which we obtain

√2𝑞𝑛√1 +
1
2𝑛

=
22𝑛(𝑛!)2

(2𝑛)!
.

The alternative formula now follows as √2𝑞𝑛 →
√

𝜋 by Exercise 8.3.4 and √1 + 1
2𝑛 → 1.
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Exercise 8.3.6. Show that 1/
√

1 − 𝑥 has Taylor expansion ∑∞
𝑛=0 𝑐𝑛𝑥𝑛, where 𝑐0 = 1

and

𝑐𝑛 =
(2𝑛)!

22𝑛(𝑛!)2 =
1 ⋅ 3 ⋅ 5 ⋯ (2𝑛 − 1)

2 ⋅ 4 ⋅ 6 ⋯ 2𝑛

for 𝑛 ≥ 1.

Solution. See Exercise 6.6.10 (a).

Exercise 8.3.7. Show that lim 𝑐𝑛 = 0 but ∑∞
𝑛=0 𝑐𝑛 diverges.

Solution. If we let

𝑎𝑛 ≔
22𝑛(𝑛!)2

(2𝑛)!
> 0,

then 𝑐𝑛 = 𝑛−1/2𝑎−1
𝑛 . Since 𝑎−1

𝑛 → 𝜋−1/2 by Exercise 8.3.5 and 𝑛−1/2 → 0, we see that 
lim𝑛→∞ 𝑐𝑛 = 0.

Because (𝑎𝑛) is convergent, there is some 𝑀 > 0 such that 𝑎𝑛 ≤ 𝑀  for each 𝑛 ∈ 𝐍, which
implies that

𝑐𝑛 =
𝑎−1

𝑛√
𝑛

≥
𝑀−1
√

𝑛

for each 𝑛 ∈ 𝐍. Since ∑∞
𝑛=1 𝑀−1𝑛−1/2 is divergent by Corollary 2.4.7, the Comparison Test

(Theorem 2.7.4) shows that ∑∞
𝑛=1 𝑐𝑛 is divergent. It follows that ∑∞

𝑛=0 𝑐𝑛 is divergent.

Exercise 8.3.8. Using the expression for 𝐸𝑁(𝑥) from Lagrange’s Remainder Theorem,
show that equation (4) is valid for all |𝑥| < 1/2. What goes wrong when we try to use
this method to prove (4) for all 𝑥 ∈ (1/2, 1)?

Solution. See Exercise 6.6.10 (a) a small modification of that argument shows that equation
(4) is valid for all |𝑥| ≤ 1

2 .
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Exercise 8.3.9.

(a) Show

𝑓(𝑥) = 𝑓(0) + ∫
𝑥

0
𝑓 ′(𝑡) 𝑑𝑡.

(b) Now use a previous result from this section to show

𝑓(𝑥) = 𝑓(0) + 𝑓 ′(0)𝑥 + ∫
𝑥

0
𝑓″(𝑡)(𝑥 − 𝑡) 𝑑𝑡.

(c) Continue in this fashion to complete the proof of the theorem.

Solution.

(a) The Fundamental Theorem of Calculus (Theorem 7.5.1 (i)) shows that

∫
𝑥

0
𝑓 ′(𝑡) d𝑡 = 𝑓(𝑥) − 𝑓(0).

(b) Using integration-by-parts, we have

∫
𝑥

0
𝑓 ′(𝑡) d𝑡 = ∫

𝑥

0
𝑓 ′(𝑡) ⋅ 1 d𝑡 = 𝑥𝑓 ′(𝑥) − ∫

𝑥

0
𝑓″(𝑡)𝑡 d𝑡.

The Fundamental Theorem of Calculus shows that ∫𝑥
0

𝑓″(𝑡) d𝑡 = 𝑓 ′(𝑥) − 𝑓 ′(0); com-
bining this with the equation above and part (a) gives

𝑓(𝑥) = 𝑓(0) + 𝑓 ′(0)𝑥 + ∫
𝑥

0
𝑓″(𝑡)(𝑥 − 𝑡) d𝑡.

(c) Applying integration-by-parts again, we see that

∫
𝑥

0
𝑓″(𝑡)(𝑥 − 𝑡) d𝑡 =

1
2
𝑓″(0)𝑥2 +

1
2

∫
𝑥

0
𝑓 (3)(𝑡)(𝑥 − 𝑡)2 d𝑡,

so that

𝑓(𝑥) = 𝑓(0) + 𝑓 ′(0)𝑥 +
1
2
𝑓″(0)𝑥2 +

1
2

∫
𝑥

0
𝑓 (3)(𝑡)(𝑥 − 𝑡)2 d𝑡.

If we continue applying integration-by-parts, we obtain

𝑓(𝑥) = 𝑓(0) + 𝑓 ′(0)𝑥 + ⋯ +
1

𝑁!
𝑓 (𝑁)(0)𝑥𝑁 +

1
𝑁!

∫
𝑥

0
𝑓 (𝑁+1)(𝑡)(𝑥 − 𝑡)𝑁 d𝑡

= 𝑆𝑁(𝑥) +
1

𝑁!
∫

𝑥

0
𝑓 (𝑁+1)(𝑡)(𝑥 − 𝑡)𝑁 d𝑡.

The desired result follows.
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Exercise 8.3.10.

(a) Make a rough sketch of 1/
√

1 − 𝑥 and 𝑆2(𝑥) over the interval (−1, 1), and compute
𝐸2(𝑥) for 𝑥 = 1/2, 3/4, and 8/9.

(b) For a general 𝑥 satisfying −1 < 𝑥 < 1, show

𝐸2(𝑥) =
15
16

∫
𝑥

0
(

𝑥 − 𝑡
1 − 𝑡

)
2 1
(1 − 𝑡)3/2 𝑑𝑡.

(c) Explain why the inequality

|
𝑥 − 𝑡
1 − 𝑡

| ≤ |𝑥|

is valid, and use this to find an overestimate for |𝐸2(𝑥)| that no longer involves an
integral. Note that this estimate will necessarily depend on 𝑥. Confirm that things
are going well by checking this overestimate is in fact larger than |𝐸2(𝑥)| at the
three computed values from part (a).

(d) Finally, show 𝐸𝑁(𝑥) → 0 as 𝑁 → ∞ for an arbitrary 𝑥 ∈ (−1, 1).

Solution.

(a) See below for the sketch.

−1 −3
4 −1

2 −1
4 0 1

4
1
2

3
4 1

𝑥

0

1
4

1
2

3
4

1

5
4

3
2

7
4

2

𝑓(𝑥) = 1√
1−𝑥

𝑆2(𝑥) = 1 + 1
2𝑥 + 3

8𝑥2
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The errors are

𝐸2(
1
2) ≈ 0.0705, 𝐸2(

3
4) ≈ 0.4141, 𝐸2(

8
9) ≈ 1.2593.

(b) Using that

𝑓 (𝑁)(𝑡) =
1 ⋅ 3 ⋯ (2𝑛 − 1)

2𝑛 (1 − 𝑡)−𝑛−1/2

and Theorem 8.3.1, we have

𝐸2(𝑥) =
1
2

∫
𝑥

0
𝑓 (3)(𝑡)(𝑥 − 𝑡)2 d𝑡 =

1
2

∫
𝑥

0

15
8

(1 − 𝑡)−2−3/2(𝑥 − 𝑡)2 d𝑡

=
15
16

∫
𝑥

0
(

𝑥 − 𝑡
1 − 𝑡

)
2 1
(1 − 𝑡)3/2 d𝑡.

(c) First suppose that 𝑥 ∈ [0, 1). The inequality 0 ≤ 𝑡 ≤ 𝑥 < 1 implies that

𝑡 ≥ 𝑥𝑡 ⇒ −𝑡 ≤ −𝑥𝑡 ⇒ 𝑥 − 𝑡 ≤ 𝑥 − 𝑥𝑡 = 𝑥(1 − 𝑡) ⇒
𝑥 − 𝑡
1 − 𝑡

≤ 𝑥.

Since 𝑥−𝑡
1−𝑡  and 𝑥 are both non-negative in this case, we obtain the inequality |𝑥−𝑡

1−𝑡 | ≤ |𝑥|.
Now suppose that 𝑥 ∈ (−1, 0). The inequality −1 < 𝑥 ≤ 𝑡 < 0 implies that

1 ≥ 𝑥 ⇒ 𝑡 ≤ 𝑥𝑡 ⇒ 𝑡 − 𝑥 ≤ 𝑥𝑡 − 𝑥 = (−𝑥)(1 − 𝑡) ⇒
𝑡 − 𝑥
1 − 𝑡

≤ −𝑥.

Since 𝑥−𝑡
1−𝑡  and 𝑥 are both negative in this case, we again obtain the inequality |𝑥−𝑡

1−𝑡 | ≤ |𝑥|.
Using this inequality and the expression for 𝐸2 found in part (b), we have for 𝑥 ∈ [0, 1):

|𝐸2(𝑥)| =
15
16

|∫
𝑥

0
(

𝑥 − 𝑡
1 − 𝑡

)
2 1
(1 − 𝑡)3/2 d𝑡|

≤
15
16

∫
𝑥

0
|(

𝑥 − 𝑡
1 − 𝑡

)
2 1
(1 − 𝑡)3/2 | d𝑡

≤
15
16

𝑥2 ∫
𝑥

0

1
(1 − 𝑡)3/2 d𝑡

=
15
8

𝑥2[
1

√
1 − 𝑡

]
𝑡=𝑥

𝑡=0

=
15
8

𝑥2(
1

√
1 − 𝑥

− 1).

Similarly for 𝑥 ∈ (−1, 0):

|𝐸2(𝑥)| =
15
16

|∫
0

𝑥
(

𝑥 − 𝑡
1 − 𝑡

)
2 1
(1 − 𝑡)3/2 d𝑡| ≤

15
16

𝑥2 ∫
0

𝑥

1
(1 − 𝑡)3/2 d𝑡

=
15
8

𝑥2[
1

√
1 − 𝑡

]
𝑡=0

𝑡=𝑥
=

15
8

𝑥2(1 −
1

√
1 − 𝑥

).
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Hence for all 𝑥 ∈ (−1, 1) we have the overestimate

|𝐸2(𝑥)| ≤
15
8

𝑥2|
1

√
1 − 𝑥

− 1|.

Denoting this overestimate by 𝐺(𝑥) and comparing with the values from part (a), we
find that

𝐸2(
1
2) ≈ 0.0705 ≤ 0.1942 ≈ 𝐺(1

2),

𝐸2(
3
4) ≈ 0.4141 ≤ 1.0547 ≈ 𝐺(3

4),

𝐸2(
8
9) ≈ 1.2593 ≤ 2.9630 ≈ 𝐺(8

9).

(d) Using that

𝑓 (𝑁)(𝑡) =
1 ⋅ 3 ⋯ (2𝑁 − 1)

2𝑁 (1 − 𝑡)−𝑁−1/2 =
(2𝑁)!
22𝑁𝑁!

(1 − 𝑡)−𝑁−1/2

and Theorem 8.3.1, we have for a fixed 𝑥 ∈ (−1, 1):

𝐸𝑁(𝑥) =
1

𝑁!
∫

𝑥

0
𝑓 (𝑁+1)(𝑡)(𝑥 − 𝑡)𝑁 d𝑡

=
(2𝑁 + 2)!

22𝑁+2𝑁!(𝑁 + 1)!
∫

𝑥

0
(

𝑥 − 𝑡
1 − 𝑡

)
𝑁 1

(1 − 𝑡)3/2 d𝑡

= 𝑐𝑁+1(𝑁 + 1) ∫
𝑥

0
(

𝑥 − 𝑡
1 − 𝑡

)
𝑁 1

(1 − 𝑡)3/2 d𝑡,

where (𝑐𝑛) was defined in Exercise 8.3.6. From this expression we can derive, as in part
(c), the estimate

|𝐸𝑁(𝑥)| ≤ 𝑐𝑁+1(𝑁 + 1)|𝑥|𝑁 |
1

√
1 − 𝑥

− 1|.

Since |𝑥| < 1 we have lim𝑁→∞(𝑁 + 1)|𝑥|𝑁 = 0 and we showed in Exercise 8.3.7 that
lim𝑁→∞ 𝑐𝑁+1 = 0. It now follows from the Squeeze Theorem that lim𝑁→∞|𝐸𝑁(𝑥)| = 0.

Exercise 8.3.11. Assuming that the derivative of arcsin(𝑥) is indeed 1/
√

1 − 𝑥2, supply
the justification that allows us to conclude

arcsin(𝑥) = ∑
∞

𝑛=0

𝑐𝑛
2𝑛 + 1

𝑥2𝑛+1 for all |𝑥| < 1.(5)

Solution. Because the power series ∑∞
𝑛=0 𝑐𝑛𝑥2𝑛 converges to (1 − 𝑥2)−1/2 on (−1, 1),

Exercise 6.5.4 (a) shows that the power series

∑
∞

𝑛=0

𝑐𝑛
2𝑛 + 1

𝑥2𝑛+1
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converges on (−1, 1) and has derivatives (1 − 𝑥2)−1/2. As this is also the derivative of 
arcsin(𝑥), Corollary 5.3.4 implies that

arcsin(𝑥) = 𝑘 + ∑
∞

𝑛=0

𝑐𝑛
2𝑛 + 1

𝑥2𝑛+1

for all 𝑥 ∈ (−1, 1) and some 𝑘 ∈ 𝐑; taking 𝑥 = 0 shows that 𝑘 = 0.

Exercise 8.3.12. Our work thus far shows that the Taylor series in (5) is valid for all 
|𝑥| < 1, but note that arcsin(𝑥) is continuous for all |𝑥| ≤ 1. Carefully explain why the
series in (5) converges uniformly to arcsin(𝑥) on the closed interval [−1, 1].

Solution. Observe that

𝑐𝑛
2𝑛 + 1

=
𝑎−1

𝑛√
𝑛(2𝑛 + 1)

, where 𝑎𝑛 ≔
22𝑛(𝑛!)2

(2𝑛)!
√

𝑛

for each 𝑛 ∈ 𝐍. As (𝑎𝑛) converges to 
√

𝜋 (see Exercise 8.3.5) and consists of strictly positive
terms, there is some 𝐿 > 0 such that 𝑎𝑛 ≥ 𝐿 for all 𝑛 ∈ 𝐍. It follows that

𝑐𝑛
2𝑛 + 1

=
𝑎−1

𝑛√
𝑛(2𝑛 + 1)

≤
𝐿−1

√
𝑛(2𝑛 + 1)

and hence the series ∑∞
𝑛=0 𝑐𝑛(2𝑛 + 1)−1 converges by comparison with the series ∑∞

𝑛=1 𝑛−3/2.
Since each term of the series ∑∞

𝑛=0 𝑐𝑛(2𝑛 + 1)−1 is positive, we have shown that the power
series ∑∞

𝑛=0 𝑐𝑛(2𝑛 + 1)−1𝑥2𝑛+1 converges absolutely at 𝑥 = 1. It follows from Theorem 6.5.2
that the convergence is uniform on [−1, 1]. This implies that the power series is continuous
on [−1, 1]. Since arcsin(𝑥) is also continuous on this interval, the function

𝐷(𝑥) = arcsin(𝑥) − ∑
∞

𝑛=0

𝑐𝑛
2𝑛 + 1

𝑥2𝑛+1

is continuous on [−1, 1] and satisfies, by Exercise 8.3.11, 𝐷(𝑥) = 0 for all 𝑥 ∈ (−1, 1). It
follows from continuity that 𝐷(−1) = 𝐷(1) = 0 also.
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Exercise 8.3.13.

(a) Show

∫
𝜋/2

0
𝜃 𝑑𝜃 = ∑

∞

𝑛=0

𝑐𝑛
2𝑛 + 1

𝑏2𝑛+1,

being careful to justify each step in the argument. The term 𝑏2𝑛+1 refers back to
our earlier work on Wallis’s product.

(b) Deduce

𝜋2

8
= ∑

∞

𝑛=0

1
(2𝑛 + 1)2 ,

and use this to finish the proof that 𝜋2/6 = ∑∞
𝑛=1 1/𝑛2.

Solution.

(a) We have

∫
𝜋/2

0
𝜃 d𝜃 = ∫

𝜋/2

0
(∑

∞

𝑛=0

𝑐𝑛
2𝑛 + 1

sin2𝑛+1(𝜃)) d𝜃.

The uniform convergence of ∑∞
𝑛=0

𝑐𝑛
2𝑛+1 sin2𝑛+1(𝜃) on [−𝜋

2 , 𝜋
2 ], Theorem 7.4.4, and the

linearity of the integral (Theorem 7.4.2 (i)) allow us to interchange the integral with
the series, obtaining

∫
𝜋/2

0
𝜃 d𝜃 = ∑

∞

𝑛=0
(∫

𝜋/2

0

𝑐𝑛
2𝑛 + 1

sin2𝑛+1(𝜃)) d𝜃 = ∑
∞

𝑛=0

𝑐𝑛
2𝑛 + 1

𝑏2𝑛+1.

(b) Using our formula for 𝑏2𝑛+1 obtained in Exercise 8.3.3 (c), we see that 𝑐𝑛𝑏2𝑛+1 = 1
2𝑛+1

and hence by part (a):

𝜋2

8
= ∫

𝜋/2

0
𝜃 d𝜃 = ∑

∞

𝑛=0

𝑐𝑛
2𝑛 + 1

𝑏2𝑛+1 = ∑
∞

𝑛=0

1
(2𝑛 + 1)2 .

