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Chapter 1. Vector Spaces

1.A. 𝐑𝑛 and 𝐂𝑛

Exercise 1.A.1. Show that 𝛼 + 𝛽 = 𝛽 + 𝛼 for all 𝛼, 𝛽 ∈ 𝐂.

Solution. If 𝛼 = 𝑥 + 𝑦𝑖 and 𝛽 = 𝑢 + 𝑣𝑖, then

𝛼 + 𝛽 = (𝑥 + 𝑢) + (𝑦 + 𝑣)𝑖 = (𝑢 + 𝑥) + (𝑣 + 𝑦)𝑖 = 𝛽 + 𝛼,

where we have used the commutativity of addition in 𝐑.

Exercise 1.A.2. Show that (𝛼 + 𝛽) + 𝜆 = 𝛼 + (𝛽 + 𝜆) for all 𝛼, 𝛽 ∈ 𝐂.

Solution. If 𝛼 = 𝑥 + 𝑦𝑖, 𝛽 = 𝑢 + 𝑣𝑖, and 𝜆 = 𝑠 + 𝑡𝑖, then

(𝛼 + 𝛽) + 𝜆 = ((𝑥 + 𝑢) + (𝑦 + 𝑣))𝑖 + 𝜆 = ((𝑥 + 𝑢) + 𝑠) + ((𝑦 + 𝑣) + 𝑡)𝑖

= (𝑥 + (𝑢 + 𝑠)) + (𝑦 + (𝑣 + 𝑡))𝑖 = 𝛼 + ((𝑢 + 𝑠) + (𝑣 + 𝑡)𝑖) = 𝛼 + (𝛽 + 𝜆),

where we have used the associativity of addition in 𝐑.

Exercise 1.A.3. Show that (𝛼𝛽)𝜆 = 𝛼(𝛽𝜆) for all 𝛼, 𝛽, 𝜆 ∈ 𝐂.

Solution. If 𝛼 = 𝑥 + 𝑦𝑖, 𝛽 = 𝑢 + 𝑣𝑖, and 𝜆 = 𝑠 + 𝑡𝑖, then

(𝛼𝛽)𝜆 = [(𝑥𝑢 − 𝑦𝑣) + (𝑥𝑣 + 𝑦𝑢)𝑖]𝜆

= [(𝑥𝑢 − 𝑦𝑣)𝑠 − (𝑥𝑣 + 𝑦𝑢)𝑡] + [(𝑥𝑢 − 𝑦𝑣)𝑡 + (𝑥𝑣 + 𝑦𝑢)𝑠]𝑖

= [(𝑥𝑢)𝑠 − (𝑦𝑣)𝑠 − (𝑥𝑣)𝑡 − (𝑦𝑢)𝑡] + [(𝑥𝑢)𝑡 − (𝑦𝑣)𝑡 + (𝑥𝑣)𝑠 + (𝑦𝑢)𝑠]𝑖

= [𝑥(𝑢𝑠) − 𝑥(𝑣𝑡) − 𝑦(𝑢𝑡) − 𝑦(𝑣𝑠)] + [𝑥(𝑢𝑡) + 𝑥(𝑣𝑠) + 𝑦(𝑢𝑠) − 𝑦(𝑣𝑡)]𝑖

= [𝑥(𝑢𝑠 − 𝑣𝑡) − 𝑦(𝑢𝑡 + 𝑣𝑠)] + [𝑥(𝑢𝑡 + 𝑣𝑠) + 𝑦(𝑢𝑠 − 𝑣𝑡)]𝑖

= 𝛼[(𝑢𝑠 − 𝑣𝑡) + (𝑢𝑡 + 𝑣𝑠)𝑖]

= 𝛼(𝛽𝜆),

where we have used several algebraic properties of 𝐑.

Exercise 1.A.4. Show that 𝜆(𝛼 + 𝛽) = 𝜆𝛼 + 𝜆𝛽 for all 𝜆, 𝛼, 𝛽 ∈ 𝐂.

Solution. If 𝛼 = 𝑥 + 𝑦𝑖, 𝛽 = 𝑢 + 𝑣𝑖, and 𝜆 = 𝑠 + 𝑡𝑖, then
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𝜆(𝛼 + 𝛽) = [𝑠(𝑥 + 𝑢) − 𝑡(𝑦 + 𝑣)] + [𝑠(𝑦 + 𝑣) + 𝑡(𝑥 + 𝑢)𝑖]

= (𝑠𝑥 + 𝑠𝑢 − 𝑡𝑦 − 𝑡𝑣) + (𝑠𝑦 + 𝑠𝑣 + 𝑡𝑥 + 𝑡𝑢)𝑖

= [(𝑠𝑥 − 𝑡𝑦) + (𝑠𝑦 + 𝑡𝑥)𝑖] + [(𝑠𝑢 − 𝑡𝑣) + (𝑠𝑣 + 𝑡𝑢)𝑖]

= 𝜆𝛼 + 𝜆𝛽,

where we have used distributivity in 𝐑.

Exercise 1.A.5. Show that for every 𝛼 ∈ 𝐂, there exists a unique 𝛽 ∈ 𝐂 such that 
𝛼 + 𝛽 = 0.

Solution. Suppose that 𝛼 = 𝑥 + 𝑦𝑖. Let 𝛽 = −𝑥 − 𝑦𝑖 and observe that

𝛼 + 𝛽 = (𝑥 − 𝑥) + (𝑦 − 𝑦)𝑖 = 0 + 0𝑖 = 0.

To see that 𝛽 is unique, suppose that 𝛽′ also satisfies 𝛼 + 𝛽′ = 0 and notice that

𝛽 = 𝛽 = 0 = 𝛽 + (𝛼 + 𝛽′) = (𝛼 + 𝛽) + 𝛽′ = 0 + 𝛽′ = 𝛽′,

where we have used the associativity of addition in 𝐂 (Exercise 1.A.2) and the commutativity
of addition in 𝐂 (Exercise 1.A.1).

Exercise 1.A.6. Show that for every 𝛼 ∈ 𝐂 with 𝛼 ≠ 0, there exists a unique 𝛽 ∈ 𝐂
such that 𝛼𝛽 = 1.

Solution. Suppose that 𝛼 = 𝑥 + 𝑦𝑖. Since 𝛼 ≠ 0, it must be the case that 𝑥 and 𝑦 are not
both zero, so that 𝑥2 + 𝑦2 ≠ 0. Let 𝛽 = 𝑥

𝑥2+𝑦2 − 𝑦
𝑥2+𝑦2 𝑖 and observe that

𝛼𝛽 = (𝑥 + 𝑦𝑖)(
𝑥

𝑥2 + 𝑦2 −
𝑦

𝑥2 + 𝑦2 𝑖) =
𝑥2 + 𝑦2

𝑥2 + 𝑦2 +
𝑥𝑦 − 𝑥𝑦
𝑥2 + 𝑦2 𝑖 = 1 + 0𝑖 = 1.

To see that 𝛽 is unique, suppose 𝛽′ also satisfies 𝛼𝛽′ = 1 and notice that

𝛽 = 𝛽1 = 𝛽(𝛼𝛽′) = (𝛼𝛽)𝛽′ = 1𝛽′ = 𝛽′,

where we have used the associativity of multiplication in 𝐂 (Exercise 1.A.3) and the com-
mutativity of multiplication in 𝐂 (1.4).

Exercise 1.A.7. Show that

−1 +
√

3𝑖
2

is a cube root of 1 (meaning that its cube equals 1).

Solution. Let 𝑧 = −1+
√

3𝑖
2 , so that 2𝑧 = −1 +

√
3𝑖. Observe that
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(2𝑧)2 = 4𝑧2 = (−1 +
√

3𝑖)
2

= 1 − 2
√

3𝑖 − 3 = −2 − 2
√

3𝑖

⇒ (2𝑧)3 = (4𝑧2)(2𝑧) = (−2 − 2
√

3𝑖)(−1 +
√

3𝑖) = 2 − 2
√

3𝑖 + 2
√

3𝑖 + 6 = 8,

i.e. 8𝑧3 = 8. It follows that 𝑧3 = 1.

Real

Imaginary

−1 1

−𝑖

𝑖𝑧

𝑧2

𝑧3

Exercise 1.A.8. Find two distinct square roots of 𝑖.

Solution. Let 𝑧1 = 1+𝑖√
2
 and 𝑧2 = −𝑧1 (𝑧1 and 𝑧2 are distinct since 𝑧1 ≠ 0) and observe that

2𝑧2
1 = (1 + 𝑖)2 = 2𝑖 ⇒ 𝑧2

1 = 𝑖,

i.e. 𝑧1 is a square root of 𝑖. Furthermore, 𝑧2
2 = (−𝑧1)

2 = 𝑧2
1 = 𝑖, so that 𝑧2 is a square root

of 𝑖 also.

Real

Imaginary

−1 1

−𝑖

𝑖
𝑧1

𝑧2

𝑧2
1 = 𝑧2

2
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Exercise 1.A.9. Find 𝑥 ∈ 𝐑4 such that

(4, −3, 1, 7) + 2𝑥 = (5, 9, −6, 8).

Solution. The unique solution is 𝑥 = (1
2 , 6, −7

2 , 1
2).

Exercise 1.A.10. Explain why there does not exist 𝜆 ∈ 𝐂 such that

𝜆(2 − 3𝑖, 5 + 4𝑖, −6 + 7𝑖) = (12 − 5𝑖, 7 + 22𝑖, −32 − 9𝑖).

Solution. If there was such a 𝜆, then

𝜆(2 − 3𝑖) = 12 − 5𝑖 ⇒ 𝜆 =
12 − 5𝑖
2 − 3𝑖

= 3 + 2𝑖.

However,

(3 + 2𝑖)(−6 + 7𝑖) = −32 + 9𝑖 ≠ −32 − 9𝑖.

Exercise 1.A.11. Show that (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝐅𝑛.

Solution. If 𝑥 = (𝑥1, …, 𝑥𝑛), 𝑦 = (𝑦1, …, 𝑦𝑛), and 𝑧 = (𝑧1, …, 𝑧𝑛), then

(𝑥 + 𝑦) + 𝑧 = (𝑥1 + 𝑦1, …, 𝑥𝑛 + 𝑦𝑛) + 𝑧 = ((𝑥1 + 𝑦1) + 𝑧1, …, (𝑥𝑛 + 𝑦𝑛) + 𝑧𝑛)

= (𝑥1 + (𝑦1 + 𝑧1), …, 𝑥𝑛 + (𝑦𝑛 + 𝑧𝑛)) = 𝑥 + (𝑦1 + 𝑧1, …, 𝑦𝑛 + 𝑧𝑛) = 𝑥 + (𝑦 + 𝑧),

where we have used the associativity of addition in 𝐅 (we proved this for 𝐂 in Exercise 1.A.2).

Exercise 1.A.12. Show that (𝑎𝑏)𝑥 = 𝑎(𝑏𝑥) for all 𝑥 ∈ 𝐅𝑛 and all 𝑎, 𝑏 ∈ 𝐅.

Solution. If 𝑥 = (𝑥1, …, 𝑥𝑛), then

(𝑎𝑏)𝑥 = ((𝑎𝑏)𝑥1, …, (𝑎𝑏)𝑥𝑛) = (𝑎(𝑏𝑥1), …, 𝑎(𝑏𝑥𝑛)) = 𝑎(𝑏𝑥1, …, 𝑏𝑥𝑛) = 𝑎(𝑏𝑥),

where we have used the associativity of multiplication in 𝐅 (we proved this for 𝐂 in Exercise
1.A.3).

Exercise 1.A.13. Show that 1𝑥 = 𝑥 for all 𝑥 ∈ 𝐅𝑛.

Solution. If 𝑥 = (𝑥1, …, 𝑥𝑛), then

1𝑥 = (1𝑥1, …, 1𝑥𝑛) = (𝑥1, …, 𝑥𝑛) = 𝑥,

where we have used that 1𝑥𝑗 = 𝑥𝑗 for any 𝑥𝑗 ∈ 𝐅.

Exercise 1.A.14. Show that 𝜆(𝑥 + 𝑦) = 𝜆𝑥 + 𝜆𝑦 for all 𝜆 ∈ 𝐅 and all 𝑥, 𝑦 ∈ 𝐅𝑛.
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Solution. If 𝑥 = (𝑥1, …, 𝑥𝑛) and 𝑦 = (𝑦1, …, 𝑦𝑛), then

𝜆(𝑥 + 𝑦) = 𝜆(𝑥1 + 𝑦1, …, 𝑥𝑛 + 𝑦𝑛)

= (𝜆(𝑥1 + 𝑦1), …, 𝜆(𝑥𝑛 + 𝑦𝑛))

= (𝜆𝑥1 + 𝜆𝑦1, …, 𝜆𝑥𝑛 + 𝜆𝑦𝑛)

= (𝜆𝑥1, …, 𝜆𝑥𝑛) + (𝜆𝑦1, …, 𝜆𝑦𝑛)

= 𝜆(𝑥1, …, 𝑥𝑛) + 𝜆(𝑦1, …, 𝑦𝑛)

= 𝜆𝑥 + 𝜆𝑦,

where we have used distributivity in 𝐅 (we proved this for 𝐂 in Exercise 1.A.4).

Exercise 1.A.15. Show that (𝑎 + 𝑏)𝑥 = 𝑎𝑥 + 𝑏𝑥 for all 𝑎, 𝑏 ∈ 𝐅 and all 𝑥 ∈ 𝐅𝑛.

Solution. If 𝑥 = (𝑥1, …, 𝑥𝑛), then

(𝑎 + 𝑏)𝑥 = (𝑎 + 𝑏)(𝑥1, …, 𝑥𝑛)

= ((𝑎 + 𝑏)𝑥1, …, (𝑎 + 𝑏)𝑥𝑛)

= (𝑎𝑥1 + 𝑏𝑥1, …, 𝑎𝑥𝑛 + 𝑏𝑥𝑛)

= (𝑎𝑥1, …, 𝑎𝑥𝑛) + (𝑏𝑥1, …, 𝑏𝑥𝑛)

= 𝑎(𝑥1, …, 𝑥𝑛) + 𝑏(𝑥1, …, 𝑥𝑛)

= 𝑎𝑥 + 𝑏𝑥,

where we have used distributivity in 𝐅 (we proved this for 𝐂 in Exercise 1.A.4).
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1.B. Definition of Vector Space

Exercise 1.B.1. Show that −(−𝑣) = 𝑣 for every 𝑣 ∈ 𝑉 .

Solution. Since 𝑣 + (−𝑣) = 0 and the additive inverse of a vector is unique (1.27), it must
be the case that −(−𝑣) = 𝑣.

Exercise 1.B.2. Suppose 𝑎 ∈ 𝐅, 𝑣 ∈ 𝑉 , and 𝑎𝑣 = 0. Prove that 𝑎 = 0 or 𝑣 = 0.

Solution. It will suffice to show that if 𝑎𝑣 = 0 and 𝑎 ≠ 0, so that 𝑎−1 exists, then 𝑣 = 0.
Indeed,

𝑎𝑣 = 0 ⇒ 𝑎−1(𝑎𝑣) = 0 ⇒ (𝑎−1𝑎)𝑣 = 0 ⇒ 1𝑣 = 0 ⇒ 𝑣 = 0.

Exercise 1.B.3. Suppose 𝑣, 𝑤 ∈ 𝑉 . Explain why there exists a unique 𝑥 ∈ 𝑉  such that
𝑣 + 3𝑥 = 𝑤.

Solution. For 𝑣, 𝑤, 𝑥 ∈ 𝑉 , notice that

𝑣 + 3𝑥 = 𝑤 ⇔ 3𝑥 = 𝑤 − 𝑣 ⇔ 𝑥 = 1
3(𝑤 − 𝑣).

Exercise 1.B.4. The empty set is not a vector space. The empty set fails to satisfy
only one of the requirements listed in the definition of a vector space (1.20). Which one?

Solution. The empty set does not contain an additive identity.

Exercise 1.B.5. Show that in the definition of a vector space (1.20), the additive in-
verse condition can be replaced with the condition that

0𝑣 = 0 for all 𝑣 ∈ 𝑉 .

Here the 0 on the left side is the number 0, and the 0 on the right side is the additive
identity of 𝑉 .

The phrase a “condition can be replaced” in a definition means that the collection of
objects satisfying the definition is unchanged if the original condition is replaced with
the new condition.

Solution. If 𝑉  satisfies all of the conditions in 1.20, then as shown in 1.30 we have 0𝑣 = 0
for all 𝑣 ∈ 𝑉 . Suppose that 𝑉  satisfies all of the conditions in 1.20, except we have replaced
the additive inverse condition with the condition that 0𝑣 = 0 for all 𝑣 ∈ 𝑉 . We want to show
that for each 𝑣 ∈ 𝑉 , there exists an element 𝑤 ∈ 𝑉  such that 𝑣 + 𝑤 = 0. Indeed, for 𝑣 ∈ 𝑉 ,
let 𝑤 = (−1)𝑣 and observe that
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𝑣 + 𝑤 = 1𝑣 + (−1)𝑣 = (1 − 1)𝑣 = 0𝑣 = 0.

Exercise 1.B.6. Let ∞ and −∞ denote two distinct objects, neither of which is in 𝐑.
Define an addition and scalar multiplication on 𝐑 ∪ {∞, −∞} as you could guess from
the notation. Specifically, the sum and product of two real numbers is as usual, and for
𝑡 ∈ 𝐑 define

𝑡∞ =

⎩{
⎨
{⎧−∞ if 𝑡 < 0,

0 if 𝑡 = 0,
∞ if 𝑡 > 0,

𝑡(−∞) =

⎩{
⎨
{⎧∞ if 𝑡 < 0,

0 if 𝑡 = 0,
−∞ if 𝑡 > 0,

and

𝑡 + ∞ = ∞ + 𝑡 = ∞ + ∞ = ∞,

𝑡 + (−∞) = (−∞) + 𝑡 = (−∞) + (−∞) = −∞,

∞ + (−∞) = (−∞) + ∞ = 0.

With these operations of addition and scalar multiplication, is 𝐑 ∪ {∞, −∞} a vector
space over 𝐑? Explain.

Solution. This is not a vector space over 𝐑, since addition is not associative:

(1 + ∞) + (−∞) = ∞ + (−∞) = 0 ≠ 1 = 1 + 0 = 1 + (∞ + (−∞)).

Exercise 1.B.7. Suppose 𝑆 is a nonempty set. Let 𝑉 𝑆 denote the set of functions from
𝑆 to 𝑉 . Define a natural addition and scalar multiplication on 𝑉 𝑆, and show that 𝑉 𝑆

is a vector space with these definitions.

Solution. We define addition and scalar multiplication on 𝑉 𝑆 as in 1.24, i.e. for 𝑓, 𝑔 ∈ 𝑉 𝑆

the sum 𝑓 + 𝑔 ∈ 𝑉 𝑆 is the function

𝑓 + 𝑔 : 𝑆 → 𝑉
𝑥 ↦ 𝑓(𝑥) + 𝑔(𝑥);

the addition 𝑓(𝑥) + 𝑔(𝑥) is vector addition in 𝑉 . Similarly, for 𝜆 ∈ 𝐅 and 𝑓 ∈ 𝑉 𝑆, the prod-
uct 𝜆𝑓 ∈ 𝑉 𝑆 is the function

𝜆𝑓 : 𝑆 → 𝑉
𝑥 ↦ 𝜆𝑓(𝑥);

the product 𝜆𝑓(𝑥) is scalar multiplication in 𝑉 . We now show that 𝑉 𝑆 with these definitions
satisfies each condition in definition 1.20.

Commutativity. Let 𝑓, 𝑔 ∈ 𝑉 𝑆 and 𝑥 ∈ 𝑆 be given. Observe that

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) = 𝑔(𝑥) + 𝑓(𝑥) = (𝑔 + 𝑓)(𝑥),
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where we have used the commutativity of addition in 𝑉  for the second equality. It follows
that 𝑓 + 𝑔 = 𝑔 + 𝑓 .

Associativity. Let 𝑓, 𝑔, ℎ ∈ 𝑉 𝑆 and 𝑥 ∈ 𝑆 be given. Observe that

((𝑓 + 𝑔) + ℎ)(𝑥) = (𝑓 + 𝑔)(𝑥) + ℎ(𝑥) = (𝑓(𝑥) + 𝑔(𝑥)) + ℎ(𝑥)

= 𝑓(𝑥) + (𝑔(𝑥) + ℎ(𝑥)) = 𝑓(𝑥) + (𝑔 + ℎ)(𝑥) = (𝑓 + (𝑔 + ℎ))(𝑥),

where we have used the associativity of addition in 𝑉  for the third equality. It follows that
(𝑓 + 𝑔) + ℎ = 𝑓 + (𝑔 + ℎ). Similarly, let 𝑓 ∈ 𝑉 𝑆 and 𝑎, 𝑏 ∈ 𝐅 be given. Observe that, for any
𝑥 ∈ 𝑆,

((𝑎𝑏)𝑓)(𝑥) = (𝑎𝑏)𝑓(𝑥) = 𝑎(𝑏𝑓(𝑥)) = 𝑎((𝑏𝑓)(𝑥)) = (𝑎(𝑏𝑓))(𝑥),

where we have used the associativity of scalar multiplication in 𝑉  for the second equality. It
follows that (𝑎𝑏)𝑓 = 𝑎(𝑏𝑓).

Additive identity. We claim that the additive identity in 𝑉 𝑆 is the function 0 : 𝑆 → 𝑉
given by 0(𝑥) = 0 for any 𝑥 ∈ 𝑆; the 0 on the right-hand side is the additive identity in 𝑉 .
Indeed, for any 𝑓 ∈ 𝑉 𝑆 and 𝑥 ∈ 𝑆 we have

(𝑓 + 0)(𝑥) = 𝑓(𝑥) + 0(𝑥) = 𝑓(𝑥) + 0 = 𝑓(𝑥).

It follows that 𝑓 + 0 = 𝑓 .

Additive inverse. For 𝑓 ∈ 𝑉 𝑆, define 𝑔 : 𝑆 → 𝑉  by 𝑔(𝑥) = −𝑓(𝑥) for 𝑥 ∈ 𝑆, where −𝑓(𝑥)
is the additive inverse in 𝑉  of 𝑓(𝑥). We claim that 𝑔 is the additive inverse of 𝑓 . To see this,
let 𝑥 ∈ 𝑆 be given and observe that

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) = 𝑓(𝑥) + (−𝑓(𝑥)) = 0 = 0(𝑥);

it follows that 𝑓 + 𝑔 = 0.

Multiplicative identity. Let 𝑓 ∈ 𝑉 𝑆 and 𝑥 ∈ 𝑆 be given. Observe that

(1𝑓)(𝑥) = 1𝑓(𝑥) = 𝑓(𝑥),

where we have used that 1𝑣 = 𝑣 for any 𝑣 ∈ 𝑉 . It follows that 1𝑓 = 𝑓 .

Distributive properties. Let 𝑎 ∈ 𝐅 and 𝑓, 𝑔 ∈ 𝑉 𝑆 be given. Observe that, for any 𝑥 ∈ 𝑆,

(𝑎(𝑓 + 𝑔))(𝑥) = 𝑎(𝑓 + 𝑔)(𝑥) = 𝑎((𝑓(𝑥) + 𝑔(𝑥))

= 𝑎𝑓(𝑥) + 𝑎𝑔(𝑥) = (𝑎𝑓)(𝑥) + (𝑎𝑔)(𝑥) = (𝑎𝑓 + 𝑎𝑔)(𝑥),

where we have used the first distributive property in 𝑉  for the third equality. It follows that
𝑎(𝑓 + 𝑔) = 𝑎𝑓 + 𝑎𝑔. Similarly, let 𝑎, 𝑏 ∈ 𝐅 and 𝑓 ∈ 𝑉 𝑆 be given. For any 𝑥 ∈ 𝑆, observe that

((𝑎 + 𝑏)𝑓)(𝑥) = (𝑎 + 𝑏)𝑓(𝑥) = 𝑎𝑓(𝑥) + 𝑏𝑓(𝑥) = (𝑎𝑓)(𝑥) + (𝑏𝑓)(𝑥) = (𝑎𝑓 + 𝑏𝑓)(𝑥),

where we have used the second distributive property in 𝑉  for the second equality. It follows
that (𝑎 + 𝑏)𝑓 = 𝑎𝑓 + 𝑏𝑓 .

We may conclude that 𝑉 𝑆 is a vector space over 𝐅.
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Exercise 1.B.8. Suppose 𝑉  is a real vector space.
• The complexification of 𝑉 , denoted by 𝑉𝐂, equals 𝑉 × 𝑉 . An element of 𝑉𝐂 is an

ordered pair (𝑢, 𝑣), where 𝑢, 𝑣 ∈ 𝑉 , but we write this as 𝑢 + 𝑖𝑣.
• Addition on 𝑉𝐂 is defined by

(𝑢1 + 𝑖𝑣1) + (𝑢2 + 𝑖𝑣2) = (𝑢1 + 𝑢2) + 𝑖(𝑣1 + 𝑣2)

for all 𝑢1, 𝑣1, 𝑢2, 𝑣2 ∈ 𝑉 .
• Complex scalar multiplication on 𝑉𝐂 is defined by

(𝑎 + 𝑏𝑖)(𝑢 + 𝑖𝑣) = (𝑎𝑢 − 𝑏𝑣) + 𝑖(𝑎𝑣 + 𝑏𝑢)

for all 𝑎, 𝑏 ∈ 𝐑 and all 𝑢, 𝑣 ∈ 𝑉 .

Prove that with the definitions of addition and scalar multiplication as above, 𝑉𝐂 is a
complex vector space.

Think of 𝑉  as a subset of 𝑉𝐂 by identifying 𝑢 ∈ 𝑉  with 𝑢 + 𝑖0. The construction of 
𝑉𝐂 from 𝑉  can then be thought of as generalizing the construction of 𝐂𝑛 from 𝐑𝑛.

Solution. We need to verify each condition in definition 1.20. The algebraic manipulations
required to show that commutativity, associativity, and the first distributive property hold
for 𝑉𝐂 are essentially the same algebraic manipulations we performed in Exercise 1.A.1,
Exercise 1.A.2, Exercise 1.A.3, and Exercise 1.A.4, except instead of using the algebraic
properties of 𝐑, we use the algebraic properties of 𝑉  (i.e. the properties listed in 1.20); we
will avoid repeating ourselves and instead verify the remaining conditions.

Additive identity. We claim that the additive identity in 𝑉𝐂 is 0 + 𝑖0, where 0 is the
additive identity in 𝑉 . Indeed, for any 𝑢 + 𝑖𝑣 ∈ 𝑉𝐂 we have

(𝑢 + 𝑖𝑣) + (0 + 𝑖0) = (𝑢 + 0) + 𝑖(𝑣 + 0) = 𝑢 + 𝑖𝑣.

Additive inverse. We claim that the additive inverse of an element 𝑢 + 𝑖𝑣 ∈ 𝑉𝐂 is the
element (−𝑢) + 𝑖(−𝑣), where −𝑢 is the additive inverse of 𝑢 in 𝑉 . Indeed,

(𝑢 + 𝑖𝑣) + ((−𝑢) + 𝑖(−𝑣)) = (𝑢 + (−𝑢)) + 𝑖(𝑣 + (−𝑣)) = 0 + 𝑖0.

Multiplicative identity. For any 𝑢 + 𝑖𝑣 ∈ 𝑉𝐂, we have

(1 + 0𝑖)(𝑢 + 𝑖𝑣) = (1𝑢 − 0𝑣) + 𝑖(1𝑣 + 0𝑢) = 𝑢 + 𝑖𝑣.

Distributive properties. For the second distributive property, let 𝑎 + 𝑏𝑖, 𝑐 + 𝑑𝑖 ∈ 𝐂 and 
𝑢 + 𝑖𝑣 ∈ 𝑉𝐂 be given. Observe that

((𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖))(𝑢 + 𝑖𝑣) = ((𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖)(𝑢 + 𝑖𝑣)

= ((𝑎 + 𝑐)𝑢 − (𝑏 + 𝑑)𝑣) + 𝑖((𝑎 + 𝑐)𝑣 + (𝑏 + 𝑑)𝑢)

= (𝑎𝑢 + 𝑐𝑢 − 𝑏𝑣 − 𝑑𝑣) + 𝑖(𝑎𝑣 + 𝑐𝑣 + 𝑏𝑢 + 𝑑𝑢)
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= ((𝑎𝑢 − 𝑏𝑣) + 𝑖(𝑎𝑣 + 𝑏𝑢)) + ((𝑐𝑢 − 𝑑𝑣) + 𝑖(𝑐𝑣 + 𝑑𝑢))

= (𝑎 + 𝑏𝑖)(𝑢 + 𝑖𝑣) + (𝑐 + 𝑑𝑖)(𝑢 + 𝑖𝑣),

where we have used the second distributive property for 𝑉  for the third equality.
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1.C. Subspaces

Exercise 1.C.1. For each of the following subsets of 𝐅3, determine whether it is a
subspace of 𝐅3.

(a) {(𝑥1, 𝑥2, 𝑥3) ∈ 𝐅3 : 𝑥1 + 2𝑥2 + 3𝑥3 = 0}

(b) {(𝑥1, 𝑥2, 𝑥3) ∈ 𝐅3 : 𝑥1 + 2𝑥2 + 3𝑥3 = 4}

(c) {(𝑥1, 𝑥2, 𝑥3) ∈ 𝐅3 : 𝑥1𝑥2𝑥3 = 0}

(d) {(𝑥1, 𝑥2, 𝑥3) ∈ 𝐅3 : 𝑥1 = 5𝑥3}

Solution. Let 𝑈  denote the set in each part of this question.

(a) This is a subspace of 𝐅3. Certainly the zero vector belongs to 𝑈 . Suppose that
𝑥 = (𝑥1, 𝑥2, 𝑥3), 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝑈  and 𝛼 ∈ 𝐅 and observe that

(𝑥1 + 𝑦1) + 2(𝑥2 + 𝑦2) + 3(𝑥3 + 𝑦3) = (𝑥1 + 2𝑥2 + 3𝑥3) + (𝑦1 + 2𝑦2 + 3𝑦3) = 0 + 0 = 0,

𝛼𝑥1 + 2(𝛼𝑥2) + 3(𝛼𝑥3) = 𝛼(𝑥1 + 2𝑥2 + 3𝑥3) = 𝛼0 = 0.

Thus 𝑥 + 𝑦 and 𝛼𝑥 also belong to 𝑈 . It follows from 1.34 that 𝑈  is a subspace of 𝑉 .

(b) This is not a subspace of 𝐅3 because it does not contain the zero vector.

(c) This is not a subspace of 𝐅3 because it is not closed under addition: (1, 1, 0) and (0, 0, 1)
belong to 𝑈 , but (1, 1, 0) + (0, 0, 1) = (1, 1, 1) does not belong to 𝑈 .

(d) This is a subspace of 𝐅3. Note that 𝑈 = {(𝑥1, 𝑥2, 𝑥3) ∈ 𝐅3 : 𝑥1 − 5𝑥3 = 0}. Certainly
the zero vector belongs to 𝑈 . Suppose that 𝑥 = (𝑥1, 𝑥2, 𝑥3), 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ 𝑈  and
𝛼 ∈ 𝐅 and observe that

(𝑥1 + 𝑦1) − 5(𝑥3 + 𝑦3) = (𝑥1 − 5𝑥3) + (𝑦1 − 5𝑦3) = 0 + 0 = 0,

𝛼𝑥1 − 5(𝛼𝑥3) = 𝛼(𝑥1 − 5𝑥3) = 𝛼0 = 0.

Thus 𝑥 + 𝑦 and 𝛼𝑥 also belong to 𝑈 . It follows from 1.34 that 𝑈  is a subspace of 𝑉 .

Exercise 1.C.2. Verify all assertions about subspaces in Example 1.35.

Solution.

(a) The assertion is that if 𝑏 ∈ 𝐅, then

𝑈 = {(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝐅4 : 𝑥3 = 5𝑥4 + 𝑏} = {(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝐅4 : 𝑥3 − 5𝑥4 = 𝑏}

is a subspace of 𝐅4 if and only if 𝑏 = 0. Indeed, if 𝑏 ≠ 0 then 𝑈  is not a subspace of
𝐅4 because the zero vector does not belong to 𝑈 , and if 𝑏 = 0 then we may argue as in
Exercise 1.C.1 (d) to see that 𝑈  is a subspace of 𝐅4.
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(b) The assertion is that the set of continuous real-valued functions on the interval [0, 1] is
a subspace of 𝐑[0,1], i.e.

𝑈 = {𝑓 : [0, 1] → 𝐑, 𝑓 continuous}

is a subspace of 𝐑[0,1]. Certainly the zero function 𝑥 ↦ 0 on [0, 1] is continuous and
hence belongs to 𝑈 , and it is well-known from elementary real analysis that sums and
constant multiples of continuous functions are again continuous. It follows from 1.34
that 𝑈  is a subspace of 𝐑[0,1].

(c) The assertion is that the set of differentiable real-valued functions on 𝐑 is a subspace
of 𝐑𝐑, i.e.

𝑈 = {𝑓 : 𝐑 → 𝐑, 𝑓 differentiable}

is a subspace of 𝐑𝐑. Certainly the zero function 𝑥 ↦ 0 on 𝐑 is differentiable and hence
belongs to 𝑈 , and it is well-known from elementary real analysis that sums and constant
multiples of differentiable functions are again differentiable. It follows from 1.34 that 
𝑈  is a subspace of 𝐑𝐑.