Now we split the sum ∑∞
𝑛=1

1
𝑛2  over the odd and even positive integers:

∑
∞

𝑛=1

1
𝑛2 = ∑

∞

𝑛=0

1
(2𝑛 + 1)2 + ∑

∞

𝑛=1

1
(2𝑛)2 =

𝜋2

8
+

1
4

∑
∞

𝑛=1

1
𝑛2 ;

these manipulations are valid because these are convergent series. It follows from the
above expression that

∑
∞

𝑛=1

1
𝑛2 =

𝜋2

6
.
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8.4. Inventing the Factorial Function

Exercise 8.4.1. For 𝑛 ∈ 𝐍, let

𝑛# = 𝑛 + (𝑛 − 1) + (𝑛 − 2) + ⋯ + 2 + 1.

(a) Without looking ahead, decide if there is a natural way to define 0#. How about 
(−2)#? Conjecture a reasonable value for 7

2#.

(b) Now prove 𝑛# = 1
2𝑛(𝑛 + 1) for all 𝑛 ∈ 𝐍, and revisit part (a).

Solution.

(a) We observe that 𝑛# satisfies the relation 𝑛# = 𝑛 + (𝑛 − 1)# for 𝑛 ≥ 2; it seems rea-
sonable to use this relation to extend the definition of #. Thus

1# = 1 + 0# ⇒ 0# = 1 − 1# = 0.

Similarly,

0# = (−1)# = −1 + (−2)# ⇒ (−2)# = 1.

Some more calculations show that

1# + (−1)# = 1, 2# + (−2)# = 4, and 3# + (−3)# = 9.

Given this, we might conjecture that 𝑛# + (−𝑛)# = 𝑛2 for 𝑛 ∈ 𝐍. Using this identity
and the previous recurrence relation, we find that 1

2# = 1
2 + (−1

2)# = 3
8  and thus

7
2# = 15

2 + 1
2# = 63

8 .

(b) This is a classic proof by induction: certainly 1# = 1 = 1
2(1)(2), and if 𝑛# = 1

2𝑛(𝑛 + 1)
for some 𝑛 ∈ 𝐍 then

(𝑛 + 1)# = 𝑛 + 1 + 𝑛# = 𝑛 + 1 +
𝑛(𝑛 + 1)

2
=

(𝑛 + 1)(𝑛 + 2)
2

.

Taking 𝑛 = 0, −2, and 7
2  in this formula confirms our conjectures from part (a).

Exercise 8.4.2. Verify that the series converges absolutely for all 𝑥 ∈ 𝐑, that 𝐸(𝑥) is
differentiable on 𝐑, and 𝐸′(𝑥) = 𝐸(𝑥).

Solution. For a given non-zero 𝑥 ∈ 𝐑, note that

|𝑥|𝑛+1

(𝑛 + 1)!
⋅

𝑛!
|𝑥|𝑛

=
|𝑥|

𝑛 + 1
→ 0;

it follows from the Ratio Test (Exercise 2.7.9) that the series ∑∞
𝑛=0

𝑥𝑛

𝑛!  converges absolutely.
Theorem 6.5.7 now implies that 𝐸 is differentiable on 𝐑 and furthermore that
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𝐸′(𝑥) = ∑
∞

𝑛=1

𝑛𝑥𝑛−1

𝑛!
= ∑

∞

𝑛=1

𝑥𝑛−1

(𝑛 − 1)!
= ∑

∞

𝑛=0

𝑥𝑛

𝑛!
= 𝐸(𝑥).

Exercise 8.4.3.

(a) Use the results of Exercise 2.8.7 and the binomial formula to show that

𝐸(𝑥 + 𝑦) = 𝐸(𝑥)𝐸(𝑦)

for all 𝑥, 𝑦 ∈ 𝐑.

(b) Show that 𝐸(0) = 1, 𝐸(−𝑥) = 1/𝐸(𝑥), and 𝐸(𝑥) > 0 for all 𝑥 ∈ 𝐑.

Solution.

(a) Let 𝑥, 𝑦 ∈ 𝐑 be given and for each 𝑛 ≥ 0 let 𝑎𝑛 = 𝑦𝑛

𝑛!  and 𝑏𝑛 = 𝑥𝑛

𝑛! . For each 𝑘 ≥ 0,
define

𝑑𝑘 = 𝑎0𝑏𝑘 + ⋯ + 𝑎𝑘𝑏0 = ∑
𝑘

𝑛=0
𝑎𝑛𝑏𝑘−𝑛 = ∑

𝑘

𝑛=0

𝑥𝑘−𝑛𝑦𝑛

(𝑘 − 𝑛)!𝑛!
=

1
𝑘!

∑
𝑘

𝑛=0
(

𝑘
𝑛

)𝑥𝑘−𝑛𝑦𝑛 =
(𝑥 + 𝑦)𝑘

𝑘!
.

It follows that for each 𝑁 ≥ 0 we have

∑
𝑁

𝑘=0
𝑑𝑘 = ∑

𝑁

𝑘=0

(𝑥 + 𝑦)𝑘

𝑘!
.

On one hand, ∑𝑁
𝑘=0

(𝑥+𝑦)𝑘

𝑘! → 𝐸(𝑥 + 𝑦) as 𝑁 → ∞. On the other hand,

∑
𝑁

𝑘=0
𝑑𝑘 → (∑

∞

𝑛=0
𝑏𝑛)(∑

∞

𝑛=0
𝑎𝑛) = 𝐸(𝑥)𝐸(𝑦) as 𝑁 → ∞

by Exercise 2.8.7. We may conclude that 𝐸(𝑥 + 𝑦) = 𝐸(𝑥)𝐸(𝑦).

(b) 𝐸(0) = 1 is clear from the definition of 𝐸. Taking 𝑦 = −𝑥 in the identity
𝐸(𝑥 + 𝑦) = 𝐸(𝑥)𝐸(𝑦) shows that 𝐸(0) = 1 = 𝐸(𝑥)𝐸(−𝑥) for all 𝑥 ∈ 𝐑, which implies
that 𝐸(𝑥) ≠ 0 for all 𝑥 ∈ 𝐑. Since 𝐸 is continuous and 𝐸(0) = 1, we must then have 
𝐸(𝑥) > 0 for all 𝑥 ∈ 𝐑.

Exercise 8.4.4. Define 𝑒 = 𝐸(1). Show 𝐸(𝑛) = 𝑒𝑛 and 𝐸(𝑚/𝑛) = ( 𝑛
√

𝑒)𝑚 for all
𝑚, 𝑛 ∈ 𝐙.

Solution. By Exercise 8.4.3 (a) we have, for each 𝑛 ∈ 𝐍,

𝐸(𝑛) = 𝐸(∑
𝑛

𝑗=1
1) = ∏

𝑛

𝑗=1
𝐸(1) = ∏

𝑛

𝑗=1
𝑒 = 𝑒𝑛,

and by Exercise 8.4.3 (b) we have 𝐸(0) = 1 = 𝑒0. Thus the identity 𝐸(𝑛) = 𝑒𝑛 holds for all
𝑛 ≥ 0. The identity 𝐸(−𝑥) = [𝐸(𝑥)]−1 from Exercise 8.4.3 (b) allows us to extend 𝐸(𝑛) = 𝑒𝑛

for all 𝑛 ∈ 𝐙.
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For 𝑛 ∈ 𝐍 we have

𝑒 = 𝐸(1) = 𝐸(∑
𝑛

𝑗=1

1
𝑛) = ∏

𝑛

𝑗=1
𝐸( 1

𝑛) = [𝐸( 1
𝑛)]

𝑛
.

Because 𝐸( 1
𝑛) is positive (by Exercise 8.4.3 (b)), the above equation implies that 𝐸( 1

𝑛) is the
unique positive 𝑛th root of 𝑒, i.e. 𝐸( 1

𝑛) = 𝑛
√

𝑒. We can now argue as in the previous paragraph
to see that 𝐸(𝑚

𝑛 ) = ( 𝑛
√

𝑒)𝑚 for all 𝑚 ∈ 𝐙 and 𝑛 ∈ 𝐍.

Exercise 8.4.5. Show lim𝑥→∞ 𝑥𝑛𝑒−𝑥 = 0 for all 𝑛 = 0, 1, 2, … .

To get started notice that when 𝑥 ≥ 0, all the terms in (1) are positive.

Solution. We will prove the more general result that lim𝑥→∞ 𝑥𝑛𝑒−𝑦𝑥 = 0 for 𝑛 ≥ 0 and
𝑦 > 0, which will be useful later. For 𝑥 > 0, observe that 𝑥𝑛𝑒−𝑦𝑥 is positive. Furthermore,

𝑥−𝑛𝑒𝑦𝑥 = 𝑥−𝑛(1 + 𝑦𝑥 + ⋯ +
𝑦𝑛𝑥𝑛

𝑛!
+

𝑦𝑛+1𝑥𝑛+1

(𝑛 + 1)!
+ ⋯)

= (
1
𝑥𝑛 +

𝑦
𝑥𝑛−1 + ⋯ +

𝑦𝑛

𝑛!
+

𝑦𝑛+1𝑥
(𝑛 + 1)!

+ ⋯) >
𝑦𝑛+1𝑥

(𝑛 + 1)!
.

Let 𝜀 > 0 be given and let 𝑀 = (𝑛 + 1)!𝑦−(𝑛+1)𝜀−1 > 0. Then for 𝑥 ≥ 𝑀  we have

𝑥−𝑛𝑒𝑦𝑥 >
𝑦𝑛+1𝑥

(𝑛 + 1)!
≥

𝑦𝑛+1𝑀
(𝑛 + 1)!

=
1
𝜀

⇔ 𝑥𝑛𝑒−𝑦𝑥 < 𝜀.

We may conclude that lim𝑥→∞ 𝑥𝑛𝑒−𝑦𝑥 = 0.

Exercise 8.4.6.

(a) Explain why we know 𝑒𝑥 has an inverse function—let’s call it log 𝑥—defined on
the strictly positive real numbers and satisfying

(i) log(𝑒𝑦) = 𝑦 for all 𝑦 ∈ 𝐑 and

(ii) 𝑒log 𝑥 = 𝑥, for all 𝑥 > 0.

(b) Prove (log 𝑥)′ = 1/𝑥. (See Exercise 5.2.12.)

(c) Fix 𝑦 > 0 and differentiate log(𝑥𝑦) with respect to 𝑥. Conclude that

log(𝑥𝑦) = log 𝑥 + log 𝑦 for all 𝑥, 𝑦 > 0.

(d) For 𝑡 > 0 and 𝑛 ∈ 𝐍, 𝑡𝑛 has the usual interpretation 𝑡 ⋅ 𝑡 ⋯ 𝑡 (𝑛 times). Show that

𝑡𝑛 = 𝑒𝑛 log 𝑡 for all 𝑛 ∈ 𝐍.(2)

Solution. For notation we will use either 𝐸(𝑥) or 𝑒𝑥 depending on which is more convenient.

(a) Because (𝑒𝑥)′ = 𝑒𝑥 > 0 (by Exercise 8.4.2 and Exercise 8.4.3 (b)), we see that 𝐸 is
injective (by Exercise 5.3.2). For any 𝑦 > 0 we have
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𝑒𝑦 = (1 + 𝑦 +
𝑦2

2!
+ ⋯) > 𝑦

and Exercise 8.4.5 shows that there is some 𝑧 < 0 such that 𝑒𝑧 < 𝑦. It follows from
the Intermediate Value Theorem (Theorem 4.5.1) that there exists some 𝑥 ∈ (𝑧, 𝑦) such
that 𝑒𝑥 = 𝑦. We have now shown that 𝐸 : 𝐑 → (0, ∞) is a bĳection and thus there
exists an inverse function.

(b) By Exercise 5.2.12 and Exercise 8.4.2 we have

(log 𝑥)′ =
1

𝐸′(log 𝑥)
=

1
𝐸(log 𝑥)

=
1
𝑥

.

(c) Using the chain rule and part (b), we have

(log(𝑥𝑦))′ =
𝑦
𝑥𝑦

=
1
𝑥

= (log 𝑥)′.

It follows from Corollary 5.3.4 that log(𝑥𝑦) = log 𝑥 + 𝑘 for some 𝑘 ∈ 𝐑. Taking 𝑥 = 1
shows that 𝑘 = log 𝑦.

(d) For a given 𝑛 ∈ 𝐍, the identity log(𝑥𝑦) = log 𝑥 + log 𝑦 from part (c) shows that
𝑛 log 𝑡 = log(𝑡𝑛) and thus

𝑒𝑛 log 𝑡 = 𝑒log(𝑡𝑛) = 𝑡𝑛.

Exercise 8.4.7.

(a) Show 𝑡𝑚/𝑛 = ( 𝑛
√

𝑡)
𝑚

 for all 𝑚, 𝑛 ∈ 𝐍.

(b) Show log(𝑡𝑥) = 𝑥 log 𝑡 for all 𝑡 > 0 and 𝑥 ∈ 𝐑.

(c) Show 𝑡𝑥 is differentiable on 𝐑 and find the derivative.

Solution. For notation we will use either 𝐸(𝑥) or 𝑒𝑥 depending on which is more convenient.

(a) Let 𝑛 ∈ 𝐍 be given. By Exercise 8.4.3 (a) we have

(𝐸( 1
𝑛 log 𝑡))

𝑛
= ∏

𝑛

𝑗=1
𝐸( 1

𝑛 log 𝑡) = 𝐸(∑
𝑛

𝑗=1

1
𝑛 log 𝑡) = 𝐸(log 𝑡) = 𝑡.

As 𝐸( 1
𝑛 log 𝑡) is positive, it follows from the equation above that 𝐸( 1

𝑛 log 𝑡) is the unique
positive 𝑛th root of 𝑡, i.e.

𝑡1/𝑛 = 𝐸( 1
𝑛 log 𝑡) = 𝑛

√
𝑡.

Now let 𝑚, 𝑛 ∈ 𝐍 be given. By Exercise 8.4.3 (a) and the previous paragraph, we have

𝑡𝑚/𝑛 = 𝐸(𝑚
𝑛 log 𝑡) = (𝐸( 1

𝑛 log 𝑡))
𝑚

= ( 𝑛
√

𝑡)
𝑚

.

(b) This is immediate from the definition of 𝑡𝑥:
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log(𝑡𝑥) = log(𝐸(𝑥 log 𝑡)) = 𝑥 log 𝑡.

(c) Using the chain rule, we find that

(𝑡𝑥)′ = (𝐸(𝑥 log 𝑡))′ = (log 𝑡)𝐸′(𝑥 log 𝑡) = (log 𝑡)𝐸(𝑥 log 𝑡) = (log 𝑡)𝑡𝑥.

Exercise 8.4.8. Inspired by the fact that 0! = 1 and 1! = 1, let ℎ(𝑥) satisfy

(i) ℎ(𝑥) = 1 for all 0 ≤ 𝑥 ≤ 1, and

(ii) ℎ(𝑥) = 𝑥ℎ(𝑥 − 1) for all 𝑥 ∈ 𝐑.

(a) Find a formula for ℎ(𝑥) on [1, 2], [2, 3], and [𝑛, 𝑛 + 1] for arbitrary 𝑛 ∈ 𝐍.

(b) Now do the same for [−1, 0], [−2, −1], and [−𝑛, −𝑛 + 1].

(c) Sketch ℎ over the domain [−4, 4].

Solution.

(a) On [1, 2] we find that ℎ(𝑥) = 𝑥, on [2, 3] we find that ℎ(𝑥) = 𝑥(𝑥 − 1), and in general
we obtain ℎ(𝑥) = 𝑥(𝑥 − 1) ⋯ (𝑥 − 𝑛 + 1) on [𝑛, 𝑛 + 1] for 𝑛 ∈ 𝐍.

(b) Replacing 𝑥 with 𝑥 + 1 in (ii) we see that ℎ(𝑥) = ℎ(𝑥+1)
𝑥  for all 𝑥 ≠ 0. Using this and

(i), we find that ℎ(𝑥) = 1
𝑥  for 𝑥 ∈ [−1, 0). Similarly, ℎ(𝑥) = 1

𝑥(𝑥+1)  for 𝑥 ∈ [−2, −1) and
in general

ℎ(𝑥) =
1

𝑥(𝑥 + 1) ⋯ (𝑥 + 𝑛 − 1)

on [−𝑛, −𝑛 + 1) for 𝑛 ∈ 𝐍.

(c) See below for the sketch.

−4 −3 −2 −1 0 1 2 3 4
𝑥

−20

−10

0

10

20
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Exercise 8.4.9.

(a) Show that the improper integral ∫∞
𝑎

𝑓 converges if and only if, for all 𝜀 > 0 there
exists 𝑀 > 𝑎 such that whenever 𝑑 > 𝑐 ≥ 𝑀  it follows that

|∫
𝑑

𝑐
𝑓| < 𝜀.

(In one direction it will be useful to consider the sequence 𝑎𝑛 = ∫𝑎+𝑛
𝑎

𝑓 .)

(b) Show that if 0 ≤ 𝑓 ≤ 𝑔 and ∫∞
𝑎

𝑔 converges then ∫∞
𝑎

𝑓 converges.

(c) Part (a) is a Cauchy criterion, and part (b) is a comparison test. State and prove
an absolute convergence test for improper integrals.

Solution.

(a) Suppose that ∫∞
𝑎

𝑓 converges to some 𝐿 ∈ 𝐑 and let 𝜀 > 0 be given. There exists an 
𝑀 > 𝑎 such that

𝑏 ≥ 𝑀 ⇒ |(∫
𝑏

𝑎
𝑓) − 𝐿| < 𝜀

2 .

It follows that for 𝑑 > 𝑐 ≥ 𝑀  we have

|∫
𝑑

𝑐
𝑓| = |(∫

𝑑

𝑎
𝑓) − (∫

𝑐

𝑎
𝑓) − 𝐿 + 𝐿| ≤ |(∫

𝑐

𝑎
𝑓) − 𝐿| + |(∫

𝑑

𝑎
𝑓) − 𝐿| < 𝜀.