(d) The assertion is that the set 𝑈  of differentiable real-valued functions 𝑓 on the interval
(0, 3) such that 𝑓 ′(2) = 𝑏 is a subspace of 𝐑(0,3) if and only if 𝑏 = 0. If 𝑏 ≠ 0, then the
zero function 𝑥 ↦ 0 on (0, 3), which has derivative 0 ≠ 𝑏 at 𝑥 = 2, does not belong to 
𝑈  and thus 𝑈  is not a subspace of 𝐑(0,3).

Suppose that 𝑏 = 0 and note that the zero function now belongs to 𝑈 . If 𝑓, 𝑔 ∈ 𝑈  and
𝛼 ∈ 𝐑, then

(𝑓 + 𝑔)′(2) = 𝑓 ′(2) + 𝑔′(2) = 0 + 0 = 0 and (𝛼𝑓)′(2) = 𝛼𝑓 ′(2) = 𝛼0 = 0.

Thus 𝑓 + 𝑔 and 𝛼𝑓 belong to 𝑈 . It follows from 1.34 that 𝑈  is a subspace of 𝐑(0,3).

(e) The assertion is that the set 𝑈  of all sequences of complex numbers with limit 0 is a
subspace of 𝐂∞. Certainly the zero sequence (0, 0, 0, …) has limit 0 and hence belongs
to 𝑈 . Suppose that 𝑥 = (𝑥𝑛)∞

𝑛=1 and 𝑦 = (𝑦𝑛)∞
𝑛=1 belong to 𝑈  and 𝛼 ∈ 𝐂. Using basic

results about limits, observe that

lim
𝑛→∞

(𝑥𝑛 + 𝑦𝑛) = lim
𝑛→∞

𝑥𝑛 + lim
𝑛→∞

𝑦𝑛 = 0 + 0 = 0

and lim
𝑛→∞

(𝛼𝑥𝑛) = 𝛼 lim
𝑛→∞

𝑥𝑛 = 𝛼0 = 0.

Thus 𝑥 + 𝑦 and 𝛼𝑥 belong to 𝑈 . It follows from 1.34 that 𝑈  is a subspace of 𝐂(0,3).

Exercise 1.C.3. Show that the set of differentiable real-valued functions 𝑓 on the in-
terval (−4, 4) such that 𝑓 ′(−1) = 3𝑓(2) is a subspace of 𝐑(−4,4).

Solution. Let 𝑈  be the set in question; it is straightforward to verify that the zero function
belongs to 𝑈 . Suppose that 𝑓, 𝑔 ∈ 𝑈  and 𝛼 ∈ 𝐑. Observe that

(𝑓 + 𝑔)′(−1) = 𝑓 ′(−1) + 𝑔′(−1) = 3𝑓(2) + 3𝑔(2) = 3(𝑓(2) + 𝑔(2)) = 3(𝑓 + 𝑔)(2)
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and (𝛼𝑓)′(−1) = 𝛼𝑓 ′(−1) = 𝛼(3𝑓(2)) = 3(𝛼𝑓(2)) = 3(𝛼𝑓)(2).

Thus 𝑓 + 𝑔 and 𝛼𝑓 belong to 𝑈 . It follows from 1.34 that 𝑈  is a subspace of 𝐑(−4,4).

Exercise 1.C.4. Suppose 𝑏 ∈ 𝐑. Show that the set of continuous real-valued functions
𝑓 on the interval [0, 1] such that ∫1

0
𝑓 = 𝑏 is a subspace of 𝐑[0,1] if and only if 𝑏 = 0.

Solution. Let 𝑈  be the set in question. If 𝑏 ≠ 0 then the zero function 𝑥 ↦ 0 on [0, 1], which
has integral 0 ≠ 𝑏 over [0, 1], does not belong to 𝑈  and thus 𝑈  is not a subspace of 𝐑[0,1].

Suppose that 𝑏 = 0 and note that the zero function now belongs to 𝑈 . If 𝑓, 𝑔 ∈ 𝑈  and 𝛼 ∈ 𝐑,
then using basic properties of integration we have

∫
1

0
(𝑓 + 𝑔) = ∫

1

0
𝑓 + ∫

1

0
𝑔 = 0 + 0 = 0 and ∫

1

0
(𝛼𝑓) = 𝛼 ∫

1

0
𝑓 = 𝛼0 = 0.

Thus 𝑓 + 𝑔 and 𝛼𝑓 belong to 𝑈 . It follows from 1.34 that 𝑈  is a subspace of 𝐑[0,1].

Exercise 1.C.5. Is 𝐑2 a subspace of the complex vector space 𝐂2?

Solution. The question is whether the subset

𝐑2 = {(𝑥, 𝑦) : 𝑥, 𝑦 ∈ 𝐑} ⊆ {(𝑧, 𝑤) : 𝑧, 𝑤 ∈ 𝐂} = 𝐂2

is a subspace, where we are taking complex scalars in 𝐂2. This is not a subspace because it
is not closed under scalar multiplication: (1, 0) ∈ 𝐑2 but 𝑖(1, 0) = (𝑖, 0) ∉ 𝐑2.

Exercise 1.C.6.

(a) Is {(𝑎, 𝑏, 𝑐) ∈ 𝐑3 : 𝑎3 = 𝑏3} a subspace of 𝐑3?

(b) Is {(𝑎, 𝑏, 𝑐) ∈ 𝐂3 : 𝑎3 = 𝑏3} a subspace of 𝐂3?

Solution.

(a) Let 𝑈  be the set in question. For 𝑎, 𝑏 ∈ 𝐑 we have 𝑎3 = 𝑏3 if and only if 𝑎 = 𝑏 and thus
the set 𝑈  can be expressed as

𝑈 = {(𝑎, 𝑎, 𝑐) ∈ 𝐑3 : 𝑎, 𝑐 ∈ 𝐑}.

Certainly (0, 0, 0) ∈ 𝑈 . If (𝑎, 𝑎, 𝑐), (𝑥, 𝑥, 𝑦) ∈ 𝑈  and 𝜆 ∈ 𝐑, then observe that

(𝑎, 𝑎, 𝑐) + (𝑥, 𝑥, 𝑦) = (𝑎 + 𝑥, 𝑎 + 𝑥, 𝑐 + 𝑦) ∈ 𝑈 and 𝜆(𝑎, 𝑎, 𝑐) = (𝜆𝑎, 𝜆𝑎, 𝜆𝑐) ∈ 𝑈.

It follows from 1.34 that 𝑈  is a subspace of 𝐑3.

(b) Let 𝑈  be the set in question. Observe that

(
−1 +

√
3𝑖

2
)

3

= (
−1 −

√
3𝑖

2
)

3

= 1.
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It follows that 𝑢 ≔ (−1+
√

3𝑖
2 , 1, 0) and 𝑣 ≔ (−1−

√
3𝑖

2 , 1, 0) belong to 𝑈 . However,

𝑢 + 𝑣 = (−1, 2, 0) ∉ 𝑈.

Thus 𝑈  is not a subspace of 𝐂3 because it is not closed under addition.

Exercise 1.C.7. Prove or give a counterexample: If 𝑈  is a nonempty subset of 𝐑2 such
that 𝑈  is closed under addition and under taking additive inverses (meaning −𝑢 ∈ 𝑈
whenever 𝑢 ∈ 𝑈), then 𝑈  is a subspace of 𝐑2.

Solution. For a counterexample, consider 𝑈 = {(𝑎, 𝑏) : 𝑎, 𝑏 ∈ 𝐐} ⊆ 𝐑2, which satisfies the
required conditions since the sum of two rational numbers is a rational number and the ad-
ditive inverse of a rational number is a rational number. However, 𝑈  is not a subspace of 𝐑2

because it is not closed under scalar multiplication: (1, 0) ∈ 𝑈  but 
√

2(1, 0) = (
√

2, 0) ∉ 𝑈 .

Exercise 1.C.8. Give an example of a nonempty subset 𝑈  of 𝐑2 such that 𝑈  is closed
under scalar multiplication, but 𝑈  is not a subspace of 𝐑2.

Solution. Let 𝑈  be the union of the 𝑥- and 𝑦-axes, i.e.

𝑈 = {(𝑥, 0) : 𝑥 ∈ 𝐑} ∪ {(0, 𝑦) : 𝑦 ∈ 𝐑}.

It is straightforward to verify that 𝑈  is closed under scalar multiplication. However, 𝑈  is not
a subspace of 𝐑2 because it is not closed under addition: (1, 0) and (0, 1) belong to 𝑈 , but
(1, 0) + (0, 1) = (1, 1) does not.

𝑥

𝑦

0 1

1
(1, 1)

Exercise 1.C.9. A function 𝑓 : 𝐑 → 𝐑 is called periodic if there exists a positive num-
ber 𝑝 such that 𝑓(𝑥) = 𝑓(𝑥 + 𝑝) for all 𝑥 ∈ 𝐑. Is the set of periodic functions from 𝐑
to 𝐑 a subspace of 𝐑𝐑? Explain.

Solution. Consider the periodic functions sin(𝑥) and sin(
√

2𝑥) and let
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𝑓(𝑥) = sin(𝑥) + sin(
√

2𝑥).

We will show that 𝑓 is not periodic.

−1

0

1

−10 −5 0 5 10

sin(𝑥)

−1

0

1

−10 −5 0 5 10

sin(
√

2𝑥)

−2

0

2

−10 −5 0 5 10

sin(𝑥) + sin(
√

2𝑥)

Suppose there was a positive real number 𝑝 such that 𝑓(𝑥) = 𝑓(𝑥 + 𝑝) for all 𝑥 ∈ 𝐑, i.e.

sin(𝑥) + sin(
√

2𝑥) = sin(𝑥 + 𝑝) + sin(
√

2𝑥 +
√

2𝑝) for all 𝑥 ∈ 𝐑. (1)

By differentiating this equation twice, we see that

sin(𝑥) + 2 sin(
√

2𝑥) = sin(𝑥 + 𝑝) + 2 sin(
√

2𝑥 +
√

2𝑝) for all 𝑥 ∈ 𝐑. (2)

Subtracting equation (1) from equation (2) gives us

sin(
√

2𝑥) = sin(
√

2𝑥 +
√

2𝑝) for all 𝑥 ∈ 𝐑, (3)

which together with equation (1) implies that

sin(𝑥) = sin(𝑥 + 𝑝) for all 𝑥 ∈ 𝐑. (4)

By taking 𝑥 = 0 in equation (4) we see that 0 = sin(𝑝), which is the case if and only if 𝑝 = 𝑛𝜋
for some positive integer 𝑛 (𝑝 was assumed to be positive). Substituting this value of 𝑝 and
𝑥 = 0 into equation (3) gives 0 = sin(𝑛

√
2𝜋), which is the case if and only if 𝑛

√
2𝜋 = 𝑚𝜋

for some integer 𝑚, which must be positive since 𝑛 is positive. It follows that 
√

2 = 𝑚
𝑛 , con-

tradicting the irrationality of 
√

2.
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Thus 𝑓 is not periodic and we may conclude that the set of periodic functions from 𝐑 to 𝐑
is not a subspace of 𝐑𝐑 because it is not closed under addition.

Exercise 1.C.10. Suppose 𝑉1 and 𝑉2 are subspaces of 𝑉 . Prove that the intersection 
𝑉1 ∩ 𝑉2 is a subspace of 𝑉 .

Solution. Because 𝑉1 and 𝑉2 are subspaces of 𝑉 , we have 0 ∈ 𝑉1 and 0 ∈ 𝑉2 and thus
0 ∈ 𝑉1 ∩ 𝑉2. Suppose 𝑢, 𝑣 ∈ 𝑉1 ∩ 𝑉2 and 𝜆 ∈ 𝐅. Since 𝑢, 𝑣 ∈ 𝑉1 and 𝑉1 is a subspace of 𝑉 , we
have 𝑢 + 𝑣 ∈ 𝑉1 and 𝜆𝑢 ∈ 𝑉1. Similarly, 𝑢 + 𝑣 ∈ 𝑉2 and 𝜆𝑢 ∈ 𝑉2. Thus 𝑢 + 𝑣 ∈ 𝑉1 ∩ 𝑉2 and 
𝜆𝑢 ∈ 𝑉1 ∩ 𝑉2. We may use 1.34 to conclude that 𝑉1 ∩ 𝑉2 is a subspace of 𝑉 .

Exercise 1.C.11. Prove that the intersection of every collection of subspaces of 𝑉  is a
subspace of 𝑉 .

Solution. Let 𝒰 be an arbitrary collection of subspaces of 𝑉 . We will show that ⋂ 𝒰 is
a subspace of 𝑉 . The zero vector belongs to ⋂ 𝒰 because each 𝑈 ∈ 𝒰 is a subspace of 𝑉
and hence contains the zero vector. If 𝑢, 𝑣 ∈ ⋂ 𝒰, 𝜆 ∈ 𝐅, and 𝑈 ∈ 𝒰, then 𝑢, 𝑣 ∈ 𝑈  and thus
𝑢 + 𝑣 ∈ 𝑈  and 𝜆𝑢 ∈ 𝑈  since 𝑈  is a subspace of 𝑉 . Because 𝑈 ∈ 𝒰 was arbitrary, it follows
that 𝑢 + 𝑣 ∈ ⋂ 𝒰 and 𝜆𝑢 ∈ ⋂ 𝒰. We may use 1.34 to conclude that ⋂ 𝒰 is a subspace of 𝑉 .

Exercise 1.C.12. Prove that the union of two subspaces of 𝑉  is a subspace of 𝑉  if and
only if one of the subspaces is contained in the other.

Solution. Suppose that 𝑈  and 𝑊  are subspaces of 𝑉 . We want to show that 𝑈 ∪ 𝑊  is a
subspace of 𝑉  if and only if 𝑈 ⊆ 𝑊  or 𝑊 ⊆ 𝑈 . If one of 𝑈  or 𝑊  is contained in the other
then either 𝑈 ∪ 𝑊 = 𝑈  or 𝑈 ∪ 𝑊 = 𝑊 ; in either case, 𝑈 ∪ 𝑊  is then a subspace of 𝑉  by
assumption.

For the converse, it will suffice to show that if 𝑈 ∪ 𝑊  is a subspace of 𝑉  and 𝑈 ⊈ 𝑊 , then
𝑊 ⊆ 𝑈 . Since 𝑈 ⊈ 𝑊 , there is some 𝑢 ∈ 𝑈  such that 𝑢 ∉ 𝑊 . Let 𝑤 ∈ 𝑊  be given and note
that, because 𝑈 ∪ 𝑊  is a subspace of 𝑉  and 𝑢, 𝑤 ∈ 𝑈 ∪ 𝑊 , we must have 𝑢 + 𝑤 ∈ 𝑈 ∪ 𝑊 . It
cannot be the case that 𝑢 + 𝑤 ∈ 𝑊 , since then 𝑢 + 𝑤 − 𝑤 = 𝑢 ∈ 𝑊 , so it must be the case
that 𝑢 + 𝑤 ∈ 𝑈 . It follows that 𝑢 + 𝑤 − 𝑢 = 𝑤 ∈ 𝑈  and hence that 𝑊 ⊆ 𝑈 , as desired.

Exercise 1.C.13. Prove that the union of three subspaces of 𝑉  is a subspace of 𝑉  if
and only if one of the subspaces contains the other two.

This exercise is surprisingly harder than Exercise 12, possibly because this exercise is
not true if we replace 𝐅 with a field containing only two elements.

Solution. Let 𝑈1, 𝑈2, and 𝑈3 be subspaces of 𝑉 . We want to show that 𝑈 = 𝑈1 ∪ 𝑈2 ∪ 𝑈3 is
a subspace of 𝑉  if and only if some 𝑈𝑗 contains the other two. If some 𝑈𝑗 contains the other
two, then 𝑈 = 𝑈𝑗 is a subspace of 𝑉  by assumption.
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Suppose that 𝑈  is a subspace of 𝑉 . If any 𝑈𝑗 is contained in the union of the other two,
say 𝑈1 ⊆ 𝑈2 ∪ 𝑈3, then 𝑈 = 𝑈2 ∪ 𝑈3 and we may apply Exercise 1.C.12 to see that either
𝑈2 ⊆ 𝑈3 or 𝑈3 ⊆ 𝑈2; in either case, one 𝑈𝑗 contains the other two. Suppose therefore that
no 𝑈𝑗 is contained in the union of the other two. Seeking a contradiction, suppose further
that no 𝑈𝑗 contains the other two, so that

𝑈1 ⊈ (𝑈2 ∪ 𝑈3) and (𝑈2 ∪ 𝑈3) ⊈ 𝑈1.

It follows that there exists some 𝑢 ∈ 𝑈1 such that 𝑢 ∉ 𝑈2 ∪ 𝑈3 and some 𝑣 ∈ 𝑈2 ∪ 𝑈3 such
that 𝑣 ∉ 𝑈1. Let 𝑊 = {𝑣 + 𝜆𝑢 : 𝜆 ∈ 𝐅} ⊆ 𝑈  and observe that no element of 𝑊  belongs to 
𝑈1, for if 𝑣 + 𝜆𝑢 ∈ 𝑈1 then 𝑣 + 𝜆𝑢 − 𝜆𝑢 = 𝑣 ∈ 𝑈1—but 𝑣 ∉ 𝑈1. Thus

𝑊 ∩ 𝑈1 = ∅ and 𝑊 ⊆ (𝑈1 ∪ 𝑈2 ∪ 𝑈3) ⇒ 𝑊 ⊆ (𝑈2 ∪ 𝑈3).

Because 𝑊  contains infinitely many elements, there must be some 𝑖 ∈ {2, 3} such that 𝑈𝑖

contains infinitely many elements of 𝑊 . There then exist 𝜆, 𝜇 ∈ 𝐅 such that 𝜆 ≠ 𝜇 and such
that 𝑣 + 𝜆𝑢 and 𝑣 + 𝜇𝑢 both belong to 𝑈𝑖, which implies that (𝜆 − 𝜇)𝑢 ∈ 𝑈𝑖 since 𝑈𝑖 is a
subspace of 𝑉 . This gives 𝑢 ∈ 𝑈𝑖 since 𝜆 − 𝜇 ≠ 0, contradicting that 𝑢 ∉ 𝑈2 ∪ 𝑈3. We may
conclude that some 𝑈𝑗 contains the other two.

Exercise 1.C.14. Suppose

𝑈 = {(𝑥, −𝑥, 2𝑥) ∈ 𝐅3 : 𝑥 ∈ 𝐅} and 𝑊 = {(𝑥, 𝑥, 2𝑥) ∈ 𝐅3 : 𝑥 ∈ 𝐅}.

Describe 𝑈 + 𝑊  using symbols, and also give a description of 𝑈 + 𝑊  that uses no
symbols.

Solution. We claim that 𝑈 + 𝑊  is the subspace

𝐸 = {(𝑥, 𝑦, 2𝑥) ∈ 𝐅3 : 𝑥, 𝑦 ∈ 𝐅}.

To see this, let (𝑥, −𝑥, 2𝑥) ∈ 𝑈  and (𝑦, 𝑦, 2𝑦) ∈ 𝑊  be given and notice that

(𝑥, −𝑥, 2𝑥) + (𝑦, 𝑦, 2𝑦) = (𝑥 + 𝑦, −𝑥 + 𝑦, 2(𝑥 + 𝑦)) ∈ 𝐸.

Thus 𝑈 + 𝑊 ⊆ 𝐸. For the reverse inclusion, let (𝑥, 𝑦, 2𝑥) ∈ 𝐸 be given and observe that

(𝑥, 𝑦, 2𝑥) = (
𝑥 − 𝑦

2
,
𝑦 − 𝑥

2
, 𝑥 − 𝑦) + (

𝑥 + 𝑦
2

,
𝑥 + 𝑦

2
, 𝑥 + 𝑦) ∈ 𝑈 + 𝑊.

Thus 𝑈 + 𝑊 = 𝐸, as claimed. In words, 𝑈 + 𝑊  is the subspace of 𝐅3 consisting of those
vectors whose third coordinate is twice their first coordinate.

Exercise 1.C.15. Suppose 𝑈  is a subspace of 𝑉 . What is 𝑈 + 𝑈?

Solution. For 𝑢 + 𝑣 ∈ 𝑈 + 𝑈  we have 𝑢 + 𝑣 ∈ 𝑈  since 𝑈  is a subspace of 𝑉 , and for 𝑢 ∈ 𝑈
we have 𝑢 = 𝑢 + 0 ∈ 𝑈 + 𝑈 . Thus 𝑈 + 𝑈 = 𝑈 .
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Exercise 1.C.16. Is the operation of addition on the subspaces of 𝑉  commutative? In
other words, if 𝑈  and 𝑊  are subspaces of 𝑉 , is 𝑈 + 𝑊 = 𝑊 + 𝑈?

Solution. The operation is commutative, since addition of vectors in 𝑉  is commuta-
tive. If 𝑢 + 𝑤 ∈ 𝑈 + 𝑊 , then 𝑢 + 𝑤 = 𝑤 + 𝑢 ∈ 𝑊 + 𝑈 , so that 𝑈 + 𝑊 ⊆ 𝑊 + 𝑈 . Similarly,
𝑊 + 𝑈 ⊆ 𝑈 + 𝑊 .

Exercise 1.C.17. Is the operation of addition on the subspaces of 𝑉  associative? In
other words, if 𝑉1, 𝑉2, 𝑉3 are subspaces of 𝑉 , is

(𝑉1 + 𝑉2) + 𝑉3 = 𝑉1 + (𝑉2 + 𝑉3)?

Solution. The operation is associative, since addition of vectors in 𝑉  is associative. If
(𝑢1 + 𝑢2) + 𝑢3 ∈ (𝑈1 + 𝑈2) + 𝑈3, then

(𝑢1 + 𝑢2) + 𝑢3 = 𝑢1 + (𝑢2 + 𝑢3) ∈ 𝑈1 + (𝑈2 + 𝑈3),

so that (𝑈1 + 𝑈2) + 𝑈3 ⊆ 𝑈1 + (𝑈2 + 𝑈3). Similarly, 𝑈1 + (𝑈2 + 𝑈3) ⊆ (𝑈1 + 𝑈2) + 𝑈3.

Exercise 1.C.18. Does the operation of addition on the subspaces of 𝑉  have an addi-
tive identity? Which subspaces have additive inverses?

Solution. The subspace {0} is the additive identity for the operation. If 𝑈  is a subspace of
𝑉  then 𝑢 + 0 = 𝑢 for any 𝑢 ∈ 𝑈 ; it follows that 𝑈 + {0} = 𝑈 .

Since {0} + {0} = {0}, the subspace {0} is its own additive inverse. We claim that no other
subspace of 𝑉  has an additive inverse, i.e. if 𝑈  is a subspace of 𝑉  with 𝑈 ≠ {0}, then
there does not exist a subspace 𝑊  satisfying 𝑈 + 𝑊 = {0}. Indeed, simply observe that
𝑈 ⊆ 𝑈 + 𝑊  for any subspace 𝑊 , so that 𝑈 + 𝑊 ≠ {0}.

Exercise 1.C.19. Prove or give a counterexample: If 𝑉1, 𝑉2, 𝑈  are subspaces of 𝑉  such
that

𝑉1 + 𝑈 = 𝑉2 + 𝑈,

then 𝑉1 = 𝑉2.

Solution. This is false. For a counterexample, consider the real vector space 𝐑 and observe
that

{0} + 𝐑 = 𝐑 + 𝐑 = 𝐑,

but {0} ≠ 𝐑.

18 / 366



Exercise 1.C.20. Suppose

𝑈 = {(𝑥, 𝑥, 𝑦, 𝑦) ∈ 𝐅4 : 𝑥, 𝑦 ∈ 𝐅}.

Find a subspace 𝑊  of 𝐅4 such that 𝐅4 = 𝑈 ⊕ 𝑊 .

Solution. Let

𝑊 = {(0, 𝑎, 0, 𝑏) ∈ 𝐅4 : 𝑎, 𝑏 ∈ 𝐅};

it is straightforward to verify that 𝑊  is a subspace of 𝐅4. If 𝑣 ∈ 𝑈 ∩ 𝑊 , then

𝑣 ∈ 𝑊 ⇒ 𝑣 = (0, 𝑎, 0, 𝑏) for some 𝑎, 𝑏 ∈ 𝐅,

𝑣 ∈ 𝑈 ⇒ 𝑎 = 𝑏 = 0 ⇒ 𝑣 = 0.

Thus 𝑈 ∩ 𝑊 = {0} and it follows from 1.46 that the sum 𝑈 + 𝑊  is direct.

Let (𝑣1, 𝑣2, 𝑣3, 𝑣4) ∈ 𝐅4 be given and observe that

(𝑣1, 𝑣2, 𝑣3, 𝑣4) = (𝑣1, 𝑣1, 𝑣3, 𝑣3) + (0, 𝑣2 − 𝑣1, 0, 𝑣4 − 𝑣3) ∈ 𝑈 ⊕ 𝑊.

Thus 𝐅4 = 𝑈 ⊕ 𝑊 .

Exercise 1.C.21. Suppose

𝑈 = {(𝑥, 𝑦, 𝑥 + 𝑦, 𝑥 − 𝑦, 2𝑥) ∈ 𝐅5 : 𝑥, 𝑦 ∈ 𝐅}.

Find a subspace 𝑊  of 𝐅5 such that 𝐅5 = 𝑈 ⊕ 𝑊 .

Solution. Let

𝑊 = {(0, 0, 𝑎, 𝑏, 𝑐) ∈ 𝐅5 : 𝑎, 𝑏, 𝑐 ∈ 𝐅};

it is straightforward to verify that 𝑊  is a subspace of 𝐅5. If 𝑣 ∈ 𝑈 ∩ 𝑊 , then

𝑣 ∈ 𝑈 ⇒ 𝑣 = (𝑥, 𝑦, 𝑥 + 𝑦, 𝑥 − 𝑦, 2𝑥) for some 𝑥, 𝑦 ∈ 𝐅,

𝑣 ∈ 𝑊 ⇒ 𝑥 = 𝑦 = 0 ⇒ 𝑣 = 0.

Thus 𝑈 ∩ 𝑊 = {0} and it follows from 1.46 that the sum 𝑈 + 𝑊  is direct.

Let 𝑣 = (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5) ∈ 𝐅5 be given and observe that

(𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5) = (𝑣1, 𝑣2, 𝑣1 + 𝑣2, 𝑣1 − 𝑣2, 2𝑣1)

+ (0, 0, 𝑣3 − (𝑣1 + 𝑣2), 𝑣4 − (𝑣1 − 𝑣2), 𝑣5 − 2𝑣1) ∈ 𝑈 ⊕ 𝑊.

Thus 𝐅5 = 𝑈 ⊕ 𝑊 .
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Exercise 1.C.22. Suppose

𝑈 = {(𝑥, 𝑦, 𝑥 + 𝑦, 𝑥 − 𝑦, 2𝑥) ∈ 𝐅5 : 𝑥, 𝑦 ∈ 𝐅}.

Find three subspaces 𝑊1, 𝑊2, 𝑊3 of 𝐅5, none of which equals {0}, such that
𝐅5 = 𝑈 ⊕ 𝑊1 ⊕ 𝑊2 ⊕ 𝑊3.

Solution. Let

𝑊1 = {(0, 0, 𝑎, 0, 0) ∈ 𝐅5 : 𝑎 ∈ 𝐅}, 𝑊2 = {(0, 0, 0, 𝑏, 0) ∈ 𝐅5 : 𝑏 ∈ 𝐅},

𝑊3 = {(0, 0, 0, 0, 𝑐) ∈ 𝐅5 : 𝑐 ∈ 𝐅};

it is straightforward to verify that 𝑊1, 𝑊2, and 𝑊3 are subspaces of 𝐅5. Suppose that

𝑢 = (𝑥, 𝑦, 𝑥 + 𝑦, 𝑥 − 𝑦, 2𝑥) ∈ 𝑈, 𝑤1 = (0, 0, 𝑎, 0, 0) ∈ 𝑊1,

𝑤2 = (0, 0, 0, 𝑏, 0) ∈ 𝑊2, and 𝑤3 = (0, 0, 0, 0, 𝑐) ∈ 𝑊3

are such that 𝑢 + 𝑤1 + 𝑤2 + 𝑤3 = 0. That is,

(𝑥, 𝑦, 𝑥 + 𝑦 + 𝑎, 𝑥 − 𝑦 + 𝑏, 2𝑥 + 𝑐) = (0, 0, 0, 0, 0),

from which it follows that 𝑥 = 𝑦 = 𝑎 = 𝑏 = 𝑐 = 0. Thus the only way to express the zero
vector as a sum 𝑢 + 𝑤1 + 𝑤2 + 𝑤3 ∈ 𝑈 + 𝑊1 + 𝑊2 + 𝑊3 is to take 𝑢 = 𝑤1 = 𝑤2 = 𝑤3 = 0
and so it follows from 1.45 that the sum 𝑈 + 𝑊1 + 𝑊2 + 𝑊3 is direct.

Let (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5) ∈ 𝐅5 be given and observe that

(𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5) = (𝑣1, 𝑣2, 𝑣1 + 𝑣2, 𝑣1 − 𝑣2, 2𝑣1) + (0, 0, 𝑣3 − (𝑣1 + 𝑣2), 0, 0)

+ (0, 0, 0, 𝑣4 − (𝑣1 − 𝑣2), 0) + (0, 0, 0, 0, 𝑣5 − 2𝑣1) ∈ 𝑈 ⊕ 𝑊1 ⊕ 𝑊2 ⊕ 𝑊3.

Thus 𝐅5 = 𝑈 ⊕ 𝑊1 ⊕ 𝑊2 ⊕ 𝑊3.

Exercise 1.C.23. Prove or give a counterexample: If 𝑉1, 𝑉2, 𝑈  are subspaces of 𝑉  such
that

𝑉 = 𝑉1 ⊕ 𝑈 and 𝑉 = 𝑉2 ⊕ 𝑈,

then 𝑉1 = 𝑉2.

Hint: When trying to discover whether a conjecture in linear algebra is true or false,
it is often useful to start by experimenting in 𝐅2.

Solution. This is false. For a counterexample, consider 𝑉 = 𝐑2,

𝑈 = {(𝑥, 0) ∈ 𝐑2 : 𝑥 ∈ 𝐑}, 𝑉1 = {(0, 𝑦) ∈ 𝐑2 : 𝑦 ∈ 𝐑}, 𝑉2 = {(𝑦, 𝑦) ∈ 𝐑2 : 𝑦 ∈ 𝐑}.

It is straightforward to verify that 𝑈 ∩ 𝑉1 = 𝑈 ∩ 𝑉2 = {0}, so that 𝑈 + 𝑉1 and 𝑈 + 𝑉2 are
both direct sums (1.46), and that 𝑈 ⊕ 𝑉1 = 𝑈 ⊕ 𝑉2 = 𝐑2. However, 𝑉1 ≠ 𝑉2 since (1, 1) ∈ 𝑉2

but (1, 1) ∉ 𝑉1.
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Exercise 1.C.24. A function 𝑓 : 𝐑 → 𝐑 is called even if

𝑓(−𝑥) = 𝑓(𝑥)

for all 𝑥 ∈ 𝐑. A function 𝑓 : 𝐑 → 𝐑 is called odd if

𝑓(−𝑥) = −𝑓(𝑥)

for all 𝑥 ∈ 𝐑. Let 𝑉e denote the set of real-valued even functions on 𝐑 and let 𝑉o denote
the set of real-valued odd functions on 𝐑. Show that 𝐑𝐑 = 𝑉e ⊕ 𝑉o.

Solution. Suppose that 𝑓 ∈ 𝑉e ∩ 𝑉o, so that 𝑓(𝑥) = −𝑓(𝑥) for all 𝑥 ∈ 𝐑. This implies that
𝑓(𝑥) = 0 for all 𝑥 ∈ 𝐑, i.e. 𝑓 = 0. Thus 𝑉e ∩ 𝑉o = {0} and it follows from 1.46 that the sum
𝑉e + 𝑉o is direct. For 𝑓 : 𝐑 → 𝐑, define 𝑓e : 𝐑 → 𝐑 and 𝑓o : 𝐑 → 𝐑 by

𝑓e(𝑥) =
𝑓(𝑥) + 𝑓(−𝑥)

2
and 𝑓o(𝑥) =

𝑓(𝑥) − 𝑓(−𝑥)
2

.

It is straightforward to verify that 𝑓e is an even function, 𝑓o is an odd function, and
𝑓 = 𝑓e + 𝑓o. We may conclude that 𝐑𝐑 = 𝑉e ⊕ 𝑉o.
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Chapter 2. Finite-Dimensional Vector Spaces

2.A. Span and Linear Independence

Exercise 2.A.1. Find a list of four distinct vectors in 𝐅3 whose span equals

{(𝑥, 𝑦, 𝑧) ∈ 𝐅3 : 𝑥 + 𝑦 + 𝑧 = 0}.

Solution. Let 𝑊  be the subspace in question and consider the list

𝑣1 = (1, 0, −1), 𝑣2 = (0, 1, −1), 𝑣3 = (1, 1, −2), 𝑣4 = (1, −1, 0).

We claim that span(𝑣1, 𝑣2, 𝑣3, 𝑣4) = 𝑊 . If 𝑎1, 𝑎2, 𝑎3, 𝑎4 ∈ 𝐅, then

𝑎1𝑣1 + 𝑎2𝑣2 + 𝑎3𝑣3 + 𝑎4𝑣4 = (𝑎1 + 𝑎3 + 𝑎4, 𝑎2 + 𝑎3 − 𝑎4, −𝑎1 − 𝑎2 − 2𝑎3) ∈ 𝑊

since (𝑎1 + 𝑎3 + 𝑎4) + (𝑎2 + 𝑎3 − 𝑎4) + (−𝑎1 − 𝑎2 − 2𝑎3) = 0.