Now suppose that

for all 𝜀 > 0 there exists an 𝑀 > 𝑎 such that 𝑑 ≥ 𝑐 ≥ 𝑀 implies |∫
𝑑

𝑐
𝑓| < 𝜀. (∗)

For each 𝑛 ∈ 𝐍 define 𝑎𝑛 = ∫𝑎+𝑛
𝑎

𝑓 . Given an 𝜀 > 0, obtain an 𝑀  from (∗) and let
𝑁 ∈ 𝐍 be such that 𝑎 + 𝑁 ≥ 𝑀 . If 𝑛 ≥ 𝑚 ≥ 𝑁  then by (∗) we have

|𝑎𝑛 − 𝑎𝑚| = |∫
𝑎+𝑛

𝑎+𝑚
𝑓| < 𝜀.

Thus (𝑎𝑛) is Cauchy and hence convergent, say lim𝑛→∞ 𝑎𝑛 = 𝐿. We claim that
∫∞

𝑎
𝑓 = 𝐿. To see this, let 𝜀 > 0 be given. By (∗) there is an 𝑀 > 𝑎 such that

𝑑 ≥ 𝑐 ≥ 𝑀 ⇒ |∫
𝑑

𝑐
𝑓| < 𝜀

2 . (†)

Let 𝑁1 ∈ 𝐍 be such that 𝑎 + 𝑁1 ≥ 𝑀 . Since lim𝑛→∞ 𝑎𝑛 = 𝐿, there is an 𝑁2 ∈ 𝐍 such
that
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𝑛 ≥ 𝑁2 ⇒ |(∫
𝑎+𝑛

𝑎
𝑓) − 𝐿| < 𝜀

2 . (‡)

Let 𝑁 = max{𝑁1, 𝑁2} and suppose that 𝑏 ≥ 𝑎 + 𝑁 . Then by (†) and (‡) we have

|(∫
𝑏

𝑎
𝑓) − 𝐿| ≤ |(∫

𝑎+𝑁

𝑎
𝑓) − 𝐿| + |∫

𝑏

𝑎+𝑁
𝑓| < 𝜀.

Our claim follows.

(b) The inequality 0 ≤ 𝑓 ≤ 𝑔 implies that 0 ≤ ∫𝑑
𝑐

𝑓 ≤ ∫𝑑
𝑐

𝑔 for any 𝑑 ≥ 𝑐 ≥ 𝑎. Let 𝜀 > 0 be
given. By part (a), there is an 𝑀 > 𝑎 such that

𝑑 ≥ 𝑐 ≥ 𝑀 ⇒ |∫
𝑑

𝑐
𝑔| = ∫

𝑑

𝑐
𝑔 < 𝜀.

For such 𝑑 and 𝑐 we then have |∫𝑑
𝑐

𝑓| = ∫𝑑
𝑐

𝑓 ≤ ∫𝑑
𝑐

𝑔 < 𝜀. It follows from part (a) that 
∫∞

𝑎
𝑓 converges.

(c) We will show that if ∫∞
𝑎

|𝑓| converges then so does ∫∞
𝑎

𝑓 . For any 𝜀 > 0, part (a) implies
that there is an 𝑀 > 𝑎 such that |∫𝑑

𝑐
|𝑓|| = ∫𝑑

𝑐
|𝑓| < 𝜀 for any 𝑑 ≥ 𝑐 ≥ 𝑀 . For such 𝑑

and 𝑐 it follows that |∫𝑑
𝑐

𝑓| ≤ ∫𝑑
𝑐
|𝑓| < 𝜀 and part (a) allows us to conclude that ∫∞

𝑎
𝑓

converges.

Exercise 8.4.10.

(a) Use the properties of 𝑒𝑡 previously discussed to show

∫
∞

0
𝑒−𝑡 𝑑𝑡 = 1.

(b) Show

1
𝛼

= ∫
∞

0
𝑒−𝛼𝑡 𝑑𝑡, for all 𝛼 > 0.(3)

Solution.

(a) As (−𝑒−𝑡)′ = 𝑒−𝑡 (by the chain rule and Exercise 8.4.2), the Fundamental Theorem of
Calculus gives us

lim
𝑏→∞

∫
𝑏

0
𝑒−𝑡 d𝑡 = lim

𝑏→∞
(𝑒0 − 𝑒−𝑏) = 1 − lim

𝑏→∞
𝑒−𝑏 = 1,

where we have used that 𝑒0 = 1 (by Exercise 8.4.3 (b)) and that lim𝑏→∞ 𝑒−𝑏 = 0 (by
Exercise 8.4.5).

(b) Similarly to part (a), this time using change of variables:
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lim
𝑏→∞

∫
𝑏

0
𝑒−𝛼𝑡 d𝑡 = lim

𝑏→∞
𝛼−1(𝑒0 − 𝑒−𝑏) = 𝛼−1(1 − lim

𝑏→∞
𝑒−𝑏) = 𝛼−1.

Exercise 8.4.11.

(a) Evaluate ∫𝑏
0

𝑡𝑒−𝛼𝑡 𝑑𝑡 using the integration-by-parts formula from Exercise 7.5.6.
The result will be an expression in 𝛼 and 𝑏.

(b) Now compute ∫∞
0

𝑡𝑒−𝛼𝑡 𝑑𝑡 and verify equation (4).

Solution.

(a) After applying integration-by-parts and simplifying, we find that

∫
𝑏

0
𝑡𝑒−𝛼𝑡 d𝑡 = 𝛼−2 − 𝛼−1𝑏𝑒−𝛼𝑏 − 𝛼−2𝑒−𝛼𝑏.

(b) Using the expression from part (a) and Exercise 8.4.5, we see that

lim
𝑏→∞

∫
𝑏

0
𝑡𝑒−𝛼𝑡 d𝑡 = lim

𝑏→∞
(𝛼−2 − 𝛼−1𝑏𝑒−𝛼𝑏 − 𝛼−2𝑒−𝛼𝑏) = 𝛼−2.

Exercise 8.4.12. Assume the function 𝑓(𝑥, 𝑡) is continuous on the rectangle

𝐷 = {(𝑥, 𝑡) : 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑡 ≤ 𝑑}.

Explain why the function

𝐹(𝑥) = ∫
𝑑

𝑐
𝑓(𝑥, 𝑡) 𝑑𝑡

is properly defined for all 𝑥 ∈ [𝑎, 𝑏].

Solution. Here is a useful lemma.

Lemma L.20. Suppose 𝑓 : 𝐷 → 𝐑 is continuous, where

𝐷 = {(𝑥, 𝑡) ∈ 𝐑2 : 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑡 ≤ 𝑑}.

Then for a fixed 𝑥0 ∈ [𝑎, 𝑏], the function 𝑔 : [𝑐, 𝑑] → 𝐑 given by 𝑔(𝑡) = 𝑓(𝑥0, 𝑡) is con-
tinuous.

Proof. Fix 𝑡0 ∈ [𝑐, 𝑑]; we aim to show that 𝑔 is continuous at 𝑡0, so let 𝜀 > 0 be given.
By assumption 𝑓 is continuous at (𝑥0, 𝑡0) ∈ 𝐷 and thus there is a 𝛿 > 0 such that
|𝑓(𝑥, 𝑡) − 𝑓(𝑥0, 𝑡0)| < 𝜀 for all (𝑥, 𝑡) ∈ 𝐷 satisfying
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‖(𝑥, 𝑡) − (𝑥0, 𝑡0)‖ = √(𝑥 − 𝑥0)
2 − (𝑡 − 𝑡0)

2 < 𝛿.

Now suppose that 𝑡 ∈ [𝑐, 𝑑] is such that |𝑡 − 𝑡0| < 𝛿. Notice that

‖(𝑥0, 𝑡) − (𝑥0, 𝑡0)‖ = √(𝑡 − 𝑡0)
2 = |𝑡 − 𝑡0| < 𝛿.

It follows that

|𝑓(𝑥0, 𝑡) − 𝑓(𝑥0, 𝑡0)| = |𝑔(𝑡) − 𝑔(𝑡0)| < 𝜀

and hence that 𝑔 is continuous at 𝑡0, as desired. □

Solution. For a fixed 𝑥 ∈ [𝑎, 𝑏] it is straightforward to show that the function [𝑐, 𝑑] → 𝐑
given by 𝑡 ↦ 𝑓(𝑥, 𝑡) is continuous. It follows from Theorem 7.2.9 that 𝑡 ↦ 𝑓(𝑥, 𝑡) is integrable
on [𝑐, 𝑑] for each 𝑥 ∈ [𝑎, 𝑏]. Thus 𝐹  is properly defined.

Exercise 8.4.13. Prove Theorem 8.4.5.

Solution. Fix 𝑥0 ∈ [𝑎, 𝑏]; we claim that 𝐹  is continuous at 𝑥0. Let 𝜀 > 0 be given. Theorem
4.4.7 is easily adapted to show that 𝑓 must be uniformly continuous on 𝐷 and thus there
exists a 𝛿 > 0 such that

(𝑥, 𝑡), (𝑦, 𝑧) ∈ 𝐷 and ‖(𝑥, 𝑡) − (𝑦, 𝑧)‖ < 𝛿 ⇒ |𝑓(𝑥, 𝑡) − 𝑓(𝑦, 𝑧)| <
𝜀

𝑑 − 𝑐
.

Suppose that 𝑥 ∈ [𝑎, 𝑏] is such that |𝑥 − 𝑥0| < 𝛿. Then for any 𝑡 ∈ [𝑐, 𝑑] we have

‖(𝑥, 𝑡) − (𝑥0, 𝑡)‖ = |𝑥 − 𝑥0| < 𝛿

and hence |𝑓(𝑥, 𝑡) − 𝑓(𝑥0, 𝑡)| < 𝜀(𝑑 − 𝑐)−1. It follows that

|𝐹 (𝑥) − 𝐹(𝑥0)| = |∫
𝑑

𝑐
𝑓(𝑥, 𝑡) − 𝑓(𝑥0, 𝑡) d𝑡| ≤ ∫

𝑑

𝑐
|𝑓(𝑥, 𝑡) − 𝑓(𝑥0, 𝑡)| d𝑡 ≤ ∫

𝑑

𝑐

𝜀
𝑑 − 𝑐

d𝑡 = 𝜀.

Thus 𝐹  is continuous at 𝑥0, as claimed.

We have now shown that 𝐹  is continuous on the compact set [𝑎, 𝑏]. Theorem 4.4.7 now shows
that 𝐹  is uniformly continuous on [𝑎, 𝑏].

Exercise 8.4.14. Finish the proof of Theorem 8.4.6.

Solution. As 𝑓𝑥 is continuous on the compact set 𝐷, it must be uniformly continuous here.
Thus there exists a 𝛿 > 0 such that

(𝑧, 𝑠), (𝑥, 𝑡) ∈ 𝐷 and |(𝑧, 𝑠) − (𝑥, 𝑡)| < 𝛿 ⇒ |𝑓𝑥(𝑧, 𝑠) − 𝑓𝑥(𝑥, 𝑡)| <
𝜀

𝑑 − 𝑐
. (∗)
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Suppose that 𝑧 ∈ [𝑎, 𝑏] is such that 0 < |𝑧 − 𝑥| < 𝛿. For a given 𝑡 ∈ [𝑐, 𝑑], the Mean Value
Theorem (Theorem 5.3.2) implies that there exists some 𝑦𝑡 strictly between 𝑧 and 𝑥, so that
|𝑦𝑡 − 𝑥| < |𝑧 − 𝑥| < 𝛿, satisfying

𝑓(𝑧, 𝑡) − 𝑓(𝑥, 𝑡)
𝑧 − 𝑥

= 𝑓𝑥(𝑦𝑡, 𝑡).

Notice that ‖(𝑦𝑡, 𝑡) − (𝑥, 𝑡)‖ = |𝑦𝑡 − 𝑥| < 𝛿. It follows from (∗) that |𝑓𝑥(𝑦𝑡, 𝑡) − 𝑓𝑥(𝑥, 𝑡)| < 𝜀
𝑑−𝑐

and hence that

|
𝐹 (𝑧) − 𝐹(𝑥)

𝑧 − 𝑥
− ∫

𝑑

𝑐
𝑓𝑥(𝑥, 𝑡) d𝑡| = |∫

𝑑

𝑐

𝑓(𝑧, 𝑡) − 𝑓(𝑥, 𝑡)
𝑧 − 𝑥

− 𝑓𝑥(𝑥, 𝑡) d𝑡|

= |∫
𝑑

𝑐
𝑓𝑥(𝑦𝑡, 𝑡) − 𝑓𝑥(𝑥, 𝑡) d𝑡| ≤ ∫

𝑑

𝑐
|𝑓𝑥(𝑦𝑡, 𝑡) − 𝑓𝑥(𝑥, 𝑡)| d𝑡 ≤ ∫

𝑑

𝑐

𝜀
𝑑 − 𝑐

d𝑡 = 𝜀.

Exercise 8.4.15.

(a) Show that the improper integral ∫∞
0

𝑒−𝑥𝑡 converges uniformly to 1/𝑥 on the set
[1/2, ∞).

(b) Is the convergence uniform on (0, ∞)?

Solution.

(a) Let 𝜀 > 0 be given and let 𝑀 = max{−2 log(1
2𝜀), 0}. Then if 𝑑 ≥ 𝑀  and 𝑥 ≥ 1

2  we have

|
1
𝑥

− ∫
𝑑

0
𝑒−𝑥𝑡 d𝑡| =

𝑒−𝑥𝑑

𝑥
≤ 2𝑒−𝑑/2 < 𝜀;

we are using here that 𝐸 is strictly increasing, which implies that its inverse function 
log is also strictly increasing.

(b) The convergence is not uniform on (0, ∞). For any 𝑀 > 0 we have

|
1
𝑥

− ∫
𝑀

0
𝑒−𝑥𝑡 d𝑡| =

𝑒−𝑀𝑥

𝑥
.

Notice that lim𝑥→0+ 𝑥−1𝑒−𝑀𝑥 = +∞, since lim𝑥→0+ 𝑒−𝑀𝑥 = 1 and lim𝑥→0+ 𝑥−1 = +∞.
Thus there is an 𝑥 > 0 such that

|
1
𝑥

− ∫
𝑀

0
𝑒−𝑥𝑡 d𝑡| =

𝑒−𝑀𝑥

𝑥
≥ 1.

Exercise 8.4.16. Prove the following analogue of the Weierstrass M-Test for improper
integrals: If 𝑓(𝑥, 𝑡) satisfies |𝑓(𝑥, 𝑡)| ≤ 𝑔(𝑡) for all 𝑥 ∈ 𝐴 and ∫∞

𝑎
𝑔(𝑡) 𝑑𝑡 converges, then

∫∞
𝑎

𝑓(𝑥, 𝑡) 𝑑𝑡 converges uniformly on 𝐴.
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Solution. Here is a Cauchy criterion for the uniform convergence of an improper integral,
an analogue of Theorem 6.4.4.

Lemma L.21. Suppose 𝐷 = {(𝑥, 𝑡) ∈ 𝐑2 : 𝑥 ∈ 𝐴, 𝑡 ≥ 𝑎} for some 𝐴 ⊆ 𝐑 and some
𝑎 ∈ 𝐑 and we have a function 𝑓 : 𝐷 → 𝐑. Then the improper integral ∫∞

𝑎
𝑓(𝑥, 𝑡) d𝑡

converges uniformly to some function 𝐹 : 𝐴 → 𝐑 if and only if for every 𝜀 > 0 there
exists an 𝑀 ≥ 𝑎 such that

𝑥 ∈ 𝐴 and 𝑐 ≥ 𝑏 ≥ 𝑀 ⇒ |∫
𝑐

𝑏
𝑓(𝑥, 𝑡) d𝑡| < 𝜀. (∗)

Proof. First suppose that the improper integral ∫∞
𝑎

𝑓(𝑥, 𝑡) d𝑡 converges uniformly to
some function 𝐹 : 𝐴 → 𝐑 and let 𝜀 > 0 be given. There exists an 𝑀 ≥ 𝑎 such that

𝑥 ∈ 𝐴 and 𝑏 ≥ 𝑀 ⇒ |𝐹(𝑥) − ∫
𝑏

𝑎
𝑓(𝑥, 𝑡) d𝑡| < 𝜀

2 .

Then provided 𝑥 ∈ 𝐴 and 𝑐 ≥ 𝑏 ≥ 𝑀  we have

|∫
𝑐

𝑏
𝑓(𝑥, 𝑡) d𝑡| = |−𝐹(𝑥) + ∫

𝑐

𝑎
𝑓(𝑥, 𝑡) d𝑡 + 𝐹(𝑥) − ∫

𝑏

𝑎
𝑓(𝑥, 𝑡) d𝑡 + 𝐹(𝑥)|

≤ |𝐹(𝑥) − ∫
𝑐

𝑎
𝑓(𝑥, 𝑡) d𝑡| + |𝐹(𝑥) − ∫

𝑏

𝑎
𝑓(𝑥, 𝑡) d𝑡| < 𝜀.