Thus span(𝑣1, 𝑣2, 𝑣3, 𝑣4) ⊆ 𝑊 . Now suppose that (𝑥, 𝑦, 𝑧) ∈ 𝑊  and observe that 𝑧 = −𝑥 − 𝑦.
It follows that

(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦, −𝑥 − 𝑦) = 𝑥𝑣1 + 𝑦𝑣2 ∈ span(𝑣1, 𝑣2, 𝑣3, 𝑣4).

Thus 𝑊 ⊆ span(𝑣1, 𝑣2, 𝑣3, 𝑣4) and we may conclude that span(𝑣1, 𝑣2, 𝑣3, 𝑣4) = 𝑊 , as claimed.

Exercise 2.A.2. Prove or give a counterexample: If 𝑣1, 𝑣2, 𝑣3, 𝑣4 spans 𝑉 , then the list
𝑣1 − 𝑣2, 𝑣2 − 𝑣3, 𝑣3 − 𝑣4, 𝑣4

also spans 𝑉 .

Solution. This is true. Let 𝑣 ∈ 𝑉  be given. Since 𝑉 = span(𝑣1, 𝑣2, 𝑣3, 𝑣4), there are scalars 
𝑎1, 𝑎2, 𝑎3, 𝑎4 such that 𝑣 = 𝑎1𝑣1 + 𝑎2𝑣2 + 𝑎3𝑣3 + 𝑎4𝑣4. Observe that

𝑎1(𝑣1 − 𝑣2) + (𝑎1 + 𝑎2)(𝑣2 − 𝑣3) + (𝑎1 + 𝑎2 + 𝑎3)(𝑣3 − 𝑣4) + (𝑎1 + 𝑎2 + 𝑎3 + 𝑎4)𝑣4

= 𝑎1𝑣1 + 𝑎2𝑣2 + 𝑎3𝑣3 + 𝑎4𝑣4 = 𝑣.

Thus 𝑣 ∈ span(𝑣1 − 𝑣2, 𝑣2 − 𝑣3, 𝑣3 − 𝑣4, 𝑣4). It follows that

𝑉 = span(𝑣1 − 𝑣2, 𝑣2 − 𝑣3, 𝑣3 − 𝑣4, 𝑣4).

Exercise 2.A.3. Suppose 𝑣1, …, 𝑣𝑚 is a list of vectors in 𝑉 . For 𝑘 ∈ {1, …, 𝑚}, let

𝑤𝑘 = 𝑣1 + ⋯ + 𝑣𝑘.

Show that span(𝑣1, …, 𝑣𝑚) = span(𝑤1, …, 𝑤𝑚).
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Solution. For any scalars 𝑎1, …, 𝑎𝑚 ∈ 𝐅, observe that

𝑎1𝑣1 + 𝑎2(𝑣1 + 𝑣2) + ⋯ + 𝑎𝑚(𝑣1 + ⋯ + 𝑣𝑚)

= (𝑎1 + ⋯ + 𝑎𝑚)𝑣1 + (𝑎2 + ⋯ + 𝑎𝑚)𝑣2 + ⋯ + 𝑎𝑚𝑣𝑚.

It follows that span(𝑤1, …, 𝑤𝑚) ⊆ span(𝑣1, …, 𝑣𝑚). Similarly, for any scalars 𝑎1, …, 𝑎𝑚 ∈ 𝐅,
notice that

𝑎1𝑣1 + 𝑎2𝑣2 + ⋯ + 𝑎𝑚𝑣𝑚 = (𝑎1 − 𝑎2)𝑣1 + (𝑎2 − 𝑎3)(𝑣1 + 𝑣2)

+ ⋯ + (𝑎𝑚−1 − 𝑎𝑚)(𝑣1 + ⋯ + 𝑣𝑚−1) + 𝑎𝑚(𝑣1 + ⋯ + 𝑣𝑚).

Thus span(𝑣1, …, 𝑣𝑚) ⊆ span(𝑤1, …, 𝑤𝑚).

Exercise 2.A.4.

(a) Show that a list of length one in a vector space is linearly independent if and only
if the vector in the list is not 0.

(b) Show that a list of length two in a vector space is linearly independent if and only
if neither of the two vectors in the list is a scalar multiple of the other.

Solution.

(a) Suppose the list consists of the single vector 𝑣 ∈ 𝑉 . If 𝑣 ≠ 0 and 𝑎 ∈ 𝐅 is such that 
𝑎𝑣 = 0, then Exercise 1.B.2 shows that we must have 𝑎 = 0; it follows that the list 𝑣 is
linearly independent. If 𝑣 = 0 then simply observe that 1𝑣 = 0, demonstrating that the
list 𝑣 is linearly dependent.

(b) Suppose that the list consists of the vectors 𝑢, 𝑣 ∈ 𝑉 . If one of these vectors is a scalar
multiple of the other, say 𝑣 = 𝜆𝑢 for some 𝜆 ∈ 𝐅, then observe that 𝑣 − 𝜆𝑢 = 0. Because
the coefficient of 𝑣 in this linear combination is non-zero, we see that the list 𝑢, 𝑣 is
linearly dependent.

Conversely, suppose that the list 𝑢, 𝑣 is linearly dependent, so that 𝜇𝑣 + 𝜆𝑢 = 0 with
at least one of the coefficients 𝜇, 𝜆 non-zero, say 𝜇 ≠ 0; it follows that 𝑣 = −𝜆

𝜇𝑢.

Exercise 2.A.5. Find a number 𝑡 such that

(3, 1, 4), (2, −3, 5), (5, 9, 𝑡)

is not linearly independent in 𝐑3.

Solution. Let 𝑡 = 2 and observe that

3(3, 1, 4) − 2(2, −3, 5) − (5, 9, 2) = (0, 0, 0).

Exercise 2.A.6. Show that the list (2, 3, 1), (1, −1, 2), (7, 3, 𝑐) is linearly dependent in 
𝐅3 if and only if 𝑐 = 8.
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Solution. That the list is linearly dependent if 𝑐 = 8 was shown in the first bullet point of
(2.20). Conversely, suppose that the list is linearly dependent. Since (1, −1, 2) is evidently
not a scalar multiple of (2, 3, 1), the linear dependence lemma (2.19) implies that (7, 3, 𝑐) lies
in the span of (2, 3, 1) and (1, −1, 2), i.e. there are scalars 𝑥 and 𝑦 such that

𝑥(2, 3, 1) + 𝑦(1, −1, 2) = (7, 3, 𝑐).

Solving the equations 2𝑥 + 𝑦 = 7 and 3𝑥 − 𝑦 = 3 gives 𝑥 = 2 and 𝑦 = 3, whence
𝑐 = 𝑥 + 2𝑦 = 8.

Exercise 2.A.7.

(a) Show that if we think of 𝐂 as a vector space over 𝐑, then the list 1 + 𝑖, 1 − 𝑖 is
linearly independent.

(b) Show that if we think of 𝐂 as a vector space over 𝐂, then the list 1 + 𝑖, 1 − 𝑖 is
linearly dependent.

Solution.

(a) Suppose that 𝑥 and 𝑦 are real numbers such that

𝑥(1 + 𝑖) + 𝑦(1 − 𝑖) = (𝑥 + 𝑦) + (𝑥 − 𝑦)𝑖 = 0.

Since a complex number is zero if and only if its real and imaginary parts are zero, we
must have

𝑥 + 𝑦 = 0 and 𝑥 − 𝑦 = 0 ⇔ 𝑥 = 𝑦 = 0.

Thus the list 1 + 𝑖, 1 − 𝑖 is linearly independent.

(b) Observe that 𝑖(1 − 𝑖) = 1 + 𝑖, so that 1 + 𝑖 is a scalar multiple of 1 − 𝑖. It follows from
Exercise 2.A.4 (b) that the list 1 + 𝑖, 1 − 𝑖 is linearly dependent.

Exercise 2.A.8. Suppose 𝑣1, 𝑣2, 𝑣3, 𝑣4 is linearly independent in 𝑉 . Prove that the list
𝑣1 − 𝑣2, 𝑣2 − 𝑣3, 𝑣3 − 𝑣4, 𝑣4

is also linearly independent.

Solution. Suppose that 𝑎1, 𝑎2, 𝑎3, 𝑎4 are scalars such that

𝑎1(𝑣1 − 𝑣2) + 𝑎2(𝑣2 − 𝑣3) + 𝑎3(𝑣3 − 𝑣4) + 𝑎4𝑣4 = 0

⇔ 𝑎1𝑣1 + (𝑎2 − 𝑎1)𝑣2 + (𝑎3 − 𝑎2)𝑣3 + (𝑎4 − 𝑎3)𝑣4 = 0.

Since the list 𝑣1, 𝑣2, 𝑣3, 𝑣4 is linearly independent, we must have

𝑎1 = 𝑎2 − 𝑎1 = 𝑎3 − 𝑎2 = 𝑎4 − 𝑎3 = 0,

which implies that 𝑎1 = 𝑎2 = 𝑎3 = 𝑎4 = 0. It follows that the list 𝑣1 − 𝑣2, 𝑣2 − 𝑣3, 𝑣3 − 𝑣4, 𝑣4

is linearly independent.
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Exercise 2.A.9. Prove or give a counterexample: If 𝑣1, 𝑣2, …, 𝑣𝑚 is a linearly indepen-
dent list of vectors in 𝑉 , then

5𝑣1 − 4𝑣2, 𝑣2, 𝑣3, …, 𝑣𝑚

is linearly independent.

Solution. Suppose that 𝑎1, 𝑎2, …, 𝑎𝑚 are scalars such that

𝑎1(5𝑣1 − 4𝑣2) + 𝑎2𝑣2 + 𝑎3𝑣3 + ⋯ + 𝑎𝑚𝑣𝑚 = 0

⇔ 5𝑎1𝑣1 + (𝑎2 − 4𝑎1)𝑣2 + 𝑎3𝑣3 + ⋯ + 𝑎𝑚𝑣𝑚 = 0.

Since the list 𝑣1, 𝑣2, …, 𝑣𝑚 is linearly independent, we must have

5𝑎1 = 𝑎2 − 4𝑎1 = 𝑎3 = ⋯ = 𝑎𝑚 = 0,

which implies that 𝑎1 = 𝑎2 = 𝑎3 = ⋯ = 𝑎𝑚 = 0. It follows that the list 5𝑣1 − 4𝑣2, 𝑣2, 𝑣3, …, 𝑣𝑚

is linearly independent.

Exercise 2.A.10. Prove or give a counterexample: If 𝑣1, 𝑣2, …, 𝑣𝑚 is a linearly inde-
pendent list of vectors in 𝑉  and 𝜆 ∈ 𝐅 with 𝜆 ≠ 0, then 𝜆𝑣1, 𝜆𝑣2, …, 𝜆𝑣𝑚 is linearly
independent.

Solution. Suppose that 𝑎1, 𝑎2, …, 𝑎𝑚 are scalars such that

𝑎1𝜆𝑣1 + 𝑎2𝜆𝑣2 + ⋯ + 𝑎𝑚𝜆𝑣𝑚 = 0.

Since 𝜆 ≠ 0, we may multiply both sides of this equation by 𝜆−1 to obtain the equation

𝑎1𝑣1 + 𝑎2𝑣2 + ⋯ + 𝑎𝑚𝑣𝑚 = 0.

Since the list 𝑣1, 𝑣2, …, 𝑣𝑚 is linearly independent, this implies that 𝑎1 = 𝑎2 = ⋯ = 𝑎𝑚 = 0.
It follows that the list 𝜆𝑣1, 𝜆𝑣2, …, 𝜆𝑣𝑚 is linearly independent.

Exercise 2.A.11. Prove or give a counterexample: If 𝑣1, …, 𝑣𝑚 and 𝑤1, …, 𝑤𝑚 are lin-
early independent lists of vectors in 𝑉 , then the list 𝑣1 + 𝑤1, …, 𝑣𝑚 + 𝑤𝑚 is linearly
independent.

Solution. This is false. Consider 𝐑 as a vector space over itself. We have two linearly inde-
pendent lists 1 and −1, but the list 1 + (−1) = 0 is linearly dependent.

Exercise 2.A.12. Suppose 𝑣1, …, 𝑣𝑚 is linearly independent in 𝑉  and 𝑤 ∈ 𝑉 . Prove
that if 𝑣1 + 𝑤, …, 𝑣𝑚 + 𝑤 is linearly dependent, then 𝑤 ∈ span(𝑣1, …, 𝑣𝑚).

Solution. By the linear dependence lemma (2.19), there is a 𝑗 ∈ {1, 2, …, 𝑚} such that 
𝑣𝑗 + 𝑤 ∈ span(𝑣1 + 𝑤, …, 𝑣𝑗−1 + 𝑤). If 𝑗 = 1 then 𝑣1 + 𝑤 = 0, i.e. 𝑤 = −𝑣1. It follows that 
𝑤 ∈ span(𝑣1, …, 𝑣𝑚).
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If 𝑗 ≥ 2, then there are scalars 𝑎1, …, 𝑎𝑗−1 such that

𝑣𝑗 + 𝑤 = 𝑎1(𝑣1 + 𝑤) + ⋯ + 𝑎𝑗−1(𝑣𝑗−1 + 𝑤) ⇔ 𝑣𝑗 + 𝜆𝑤 = 𝑎1𝑣1 + ⋯ + 𝑎𝑗−1𝑣𝑗−1,

where 𝜆 = 1 − (𝑎1 + ⋯ + 𝑎𝑗−1). Note that 𝜆 must be non-zero: if this were not the case, then
𝑣𝑗 would lie in the span of 𝑣1, …, 𝑣𝑗−1, which cannot happen since the list 𝑣1, …, 𝑣𝑗 is linearly
independent. It follows that

𝑤 = 𝜆−1(𝑎1𝑣1 + ⋯ + 𝑎𝑗−1𝑣𝑗−1 − 𝑣𝑗),

so that 𝑤 ∈ span(𝑣1, …, 𝑣𝑚).

Exercise 2.A.13. Suppose 𝑣1, …, 𝑣𝑚 is linearly independent in 𝑉  and 𝑤 ∈ 𝑉 . Show that

𝑣1, …, 𝑣𝑚, 𝑤 is linearly independent ⇔ 𝑤 ∉ span(𝑣1, …, 𝑣𝑚).

Solution. If 𝑤 ∈ span(𝑣1, …, 𝑣𝑚) then the list 𝑣1, …, 𝑣𝑚, 𝑤 is linearly dependent by the third
bullet point of 2.18. Conversely, suppose that the list 𝑣1, …, 𝑣𝑚, 𝑤 is linearly dependent. By
the linear dependence lemma (2.19), one of the vectors in the list must be in the span of the
previous vectors. It cannot be the case that some 𝑣𝑗 belongs to span(𝑣1, …, 𝑣𝑗−1) since this
would contradict the linear independence of the list 𝑣1, …, 𝑣𝑚, so it must be the case that 
𝑤 ∈ span(𝑣1, …, 𝑣𝑚).

Exercise 2.A.14. Suppose 𝑣1, …, 𝑣𝑚 is a list of vectors in 𝑉 . For 𝑘 ∈ {1, …, 𝑚}, let

𝑤𝑘 = 𝑣1 + ⋯ + 𝑣𝑘.

Show that the list 𝑣1, …, 𝑣𝑚 is linearly independent if and only if the list 𝑤1, …, 𝑤𝑚 is
linearly independent.

Solution. Let 𝑊 = span(𝑤1, …, 𝑤𝑚); by Exercise 2.A.3 we also have 𝑊 = span(𝑣1, …, 𝑣𝑚).
If the list 𝑤1, …, 𝑤𝑚 is linearly dependent, then using the linear dependence lemma (2.19) we
may remove some 𝑤𝑗 from the list 𝑤1, …, 𝑤𝑚 to obtain a spanning list for 𝑊  of length 𝑚 − 1.
It follows from 2.22 that the list 𝑣1, …, 𝑣𝑚, which spans 𝑊 , must be linearly dependent.
A similar argument shows that the list 𝑤1, …, 𝑤𝑚 must be linearly dependent if the list 
𝑣1, …, 𝑣𝑚 is linearly dependent.

Exercise 2.A.15. Explain why there does not exist a list of six polynomials that is
linearly independent in 𝒫4(𝐅).

Solution. As noted in the textbook, 𝒫4(𝐅) is spanned by the list 1, 𝑧, 𝑧2, 𝑧3, 𝑧4, which has
length 5. It follows from 2.22 that any linearly independent list in 𝒫4(𝐅) can have length at
most 5.

Exercise 2.A.16. Explain why no list of four polynomials spans 𝒫4(𝐅).
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Solution. As shown in (2.16) (b), the list 1, 𝑧, 𝑧2, 𝑧3, 𝑧4, which has length 5, is linearly in-
dependent in 𝒫4(𝐅). It follows from 2.22 that any spanning list for 𝒫4(𝐅) must have length
at least 5.