Now suppose that for each 𝜀 > 0 there exists an 𝑀 ≥ 𝑎 such that (∗) holds. For
each 𝑥 ∈ 𝐴 we may invoke Exercise 8.4.9 (a) to see that the improper integral
∫∞

𝑎
𝑓(𝑥, 𝑡) d𝑡 converges; define 𝐹(𝑥) to be this value. We claim that the improper in-

tegral ∫∞
𝑎

𝑓(𝑥, 𝑡) d𝑡 converges uniformly to 𝐹  on 𝐴. To see this, let 𝜀 > 0 be given and
obtain 𝑀 ≥ 𝑎 from (∗). If 𝑥 ∈ 𝐴 and 𝑐 ≥ 𝑏 ≥ 𝑀  then

|𝐹 (𝑥) − ∫
𝑏

𝑎
𝑓(𝑥, 𝑡) d𝑡| = |𝐹(𝑥) − ∫

𝑐

𝑎
𝑓(𝑥, 𝑡) d𝑡 + ∫

𝑐

𝑏
𝑓(𝑥, 𝑡) d𝑡|

≤ |𝐹(𝑥) − ∫
𝑐

𝑎
𝑓(𝑥, 𝑡) d𝑡| + |∫

𝑐

𝑏
𝑓(𝑥, 𝑡) d𝑡| < |𝐹(𝑥) − ∫

𝑐

𝑎
𝑓(𝑥, 𝑡) d𝑡| + 𝜀.

Notice that this inequality holds for all 𝑐 ∈ [𝑏, ∞). Thus we can take the limit as 𝑐 → ∞
on both sides of the above inequality to obtain |𝐹 (𝑥) − ∫𝑏

𝑎
𝑓(𝑥, 𝑡) d𝑡| ≤ 𝜀. We may con-

clude that the improper integral ∫∞
𝑎

𝑓(𝑥, 𝑡) d𝑡 converges uniformly to 𝐹  on 𝐴. □

Returning to the exercise, let 𝜀 > 0 be given. By Exercise 8.4.9 (a) there exists an 𝑀 ≥ 𝑎
such that
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𝑥 ∈ 𝐴 and 𝑐 ≥ 𝑏 ≥ 𝑀 ⇒ ∫
𝑐

𝑏
𝑔(𝑡) d𝑡 < 𝜀.

It follows that for 𝑥 ∈ 𝐴 and 𝑐 ≥ 𝑏 ≥ 𝑀  we have

|∫
𝑐

𝑏
𝑓(𝑥, 𝑡) d𝑡| ≤ ∫

𝑐

𝑏
|𝑓(𝑥, 𝑡)| d𝑡 ≤ ∫

𝑐

𝑏
𝑔(𝑡) d𝑡 < 𝜀.

Lemma L.21 allows us to conclude that the improper integral ∫∞
𝑎

𝑓(𝑥, 𝑡) d𝑡 converges uni-
formly on 𝐴.

Exercise 8.4.17. Prove Theorem 8.4.8.

Solution. For each 𝑛 ∈ 𝐍 define 𝐹𝑛 : [𝑎, 𝑏] → 𝐑 by

𝐹𝑛(𝑥) = ∫
𝑐+𝑛

𝑐
𝑓(𝑥, 𝑡) d𝑡.

By assumption 𝑓 is continuous on [𝑎, 𝑏] × [𝑐, 𝑐 + 𝑛] and so by Theorem 8.4.5 each 𝐹𝑛 is uni-
formly continuous on [𝑎, 𝑏]. As noted in the textbook, 𝐹𝑛 converges uniformly to 𝐹  on [𝑎, 𝑏].
We may use Exercise 6.2.6 (a) to conclude that 𝐹  is uniformly continuous on [𝑎, 𝑏].

Exercise 8.4.18. Prove Theorem 8.4.9.

Solution. Define 𝐺 : [𝑎, 𝑏] → 𝐑 and, for each 𝑛 ∈ 𝐍, define 𝐹𝑛 : [𝑎, 𝑏] → 𝐑 by

𝐺(𝑥) = ∫
∞

𝑐
𝑓𝑥(𝑥, 𝑡) d𝑡 and 𝐹𝑛(𝑥) = ∫

𝑐+𝑛

𝑐
𝑓(𝑥, 𝑡) d𝑡.

By Theorem 8.4.6 we have 𝐹 ′
𝑛(𝑥) = ∫𝑐+𝑛

𝑐
𝑓𝑥(𝑥, 𝑡) d𝑡 and hence by assumption 𝐹 ′

𝑛 → 𝐺 uni-
formly on [𝑎, 𝑏]. Notice that our hypotheses imply

lim
𝑛→∞

𝐹𝑛(𝑎) = lim
𝑑→∞

∫
𝑑

𝑐
𝑓(𝑎, 𝑡) d𝑡 = 𝐹(𝑎).

We may now use Theorem 6.3.3 to see that 𝐹𝑛 → 𝐹  uniformly on [𝑎, 𝑏] and furthermore that

𝐹 ′(𝑥) = 𝐺(𝑥) = ∫
∞

𝑐
𝑓𝑥(𝑥, 𝑡) d𝑡.
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Exercise 8.4.19.

(a) Although we verified it directly, show how to use the theorems in this section to
give a second justification for the formula

1
𝛼2 = ∫

∞

0
𝑡𝑒−𝛼𝑡 d𝑡, for all 𝛼 > 0.

(b) Now derive the formula

𝑛!
𝛼𝑛+1 = ∫

∞

0
𝑡𝑛𝑒−𝛼𝑡 d𝑡, for all 𝛼 > 0.(8)

Solution. We will need the following results about continuous functions, the proofs of which
are straightforward.

Lemma L.22. Suppose that 𝑓, 𝑔 : 𝐷 → 𝐑, where 𝐷 ⊆ 𝐑2, are continuous functions.
Then:

(i) The function (𝑥, 𝑦) ↦ 𝑓(𝑥, 𝑦)𝑔(𝑥, 𝑦) is continuous on 𝐷.

(ii) The function (𝑥, 𝑦) ↦ 𝑘𝑓(𝑥, 𝑦), for some 𝑘 ∈ 𝐑, is continuous on 𝐷.

(iii) If ℎ : 𝐴 → 𝐑 is continuous, where 𝐴 ⊆ 𝑓(𝐷) ⊆ 𝐑, then the function

(𝑥, 𝑦) ↦ ℎ(𝑓(𝑥, 𝑦))

is continuous on 𝐷.

(a) Define 𝑓 : 𝐑2 → 𝐑 by 𝑓(𝛼, 𝑡) = 𝑒−𝛼𝑡. It is easy to verify that the projections (𝛼, 𝑡) ↦ 𝛼
and (𝛼, 𝑡) ↦ 𝑡 are continuous on all of 𝐑2; it follows from this fact and Lemma L.22
that 𝑓 is continuous on all of 𝐑2. Notice that 𝑓𝛼(𝛼, 𝑡) = −𝑡𝑒−𝛼𝑡 exists for all (𝛼, 𝑡) ∈ 𝐑2

we can argue as before to see that 𝑓𝛼 is continuous on all of 𝐑2.

Let 0 < 𝑎 < 𝑏 be arbitrary and define 𝐷 = [𝑎, 𝑏] × [0, ∞); the previous paragraph shows
that 𝑓 and 𝑓𝛼 are continuous on 𝐷. Furthermore, by Exercise 8.4.10 (b), the function 
𝐹 : [𝑎, 𝑏] → 𝐑 given by

𝐹(𝛼) = ∫
∞

0
𝑓(𝛼, 𝑡) d𝑡

is well-defined and satisfies 𝐹(𝛼) = 𝛼−1, so that 𝐹 ′(𝛼) = −𝛼−2.

Now we claim that the improper integral

∫
∞

0
𝑓𝛼(𝛼, 𝑡) d𝑡 = ∫

∞

0
−𝑡𝑒−𝛼𝑡 d𝑡

converges uniformly on [𝑎, 𝑏]. Notice that |𝑓𝛼(𝛼, 𝑡)| = 𝑡𝑒−𝛼𝑡 ≤ 𝑡𝑒−𝑎𝑡 for each 𝛼 ∈ [𝑎, 𝑏]
and each 𝑡 ≥ 0. Hence, by Exercise 8.4.16, it will suffice to show that the improper inte-
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gral ∫∞
0

𝑡𝑒−𝑎𝑡 d𝑡 converges. (Of course, we can show directly using integration-by-parts
that this integral converges to 𝛼−2, as we did in Exercise 8.4.11, making this exercise
redundant. However, since presumably the purpose of this exercise is to practice using
the theorems and results of this section, we will proceed differently.) By Exercise 8.4.5
we have lim𝑡→∞ 𝑡𝑒−𝑎𝑡/2 = 0 and so there exists an 𝑀 > 0 such that

𝑡𝑒−𝑎𝑡/2 ≤ 1 ⇔ 𝑡𝑒−𝑎𝑡 ≤ 𝑒−𝑎𝑡/2

for all 𝑡 > 𝑀 . Since 𝑡 ↦ 𝑡𝑒−𝑎𝑡 is continuous on [0, 𝑀] it must be bounded here, say by
𝐿 ≥ 0. Thus if we define 𝑔 : [0, ∞) → 𝐑 by

𝑔(𝑡) = {
𝐿 if 0 ≤ 𝑡 ≤ 𝑀,
𝑒−𝑎𝑡/2 if 𝑡 > 𝑀,

then 0 ≤ 𝑡𝑒−𝑎𝑡 ≤ 𝑔(𝑡) for all 𝑡 ≥ 0. A direct calculation shows that

∫
∞

0
𝑔(𝑡) d𝑡 = 𝐿𝑀 +

2𝑒−𝑎𝑀/2

𝑎

and hence by Exercise 8.4.9 (b) the improper integral ∫∞
0

𝑡𝑒−𝑎𝑡 d𝑡 also converges. We
may now apply Exercise 8.4.16 to see that the improper integral ∫∞

0
𝑓𝛼(𝛼, 𝑡) d𝑡 con-

verges uniformly on [𝑎, 𝑏].

We have now satisfied all the hypotheses of Theorem 8.4.9. Applying this theorem
shows that

1
𝛼2 = −𝐹 ′(𝛼) = − ∫

∞

0
𝑓𝛼(𝛼, 𝑡) d𝑡 = ∫

∞

0
𝑡𝑒−𝛼𝑡 d𝑡

for all 𝛼 ∈ [𝑎, 𝑏]. Since 0 < 𝑎 < 𝑏 were arbitrary, we may conclude that this formula
holds for all 𝛼 > 0.

(b) Let us prove this by induction. The case 𝑛 = 0 was handled in Exercise 8.4.10 (b) and
the case 𝑛 = 1 was handled in Exercise 8.4.11 (and also part (a) of this exercise). Sup-
pose that the result is true for some 𝑛 ≥ 0. Let 𝛼 > 0 be given and note that, for any 
𝑏 > 0, integration-by-parts gives us

∫
𝑏

0
𝑡𝑛+1𝑒−𝛼𝑡 d𝑡 = −𝑏𝑛+1𝑒−𝛼𝑏 +

𝑛 + 1
𝛼

∫
𝑏

0
𝑡𝑛𝑒−𝛼𝑡 d𝑡.

Exercise 8.4.5 shows that lim𝑏→∞ 𝑏𝑛+1𝑒−𝛼𝑏 = 0 and our induction hypothesis ensures
that ∫∞

0
𝑡𝑛𝑒−𝛼𝑡 d𝑡 = 𝑛!𝛼−(𝑛+1); it follows that

∫
∞

0
𝑡𝑛+1𝑒−𝛼𝑡 d𝑡 =

𝑛 + 1
𝛼

⋅
𝑛!

𝛼𝑛+1 =
(𝑛 + 1)!
𝛼𝑛+2 .

This completes the induction step and the proof.
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Exercise 8.4.20.

(a) Show that 𝑥! is an infinitely differentiable function on (0, ∞) and produce a for-
mula for the 𝑛th derivative. In particular show that (𝑥!)″ > 0.

(b) Use the integration-by-parts formula employed earlier to show that 𝑥! satisfies the
functional equation

(𝑥 + 1)! = (𝑥 + 1)𝑥!.

Solution.

(a) For 𝑛 ∈ 𝐍 let us denote the 𝑛th derivative of 𝑥! by (𝑥!)(𝑛). We will prove by induction
that

(𝑥!)(𝑛) = ∫
∞

0
(log 𝑡)𝑛𝑡𝑥𝑒−𝑡 d𝑡

for 𝑥 > 0. For the base case 𝑛 = 1, first observe that

d
d𝑥

(𝑡𝑥𝑒−𝑡) = (log 𝑡)𝑡𝑥𝑒−𝑡.

Let 0 < 𝑎 < 𝑏 be arbitrary. We claim that the improper integral ∫∞
0

(log 𝑡)𝑡𝑥𝑒−𝑡 d𝑡 con-
verges uniformly on [𝑎, 𝑏]. To see this, note that

|(log 𝑡)𝑡𝑥𝑒−𝑡| = (log 𝑡)𝑡𝑥𝑒−𝑡 ≤ 𝑡𝑥+1𝑒−𝑡 ≤ 𝑡𝑏+1𝑒−𝑡

for 𝑥 ∈ [𝑎, 𝑏] and 𝑡 ≥ 1. Note further that

|(log 𝑡)𝑡𝑥𝑒−𝑡| = |log 𝑡|𝑡𝑥𝑒−𝑡 ≤ |log 𝑡|𝑡𝑏

for 𝑥 ∈ [𝑎, 𝑏] and 0 < 𝑡 < 1. Since

lim
𝑡→0+

|log 𝑡|𝑡𝑏 = 0,

which can be seen using L’Hôpital’s rule, there exists an 𝑀 > 0 such that |log 𝑡|𝑡𝑏 ≤ 𝑀
for all 𝑥 ∈ [𝑎, 𝑏] and 0 < 𝑡 < 1. Thus, if we define

𝑔(𝑡) = {
𝑀 if 0 < 𝑡 < 1,
𝑡𝑏+1𝑒−𝑡 if 𝑡 ≥ 1,

then |(log 𝑡)𝑡𝑥𝑒−𝑡| ≤ 𝑔(𝑡). It is straightforward to show that ∫∞
0

𝑔(𝑡) d𝑡 converges and
so it follows from Exercise 8.4.16 that ∫∞

0
(log 𝑡)𝑡𝑥𝑒−𝑡 d𝑡 converges uniformly on [𝑎, 𝑏].

We can now use Theorem 8.4.9 to see that

(𝑥!)′ = ∫
∞

0
(log 𝑡)𝑡𝑥𝑒−𝑡 d𝑡

for 𝑥 ∈ [𝑎, 𝑏]. Since 0 < 𝑎 < 𝑏 were arbitrary, we see that this formula holds for all 
𝑥 > 0.
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The induction step is essentially identical to the base case; note that

d
d𝑥

((log 𝑡)𝑛𝑡𝑥𝑒−𝑡) = (log 𝑡)𝑛+1𝑡𝑥𝑒−𝑡.

For arbitrary 0 < 𝑎 < 𝑏, we can again bound |(log 𝑡)𝑛+1𝑡𝑥𝑒−𝑡| by

𝑔(𝑡) = {
𝑀 if 0 < 𝑡 < 1,
𝑡𝑏+𝑛+1𝑒−𝑡 if 𝑡 ≥ 1,

where 𝑀 > 0 is some bound on |(log 𝑡)𝑛+1𝑡𝑥𝑒−𝑡| for 𝑥 ∈ [𝑎, 𝑏] and 0 < 𝑡 < 1; the exis-
tence of this 𝑀  follows since

lim
𝑡→0+

|log 𝑡|𝑛+1𝑡𝑏 = 0,

which can be seen by repeated applications of L’Hôpital’s rule. Since ∫∞
0

𝑔(𝑡) d𝑡 con-
verges, Exercise 8.4.16 implies that the improper integral ∫∞

0
(log 𝑡)𝑛+1𝑡𝑥𝑒−𝑡 d𝑡 con-

verges uniformly on [𝑎, 𝑏] and hence by Theorem 8.4.9 we have

(𝑥!)(𝑛+1) =
d
d𝑥

(𝑥!)(𝑛) = ∫
∞

0
(log 𝑡)𝑛+1𝑡𝑥𝑒−𝑡 d𝑡

for all 𝑥 ∈ [𝑎, 𝑏]. Since 0 < 𝑎 < 𝑏 were arbitrary, the formula holds for all 𝑥 > 0. This
completes the induction step and the proof.

In particular, we have

(𝑥!)″ = ∫
∞

0
(log 𝑡)2𝑡𝑥𝑒−𝑡 d𝑡.

The integrand (log 𝑡)2𝑡𝑥𝑒−𝑡 is strictly positive for all 𝑥 > 0 and all 𝑡 > 1. Thus (𝑥!)″ > 0.

(b) For any 𝑏 > 0, integration-by-parts gives

∫
𝑏

0
𝑡𝑥+1𝑒−𝑡 d𝑡 = −𝑏𝑥+1𝑒−𝑏 + (𝑥 + 1) ∫

𝑏

0
𝑡𝑥𝑒−𝑡 d𝑡,

which converges to (𝑥 + 1)𝑥! as 𝑏 → ∞.

392 / 415



Exercise 8.4.21.

(a) Use the convexity of log(𝑓(𝑥)) and the three intervals [𝑛 − 1, 𝑛], [𝑛, 𝑛 + 𝑥], and 
[𝑛, 𝑛 + 1] to show

𝑥 log(𝑛) ≤ log(𝑓(𝑛 + 𝑥)) − log(𝑛!) ≤ 𝑥 log(𝑛 + 1).

(b) Show log(𝑓(𝑛 + 𝑥)) = log(𝑓(𝑥)) + log((𝑥 + 1)(𝑥 + 2) ⋯ (𝑥 + 𝑛)).

(c) Now establish that

0 ≤ log(𝑓(𝑥)) − log(
𝑛𝑥𝑛!

(𝑥 + 1)(𝑥 + 2) ⋯ (𝑥 + 𝑛)
) ≤ 𝑥 log(1 +

1
𝑛

).

(d) Conclude that

𝑓(𝑥) = lim
𝑛→∞

𝑛𝑥𝑛!
(𝑥 + 1)(𝑥 + 2) ⋯ (𝑥 + 𝑛)

, for all 𝑥 ∈ (0, 1].

(e) Finally, show that the conclusion in (d) holds for all 𝑥 ≥ 0.

Solution.

(a) First consider the intervals [𝑛 − 1, 𝑛] and [𝑛, 𝑛 + 𝑥]. Using the fact about convex func-
tions mentioned previously in the textbook, we find the inequality

log(𝑓(𝑛)) − log(𝑓(𝑛 − 1)) ≤
log(𝑓(𝑛 + 𝑥)) − log(𝑓(𝑛))

𝑥
.

Since 𝑓(𝑛) = 𝑛! and log(𝑎) − log(𝑏) = log(𝑎
𝑏 ), we have

log(𝑓(𝑛)) − log(𝑓(𝑛 − 1)) = log(𝑛!) − log((𝑛 − 1)!) = log(
𝑛!

(𝑛 − 1)!
) = log(𝑛).

Thus we obtain 𝑥 log(𝑛) ≤ log(𝑓(𝑛 + 𝑥)) − log(𝑛!). A similar argument with the inter-
vals [𝑛, 𝑛 + 𝑥] and [𝑛, 𝑛 + 1] (remembering that 𝑥 ≤ 1) gives us the other desired in-
equality.

(b) Property (ii) implies that

𝑓(𝑥 + 𝑛) = 𝑓(𝑥)(𝑥 + 1)(𝑥 + 2) ⋯ (𝑥 + 𝑛).

Now we can use that log(𝑎𝑏) = log(𝑎) + log(𝑏) to obtain the desired equality.

(c) Part (a) gives us

0 ≤ log(𝑓(𝑛 + 𝑥)) − log(𝑛!) − 𝑥 log(𝑛) ≤ 𝑥 log(𝑛 + 1) − 𝑥 log(𝑛).

Part (b) and the usual properties of logarithms imply that

log(𝑓(𝑛 + 𝑥)) − log(𝑛!) − 𝑥 log(𝑛) = log(𝑓(𝑥)) + log((𝑥 + 1) ⋯ (𝑥 + 𝑛)) − log(𝑛𝑥𝑛!)

= log(𝑓(𝑥)) − log(
𝑛𝑥𝑛!

(𝑥 + 1) ⋯ (𝑥 + 𝑛)
).
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Similarly,

𝑥 log(𝑛 + 1) − 𝑥 log(𝑛) = 𝑥(log(𝑛 + 1) − log(𝑛)) = 𝑥 log(
𝑛 + 1

𝑛
) = 𝑥 log(1 +

1
𝑛

).

Combining these gives the desired result.

(d) Since log(1 + 1
𝑛) → 0, the Squeeze Theorem and part (c) imply that

log(𝑓(𝑥)) = lim
𝑛→∞

𝑎𝑛 where 𝑎𝑛 = log(
𝑛𝑥𝑛!

(𝑥 + 1)(𝑥 + 2) ⋯ (𝑥 + 𝑛)
)

for each 𝑥 ∈ (0, 1]. Since the exponential function is continuous everywhere, the above
equation implies that

𝑓(𝑥) = 𝑒lim 𝑎𝑛 = lim
𝑛→∞

𝑒𝑎𝑛 = lim
𝑛→∞

𝑛𝑥𝑛!
(𝑥 + 1)(𝑥 + 2) ⋯ (𝑥 + 𝑛)

for each 𝑥 ∈ (0, 1].

(e) For 𝑥 = 0 we have

𝑛𝑥𝑛!
(𝑥 + 1)(𝑥 + 2) ⋯ (𝑥 + 𝑛)

=
𝑛0𝑛!
𝑛!

= 1 = 𝑓(0).

For 𝑥 > 0, let 𝑚 ∈ 𝐍 be such that 𝑥 ∈ (0, 𝑚]. By repeating our previous argument with
the intervals [𝑛 − 1, 𝑛], [𝑛, 𝑛 + 𝑥] and [𝑛, 𝑛 + 𝑚], we arrive at the inequality

0 ≤ log(𝑓(𝑥)) − log(
𝑛𝑥𝑛!

(𝑥 + 1)(𝑥 + 2) ⋯ (𝑥 + 𝑛)
) ≤

𝑥
𝑚

log(
(𝑛 + 𝑚)!

𝑛!𝑛𝑚 ).

Notice that

(𝑛 + 𝑚)!
𝑛!𝑛𝑚 =

(𝑛 + 𝑚)(𝑛 + 𝑚 − 1) ⋯ (𝑛 + 1)
𝑛𝑚 = (1 +

𝑚
𝑛

)(1 +
𝑚 − 1

𝑛
) ⋯ (1 +

1
𝑛

).

Since each of the 𝑚 terms in parentheses on the right-hand side converges to 1, we see
that lim𝑛→∞

(𝑛+𝑚)!
𝑛!𝑛𝑚 = 1 and thus

lim
𝑛→∞

𝑥
𝑚

log(
(𝑛 + 𝑚)!

𝑛!𝑛𝑚 ) = 0.

We can now argue as in part (d) using the Squeeze Theorem to see that

𝑓(𝑥) = lim
𝑛→∞

𝑛𝑥𝑛!
(𝑥 + 1)(𝑥 + 2) ⋯ (𝑥 + 𝑛)

.
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Exercise 8.4.22.

(a) Where does 𝑔(𝑥) = 𝑥
𝑥!(−𝑥)!  equal zero? What other familiar function has the same

set of roots?

(b) The function 𝑒−𝑥2 provides the raw material for the all-important Gaussian bell
curve from probability, where it is known that ∫∞

−∞
𝑒−𝑥2 d𝑥 =

√
𝜋. Use this fact

(and some standard integration techniques) to evaluate (1/2)!.

(c) Now use (a) and (b) to conjecture a striking relationship between the factorial
function and a well-known function from trigonometry.

Solution.

(a) We are taking 1
𝑥!  to be zero when 𝑥 = −1, −2, −3, … and thus 𝑔 is zero at each integer.

The function sin(𝜋𝑥) has the same set of roots.

(b) For any 𝑏 > 0, standard integration techniques give us

∫
𝑏

0

√
𝑡𝑒−𝑡 d𝑡 = ∫

√
𝑏

0
2𝑢2𝑒−𝑢2 d𝑢 = −

√
𝑏𝑒−𝑏 + ∫

√
𝑏

0
𝑒−𝑢2 d𝑢,

which, given that ∫∞
−∞

𝑒−𝑢2 d𝑢 =
√

𝜋, converges to 1
2
√

𝜋 as 𝑏 → ∞. Thus

(1/2)! = ∫
∞

0

√
𝑡𝑒−𝑡 d𝑡 =

√
𝜋

2
.

(c) We conjecture that 𝑥
𝑥!(−𝑥)! = 𝑘 sin(𝜋𝑥) for some 𝑘 ∈ 𝐑. Taking 𝑥 = 1

2  gives us

𝑘 =
1/2

(1/2)!(−1/2)!
.

Using part (b) and the identity (1/2)! = (1/2)(−1/2)!, we find that 𝑘 = 𝜋−1.

Exercise 8.4.23. As a parting shot, use the value for (1/2)! and the Gauss product
formula in equation (9) to derive the famous product for 𝜋 discovered by John Wallis
in the 1650s:

𝜋
2

= lim
𝑛→∞

(
2 ⋅ 2
1 ⋅ 3

)(
4 ⋅ 4
3 ⋅ 5

)(
6 ⋅ 6
5 ⋅ 7

) ⋯ (
2𝑛 ⋅ 2𝑛

(2𝑛 − 1)(2𝑛 + 1)
).

Solution. Taking 𝑥 = 1/2 in equation (9) gives

(1/2)! =
√

𝜋
2

= lim
𝑛→∞

√
𝑛(𝑛!)

(3
2)(5

2) ⋯ (2𝑛+2
2 )

= lim
𝑛→∞

√
𝑛2𝑛(𝑛!)

3 ⋅ 5 ⋯ (2𝑛 + 1)
= lim

𝑛→∞

√
𝑛 ⋅ 2 ⋅ 4 ⋯ (2𝑛)

3 ⋅ 5 ⋯ (2𝑛 + 1)
.

Squaring both sides of this equality, using the continuity of 𝑥 ↦ 𝑥2, and multiplying through
by 𝜋

2  gives us
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𝜋
2

= lim
𝑛→∞

(
2 ⋅ 2
3 ⋅ 3

)(
4 ⋅ 4
5 ⋅ 5

) ⋯ (
2𝑛 ⋅ 2𝑛

(2𝑛 + 1)(2𝑛 + 1)
)(2𝑛)

= lim
𝑛→∞

(
2 ⋅ 2
1 ⋅ 3

)(
4 ⋅ 4
3 ⋅ 5

)(
6 ⋅ 6
5 ⋅ 7

) ⋯ (
2𝑛 ⋅ 2𝑛

(2𝑛 − 1)(2𝑛 + 1)
)(

2𝑛
2𝑛 + 1

).

Since lim𝑛→∞
2𝑛

2𝑛+1 = 1, it must be the case that

𝜋
2

= lim
𝑛→∞

(
2 ⋅ 2
1 ⋅ 3

)(
4 ⋅ 4
3 ⋅ 5

)(
6 ⋅ 6
5 ⋅ 7

) ⋯ (
2𝑛 ⋅ 2𝑛

(2𝑛 − 1)(2𝑛 + 1)
).

396 / 415



8.5. Fourier Series

Exercise 8.5.1.

(a) Verify that

𝑢(𝑥, 𝑡) = 𝑏𝑛 sin(𝑛𝑥) cos(𝑛𝑡)

satisfies equations (1), (2), and (3) for any choice of 𝑛 ∈ 𝐍 and 𝑏𝑛 ∈ 𝐑. What goes
wrong if 𝑛 ∉ 𝐍?

(b) Explain why any finite sum of functions of the form given in part (a) would also
satisfy (1), (2), and (3). (Incidentally, it is possible to hear the different solutions in
(a) for values of 𝑛 up to 4 or 5 by isolating the harmonics on a well-made stringed
instrument.)

Solution.

(a) Let 𝑛 ∈ 𝐍 and 𝑏𝑛 ∈ 𝐑 be given. Calculations show that
𝜕𝑢
𝜕𝑡

− 𝑛𝑏𝑛 sin(𝑛𝑥) sin(𝑛𝑡),
𝜕2𝑢
𝜕𝑡2

− 𝑛2𝑏𝑛 sin(𝑛𝑥) cos(𝑛𝑡),

and
𝜕2𝑢
𝜕𝑥2 = −𝑛2𝑏𝑛 sin(𝑛𝑥) cos(𝑛𝑡).

It is then clear that 𝑢 satisfies equations (1), (2), and (3). If 𝑛 ∉ 𝐍 then it may no
longer be the case that 𝑢 satisfies equations (2) and (3).

(b) If 𝑢 and 𝑣 both satisfy equations (1), (2), and (3), then observe that

𝜕2

𝜕𝑥2 (𝑢 + 𝑣) =
𝜕2𝑢
𝜕𝑥2 +

𝜕2𝑣
𝜕𝑥2 =

𝜕2𝑢
𝜕𝑡2

+
𝜕2𝑣
𝜕𝑡2

=
𝜕2

𝜕𝑡2
(𝑢 + 𝑣).

Thus 𝑢 + 𝑣 also satisfies equation (1). Furthermore,

𝑢(0, 𝑡) + 𝑣(0, 𝑡) = 0 and 𝑢(𝜋, 𝑡) + 𝑣(𝜋, 𝑡) = 0

for all 𝑡 ≥ 0, so that 𝑢 + 𝑣 also satisfies equation (2). Finally,

𝜕
𝜕𝑡

[𝑢 + 𝑣](𝑥, 0) =
𝜕𝑢
𝜕𝑡

(𝑥, 0) +
𝜕𝑣
𝜕𝑡

(𝑥, 0) = 0

for all 𝑥 ∈ [0, 𝜋], so that 𝑢 + 𝑣 also satisfies equation (3).
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Exercise 8.5.2. Using trigonometric identities when necessary, verify the following in-
tegrals.

(a) For all 𝑛 ∈ 𝐍,

∫
𝜋

−𝜋
cos(𝑛𝑥) d𝑥 = 0 and ∫

𝜋

−𝜋
sin(𝑛𝑥) d𝑥 = 0.

(b) For all 𝑛 ∈ 𝐍,

∫
𝜋

−𝜋
cos2(𝑛𝑥) d𝑥 = 𝜋 and ∫

𝜋

−𝜋
sin2(𝑛𝑥) d𝑥 = 𝜋.

(c) For all 𝑚, 𝑛 ∈ 𝐍,

∫
𝜋

−𝜋
cos(𝑚𝑥) sin(𝑛𝑥) d𝑥 = 0.

For 𝑚 ≠ 𝑛,

∫
𝜋

−𝜋
cos(𝑚𝑥) cos(𝑛𝑥) d𝑥 = 0 and ∫

𝜋

−𝜋
sin(𝑚𝑥) sin(𝑛𝑥) d𝑥 = 0.

Solution.

(a) Let 𝑛 ∈ 𝐍 be given. A calculation shows that

∫
𝜋

−𝜋
cos(𝑛𝑥) d𝑥 =

[sin(𝑛𝑥)]𝑥=𝜋
𝑥=−𝜋

𝑛
= 0.

Notice that sin(𝑛𝑥) is an odd function. An odd function integrated over an interval of
the form [−𝑎, 𝑎] is necessarily zero and hence

∫
𝜋

−𝜋
sin(𝑛𝑥) d𝑥 = 0.

(b) Let 𝑛 ∈ 𝐍 be given. Using the identity cos2(𝑥) = 1
2(1 + cos(2𝑥)), we calculate

∫
𝜋

−𝜋
cos2(𝑛𝑥) d𝑥 = ∫

𝜋

−𝜋

1 + cos(2𝑛𝑥)
2

d𝑥 = [
𝑥
2

+
sin(2𝑛𝑥)

4𝑛
]

𝑥=𝜋

𝑥=−𝜋
= 𝜋.

Similarly, using the identity sin2(𝑥) = 1
2(1 − cos(2𝑥)), we calculate

∫
𝜋

−𝜋
sin2(𝑛𝑥) d𝑥 = ∫

𝜋

−𝜋

1 − cos(2𝑛𝑥)
2

d𝑥 = [
𝑥
2

−
sin(2𝑛𝑥)

4𝑛
]

𝑥=𝜋

𝑥=−𝜋
= 𝜋.

(c) For any 𝑚, 𝑛 ∈ 𝐍, notice that cos(𝑚𝑥) sin(𝑛𝑥) is the product of an even function and
an odd function and hence is itself an odd function; it follows that

∫
𝜋

−𝜋
cos(𝑚𝑥) sin(𝑛𝑥) d𝑥 = 0.
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Now suppose 𝑚 ≠ 𝑛. Using the identity cos(𝑥) cos(𝑦) = 1
2(cos(𝑥 − 𝑦) + cos(𝑥 + 𝑦)), we

calculate

∫
𝜋

−𝜋
cos(𝑚𝑥) cos(𝑛𝑥) d𝑥 = ∫

𝜋

−𝜋

cos((𝑚 − 𝑛)𝑥) + cos((𝑚 + 𝑛)𝑥)
2

d𝑥

=
1
2
[
sin((𝑚 − 𝑛)𝑥)

𝑚 − 𝑛
+

sin((𝑚 + 𝑛)𝑥)
𝑚 + 𝑛

]
𝑥=𝜋

𝑥=−𝜋
= 0.

Using the identity sin(𝑥) sin(𝑦) = 1
2(cos(𝑥 − 𝑦) − cos(𝑥 + 𝑦)), we calculate

∫
𝜋

−𝜋
sin(𝑚𝑥) sin(𝑛𝑥) d𝑥 = ∫

𝜋

−𝜋

cos((𝑚 − 𝑛)𝑥) − cos((𝑚 + 𝑛)𝑥)
2

d𝑥

=
1
2
[
sin((𝑚 − 𝑛)𝑥)

𝑚 − 𝑛
−

sin((𝑚 + 𝑛)𝑥)
𝑚 + 𝑛

]
𝑥=𝜋

𝑥=−𝜋
= 0.

Exercise 8.5.3. Derive the formulas

𝑎𝑚 =
1
𝜋

∫
𝜋

−𝜋
𝑓(𝑥) cos(𝑚𝑥) d𝑥 and 𝑏𝑚 =

1
𝜋

∫
𝜋

−𝜋
𝑓(𝑥) sin(𝑚𝑥) d𝑥(10)

for all 𝑚 ≥ 1.

Solution. Let 𝑚 ≥ 1 be given. Multiply both sides of equation (6) by cos(𝑚𝑥) and integrate
over [−𝜋, 𝜋] to obtain

∫
𝜋

−𝜋
𝑓(𝑥) cos(𝑚𝑥) d𝑥 = ∫

𝜋

−𝜋
(𝑎0 cos(𝑚𝑥) + ∑

∞

𝑛=1
𝑎𝑛 cos(𝑚𝑥) cos(𝑛𝑥) + 𝑏𝑛 cos(𝑚𝑥) sin(𝑛𝑥)) d𝑥.

Now, assuming we are justified in doing so, we swap the integral with the sum and use
Exercise 8.5.2 to find that

∫
𝜋

−𝜋
𝑓(𝑥) cos(𝑚𝑥) d𝑥 = 𝜋𝑎𝑚.

We can find 𝑏𝑚 similarly, multiplying equation (6) by sin(𝑚𝑥) instead.
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Exercise 8.5.4.