Exercise 2.A.17. Prove that 𝑉  is infinite-dimensional if and only if there is a sequence
𝑣1, 𝑣2, … of vectors in 𝑉  such that 𝑣1, …, 𝑣𝑚 is linearly independent for every positive
integer 𝑚.

Solution. First suppose that 𝑉  is finite-dimensional, so that it is spanned by some list 
𝑤1, …, 𝑤𝑚, and let 𝑣1, 𝑣2, … be any sequence of vectors in 𝑉 ; by 2.22, the list 𝑣1, 𝑣2, …, 𝑣𝑚+1

must be linearly dependent.

Now suppose that 𝑉  is infinite-dimensional, so that no list of vectors in 𝑉  is a spanning list.
Certainly 𝑉 ≠ {0}, so pick any 𝑣1 ≠ 0 in 𝑉  and note that the list 𝑣1 is linearly independent.
Suppose that after 𝑚 steps we have chosen a linearly independent list 𝑣1, …, 𝑣𝑚. By assump-
tion 𝑉 ≠ span(𝑣1, …, 𝑣𝑚), so pick any 𝑣𝑚+1 ∉ span(𝑣1, …, 𝑣𝑚) and note that, by Exercise
2.A.13, the list 𝑣1, …, 𝑣𝑚, 𝑣𝑚+1 is linearly independent. This process recursively defines a
sequence of vectors 𝑣1, 𝑣2, … such that 𝑣1, …, 𝑣𝑚 is linearly independent for each positive
integer 𝑚.

Exercise 2.A.18. Prove that 𝐅∞ is infinite-dimensional.

Solution. Consider the sequence of vectors 𝑣1, 𝑣2, …, where 𝑣𝑗 ∈ 𝐅∞ is the sequence with a
1 in the 𝑗th position and 0′s elsewhere. For each positive integer 𝑚, it is straightforward to
verify that the list 𝑣1, …, 𝑣𝑚 is linearly independent; it follows from Exercise 2.A.17 that 𝐅∞

is infinite-dimensional.

Exercise 2.A.19. Prove that the real vector space of all continuous real-valued func-
tions on the interval [0, 1] is infinite-dimensional.

Solution. Consider the sequence of continuous functions 𝑓1, 𝑓2, … on the interval [0, 1], where
𝑓1(𝑥) = 1 for all 𝑥 ∈ [0, 1] and, for 𝑗 ≥ 2,

𝑓𝑗(𝑥) =
⎩{
⎨
{⎧1 if 0 ≤ 𝑥 ≤ 1

𝑗 ,

0 if 1
𝑗−1 ≤ 𝑥 ≤ 1.

On the interval (1
𝑗 ,

1
𝑗−1), take 𝑓𝑗 to be the line segment joining the points (1

𝑗 , 1) and ( 1
𝑗−1 , 0),

so that 𝑓𝑗 is a continuous function on [0, 1].
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1

0 1
𝑗

1
𝑗−1 1

𝑓𝑗

Let 𝑚 be a positive integer and suppose we have real numbers 𝑎1, …, 𝑎𝑚 such that

𝑎1𝑓1(𝑥) + 𝑎2𝑓2(𝑥) + ⋯ + 𝑎𝑚𝑓𝑚(𝑥) = 0

for all 𝑥 ∈ [0, 1]. Taking 𝑥 = 1 gives us

𝑎1𝑓1(1) + 𝑎2𝑓2(1) + ⋯ + 𝑎𝑚𝑓𝑚(1) = 𝑎1 = 0.

Similarly, taking 𝑥 = 1
2  gives us

𝑎2𝑓2(1
2) + ⋯ + 𝑎𝑚𝑓𝑚(1

2) = 𝑎2 = 0.

By continuing in this fashion, taking 𝑥 = 1
𝑗  for each 𝑗 ∈ {1, 2, …, 𝑚}, we see that

𝑎1 = 𝑎2 = ⋯ = 𝑎𝑚 = 0. It follows that the list 𝑓1, 𝑓2, …, 𝑓𝑚 is linearly independent for each
positive integer 𝑚 and thus by Exercise 2.A.17 the real vector space of all continuous real-
valued functions on the interval [0, 1] is infinite-dimensional.

Exercise 2.A.20. Suppose 𝑝0, 𝑝1, …, 𝑝𝑚 are polynomials in 𝒫𝑚(𝐅) such that 𝑝𝑘(2) = 0
for each 𝑘 ∈ {0, …, 𝑚}. Prove that 𝑝0, 𝑝1, …, 𝑝𝑚 is not linearly independent in 𝒫𝑚(𝐅).

Solution. Since 𝒫𝑚(𝐅) is spanned by the list 1, 𝑥, …, 𝑥𝑚 of length 𝑚 + 1, 2.22 implies that
the list 𝑝0, 𝑝1, …, 𝑝𝑚, 𝑥 of length 𝑚 + 2 is linearly dependent. The linear dependence lemma
(2.19) implies that one of the vectors from this list belongs to the span of the previous
vectors. Notice that for any scalars 𝑎0, …, 𝑎𝑚,

𝑥 = 𝑎0𝑝0(𝑥) + ⋯ + 𝑎𝑚𝑝𝑚(𝑥) for all 𝑥 ∈ 𝐅 ⇒ 2 = 𝑎0𝑝0(2) + ⋯ + 𝑎𝑚𝑝𝑚(2) = 0,

which is a contradiction; it follows that 𝑥 ∉ span(𝑝0, 𝑝1, …, 𝑝𝑚) and thus there must be some
𝑗 ∈ {0, …, 𝑚} such that 𝑝𝑗 ∈ span(𝑝0, 𝑝1, …, 𝑝𝑗−1). The third bullet point of 2.18 then implies
that the list 𝑝0, 𝑝1, …, 𝑝𝑚 is linearly dependent.
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2.B. Bases

Exercise 2.B.1. Find all vector spaces that have exactly one basis.

Solution. We will consider only finite-dimensional vector spaces over 𝐑 or 𝐂.

First consider the trivial vector space {0}. There are two possible lists of vectors: the empty
list and the list 0. Since any list containing the zero vector is linearly dependent, the list 0
cannot be a basis of {0}. By definition the empty list is linearly independent and has span 
{0}; it follows that the empty list is a basis of {0}. Thus the trivial vector space has exactly
one basis.

Now suppose that 𝑉 ≠ {0}. By 2.31, 𝑉  has a basis 𝑣1, …, 𝑣𝑚. Since 𝑉 ≠ {0}, this basis is
not the empty list, so 𝑣1 exists and is non-zero. It follows that 𝐵 = 2𝑣1, …, 2𝑣𝑚 is distinct
from 𝑣1, …, 𝑣𝑚. By Exercise 2.A.10, 𝐵 is linearly independent. Furthermore, we claim that 
span 𝐵 = 𝑉 . Let 𝑣 ∈ 𝑉  be given. Since 𝑣1, …, 𝑣𝑚 is a basis, there are scalars 𝑎1, …, 𝑎𝑚 such
that 𝑣 = ∑𝑚

𝑗=1 𝑎𝑗𝑣𝑗. This is equivalent to

𝑣 = ∑
𝑚

𝑗=1
(1

2𝑎𝑗)(2𝑣𝑗);

it follows that 𝑣 ∈ span 𝐵 and hence that span 𝐵 = 𝑉 , as claimed. Thus 𝐵 is a basis of 𝑉 ,
distinct from the original basis 𝑣1, …, 𝑣𝑚. We may conclude that the trivial vector space is
the only vector space which has exactly one basis.

Exercise 2.B.2. Verify all assertions in Example 2.27.

Solution.

(a) The assertion is that the list 𝐵 = (1, 0, …, 0), (0, 1, 0, …, 0), …, (0, …, 0, 1) is a basis of 
𝐅𝑛. Since any (𝑥1, 𝑥2, …, 𝑥𝑛) ∈ 𝐅𝑛 can be expressed as

𝑥1(1, 0, …, 0) + 𝑥2(0, 1, 0, …, 0) + ⋯ + 𝑥𝑛(0, …, 0, 1),

we see that span 𝐵 = 𝐅𝑛. Setting the above expression equal to (0, 0, 0, …, 0) immedi-
ately gives us 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 = 0, so that the list 𝐵 is linearly independent. Thus 
𝐵 is a basis of 𝐅𝑛.

(b) The assertion is that the list 𝐵 = (1, 2), (3, 5) is a basis of 𝐅2. Since neither of these
vectors is a scalar multiple of the other, Exercise 2.A.4 (b) shows that 𝐵 is linearly
independent. If (𝑎, 𝑏) ∈ 𝐅2, then observe that

(−5𝑎 + 3𝑏)(1, 2) + (2𝑎 − 𝑏)(3, 5) = (𝑎, 𝑏).

Thus span 𝐵 = 𝑉  and we may conclude that 𝐵 is a basis of 𝐅2.
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(c) The assertion is that the list 𝐵 = (1, 2, −4), (7, −5, 6) is linearly independent in 𝐅3 but
is not a basis of 𝐅3 because it does not span 𝐅3. Since neither of these vectors is a
scalar multiple of the other, Exercise 2.A.4 (b) shows that 𝐵 is linearly independent.
However, since the list (1, 0, 0), (0, 1, 0), (0, 0, 1) of length 3 is linearly independent in 
𝐅3 (see (a)), 2.22 implies that 𝐵 cannot span 𝐅3.

(d) The assertion is that the list 𝐵 = (1, 2), (3, 5), (4, 13) spans 𝐅2 but is not a basis of 
𝐅2 because it is not linearly independent. Indeed, part (b) shows that 𝐵 spans 𝐅2 and
that (4, 13) lies in the span of (1, 2) and (3, 5), so that 𝐵 is linearly dependent.

(e) The assertion is that the list 𝐵 = (1, 1, 0), (0, 0, 1) is a basis of

𝑈 = {(𝑥, 𝑥, 𝑦) ∈ 𝐅3 : 𝑥, 𝑦 ∈ 𝐅}.

Indeed, span 𝐵 = 𝑈  since 𝑥(1, 1, 0) + 𝑦(0, 0, 1) = (𝑥, 𝑥, 𝑦) for any scalars 𝑥, 𝑦, and 𝐵 is
linearly independent since (𝑥, 𝑥, 𝑦) = (0, 0, 0) forces 𝑥 = 𝑦 = 0.

(f) The assertion is that the list 𝐵 = (1, −1, 0), (1, 0, −1) is a basis of

𝑈 = {(𝑥, 𝑦, 𝑧) ∈ 𝐅3 : 𝑥 + 𝑦 + 𝑧 = 0}.

Observe that 𝐵 is linearly independent since

𝑥(1, −1, 0) + 𝑦(1, 0, −1) = (𝑥 + 𝑦, −𝑥, −𝑦) = (0, 0, 0)

gives us 𝑥 = 𝑦 = 0, and 𝐵 spans 𝑈  by Exercise 2.A.1 (using the notation of that exer-
cise, we have 𝐵 = 𝑣4, 𝑣1).

(g) The assertion is that the list 𝐵 = 1, 𝑧, …, 𝑧𝑚 is a basis of 𝒫𝑚(𝐅). The fact that span 𝐵 =
𝒫𝑚(𝐅) was noted on p. 31 of the textbook, and the linear independence of 𝐵 was shown
in 2.16(b).

Exercise 2.B.3.

(a) Let 𝑈  be the subspace of 𝐑5 defined by

𝑈 = {(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ∈ 𝐑5 : 𝑥1 = 3𝑥2 and 𝑥3 = 7𝑥4}.

Find a basis of 𝑈 .

(b) Extend the basis in (a) to a basis of 𝐑5.

(c) Find a subspace 𝑊  of 𝐑5 such that 𝐑5 = 𝑈 ⊕ 𝑊 .

Solution.

(a) Note that

𝑈 = {(3𝑥1, 𝑥1, 7𝑥2, 𝑥2, 𝑥3) ∈ 𝐑5 : 𝑥1, 𝑥2, 𝑥3 ∈ 𝐑}.

Let 𝑢1 = (3, 1, 0, 0, 0), 𝑢2 = (0, 0, 7, 1, 0), 𝑢3 = (0, 0, 0, 0, 1) and 𝐵 = 𝑢1, 𝑢2, 𝑢3. Since

𝑥1𝑢1 + 𝑥2𝑢2 + 𝑥3𝑢3 = (3𝑥1, 𝑥1, 7𝑥2, 𝑥2, 𝑥3)
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for scalars 𝑥1, 𝑥2, 𝑥3, we see that span 𝐵 = 𝑈 . Setting the above expression equal to 
(0, 0, 0, 0, 0), it is immediate that 𝑥1 = 𝑥2 = 𝑥3 = 0, so that 𝐵 is linearly independent.
Thus 𝐵 is a basis of 𝑈 .

(b) Denote the 𝑗th standard basis vector of 𝐑5 by 𝑒𝑗. Following the procedure outlined in
2.30 and 2.32, we adjoin the five standard basis vectors to 𝐵 to obtain the spanning list

𝑢1, 𝑢2, 𝑢3, 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5.

• 𝑒1 does not belong to span(𝑢1, 𝑢2, 𝑢3), so we do not delete it.

• Note that 𝑒2 = 𝑢1 − 3𝑒1, so we delete 𝑒2 from the list.

• 𝑒3 does not belong to span(𝑢1, 𝑢2, 𝑢3, 𝑒1), so we do not delete it.

• Note that 𝑒4 = 𝑢2 − 7𝑒3, so we delete 𝑒4 from the list.

• Since 𝑒5 = 𝑢3, we delete 𝑒5 from the list.

We are left with the list 𝑢1, 𝑢2, 𝑢3, 𝑒1, 𝑒3; as the proof of (2.32) shows, this must be a
basis of 𝐑5.

(c) As shown in the proof of (2.33), if we let

𝑊 = span(𝑒1, 𝑒3) = {(𝑥1, 0, 𝑥3, 0, 0) ∈ 𝐑5 : 𝑥1, 𝑥3 ∈ 𝐑},

then 𝐑5 = 𝑈 ⊕ 𝑊 .

Exercise 2.B.4.

(a) Let 𝑈  be the subspace of 𝐂5 defined by

𝑈 = {(𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5) ∈ 𝐂5 : 6𝑧1 = 𝑧2 and 𝑧3 + 2𝑧4 + 3𝑧5 = 0}.

Find a basis of 𝑈 .

(b) Extend the basis in (a) to a basis of 𝐂5.

(c) Find a subspace 𝑊  of 𝐂5 such that 𝐂5 = 𝑈 ⊕ 𝑊 .

Solution.

(a) Note that

𝑈 = {(𝑧1, 6𝑧1, −2𝑧2 − 3𝑧3, 𝑧2, 𝑧3) ∈ 𝐂5 : 𝑧1, 𝑧2, 𝑧3 ∈ 𝐂}.

Let 𝑢1 = (1, 6, 0, 0, 0), 𝑢2 = (0, 0, −2, 1, 0), 𝑢3 = (0, 0, −3, 0, 1), and 𝐵 = 𝑢1, 𝑢2, 𝑢3. Since

𝑧1𝑢1 + 𝑧2𝑢2 + 𝑧3𝑢3 = (𝑧1, 6𝑧1, −2𝑧2 − 3𝑧3, 𝑧2, 𝑧3)

for scalars 𝑧1, 𝑧2, 𝑧3, we see that span 𝐵 = 𝑈 . Setting the above expression equal to 
(0, 0, 0, 0, 0), it is immediate that 𝑧1 = 𝑧2 = 𝑧3 = 0, so that 𝐵 is linearly independent.
Thus 𝐵 is a basis of 𝑈 .

(b) Denote the 𝑗th standard basis vector of 𝐂5 by 𝑒𝑗. Following the procedure outlined in
2.30 and 2.32, we adjoin the five standard basis vectors to 𝐵 to obtain the spanning list

31 / 366



𝑢1, 𝑢2, 𝑢3, 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5.

• 𝑒1 does not belong to span(𝑢1, 𝑢2, 𝑢3), so we do not delete it.

• Note that 𝑒2 = 1
6(𝑢1 − 𝑒1), so we delete 𝑒2 from the list.

• 𝑒3 does not belong to span(𝑢1, 𝑢2, 𝑢3, 𝑒1), so we do not delete it.

• Note that 𝑒4 = 𝑢2 + 2𝑒3, so we delete 𝑒4 from the list.

• Since 𝑒5 = 𝑢3 + 3𝑒3, we delete 𝑒5 from the list.

We are left with the list 𝑢1, 𝑢2, 𝑢3, 𝑒1, 𝑒3; as the proof of 2.32 shows, this must be a
basis of 𝐂5.

(c) As shown in the proof of (2.33), if we let

𝑊 = span(𝑒1, 𝑒3) = {(𝑧1, 0, 𝑧3, 0, 0) ∈ 𝐂5 : 𝑥1, 𝑥3 ∈ 𝐂},

then 𝐂5 = 𝑈 ⊕ 𝑊 .

Exercise 2.B.5. Suppose 𝑉  is finite-dimensional and 𝑈, 𝑊  are subspaces of 𝑉  such
that 𝑉 = 𝑈 + 𝑊 . Prove that there exists a basis of 𝑉  consisting of vectors in 𝑈 ∪ 𝑊 .

Solution. Let 𝑢1, …, 𝑢𝑚 be a basis of 𝑈  and let 𝑤1, …, 𝑤𝑛 be a basis of 𝑊 ; these bases exist
by 2.25 and 2.31. Since

𝑈 = span(𝑢1, …, 𝑢𝑚), 𝑊 = span(𝑤1, …, 𝑤𝑛), and 𝑉 = 𝑈 + 𝑊,

we see that 𝑉 = span(𝑢1, …, 𝑢𝑚, 𝑤1, …, 𝑤𝑛). Thus, using the procedure of 2.30, we can reduce
the list 𝑢1, …, 𝑢𝑚, 𝑤1, …, 𝑤𝑛 to a basis of 𝑉  consisting of vectors in 𝑈 ∪ 𝑊 .

Exercise 2.B.6. Prove or give a counterexample: If 𝑝0, 𝑝1, 𝑝2, 𝑝3 is a list in 𝒫3(𝐅) such
that none of the polynomials 𝑝0, 𝑝1, 𝑝2, 𝑝3 has degree 2, then 𝑝0, 𝑝1, 𝑝2, 𝑝3 is not a basis
of 𝒫3(𝐅).

Solution. For a counterexample, consider 𝐵 = 1, 𝑥, 𝑥2 + 𝑥3, 𝑥3; none of the polynomials in
this list has degree 2. Suppose 𝑎0, 𝑎1, 𝑎2, 𝑎3 are scalars such that

𝑎0 + 𝑎1𝑥 + 𝑎2(𝑥2 + 𝑥3) + 𝑎3𝑥3 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + (𝑎2 + 𝑎3)𝑥3 = 0

for all 𝑥 ∈ 𝐅. This implies that 𝑎0 = 𝑎1 = 𝑎2 = 𝑎2 + 𝑎3 = 0 (we will prove this in 4.8),
which in turn gives 𝑎3 = 0. It follows that 𝐵 is linearly independent. Now suppose that
𝑝 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 ∈ 𝒫3(𝐅) is given and observe that

𝑎0 + 𝑎1𝑥 + 𝑎2(𝑥2 + 𝑥3) + (𝑎3 − 𝑎2)𝑥3 = 𝑝,

so that 𝑝 ∈ span 𝐵. It follows that 𝒫3(𝐅) = span 𝐵 and hence that 𝐵 is a basis of 𝒫3(𝐅).
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Exercise 2.B.7. Suppose 𝑣1, 𝑣2, 𝑣3, 𝑣4 is a basis of 𝑉 . Prove that

𝑣1 + 𝑣2, 𝑣2 + 𝑣3, 𝑣3 + 𝑣4, 𝑣4

is also a basis of 𝑉 .

Solution. Let 𝐵 = 𝑣1 + 𝑣2, 𝑣2 + 𝑣3, 𝑣3 + 𝑣4, 𝑣4. Suppose there are scalars 𝑎1, 𝑎2, 𝑎3, 𝑎4 such
that

𝑎1(𝑣1 + 𝑣2) + 𝑎2(𝑣2 + 𝑣3) + 𝑎3(𝑣3 + 𝑣4) + 𝑎4𝑣4

= 𝑎1𝑣1 + (𝑎1 + 𝑎2)𝑣2 + (𝑎2 + 𝑎3)𝑣3 + (𝑎3 + 𝑎4)𝑣4 = 0.

Since 𝑣1, 𝑣2, 𝑣3, 𝑣4 is a basis, this implies that

𝑎1 = 𝑎1 + 𝑎2 = 𝑎2 + 𝑎3 = 𝑎3 + 𝑎4 = 0 ⇒ 𝑎1 = 𝑎2 = 𝑎3 = 𝑎4 = 0.

Thus the list 𝐵 is linearly independent. Let 𝑣 ∈ 𝑉  be given. Since 𝑣1, 𝑣2, 𝑣3, 𝑣4 is a basis of 
𝑉 , there are scalars 𝑎1, 𝑎2, 𝑎3, 𝑎4 such that 𝑣 = 𝑎1𝑣1 + 𝑎2𝑣2 + 𝑎3𝑣3 + 𝑎4𝑣4. Observe that

𝑎1(𝑣1 + 𝑣2) + (𝑎2 − 𝑎1)(𝑣2 + 𝑣3) + (𝑎3 − 𝑎2 + 𝑎1)(𝑣3 + 𝑣4)

+ (𝑎4 − 𝑎3 + 𝑎2 − 𝑎1)𝑣4 = 𝑎1𝑣1 + 𝑎2𝑣2 + 𝑎3𝑣3 + 𝑎4𝑣4 = 𝑣.

It follows that span 𝐵 = 𝑉  and hence that 𝐵 is a basis of 𝑉 .

Exercise 2.B.8. Prove or give a counterexample: If 𝑣1, 𝑣2, 𝑣3, 𝑣4 is a basis of 𝑉  and 𝑈
is a subspace of 𝑉  such that 𝑣1, 𝑣2 ∈ 𝑈  and 𝑣3 ∉ 𝑈  and 𝑣4 ∉ 𝑈 , then 𝑣1, 𝑣2 is a basis of
𝑈 .

Solution. For a counterexample, consider 𝑉 = 𝐑4 and let 𝑒𝑗 be the 𝑗th standard basis vector
of 𝐑4. It is straightforward to verify that the list

𝑣1 = 𝑒1, 𝑣2 = 𝑒2, 𝑣3 = 𝑒3 + 𝑒4, 𝑣4 = 𝑒1 + 𝑒4

is a basis of 𝐑4. Let 𝑈 = span(𝑒1, 𝑒2, 𝑒3) and note that 𝑣1, 𝑣2 ∈ 𝑈 . Note further that, since
each vector (𝑎1, 𝑎2, 𝑎3, 𝑎4) ∈ 𝑈  must satisfy 𝑎4 = 0, we have 𝑣3, 𝑣4 ∉ 𝑈 . However, 𝑣1, 𝑣2 is not
a basis for 𝑈 : since 𝑒1, 𝑒2, 𝑒3 is linearly independent, any spanning list for 𝑈  must contain
at least three vectors.

Exercise 2.B.9. Suppose 𝑣1, …, 𝑣𝑚 is a list of vectors in 𝑉 . For 𝑘 ∈ {1, …, 𝑚}, let

𝑤𝑘 = 𝑣1 + ⋯ + 𝑣𝑘.

Show that 𝑣1, …, 𝑣𝑚 is a basis of 𝑉  if and only if 𝑤1, …, 𝑤𝑚 is a basis of 𝑉 .

Solution. This is immediate from Exercise 2.A.3 and Exercise 2.A.14.
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Exercise 2.B.10. Suppose 𝑈  and 𝑊  are subspaces of 𝑉  such that 𝑉 = 𝑈 ⊕ 𝑊 . Suppose
also that 𝑢1, …, 𝑢𝑚 is a basis of 𝑈  and 𝑤1, …, 𝑤𝑛 is a basis of 𝑊 . Prove that

𝑢1, …, 𝑢𝑚, 𝑤1, …, 𝑤𝑛

is a basis of 𝑉 .

Solution. Let 𝑣 ∈ 𝑉  be given. Since the sum 𝑉 = 𝑈 ⊕ 𝑊  is direct, there are unique vec-
tors 𝑢 ∈ 𝑈  and 𝑤 ∈ 𝑊  such that 𝑣 = 𝑢 + 𝑤. Because 𝑢1, …, 𝑢𝑚 is a basis of 𝑈 , 2.28 implies
that there are unique scalars 𝑎1, …, 𝑎𝑚 such that 𝑢 = 𝑎1𝑢1 + ⋯ + 𝑎𝑚𝑢𝑚. Similarly, there are
unique scalars 𝑏1, …, 𝑏𝑛 such that 𝑤 = 𝑏1𝑤1 + ⋯ + 𝑏𝑛𝑤𝑛. It follows that 𝑣 can be uniquely
represented as

𝑣 = 𝑎1𝑢1 + ⋯ + 𝑎𝑚𝑢𝑚 + 𝑏1𝑤1 + ⋯ + 𝑏𝑛𝑤𝑛.

Thus, by 2.28, 𝑢1, …, 𝑢𝑚, 𝑤1, …, 𝑤𝑛 is a basis of 𝑉 .

Exercise 2.B.11. Suppose 𝑉  is a real vector space. Show that if 𝑣1, …, 𝑣𝑛 is a basis of
𝑉  (as a real vector space), then 𝑣1, …, 𝑣𝑛 is also a basis of the complexification 𝑉𝐂 (as
a complex vector space).

See Exercise 8 in Section 1B for the definition of the complexification 𝑉𝐂.

Solution. Let 𝑢 + 𝑖𝑣 ∈ 𝑉𝐂 be given. By 2.28, there are unique real scalars 𝑎1, …, 𝑎𝑛, 𝑏1, …, 𝑏𝑛

such that

𝑢 = 𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛 and 𝑣 = 𝑏1𝑣1 + ⋯ + 𝑏𝑛𝑣𝑛.

Using the definitions of vector addition and complex scalar multiplication in 𝑉𝐂 given in
Exercise 1.B.8, observe that

∑
𝑛

𝑘=1
(𝑎𝑘 + 𝑏𝑘𝑖)𝑣𝑘 = (∑

𝑛

𝑘=1
𝑎𝑘𝑣𝑘) + 𝑖(∑

𝑛

𝑘=1
𝑏𝑘𝑣𝑘) = 𝑢 + 𝑖𝑣. (1)

Because two ordered pairs (𝑢, 𝑣) and (𝑤, 𝑥) are equal if and only if 𝑢 = 𝑤 and 𝑣 = 𝑥,
and the real scalars 𝑎1, …, 𝑎𝑛, 𝑏1, …, 𝑏𝑛 are unique, we see that the complex scalars
𝑎1 + 𝑏1𝑖, …, 𝑎𝑛 + 𝑏𝑛𝑖 in the linear combination on the left-hand side of equation (1) are
unique. It follows from 2.28 that 𝑣1, …, 𝑣𝑛 is a basis of 𝑉𝐂.
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2.C. Dimension

Exercise 2.C.1. Show that the subspaces of 𝐑2 are precisely {0}, all lines in 𝐑2 con-
taining the origin, and 𝐑2.

Solution. It is easily verified that {0}, all lines in 𝐑2 through the origin, and 𝐑2 are indeed
subspaces of 𝐑2. To see that these are the only subspaces of 𝐑2, suppose that 𝑈  is a subspace
of 𝐑2 and note that by 2.37 we must have dim 𝑈 ∈ {0, 1, 2}. If dim 𝑈 = 0 then 𝑈 = {0}, if 
dim 𝑈 = 2 then 𝑈 = 𝐑2 by 2.39, and if dim 𝑈 = 1 then there exists a basis 𝑢 ≠ 0 of 𝑈 , so
that 𝑈 = span(𝑢) = {𝜆𝑢 : 𝜆 ∈ 𝐑}, i.e. 𝑈  is a line through the origin with direction vector 𝑢.

𝑥

𝑦

0

𝑢

𝑈

Exercise 2.C.2. Show that the subspaces of 𝐑3 are precisely {0}, all lines in 𝐑3 con-
taining the origin, all planes in 𝐑3 containing the origin, and 𝐑3.

Solution. It is easily verified that {0}, all lines in 𝐑3 through the origin, all planes in 
𝐑3 through the origin, and 𝐑3 are indeed subspaces of 𝐑3. To see that these are the only
subspaces of 𝐑3, suppose that 𝑈  is a subspace of 𝐑3 and note that by 2.37 we must have 
dim 𝑈 ∈ {0, 1, 2, 3}. If dim 𝑈 = 0 then 𝑈 = {0}, if dim 𝑈 = 3 then 𝑈 = 𝐑3 by 2.39, and if 
dim 𝑈 = 1 then there exists a basis 𝑢 ≠ 0 of 𝑈 , so that 𝑈 = span(𝑢) = {𝜆𝑢 : 𝜆 ∈ 𝐑}, i.e. 𝑈
is a line through the origin with direction vector 𝑢. If dim 𝑈 = 2 then there is a basis 𝑢1, 𝑢2

of 𝑈 , so that 𝑈 = span(𝑢1, 𝑢2) = {𝜆1𝑢1 + 𝜆2𝑢2 : 𝜆1, 𝜆2 ∈ 𝐑}. Because neither of 𝑢1, 𝑢2 is a
scalar multiple of the other, i.e. 𝑢1 and 𝑢2 are not collinear, this describes a plane through
the origin in 𝐑3.
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Exercise 2.C.3.

(a) Let 𝑈 = {𝑝 ∈ 𝒫4(𝐅) : 𝑝(6) = 0}. Find a basis of 𝑈 .

(b) Extend the basis in (a) to a basis of 𝒫4(𝐅).

(c) Find a subspace 𝑊  of 𝒫4(𝐅) such that 𝒫4(𝐅) = 𝑈 ⊕ 𝑊 .

Solution.

(a) Let 𝐵 = 𝑥 − 6, (𝑥 − 6)2, (𝑥 − 6)3, (𝑥 − 6)4; certainly each of these polynomials belongs
to 𝑈 .

−1

0

1

5 6 7
𝑥

𝑥 − 6 (𝑥 − 6)2 (𝑥 − 6)3 (𝑥 − 6)4

Suppose we have scalars 𝑎1, 𝑎2, 𝑎3, 𝑎4 such that

𝑎1(𝑥 − 6) + 𝑎2(𝑥 − 6)2 + 𝑎3(𝑥 − 6)3 + 𝑎4(𝑥 − 6)4 = 0

for all 𝑥 ∈ 𝐅. Using the reasoning of 2.41, we see that this equation implies that
𝑎1 = 𝑎2 = 𝑎3 = 𝑎4 = 0. It follows that 𝐵 is linearly independent and thus by 2.22 we
have dim 𝑈 ≥ 4. Using 2.37, we also find that dim 𝑈 ≤ dim 𝒫4(𝐅) = 5. However, notice
that 𝑈 ≠ 𝒫4(𝐅) because the non-zero constant polynomials do not belong to 𝑈 ; it fol-
lows from 2.39 that dim 𝑈  must be strictly less than dim 𝒫4(𝐅) = 5. Thus dim 𝑈 = 4
and using 2.38 we may conclude that 𝐵 is a basis of 𝑈 .

(b) Certainly the constant polynomial 1 does not belong to 𝑈 = span 𝐵. It then follows
from Exercise 2.A.13 that the list 𝐵′ = 1, 𝑥 − 6, (𝑥 − 6)2, (𝑥 − 6)3, (𝑥 − 6)4 is linearly
independent. Since dim 𝒫4(𝐅) = 5, 2.38 allows us to conclude that 𝐵′ is a basis of
𝒫4(𝐅).

(c) Let 𝑊 = span(1), i.e. the subspace of all constant polynomials. As the proof of 2.33
shows, we then have 𝒫4(𝐅) = 𝑈 ⊕ 𝑊 .
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Exercise 2.C.4.

(a) Let 𝑈 = {𝑝 ∈ 𝒫4(𝐑) : 𝑝″(6) = 0}. Find a basis of 𝑈 .

(b) Extend the basis in (a) to a basis of 𝒫4(𝐑).

(c) Find a subspace 𝑊  of 𝒫4(𝐑) such that 𝒫4(𝐑) = 𝑈 ⊕ 𝑊 .

Solution.

(a) Let 𝐵 = 1, 𝑥, (𝑥 − 6)3, (𝑥 − 6)4; it is straightforward to verify that each of these poly-
nomials belongs to 𝑈 . Suppose we have scalars 𝑎0, 𝑎1, 𝑎3, 𝑎4 such that

𝑎0 + 𝑎1𝑥 + 𝑎3(𝑥 − 6)3 + 𝑎4(𝑥 − 6)4 = 0

for all 𝑥 ∈ 𝐑. Using the reasoning of 2.41, we see that this equation implies that
𝑎0 = 𝑎1 = 𝑎3 = 𝑎4 = 0. It follows that 𝐵 is linearly independent and thus by 2.22 we
have dim 𝑈 ≥ 4. Using 2.37, we also find that dim 𝑈 ≤ dim 𝒫4(𝐑) = 5. However, notice
that 𝑈 ≠ 𝒫4(𝐑) because 𝑥2 ∉ 𝑈 ; it follows from 2.39 that dim 𝑈  must be strictly less
than dim 𝒫4(𝐑) = 5. Thus dim 𝑈 = 4 and using 2.38 we may conclude that 𝐵 is a basis
of 𝑈 .