(a) Referring to the previous example, explain why we can be sure that the conver-
gence of the partial sums to 𝑓(𝑥) is not uniform on any interval containing 0.

(b) Repeat the computations of Example 8.5.1 for the function 𝑔(𝑥) = |𝑥| and exam-
ine graphs for some partial sums. This time, make use of the fact that 𝑔 is even
(𝑔(𝑥) = 𝑔(−𝑥)) to simplify the calculations. By just looking at the coefficients, how
do we know this series converges uniformly to something?

(c) Use graphs to collect some empirical evidence regarding the question of term-by-
term differentiation in our two examples to this point. Is it possible to conclude
convergence or divergence of either differentiated series by looking at the resulting
coefficients? Theorem 6.4.3 is about the legitimacy of term-by-term differentiation.
Can it be applied to either of these examples?

Solution.

(a) Each partial sum 𝑆𝑁  is continuous at 0, whereas 𝑓 is not. It follows from Theorem 6.2.6
that the convergence cannot be uniform.

(b) The fact that 𝑔 is even implies that each 𝑏𝑛 is zero. We calculate

𝑎0 =
1
2𝜋

∫
𝜋

−𝜋
|𝑥| d𝑥 =

𝜋
2
,

𝑎𝑛 =
1
𝜋

∫
𝜋

−𝜋
|𝑥| cos(𝑛𝑥) d𝑥 =

2
𝜋

∫
𝜋

0
𝑥 cos(𝑛𝑥) d𝑥 = {− 4

𝑛2𝜋 if 𝑛 is odd,
0 if 𝑛 is even.

Thus the Fourier series for 𝑔 is

𝜋
2

−
4
𝜋

∑
∞

𝑛=1

cos((2𝑛 − 1)𝑥)
(2𝑛 − 1)2 ;

see below for a graph of 𝑔, 𝑆1, and 𝑆2 over [−𝜋, 𝜋].

𝜋 −𝜋
2 0 𝜋

2 𝜋
𝑥

0

𝜋
2

𝜋

𝑔 𝑆1 𝑆2
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Notice that

|
cos(2𝑛 − 1)𝑥

(2𝑛 − 1)2 | ≤
1

(2𝑛 − 1)2

for each 𝑛 ∈ 𝐍 and 𝑥 ∈ [−𝜋, 𝜋]. It follows from the Weierstrass M-Test that the series
converges uniformly.

(c) For the function 𝑓 from Example 8.5.1, notice that 𝑓 is not differentiable at 𝑥 = 0 or
at 𝑥 = ±𝜋, but satisfies 𝑓 ′(𝑥) = 0 for all 𝑥 ∈ (−𝜋, 0) ∪ (0, 𝜋). The term-by-term differ-
entiated series is

4
𝜋

∑
∞

𝑛=0
cos((2𝑛 + 1)𝑥).

See below for a graph of 4
𝜋 ∑40

𝑛=0 cos((2𝑛 + 1)𝑥) over [−𝜋, 𝜋].

𝜋 −𝜋
2 0 𝜋

2 𝜋
𝑥

−50

−25

0

25

50

The series clearly diverges for 𝑥 = 0 and 𝑥 = ±𝜋; this behaviour is reflected in the
graph. However, based on the graph we might naively believe that the series is con-
verging to 𝑓 ′(𝑥) = 0 for all 𝑥 ∈ (−𝜋, 0) ∪ (0, 𝜋). In fact, this series converges if and
only if 𝑥 = 𝑚𝜋 + 𝜋

2  for some 𝑚 ∈ 𝐙. If we put the term-by-term differentiated series in
the form

𝑎0 + ∑
∞

𝑛=1
𝑎𝑛 cos(𝑛𝑥) + 𝑏𝑛 sin(𝑛𝑥),

then the coefficients are given by

𝑏𝑛 = 0, 𝑎0 = 0, and 𝑎𝑛 = {
4
𝜋 if 𝑛 is odd,
0 if 𝑛 is even,

which certainly do not allow us to conclude convergence of the term-by-term differen-
tiated series. Furthermore, we cannot use Theorem 6.4.3 since the term-by-term differ-
entiated series does not even converge pointwise, let alone uniformly.
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For the function 𝑔 from part (b), notice that 𝑔 is not differentiable at 𝑥 = 0 or at
𝑥 = ±𝜋, but satisfies

𝑔′(𝑥) = {−1 if − 𝜋 < 𝑥 < 0,
1 if 0 < 𝑥 < 𝜋.

Notice the similarity to 𝑓 ; indeed, the term-by-term differentiated series is identical to
the Fourier series for 𝑓 :

4
𝜋

∑
∞

𝑛=1

sin((2𝑛 − 1)𝑥)
2𝑛 − 1

.

See below for a graph of 4
𝜋 ∑𝑁

𝑛=1
sin((2𝑛−1)𝑥)

2𝑛−1  over [−𝜋, 𝜋] for 𝑁 = 4 and 𝑁 = 20.

𝜋 −𝜋
2 0 𝜋

2 𝜋
𝑥

−1

0

1

𝑁 = 4 𝑁 = 4

If we put the term-by-term differentiated series in the form

𝑎0 + ∑
∞

𝑛=1
𝑎𝑛 cos(𝑛𝑥) + 𝑏𝑛 sin(𝑛𝑥),

then the coefficients are given by

𝑎𝑛 = 0 and 𝑏𝑛 = {
4

𝑛𝜋 if 𝑛 is odd,
0 if 𝑛 is even,

which certainly do not allow us to conclude convergence of the term-by-term differen-
tiated series. To use Theorem 6.4.3, we would have to show that the term-by-term
differentiated series converges uniformly. At this stage, it is not clear how to do so.

Exercise 8.5.5. Explain why ℎ is uniformly continuous on 𝐑.

Solution. By assumption ℎ is continuous on the compact set [−𝜋, 𝜋] and thus, by Theorem
4.4.7, ℎ is uniformly continuous on [−𝜋, 𝜋]. This is sufficient to show that ℎ is uniformly
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continuous on 𝐑 since, by the 2𝜋-periodicity of ℎ, for any 𝑥, 𝑦 ∈ 𝐑 there exist integers 𝑚, 𝑛
such that 𝑥 + 2𝑚𝜋 ∈ [−𝜋, 𝜋] and 𝑦 + 2𝑛𝜋 ∈ [−𝜋, 𝜋].

Exercise 8.5.6. Show that |∫𝑏
𝑎

ℎ(𝑥) sin(𝑛𝑥) 𝑑𝑥| < 𝜀/𝑛, and use this fact to complete
the proof.

Solution. Let us slightly modify the start of the proof by instead choosing a
𝛿 > 0 such that |ℎ(𝑥) − ℎ(𝑦)| < 𝜀(2𝜋)−1 whenever |𝑥 − 𝑦| < 𝛿. For 𝑥 ∈ [𝑎, 𝑏], define
𝑔(𝑥) = ℎ(𝑥) − ℎ(1

2(𝑎 + 𝑏)) and note that |𝑔(𝑥)| < 𝜀(2𝜋)−1 since

|𝑥 −
𝑎 + 𝑏

2
| ≤

𝑏 − 𝑎
2

=
𝜋
𝑛

< 𝛿.

By 2𝜋
𝑛 -periodicity we have

∫
𝑏

𝑎
sin(𝑛𝑥) d𝑥 = ∫

𝜋/𝑛

−𝜋/𝑛
sin(𝑛𝑥) d𝑥 = 0.

Since |sin(𝑛𝑥)| ≤ 1 for all 𝑥 ∈ 𝐑 it follows that

|∫
𝑏

𝑎
ℎ(𝑥) sin(𝑛𝑥) d𝑥| ≤ |ℎ(

𝑎 + 𝑏
2

) ∫
𝑏

𝑎
sin(𝑛𝑥) d𝑥| + |∫

𝑏

𝑎
𝑔(𝑥) sin(𝑛𝑥) d𝑥|

≤ ∫
𝑏

𝑎
|𝑔(𝑥)||sin(𝑛𝑥)| d𝑥 ≤ ∫

𝑏

𝑎

𝜀
2𝜋

d𝑥 =
𝜀
2𝜋

⋅
2𝜋
𝑛

=
𝜀
𝑛

.

Now let 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 be the evenly spaced partition of [−𝜋, 𝜋] such that each subin-
terval has length 2𝜋

𝑛 . Then

|∫
𝜋

−𝜋
ℎ(𝑥) sin(𝑛𝑥) d𝑥| = |∑

𝑛

𝑗=1
∫

𝑥𝑗

𝑥𝑗−1

ℎ(𝑥) sin(𝑛𝑥) d𝑥| ≤ ∑
𝑛

𝑗=1
|∫

𝑥𝑗

𝑥𝑗−1

ℎ(𝑥) sin(𝑛𝑥) d𝑥| < ∑
𝑛

𝑗=1

𝜀
𝑛

= 𝜀.

Thus ∫𝜋
−𝜋

ℎ(𝑥) sin(𝑛𝑥) d𝑥 → 0 and by repeating this argument with sin replaced by cos, we
can show that ∫𝜋

−𝜋
ℎ(𝑥) cos(𝑛𝑥) d𝑥 → 0.

Exercise 8.5.7.

(a) First, argue why the integral involving 𝑞𝑥(𝑢) tends to zero as 𝑁 → ∞.

(b) The first integral is a little more subtle because the function 𝑝𝑥(𝑢) has the sin(𝑢/2)
term in the denominator. Use the fact that 𝑓 is differentiable at 𝑥 (and a familiar
limit from calculus) to prove that the first integral goes to zero as well.

Solution.

(a) The continuity of 𝑓 implies the continuity of 𝑞𝑥 and thus by the Riemann-Lebesgue
Lemma (Theorem 8.5.2) we have
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∫
𝜋

−𝜋
𝑞𝑥(𝑢) cos(𝑁𝑢) d𝑢 → 0 as 𝑁 → ∞.

(b) The continuity of 𝑝𝑥 on (−𝜋, 0) ∪ (0, 𝜋] follows as 𝑓, sin, and cos are continuous every-
where and sin is non-zero on (−𝜋

2 , 0) ∪ (0, 𝜋
2 ]. Strictly speaking, 𝑝𝑥 is not defined at 

𝑢 = 0. We claim that defining 𝑝𝑥(0) = 2𝑓 ′(𝑥) results in 𝑝𝑥 also being continuous at
zero. Observe that for 𝑢 ≠ 0:

𝑓(𝑢 + 𝑥) − 𝑓(𝑥)
sin(𝑢/2)

= 2 ⋅
𝑓(𝑢 + 𝑥) − 𝑓(𝑥)

𝑢
⋅

𝑢/2
sin(𝑢/2)

→ 2𝑓 ′(𝑥) as 𝑢 → 0,

where we have used that 𝑓 is differentiable at 𝑥 and also that lim𝑢→∞
𝑢

sin(𝑢) = 1. Thus
𝑝𝑥 is continuous on (−𝜋, 𝜋] and so we may again use the Riemann-Lebesgue Lemma to
conclude that

∫
𝜋

−𝜋
𝑝𝑥(𝑢) sin(𝑁𝑢) d𝑢 → 0 as 𝑁 → ∞.

Exercise 8.5.8. Prove that if a sequence of real numbers (𝑥𝑛) converges, then the
arithmetic means

𝑦𝑛 =
𝑥1 + 𝑥2 + 𝑥3 + ⋯ + 𝑥𝑛

𝑛

also converge to the same limit. Give an example to show that it is not possible for the
sequence of means (𝑦𝑛) to converge even if the original sequence (𝑥𝑛) does not.

Solution. Suppose that lim 𝑥𝑛 = 𝑥 and let 𝜀 > 0 be given. There exists an 𝑁1 ∈ 𝐍 such
that |𝑥𝑛 − 𝑥| < 𝜀

2  whenever 𝑛 ≥ 𝑁1. Choose 𝑁2 ∈ 𝐍 such that

|𝑥1 − 𝑥| + ⋯ + |𝑥𝑁1 − 𝑥|
𝑁2

< 𝜀
2

and suppose that 𝑛 > max{𝑁1, 𝑁2}. It follows that

|𝑦𝑛 − 𝑥| = |
𝑥1 + ⋯ + 𝑥𝑁1+1 + ⋯ + 𝑥𝑛

𝑛
−

𝑛𝑥
𝑛

|

= |
(𝑥1 − 𝑥) + ⋯ + (𝑥𝑁1 − 𝑥)

𝑛
+

(𝑥𝑁1+1 − 𝑥) + ⋯ + (𝑥𝑛 − 𝑥)
𝑛

|

≤
|𝑥1 − 𝑥| + ⋯ + |𝑥𝑁1 − 𝑥|

𝑛
+

|𝑥𝑁1+1 − 𝑥| + ⋯ + |𝑥𝑛 − 𝑥|
𝑛

< 𝜀
2 +

𝑛 − 𝑁1
𝑛

⋅ 𝜀
2

< 𝜀.
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Thus lim 𝑦𝑛 = 𝑥. For an example where (𝑥𝑛) does not converge but (𝑦𝑛) does, let (𝑥𝑛) =
(−1)𝑛. Then

𝑦𝑛 = {
− 1

𝑛 if 𝑛 is odd,
0 if 𝑛 is even,

which converges to zero.

Exercise 8.5.9. Use the previous identity to show that

1/2 + 𝐷1(𝜃) + 𝐷2(𝜃) + ⋯ + 𝐷𝑁(𝜃)
𝑁 + 1

=
1

2(𝑁 + 1)⎣
⎢⎡

sin((𝑁 + 1)𝜃
2)

sin(𝜃
2) ⎦

⎥⎤
2

.

Solution. It will suffice to show that

1 + 2𝐷1(𝜃) + ⋯ + 2𝐷𝑁(𝜃) =
sin2((𝑁 + 1)𝜃

2)

sin2(𝜃
2)

.

Indeed, using the identities

sin(𝛼) sin(𝜃) =
cos(𝛼 − 𝜃) − cos(𝛼 + 𝜃)

2
and sin2(𝜃) =

1 − cos(2𝜃)
2

,

we find that

2 ∑
𝑁

𝑘=0
𝐷𝑘(𝜃) = ∑

𝑁

𝑘=0

sin((𝑘 + 1
2)𝜃)

sin(𝜃
2)

=
1

sin2(𝜃
2)

∑
𝑁

𝑘=0
[sin((𝑘 + 1

2)𝜃) sin(𝜃
2)]

=
1

2 sin2(𝜃
2)

∑
𝑁

𝑘=0
[cos(𝑘𝜃) − cos((𝑘 + 1)𝜃)]

=
1

sin2(𝜃
2)

⋅
1 − cos((𝑁 + 1)𝜃)

2

=
sin2((𝑁 + 1)𝜃

2)

sin2(𝜃
2)

.
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Exercise 8.5.10.

(a) Show that

𝜎𝑁(𝑥) =
1
𝜋

∫
𝜋

−𝜋
𝑓(𝑢 + 𝑥)𝐹𝑁(𝑢) 𝑑𝑢.

(b) Graph the function 𝐹𝑁(𝑢) for several values of 𝑁 . Where is 𝐹𝑁  large, and where is
it close to zero? Compare this function to the Dirichlet kernel 𝐷𝑁(𝑢). Now, prove
that 𝐹𝑁 → 0 uniformly on any set of the form {𝑢 : |𝑢| ≥ 𝛿}, where 𝛿 > 0 is fixed
(and 𝑢 is restricted to the interval (−𝜋, 𝜋]).

(c) Prove that ∫𝜋
−𝜋

𝐹𝑁(𝑢) 𝑑𝑢 = 𝜋.

(d) To finish the proof of Fejér’s Theorem, first choose a 𝛿 > 0 so that

|𝑢| < 𝛿 implies |𝑓(𝑥 + 𝑢) − 𝑓(𝑥)| < 𝜀.

Set up a single integral that represents the difference 𝜎𝑁(𝑥) − 𝑓(𝑥) and divide this
integral into sets where |𝑢| ≤ 𝛿 and |𝑢| ≥ 𝛿. Explain why it is possible to make
each of these integrals sufficiently small, independently of the choice of 𝑥.

Solution.

(a) Using the expression for 𝑆𝑛(𝑥) derived previously in the textbook, we have

𝜎𝑁(𝑥) =
1

𝑁 + 1
∑
𝑁

𝑛=0
𝑆𝑛(𝑥) =

1
𝑁 + 1

∑
𝑁

𝑛=0

1
𝜋

∫
𝜋

−𝜋
𝑓(𝑢 + 𝑥)𝐷𝑛(𝑢) d𝑢

=
1
𝜋

∫
𝜋

−𝜋
𝑓(𝑢 + 𝑥)

1
𝑁 + 1

∑
𝑁

𝑛=0
𝐷𝑛(𝑢) d𝑢 =

1
𝜋

∫
𝜋

−𝜋
𝑓(𝑢 + 𝑥)𝐹𝑁(𝑢) d𝑢.

(b) See below for a graph of 𝐹4, 𝐹8, and 𝐹12 over the interval [−𝜋, 𝜋].

𝜋 −𝜋
2 0 𝜋

2 𝜋
𝑥

0

1

2

3

4

5

6

𝐹4 𝐹8 𝐹12
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Like the Dirichlet kernel, the Fejér kernel has a large peak at 0 and decays away from
0; unlike the Dirichlet kernel, the Fejér kernel is non-negative.

Let 0 < 𝛿 < 𝜋 be given and let 𝐴 = {𝑢 ∈ [−𝜋, 𝜋] : 𝛿 ≤ |𝑢|}. For any 𝑢 ∈ 𝐴, observe that
sin2( 𝛿

2) ≤ sin2(𝑢
2). Since 𝛿 ∈ (0, 𝜋) we have sin2( 𝛿

2) > 0 and thus

1
sin2(𝑢

2)
≤

1
sin2( 𝛿

2)

for each 𝑢 ∈ 𝐴. It follows that

|𝐹𝑁(𝑢)| =
1

2(𝑁 + 1)
⋅
sin2((𝑁 + 1)𝑢

2)
sin2(𝑢

2)
≤

1
2(𝑁 + 1)

⋅
1

sin2( 𝛿
2)

for all 𝑢 ∈ 𝐴. It is clear from this bound that 𝐹𝑁 → 0 uniformly on 𝐴.

(c) Recalling that ∫𝜋
−𝜋

𝐷𝑛(𝑢) d𝑢 = 𝜋 for any 𝑛 ≥ 0, we h ave

∫
𝜋

−𝜋
𝐹𝑁(𝑢) d𝑢 = ∫

𝜋

−𝜋

1
𝑁 + 1

∑
𝑁

𝑛=0
𝐷𝑛(𝑢) d𝑢 =

1
𝑁 + 1

∑
𝑁

𝑛=0
∫

𝜋

−𝜋
𝐷𝑛(𝑢) d𝑢 =

(𝑁 + 1)𝜋
𝑁 + 1

= 𝜋.

(d) By assumption 𝑓 is continuous on [−𝜋, 𝜋] and hence is uniformly continuous here. Thus,
for any 𝜀 > 0, we can choose a 0 < 𝛿 < 𝜋 such that

|𝑢| < 𝛿 ⇒ |𝑓(𝑥 + 𝑢) − 𝑓(𝑥)| < 𝜀.

For any 𝑥 ∈ (𝜋, 𝜋] and 𝑁 ∈ 𝐍, parts (a) and (c) imply that

𝜎𝑁(𝑥) − 𝑓(𝑥) =
1
𝜋

∫
𝜋

−𝜋
[𝑓(𝑥 + 𝑢) − 𝑓(𝑥)]𝐹𝑁(𝑢) d𝑢.

Observe that

|
1
𝜋

∫
|𝑢|<𝛿

[𝑓(𝑥 + 𝑢) − 𝑓(𝑥)]𝐹𝑁(𝑢) d𝑢| ≤
1
𝜋

∫
|𝑢|<𝛿

[𝑓(𝑥 + 𝑢) − 𝑓(𝑥)]𝐹𝑁(𝑢) d𝑢

<
𝜀
𝜋

∫
|𝑢|<𝛿

𝐹𝑁(𝑢) d𝑢 <
𝜀
𝜋

∫
𝜋

−𝜋
𝐹𝑁(𝑢) d𝑢 = 𝜀.

Let 𝑀 > 0 be a bound on 𝑓 over [−𝜋, 𝜋]. By part (b), there exists a 𝐾 ∈ 𝐍 such that
𝐹𝑁(𝑢) ≤ 𝜀(4𝑀)−1 for all 𝛿 ≤ 𝑢 ≤ 𝜋 and 𝑁 ≥ 𝐾. For such 𝑁 , observe that

|
1
𝜋

∫
𝛿≤|𝑢|≤𝜋

[𝑓(𝑥 + 𝑢) − 𝑓(𝑥)]𝐹𝑁(𝑢) d𝑢| ≤
1
𝜋

∫
𝛿≤|𝑢|≤𝜋

|𝑓(𝑥 + 𝑢) − 𝑓(𝑥)|𝐹𝑁(𝑢) d𝑢

≤
2𝑀𝜀
4𝑀𝜋

∫
𝛿≤|𝑢|≤𝜋

d𝑢 <
𝜀
2𝜋

∫
𝜋

−𝜋
d𝑢 = 𝜀.

It now follows that for any 𝑥 ∈ (−𝜋, 𝜋] and 𝑁 ≥ 𝐾 we have
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|𝜎𝑁(𝑥) − 𝑓(𝑥)| = |
1
𝜋

∫
𝜋

−𝜋
[𝑓(𝑥 + 𝑢) − 𝑓(𝑥)]𝐹𝑁(𝑢) d𝑢|

≤ |
1
𝜋

∫
|𝑢|<𝛿

[𝑓(𝑥 + 𝑢) − 𝑓(𝑥)]𝐹𝑁(𝑢) d𝑢|

+ |
1
𝜋

∫
𝛿≤|𝑢|≤𝜋

[𝑓(𝑥 + 𝑢) − 𝑓(𝑥)]𝐹𝑁(𝑢) d𝑢|

< 2𝜀.

We may conclude that 𝜎𝑁 → 𝑓 uniformly on (−𝜋, 𝜋].

Exercise 8.5.11.

(a) Use the fact that the Taylor series for sin(𝑥) and cos(𝑥) converge uniformly on any
compact set to prove WAT under the added assumption that [𝑎, 𝑏] on [0, 𝜋].

(b) Show how the case for an arbitrary interval [𝑎, 𝑏] follows from this one.

Solution.

(a) First let us prove the following result.

Lemma L.23. Suppose that 𝑇 : 𝐑 → 𝐑 is a trigonometric polynomial, i.e. 𝑇  is
either constant or of the form

𝑇 (𝑥) = 𝑎0 + ∑
𝑁

𝑛=1
𝑎𝑛 cos(𝑛𝑥) + 𝑏𝑛 sin(𝑛𝑥)

for some 𝑁 ∈ 𝐍 and some coefficients 𝑎𝑛, 𝑏𝑛 ∈ 𝐑. Let [𝑎, 𝑏] be given. For any
𝜀 > 0, there exists a polynomial 𝑝 such that |𝑇 (𝑥) − 𝑝(𝑥)| < 𝜀 for all 𝑥 ∈ [𝑎, 𝑏].

Proof. If 𝑇  is constant the result is clear, so suppose that 𝑇  is of the form

𝑇 (𝑥) = 𝑎0 + ∑
𝑁

𝑛=1
𝑎𝑛 cos(𝑛𝑥) + 𝑏𝑛 sin(𝑛𝑥)

for some 𝑁 ∈ 𝐍 and some coefficients 𝑎𝑛, 𝑏𝑛 ∈ 𝐑. Let 1 ≤ 𝑛 ≤ 𝑁  be given. Be-
cause the Taylor series for cos(𝑛𝑥) converges uniformly on [𝑎, 𝑏], there exists a
polynomial 𝑝𝑛 (some partial sum of the Taylor series) such that

|cos(𝑛𝑥) − 𝑝𝑛(𝑥)| <
𝜀

2𝑁(1 + |𝑎𝑛|)

for each 𝑥 ∈ [𝑎, 𝑏]. Similarly, there exists a polynomial 𝑞𝑛 such that
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|sin(𝑛𝑥) − 𝑞𝑛(𝑥)| <
𝜀

2𝑁(1 + |𝑏𝑛|)

for each 𝑥 ∈ [𝑎, 𝑏]. Let 𝑝 be the polynomial given by

𝑝(𝑥) = 𝑎0 + ∑
𝑁

𝑛=1
𝑎𝑛𝑝𝑛(𝑥) + 𝑏𝑛𝑞𝑛(𝑥).

Then for any 𝑥 ∈ [𝑎, 𝑏] we have

|𝑇 (𝑥) − 𝑝(𝑥)| = |∑
𝑁

𝑛=1
𝑎𝑛(cos(𝑛𝑥) − 𝑝𝑛(𝑥)) + 𝑏𝑛(sin(𝑛𝑥) − 𝑞𝑛(𝑥))|

≤ ∑
𝑁

𝑛=1
|𝑎𝑛||cos(𝑛𝑥) − 𝑝𝑛(𝑥)| + |𝑏𝑛||sin(𝑛𝑥) − 𝑞𝑛(𝑥)|

< ∑
𝑁

𝑛=1

𝜀|𝑎𝑛|
2𝑁(1 + |𝑎𝑛|)

+
𝜀|𝑏𝑛|

2𝑁(1 + |𝑏𝑛|)

< ∑
𝑁

𝑛=1

𝜀
𝑁

= 𝜀. □

Now let 𝑓 : [0, 𝜋] → 𝐑 be continuous and let 𝜀 > 0 be given. By Fejér’s Theorem (The-
orem 8.5.4), 𝜎𝑁 → 𝑓 uniformly on [0, 𝜋] and thus there exists an 𝑀 ∈ 𝐍 such that

|𝜎𝑀(𝑥) − 𝑓(𝑥)| < 𝜀
2

for all 𝑥 ∈ [0, 𝜋]. Notice that 𝜎𝑀  is a trigonometric polynomial; it follows from Lem-
ma L.23 that there exists a polynomial 𝑝 such that |𝜎𝑀(𝑥) − 𝑝(𝑥)| < 𝜀

2  for all 𝑥 ∈ [0, 𝜋].
Thus

|𝑓(𝑥) − 𝑝(𝑥)| ≤ |𝜎𝑀(𝑥) − 𝑓(𝑥)| + |𝜎𝑀(𝑥) − 𝑝(𝑥)| < 𝜀

for all 𝑥 ∈ [0, 𝜋].

(b) Let 𝑓 : [𝑎, 𝑏] → 𝐑 be continuous and define 𝑔 : [0, 𝜋] → 𝐑 by 𝑔(𝑥) = 𝑓(𝑏−𝑎
𝜋 𝑥 + 𝑎); no-

tice that 𝑔 is continuous. Let 𝜀 > 0 be given. By part (a), there exists a polynomial 𝑞
such that |𝑔(𝑥) − 𝑞(𝑥)| < 𝜀 for each 𝑥 ∈ [0, 𝜋]. Define 𝑝 by 𝑝(𝑥) = 𝑞(𝜋(𝑥−𝑎)

𝑏−𝑎 ) and notice
that 𝑝 is a polynomial. For any 𝑥 ∈ [𝑎, 𝑏] we have 𝜋(𝑥−𝑎)

𝑏−𝑎 ∈ [0, 𝜋] and thus

|𝑔(
𝜋(𝑥 − 𝑎)

𝑏 − 𝑎
) − 𝑞(

𝜋(𝑥 − 𝑎)
𝑏 − 𝑎

)| = |𝑓(𝑥) − 𝑝(𝑥)| < 𝜀.
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8.6. A Construction of 𝐑 from 𝐐

Exercise 8.6.1.

(a) Fix 𝑟 ∈ 𝐐. Show that the set 𝐶𝑟 = {𝑡 ∈ 𝐐 : 𝑡 < 𝑟} is a cut.

The temptation to think of all cuts as being of this form should be avoided. Which
of the following subsets of 𝑄 are cuts?

(b) 𝑆 = {𝑡 ∈ 𝐐 : 𝑡 ≤ 2}

(c) 𝑇 = {𝑡 ∈ 𝐐 : 𝑡2 < 2 or 𝑡 < 0}

(d) 𝑈 = {𝑡 ∈ 𝐐 : 𝑡2 ≤ 2 or 𝑡 < 0}

Solution.

(a) It is clear that 𝐶𝑟 satisfies (c1) and (c2). To see that 𝐶𝑟 satisfies (c3), observe that if 
𝑡 ∈ 𝐶𝑟 then 𝑡 < 𝑡+𝑟

2  and 𝑡+𝑟
2 ∈ 𝐶𝑟.

(b) This is not a cut, since it has 2 as a maximum element.

(c) This is a cut. 𝑇  satisfies (c1) since 0 ∈ 𝑇  and 2 ∉ 𝑇 .

Suppose 𝑡 ∈ 𝑇  and 𝑟 is a rational such that 𝑟 < 𝑡. If 𝑟 < 0 then certainly 𝑟 ∈ 𝑇 , so
suppose that 𝑟 ≥ 0, which implies that 𝑡 > 0. It follows that 𝑟2 < 𝑡2 < 2 and so 𝑟 ∈ 𝑇 .
Thus 𝑇  satisfies (c2).

Suppose 𝑡 ∈ 𝑇 . If 𝑡 ≤ 0 then let 𝑟 = 1 and if 𝑡 > 0 then let 𝑟 = 2𝑡+2
𝑡+2 . In either case, one

can verify that 𝑡 < 𝑟 and 𝑟 ∈ 𝑇 . Thus 𝑇  satisfies (c3).

(d) By Theorem 1.1.1 we have 𝑈 = 𝑇  and hence 𝑈  is a cut by part (c).

Exercise 8.6.2. Let 𝐴 be a cut. Show that if 𝑟 ∈ 𝐴 and 𝑠 ∉ 𝐴, then 𝑟 < 𝑠.

Solution. Given that 𝑟 ∈ 𝐴, the implication 𝑠 ∉ 𝐴 ⇒ 𝑟 < 𝑠 is the contrapositive of (c2).

Exercise 8.6.3. Using the usual definitions of addition and multiplication, determine
which of these properties are possessed by 𝐍, 𝐙, and 𝐐, respectively.

Solution. 𝐍 satisfies (f1), (f2), and (f5). It fails (f3) since there is no additive identity and
it fails (f4) since no element has an additive inverse and only 1 has a multiplicative inverse
(1 is its own multiplicative inverse).

𝐙 satisfies (f1), (f2), (f3), and (f5). It fails (f4) since, while each element has an additive in-
verse, only 1 and −1 have multiplicative inverses (they are their own multiplicative inverses).

𝐐 satisfies each property (f1) - (f5).
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Exercise 8.6.4. Show that this defines an ordering on 𝐑 by verifying properties (o1),
(o2), and (o3) from Definition 8.6.5.

Solution. Properties (o2) and (o3) are clear, so let us verify property (o1). It will suffice to
show that if 𝐵 ⊈ 𝐴, then 𝐴 ⊆ 𝐵. Since 𝐵 is not a subset of 𝐴, there exists some 𝑠 ∈ 𝐵 such
that 𝑠 ∉ 𝐴. Let 𝑟 ∈ 𝐴 be given. By Exercise 8.6.2 we must have 𝑟 < 𝑠 and so by (c2) we have
𝑟 ∈ 𝐵. Thus 𝐴 ⊆ 𝐵.

Exercise 8.6.5.

(a) Show that (c1) and (c3) also hold for 𝐴 + 𝐵. Conclude that 𝐴 + 𝐵 is a cut.

(b) Check that addition in 𝐑 is commutative (f1) and associative (f2).

(c) Show that property (o4) holds.

(d) Show that the cut

𝑂 = {𝑝 ∈ 𝐐 : 𝑝 < 0}

successfully plays the role of the additive identity (f3). (Showing 𝐴 + 𝑂 = 𝐴
amounts to proving that these two sets are the same. The standard way to prove
such a thing is to show two inclusions: 𝐴 + 𝑂 ⊆ 𝐴 and 𝐴 ⊆ 𝐴 + 𝑂.)

Solution.

(a) Since 𝐴 and 𝐵 are non-empty, 𝐴 + 𝐵 must also be non-empty. Since neither 𝐴 nor 𝐵
contains every rational number, there exist rationals 𝑟 ∉ 𝐴 and 𝑠 ∉ 𝐵. It follows from
Exercise 8.6.2 that 𝑎 + 𝑏 < 𝑟 + 𝑠 for every 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, so that 𝑟 + 𝑠 ∉ 𝐴 + 𝐵.
Thus 𝐴 + 𝐵 ≠ 𝐐 and we have now shown that 𝐴 + 𝐵 satisfies (c1).

Let 𝑎 + 𝑏 ∈ 𝐴 + 𝐵 be given. By (c3), there exist rationals 𝑟 ∈ 𝐴 and 𝑠 ∈ 𝐵 such that 
𝑎 < 𝑟 and 𝑏 < 𝑠. It follows that 𝑎 + 𝑏 < 𝑟 + 𝑠 and 𝑟 + 𝑠 ∈ 𝐴 + 𝐵. Thus 𝐴 + 𝐵 satisfies
(c3).

(b) Commutativity and associativity of addition in 𝐑 follow immediately from commuta-
tivity and associativity of addition in 𝐐.

(c) Let 𝐴, 𝐵, and 𝐶 be cuts such that 𝐵 ⊆ 𝐶. If 𝑎 + 𝑏 ∈ 𝐴 + 𝐵, then 𝑎 + 𝑏 ∈ 𝐴 + 𝐶 also
since 𝐵 ⊆ 𝐶. Thus 𝐴 + 𝐵 ⊆ 𝐴 + 𝐶.

(d) Let 𝑎 + 𝑝 ∈ 𝐴 + 𝑂 be given. Then 𝑝 < 0, so 𝑎 + 𝑝 < 𝑎 and it follows from (c2) that
𝑎 + 𝑝 ∈ 𝐴 thus 𝐴 + 𝑂 ⊆ 𝐴.

Now let 𝑎 ∈ 𝐴 be given. By (c3) there exists some 𝑏 ∈ 𝐴 such that 𝑎 < 𝑏. Notice that
𝑎 = 𝑏 + (𝑎 − 𝑏) ∈ 𝐴 + 𝑂, since 𝑎 − 𝑏 < 0. It follows that 𝐴 ⊆ 𝐴 + 𝑂 and we may con-
clude that 𝐴 + 𝑂 = 𝐴.
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Exercise 8.6.6.

(a) Prove that −𝐴 defines a cut.

(b) What goes wrong if we set −𝐴 = {𝑟 ∈ 𝐐 : −𝑟 ∉ 𝐴}?

(c) If 𝑎 ∈ 𝐴 and 𝑟 ∈ −𝐴, show 𝑎 + 𝑟 ∈ 𝑂. This shows 𝐴 + (−𝐴) ⊆ 𝑂. Now, finish the
proof of property (f4) for addition in Definition 8.6.4.

Solution.

(a) Since 𝐴 ≠ 𝐐, there exists a 𝑡 ∉ 𝐴. Then −𝑡 − 1 ∈ −𝐴, since 𝑡 < −(𝑡 − 1) = 𝑡 + 1. Thus
−𝐴 is non-empty. Since 𝐴 is non-empty, there exists some 𝑟 ∈ 𝐴. Then −𝑟 ∉ −𝐴, since
if 𝑡 ∉ 𝐴 then 𝑡 > −(−𝑟) = 𝑟 by Exercise 8.6.2. Thus −𝐴 ≠ 𝐐 and we see that −𝐴 sat-
isfies (c1).

Suppose that 𝑟 ∈ −𝐴, so that there is some 𝑡 ∉ 𝐴 such that 𝑡 < −𝑟, and suppose that
𝑠 < 𝑟. Then 𝑡 < −𝑟 < −𝑠, demonstrating that 𝑠 ∈ −𝐴 also. Thus −𝐴 satisfies (c2).

Suppose that 𝑟 ∈ −𝐴, so that there is some 𝑡 ∉ 𝐴 such that 𝑡 < −𝑟. Define 𝑠 = 𝑟 − 𝑟+𝑡
2

and notice that 𝑟 < 𝑠 since 0 < −𝑟 − 𝑡. Furthermore, 𝑠 ∈ −𝐴 since

𝑡 ∉ 𝐴 and 𝑡 <
𝑡 − 𝑟

2
= −𝑠.

Thus −𝐴 satisfies (c3) and we may conclude that −𝐴 is a cut.

(b) This does not necessarily define a cut. For example, let 𝐶2 be the cut {𝑟 ∈ 𝐐 : 𝑟 < 2}.
Then using this definition, we find that −𝐶2 = {𝑟 ∈ 𝐐 : 𝑟 ≤ −2}, which fails property
(c3).

(c) There exists a 𝑡 ∉ 𝐴 such that 𝑡 < −𝑟. By Exercise 8.6.2 it must be the case that
𝑎 < 𝑡 < −𝑟 and thus 𝑎 + 𝑟 < 0, i.e. 𝑎 + 𝑟 ∈ 𝑂. Thus 𝐴 + (−𝐴) ⊆ 𝑂.

For the reverse inclusion, let 𝑝 < 0 be a given rational number in 𝑂. We claim that
there must exist some 𝑟 ∈ 𝐴 such that 𝑟 − 𝑝

2 ∉ 𝐴, and we will prove this by contradic-
tion. Suppose that 𝑟 − 𝑝

2 ∈ 𝐴 for all 𝑟 ∈ 𝐴. Since 𝐴 is a cut, there is some 𝑟0 ∈ 𝐴. An
induction argument shows that 𝑟0 − 𝑛𝑝

2 ∈ 𝐴 for all 𝑛 ∈ 𝐍. Let 𝑞 ∈ 𝐐 be given and use
the Archimedean property of 𝐐 to obtain an 𝑛 ∈ 𝐍 such that 𝑟0 − 𝑛𝑝

2 > 𝑞; it follows
from (c2) that 𝑞 ∈ 𝐴. The conclusion is that 𝐴 = 𝐐, contradicting (c1).

Thus there is some 𝑟 ∈ 𝐴 such that 𝑟 − 𝑝
2 ∉ 𝐴. Since 𝑟 − 𝑝

2 < 𝑟 − 𝑝, it follows that
𝑝 − 𝑟 ∈ −𝐴. Then 𝑝 = 𝑟 + (𝑝 − 𝑟) ∈ 𝐴 + (−𝐴), demonstrating that 𝑂 ⊆ 𝐴 + (−𝐴). We
may conclude that 𝐴 + (−𝐴) = 𝑂.
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Exercise 8.6.7.

(a) Show that 𝐴𝐵 is a cut and that property (o5) holds.

(b) Propose a good candidate for the multiplicative identity (1) on 𝐑 and show that
this works for all cuts 𝐴 ≥ 𝑂.

(c) Show the distributive property (f5) holds for non-negative cuts.

Solution.

(a) It is clear that 𝐴𝐵 is non-empty. If either 𝐴 = 𝑂 or 𝐵 = 𝑂, then it is staightforward
to verify that 𝐴𝐵 = 𝑂 ≠ 𝐐. Suppose that 𝐴 > 𝑂 and 𝐵 > 𝑂. There exist rationals
𝑟 ∉ 𝐴 and 𝑠 ∉ 𝐵; clearly, 𝑟, 𝑠 > 0. If 𝑞 ∈ 𝐴𝐵, then either 𝑞 < 0 or 𝑞 = 𝑎𝑏 for 𝑎 ∈ 𝐴,
𝑏 ∈ 𝐵 and 𝑎, 𝑏 ≥ 0. By Exercise 8.6.2 we must have 𝑎 < 𝑟 and 𝑏 < 𝑠, so that 𝑎𝑏 < 𝑟𝑠.
In either case, we have 𝑞 < 𝑟𝑠 and thus 𝑟𝑠 ∉ 𝐴𝐵, demonstrating that 𝐴𝐵 ≠ 𝐐. Thus 
𝐴𝐵 satisfies (c1).

Suppose 𝑟 ∈ 𝐴𝐵 and 𝑞 < 𝑟. If 𝑞 < 0 then 𝑞 ∈ 𝐴𝐵, so suppose that 𝑞 ≥ 0, which implies
that 𝑟 > 0. We must then have 𝑟 = 𝑎𝑏 for some 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 with 𝑎, 𝑏 > 0. Notice that
𝑞
𝑏 < 𝑎; (c2) then implies that 𝑞

𝑏 ∈ 𝐴 and hence 𝑞 = 𝑞
𝑏 ⋅ 𝑏 ∈ 𝐴𝐵. Thus 𝐴𝐵 satisfies (c2).

If 𝐴 = 𝑂 or 𝐵 = 𝑂 then 𝐴𝐵 = 𝑂, which has no maximum element. Suppose that 𝐴 > 𝑂
and 𝐵 > 𝑂 and let 𝑟 ∈ 𝐴𝐵 be given. If 𝑟 ≤ 0 then let 𝑞 be any positive rational in
𝐴𝐵. If 𝑟 > 0 then 𝑟 = 𝑎𝑏 for some 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 with 𝑎, 𝑏 > 0. By (c3) there exist ratio-
nals 𝑠 ∈ 𝐴, 𝑡 ∈ 𝐵 such that 𝑎 < 𝑠 and 𝑏 < 𝑡. Let 𝑞 = 𝑠𝑡 and notice that 𝑞 ∈ 𝐴𝐵 and
𝑟 = 𝑎𝑏 < 𝑠𝑡 = 𝑞. In either case, there exists a 𝑞 ∈ 𝐴𝐵 with 𝑟 < 𝑞. Thus 𝐴𝐵 satisfies (c3)
and we may conclude that 𝐴𝐵 is a cut.

Property (o5) is clear from the definition of 𝐴𝐵.

(b) Define 𝐼 = {𝑝 ∈ 𝐐 : 𝑝 < 1} and let 𝐴 ≥ 𝑂 be given. We claim that 𝐴𝐼 = 𝐴. Suppose
that 𝑟 ∈ 𝐴𝐼 . If 𝑟 < 0 then 𝑟 ∈ 𝐴, so suppose that 𝑟 ≥ 0. Thus 𝑟 = 𝑎𝑏 for some 𝑎 ∈ 𝐴
such that 𝑎 ≥ 0 and some 0 ≤ 𝑏 < 1. It follows that 𝑎𝑏 < 𝑎 and so by (c2) we have
𝑟 = 𝑎𝑏 ∈ 𝐴. Thus 𝐴𝐼 ⊆ 𝐴.

Now suppose that 𝑎 ∈ 𝐴. If 𝑎 ≤ 0 then (c2) implies that 2𝑎 ∈ 𝐴 and thus
𝑎 = (2𝑎) ⋅ 1

2 ∈ 𝐴𝐼 . If 𝑎 > 0 then (c3) implies that there is some 𝑟 ∈ 𝐴 with 𝑎 < 𝑟. Thus
𝑎
𝑟 ∈ 𝐼 and we see that 𝑎 = 𝑟 ⋅ 𝑎

𝑟 ∈ 𝐴𝐼 . Hence 𝐴 ⊆ 𝐴𝐼 and we may conclude that 𝐴𝐼 = 𝐴.

(c) Let 𝐴, 𝐵, 𝐶 ≥ 𝑂 be cuts. If 𝐴𝐵𝐶 = 𝑂 then the equality 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶
is clear, so suppose that 𝐴, 𝐵, 𝐶 > 𝑂 and suppose that 𝑞 ∈ 𝐴(𝐵 + 𝐶). If 𝑞 < 0
then 𝑞 = 𝑞

2 + 𝑞
2 ∈ 𝐴𝐵 + 𝐴𝐶. Suppose that 𝑞 ≥ 0. Then 𝑞 = 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐, where

𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶 and 𝑎, 𝑏 + 𝑐 ≥ 0. There are three cases: 𝑏, 𝑐 ≥ 0, 𝑏 ≥ 0 and 𝑐 < 0,
or 𝑏 < 0 and 𝑐 ≥ 0. In any of these cases it is straightforward to verify that
𝑎𝑏 + 𝑎𝑐 ∈ 𝐴𝐵 + 𝐴𝐶. Thus 𝐴(𝐵 + 𝐶) ⊆ 𝐴𝐵 + 𝐴𝐶.
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Now suppose that 𝑝 + 𝑞 ∈ 𝐴𝐵 + 𝐴𝐶. If 𝑝 + 𝑞 < 0 then 𝑝 + 𝑞 ∈ 𝐴(𝐵 + 𝐶), so sup-
pose that 𝑝 + 𝑞 ≥ 0. If 𝑝, 𝑞 ≥ 0 then 𝑝 = 𝑎1𝑏 and 𝑞 = 𝑎2𝑐 for some 𝑎1, 𝑎2 ∈ 𝐴, 𝑏 ∈ 𝐵,
and 𝑐 ∈ 𝐶 such that 𝑎1, 𝑎2, 𝑏, 𝑐 ≥ 0. Let 𝑎 = max{𝑎1, 𝑎2} and notice that
𝑎(𝑏 + 𝑐) ∈ 𝐴(𝐵 + 𝐶). Furthermore, 𝑝 + 𝑞 = 𝑎1𝑏 + 𝑎2𝑐 ≤ 𝑎𝑏 + 𝑎𝑐 = 𝑎(𝑏 + 𝑐). It follows
from (c2) that 𝑝 + 𝑞 ∈ 𝐴(𝐵 + 𝐶).

Next, suppose that 𝑝 < 0 and 𝑞 ≥ 0, so that 𝑞 = 𝑎𝑐 for some 𝑎 ∈ 𝐴, 𝑐 ∈ 𝐶 with 𝑎, 𝑐 ≥ 0.
Let 𝑏 ∈ 𝐵 be such that 𝑏 ≥ 0; such a 𝑏 exists since 𝐵 > 𝑂. Now notice that

𝑝 + 𝑞 = 𝑝 + 𝑎𝑐 < 𝑎𝑐 ≤ 𝑎(𝑏 + 𝑐) ∈ 𝐴(𝐵 + 𝐶).

It follows from (c2) that 𝑝 + 𝑞 ∈ 𝐴(𝐵 + 𝐶). The case where 𝑝 ≥ 0 and 𝑞 < 0
is handled similarly. Thus 𝐴𝐵 + 𝐴𝐶 ⊆ 𝐴(𝐵 + 𝐶) and we may conclude that
𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶.

Exercise 8.6.8. Let 𝒜 ⊆ 𝐑 be nonempty and bounded above, and let 𝑆 be the union
of all 𝐴 ∈ 𝒜.

(a) First, prove that 𝑆 ∈ 𝐑 by showing that it is a cut.

(b) Now, show that 𝑆 is the least upper bound for 𝒜.

Solution.

(a) Since 𝒜 is non-empty it contains some cut 𝐴, so that 𝐴 ⊆ 𝑆. It follows that 𝑆 is non-
empty as 𝐴 is non-empty. Since 𝒜 is bounded above, there exists some cut 𝐵 such that
𝐴 ⊆ 𝐵 for all 𝐴 ∈ 𝒜. It follows that 𝑆 ⊆ 𝐵 and hence that 𝑆 ≠ 𝐐 since 𝐵 ≠ 𝐐. Thus
𝑆 satisfies (c1).

Suppose 𝑟 ∈ 𝑆, so that 𝑟 ∈ 𝐴 for some 𝐴 ∈ 𝒜, and suppose 𝑞 < 𝑟. Since 𝐴 is a cut we
must have 𝑞 ∈ 𝐴, which gives 𝑞 ∈ 𝑆. Thus 𝑆 satisfies (c2).

Suppose 𝑟 ∈ 𝑆, so that 𝑟 ∈ 𝐴 for some 𝐴 ∈ 𝒜. Since 𝐴 is a cut there exists some 𝑞 ∈ 𝐴
such that 𝑟 < 𝑞; note that 𝑞 ∈ 𝑆 also. Thus 𝑆 satisfies (c3). We may conclude that 𝑆 is
a cut.

(b) It is clear that 𝑆 is an upper bound for 𝒜. If 𝐵 is any upper bound for 𝒜 then 𝐵
contains every 𝐴 ∈ 𝒜 and hence must contain the union of all 𝐴 ∈ 𝒜, i.e. 𝑆 ⊆ 𝐵. We
may conclude that 𝑆 is a cut.
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Exercise 8.6.9. Consider the collection of so-called “rational” cuts of the form

𝐶𝑟 = {𝑡 ∈ 𝐐 : 𝑡 < 𝑟}

where 𝑟 ∈ 𝐐. (See Exercise 8.6.1.)

(a) Show that 𝐶𝑟 + 𝐶𝑠 = 𝐶𝑟+𝑠 for all 𝑟, 𝑠 ∈ 𝐐., Verify 𝐶𝑟𝐶𝑠 = 𝐶𝑟𝑠 for the case when 
𝑟, 𝑠 ≥ 0.

(b) Show that 𝐶𝑟 ≤ 𝐶𝑠 if and only if 𝑟 ≤ 𝑠 in 𝐐.

Solution.

(a) Let 𝑟, 𝑠 ∈ 𝐐 be given and suppose 𝑎 + 𝑏 ∈ 𝐶𝑟 + 𝐶𝑠, i.e. 𝑎 < 𝑟 and 𝑏 < 𝑠. It follows that
𝑎 + 𝑏 < 𝑟 + 𝑠 and hence that 𝑎 + 𝑏 ∈ 𝐶𝑟+𝑠. Thus 𝐶𝑟 + 𝐶𝑠 ⊆ 𝐶𝑟+𝑠. Now suppose that
𝑡 ∈ 𝐶𝑟+𝑠, so that 𝑡 < 𝑟 + 𝑠. Choose a positive integer 𝑛 ∈ 𝐍 such that 𝑡 + 1

𝑛 < 𝑟 + 𝑠
and note that:

• 𝑠 − 1
𝑛 < 𝑠, so that 𝑠 − 1

𝑛 ∈ 𝐶𝑠;

• 𝑡 + 1
𝑛 − 𝑠 < 𝑟, so that 𝑡 + 1

𝑛 − 𝑠 ∈ 𝐶𝑟;

• 𝑡 = (𝑡 + 1
𝑛 − 𝑠) + (𝑠 − 1

𝑛) ∈ 𝐶𝑟 + 𝐶𝑠.

Thus 𝐶𝑟+𝑠 ⊆ 𝐶𝑟 + 𝐶𝑠 and we may conclude that 𝐶𝑟 + 𝐶𝑠 = 𝐶𝑟+𝑠.

It is clear that 𝐶𝑟𝐶𝑠 = 𝐶𝑟𝑠 if 𝑟𝑠 = 0, so suppose that 𝑟, 𝑠 > 0 and let 𝑞 ∈ 𝐶𝑟𝐶𝑠 be given.
If 𝑞 ≤ 0 then 𝑞 < 𝑟𝑠, i.e. 𝑞 ∈ 𝐶𝑟𝑠. If 𝑞 > 0 then 𝑞 = 𝑎𝑏 for some 0 < 𝑎 < 𝑟 and 0 < 𝑏 < 𝑐.
It follows that 0 < 𝑎𝑏 < 𝑟𝑠 and thus 𝑞 = 𝑎𝑏 ∈ 𝐶𝑟𝑠. Hence 𝐶𝑟𝐶𝑠 ⊆ 𝐶𝑟𝑠.

Now let 𝑞 ∈ 𝐶𝑟𝑠 be given. If 𝑞 ≤ 0 then certainly 𝑞 ∈ 𝐶𝑟𝐶𝑠 so suppose that 𝑞 > 0 and
define 𝑝 = 1

2(𝑞
𝑠 + 𝑟). Notice that:

• 0 < 𝑞
𝑠 < 𝑝 < 𝑟, so that 𝑝 ∈ 𝐶𝑟;

• 0 < 𝑞
𝑝 < 𝑠, so that 𝑞

𝑝 ∈ 𝐶𝑠;

• 𝑞 = 𝑝 ⋅ 𝑞
𝑝 ∈ 𝐶𝑟𝐶𝑠.

Thus 𝐶𝑟𝑠 ⊆ 𝐶𝑟𝐶𝑠 and we may conclude that 𝐶𝑟𝐶𝑠 = 𝐶𝑟𝑠.

(b) If 𝑟 ≤ 𝑠 then it is clear that 𝐶𝑟 ⊆ 𝐶𝑠. If 𝑠 < 𝑟 then it is again clear that 𝐶𝑠 ⊆ 𝐶𝑟. Fur-
thermore, notice that 𝐶𝑠 ≠ 𝐶𝑟 since 𝑠+𝑟

2  belongs to 𝐶𝑟 but not to 𝐶𝑠. Thus 𝐶𝑠 ⊊ 𝐶𝑟.
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