(b) As noted in part (a), 𝑥2 ∉ 𝑈 = span 𝐵. It then follows from Exercise 2.A.13 that the
list 𝐵′ = 1, 𝑥, 𝑥2, (𝑥 − 6)3, (𝑥 − 6)4 is linearly independent. Since dim 𝒫4(𝐑) = 5, (2.38)
allows us to conclude that 𝐵′ is a basis of 𝒫4(𝐑).

(c) Let 𝑊 = span(𝑥2). As the proof of 2.33 shows, we then have 𝒫4(𝐑) = 𝑈 ⊕ 𝑊 .

Exercise 2.C.5.

(a) Let 𝑈 = {𝑝 ∈ 𝒫4(𝐅) : 𝑝(2) = 𝑝(5)}. Find a basis of 𝑈 .

(b) Extend the basis in (a) to a basis of 𝒫4(𝐅).

(c) Find a subspace 𝑊  of 𝒫4(𝐅) such that 𝒫4(𝐅) = 𝑈 ⊕ 𝑊 .

Solution.

(a) Let 𝐵 = 1, (𝑥 − 2)(𝑥 − 5), (𝑥 − 2)2(𝑥 − 5), (𝑥 − 2)2(𝑥 − 5)2; it is straightforward to ver-
ify that each of these polynomials belongs to 𝑈 . Suppose we have scalars 𝑎0, 𝑎2, 𝑎3, 𝑎4

such that

𝑎0 + 𝑎2(𝑥 − 2)(𝑥 − 5) + 𝑎3(𝑥 − 2)2(𝑥 − 5) + 𝑎4(𝑥 − 2)2(𝑥 − 5)2 = 0

for all 𝑥 ∈ 𝐅. Using the reasoning of 2.41, we see that this equation implies that
𝑎0 = 𝑎2 = 𝑎3 = 𝑎4 = 0. It follows that 𝐵 is linearly independent and thus by 2.22 we
have dim 𝑈 ≥ 4. Using 2.37, we also find that dim 𝑈 ≤ dim 𝒫4(𝐅) = 5. However, notice
that 𝑈 ≠ 𝒫4(𝐅) because 𝑥 ∉ 𝑈 ; it follows from 2.39 that dim 𝑈  must be strictly less
than dim 𝒫4(𝐅) = 5. Thus dim 𝑈 = 4 and using 2.38 we may conclude that 𝐵 is a basis
of 𝑈 .
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−5

0

5

2 5
𝑥

1 (𝑥 − 2)(𝑥 − 5) (𝑥 − 2)2(𝑥 − 5) (𝑥 − 2)2(𝑥 − 5)2

(b) As noted in part (a), 𝑥 ∉ 𝑈 = span 𝐵. It then follows from Exercise 2.A.13 that the
list 𝐵′ = 1, 𝑥, (𝑥 − 2)(𝑥 − 5), (𝑥 − 2)2(𝑥 − 5), (𝑥 − 2)2(𝑥 − 5)2 is linearly independent.
Since dim 𝒫4(𝐅) = 5, 2.38 allows us to conclude that 𝐵′ is a basis of 𝒫4(𝐅).

(c) Let 𝑊 = span(𝑥). As the proof of 2.33 shows, we then have 𝒫4(𝐅) = 𝑈 ⊕ 𝑊 .

Exercise 2.C.6.

(a) Let 𝑈 = {𝑝 ∈ 𝒫4(𝐅) : 𝑝(2) = 𝑝(5) = 𝑝(6)}. Find a basis of 𝑈 .

(b) Extend the basis in (a) to a basis of 𝒫4(𝐅).

(c) Find a subspace 𝑊  of 𝒫4(𝐅) such that 𝒫4(𝐅) = 𝑈 ⊕ 𝑊 .

Solution.

(a) Let 𝐵 = 1, (𝑥 − 2)(𝑥 − 5)(𝑥 − 6), (𝑥 − 2)2(𝑥 − 5)(𝑥 − 6); it is straightforward to verify
that each of these polynomials belongs to 𝑈 . Suppose we have scalars 𝑎0, 𝑎3, 𝑎4 such
that

𝑎0 + 𝑎3(𝑥 − 2)(𝑥 − 5)(𝑥 − 6) + 𝑎4(𝑥 − 2)2(𝑥 − 5)(𝑥 − 6) = 0

for all 𝑥 ∈ 𝐅. Using the reasoning of 2.41, we see that this equation implies that
𝑎0 = 𝑎3 = 𝑎4 = 0. It follows that 𝐵 is linearly independent and thus by 2.22 we have 
dim 𝑈 ≥ 3. Let 𝑌  denote the subspace from Exercise 2.C.5 and notice that 𝑈  is a sub-
space of 𝑌 . Using 2.37, we then find that dim 𝑈 ≤ dim 𝑌 = 4. However, notice that 
𝑈 ≠ 𝑌  because (𝑥 − 2)(𝑥 − 5) ∈ 𝑌  but (𝑥 − 2)(𝑥 − 5) ∉ 𝑈 ; it follows from 2.39 that 
dim 𝑈  must be strictly less than dim 𝑌 = 4. Thus dim 𝑈 = 3 and using 2.38 we may
conclude that 𝐵 is a basis of 𝑈 .
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(b) As noted in part (a), (𝑥 − 2)(𝑥 − 5) ∈ 𝑌  but (𝑥 − 2)(𝑥 − 5) ∉ 𝑈 = span 𝐵. It then fol-
lows from Exercise 2.A.13 that the list

𝐵′ = 1, (𝑥 − 2)(𝑥 − 5), (𝑥 − 2)(𝑥 − 5)(𝑥 − 6), (𝑥 − 2)2(𝑥 − 5)(𝑥 − 6)

is linearly independent. Since dim 𝑌 = 4, 2.38 shows that 𝐵′ is a basis of 𝑌 . We can
now argue as in Exercise 2.C.5 (b) to conclude that the list

1, 𝑥, (𝑥 − 2)(𝑥 − 5), (𝑥 − 2)(𝑥 − 5)(𝑥 − 6), (𝑥 − 2)2(𝑥 − 5)(𝑥 − 6)

is a basis of 𝒫4(𝐅).

(c) Let 𝑊 = span(𝑥, (𝑥 − 2)(𝑥 − 5)). As the proof of 2.33 shows, we then have
𝒫4(𝐅) = 𝑈 ⊕ 𝑊 .

Exercise 2.C.7.

(a) Let 𝑈 = {𝑝 ∈ 𝒫4(𝐑) : ∫1
−1

𝑝 = 0}. Find a basis of 𝑈 .

(b) Extend the basis in (a) to a basis of 𝒫4(𝐑).

(c) Find a subspace 𝑊  of 𝒫4(𝐑) such that 𝒫4(𝐑) = 𝑈 ⊕ 𝑊 .

Solution.

(a) Let 𝐵 = 𝑥, 𝑥2 − 1
3 , 𝑥3, 𝑥4 − 1

5 ; it is straightforward to verify that each of these polyno-
mials belongs to 𝑈 . Suppose we have scalars 𝑎1, 𝑎2, 𝑎3, 𝑎4 such that

𝑎1𝑥 + 𝑎2(𝑥2 − 1
3) + 𝑎3𝑥3 + 𝑎4(𝑥4 − 1

5) = 0

for all 𝑥 ∈ 𝐑. Using the reasoning of 2.41, we see that this equation implies that
𝑎1 = 𝑎2 = 𝑎3 = 𝑎4 = 0. It follows that 𝐵 is linearly independent and thus by 2.22 we
have dim 𝑈 ≥ 4. Using 2.37, we also find that dim 𝑈 ≤ dim 𝒫4(𝐑) = 5. However, notice
that 𝑈 ≠ 𝒫4(𝐑) because 1 ∉ 𝑈 ; it follows from 2.39 that dim 𝑈  must be strictly less
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than dim 𝒫4(𝐑) = 5. Thus dim 𝑈 = 4 and using 2.38 we may conclude that 𝐵 is a basis
of 𝑈 .
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−1 0 1
𝑥

𝑥3

−1

0

1

−1 0 1
𝑥

𝑥4 − 1
5

(b) As noted in part (a), 1 ∉ 𝑈 = span 𝐵. It then follows from Exercise 2.A.13 that the list
𝐵′ = 1, 𝑥, 𝑥2 − 1

3 , 𝑥3, 𝑥4 − 1
5  is linearly independent. Since dim 𝒫4(𝐑) = 5, 2.38 allows

us to conclude that 𝐵′ is a basis of 𝒫4(𝐑).

(c) Let 𝑊 = span(1). As the proof of 2.33 shows, we then have 𝒫4(𝐑) = 𝑈 ⊕ 𝑊 .

Exercise 2.C.8. Suppose 𝑣1, …, 𝑣𝑚 is linearly independent in 𝑉  and 𝑤 ∈ 𝑉 . Prove that

dim span(𝑣1 + 𝑤, …, 𝑣𝑚 + 𝑤) ≥ 𝑚 − 1.

Solution. If 𝑚 = 1 then certainly dim span(𝑣1 + 𝑤) ≥ 0, so suppose that 𝑚 ≥ 2. Because 
𝑣1, …, 𝑣𝑚 is linearly independent, notice that:
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• −𝑣1 ∉ span(𝑣2, …, 𝑣𝑚);

• 𝑣2, …, 𝑣𝑚 is linearly independent.

It then follows from the contrapositive of Exercise 2.A.12 that the list 𝐵 = 𝑣2 − 𝑣1, …, 𝑣𝑚 − 𝑣1

is linearly independent. Now observe that

𝑣𝑗 − 𝑣1 = (𝑣𝑗 + 𝑤) − (𝑣1 + 𝑤) ∈ span(𝑣1 + 𝑤, …, 𝑣𝑚 + 𝑤)

for any 2 ≤ 𝑗 ≤ 𝑚. Thus 𝐵 is a linearly independent list of length 𝑚 − 1 contained in 
span(𝑣1 + 𝑤, …, 𝑣𝑚 + 𝑤) and we may use 2.22 to conclude that

dim span(𝑣1 + 𝑤, …, 𝑣𝑚 + 𝑤) ≥ 𝑚 − 1.

Exercise 2.C.9. Suppose 𝑚 is a positive integer and 𝑝0, 𝑝1, …, 𝑝𝑚 ∈ 𝒫(𝐅) are such that
each 𝑝𝑘 has degree 𝑘. Prove that 𝑝0, 𝑝1, …, 𝑝𝑚 is a basis of 𝒫𝑚(𝐅).

Solution. Suppose we have scalars 𝑎0, 𝑎1, …, 𝑎𝑚 such that

𝑎0𝑝0(𝑥) + 𝑎1𝑝1(𝑥) + ⋯ + 𝑎𝑚𝑝𝑚(𝑥) = 0 (∗)

for all 𝑥 ∈ 𝐅. Let 𝑐 be the coefficient of 𝑥𝑚 in the polynomial 𝑝𝑚 and note that 𝑐 ≠ 0 since
𝑝𝑚 has degree 𝑚. Because each 𝑝𝑘 has degree 𝑘, the coefficient of 𝑥𝑚 in the polynomial 
𝑝𝑘 must be zero for 𝑘 < 𝑚. Thus the left-hand side of (∗) has an 𝑎𝑚𝑐𝑥𝑚 term whereas the
right-hand side has no 𝑥𝑚 term. It follows that 𝑎𝑚𝑐 = 0 and hence that 𝑎𝑚 = 0, since 𝑐 ≠ 0.
Repeating this argument for the lower degree terms, we find that 𝑎0 = 𝑎1 = ⋯ = 𝑎𝑚 = 0.
Thus 𝑝0, 𝑝1, …, 𝑝𝑚 is a linearly independent list of length 𝑚 + 1 contained in 𝒫𝑚(𝐅). Since 
dim 𝒫𝑚(𝐅) = 𝑚 + 1, 2.38 allows us to conclude that 𝑝0, 𝑝1, …, 𝑝𝑚 is a basis of 𝒫𝑚(𝐅).

Exercise 2.C.10. Suppose 𝑚 is a positive integer. For 0 ≤ 𝑘 ≤ 𝑚, let

𝑝𝑘(𝑥) = 𝑥𝑘(1 − 𝑥)𝑚−𝑘.

Show that 𝑝0, …, 𝑝𝑚 is a basis of 𝒫𝑚(𝐅).

The basis in this exercise leads to what are called Bernstein polynomials. You can do
a web search to learn how Bernstein polynomials are used to approximate continuous
functions on [0, 1].

Solution. To remind us that these polynomials depend on 𝑚, let us use the notation

𝑝𝑘,𝑚(𝑥) = 𝑥𝑘(1 − 𝑥)𝑚−𝑘.

For a positive integer 𝑚, let 𝑆(𝑚) be the statement that the list 𝑝0,𝑚, …, 𝑝𝑚,𝑚 is linearly
independent. We will use induction (twice) to show that 𝑆(𝑚) holds for all positive integers.
First, we show the truth of 𝑆(1) and 𝑆(2).

For 𝑆(1), suppose that 𝑎0, 𝑎1 are scalars such that

𝑎0𝑝0,1(𝑥) + 𝑎1𝑝1,1(𝑥) = 𝑎0(1 − 𝑥) + 𝑎1𝑥 = 0
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for all 𝑥 ∈ 𝐅. Taking 𝑥 = 0 and 𝑥 = 1 immediately gives us 𝑎0 = 𝑎1 = 0.

For 𝑆(2), suppose that 𝑎0, 𝑎1, 𝑎2 are scalars such that

𝑎0𝑝0,2(𝑥) + 𝑎1𝑝1,2(𝑥) + 𝑎2𝑝2,2(𝑥) = 𝑎0(1 − 𝑥)2 + 𝑎1𝑥(1 − 𝑥) + 𝑎2𝑥2 = 0

for all 𝑥 ∈ 𝐅. Taking 𝑥 = 0 and 𝑥 = 1 immediately gives us 𝑎0 = 𝑎2 = 0, and then taking
any 𝑥 ∉ {0, 1} gives us 𝑎2 = 0.

Now suppose that 𝑆(𝑚) holds for some positive integer 𝑚 and let 𝑎0, …, 𝑎𝑚+2 be scalars
such that

∑
𝑚+2

𝑘=0
𝑎𝑘𝑝𝑘,𝑚+2(𝑥) = ∑

𝑚+2

𝑘=0
𝑎𝑘𝑥𝑘(1 − 𝑥)𝑚+2−𝑘 = 0

for all 𝑥 ∈ 𝐅. Taking 𝑥 = 0 and 𝑥 = 1 immediately gives us 𝑎0 = 𝑎𝑚+2 = 0, so that we now
have the equation

∑
𝑚+1

𝑘=1
𝑎𝑘𝑥𝑘(1 − 𝑥)𝑚+2−𝑘 = 0

for all 𝑥 ∈ 𝐅. Observe that

∑
𝑚+1

𝑘=1
𝑎𝑘𝑥𝑘(1 − 𝑥)𝑚+2−𝑘 = 𝑥(1 − 𝑥) ∑

𝑚+1

𝑘=1
𝑎𝑘𝑥𝑘−1(1 − 𝑥)𝑚+1−𝑘

= 𝑥(1 − 𝑥) ∑
𝑚

𝑘=0
𝑎𝑘+1𝑥𝑘(1 − 𝑥)𝑚−𝑘

= 𝑥(1 − 𝑥) ∑
𝑚

𝑘=0
𝑎𝑘+1𝑝𝑘,𝑚(𝑥).

Thus 𝑥(1 − 𝑥) ∑𝑚
𝑘=0 𝑎𝑘+1𝑝𝑘,𝑚(𝑥) = 0 for all 𝑥 ∈ 𝐅, which implies that ∑𝑚

𝑘=0 𝑎𝑘+1𝑝𝑘,𝑚(𝑥) = 0
for all 𝑥 ≠ 0, 1. Because the only polynomial with infinitely many roots is the zero polynomial
(we will prove this in 4.8), in fact we must have

∑
𝑚

𝑘=0
𝑎𝑘+1𝑝𝑘,𝑚(𝑥) = 0

for all 𝑥 ∈ 𝐅. The induction hypothesis now implies that 𝑎1 = ⋯ = 𝑎𝑚 = 0 and thus the list
𝑝0, …, 𝑝𝑚+2 is linearly independent, i.e. 𝑆(𝑚 + 2) holds. This completes the induction step.

We have now shown that 𝑆(𝑚) ⇒ 𝑆(𝑚 + 2) for a positive integer 𝑚. Since 𝑆(1) holds, an
application of induction shows that 𝑆(1), 𝑆(3), 𝑆(5), … all hold. Similarly, since 𝑆(2) holds,
another application of induction shows that 𝑆(2), 𝑆(4), 𝑆(6), … all hold. Thus 𝑆(𝑚) holds
for all positive integers 𝑚.

To complete the exercise, let 𝑚 be a positive integer. As we just showed, 𝑝0, …, 𝑝𝑚 is a
linearly independent list of length 𝑚 + 1 contained in 𝒫𝑚(𝐅). Since dim 𝒫𝑚(𝐅) = 𝑚 + 1,
2.38 allows us to conclude that 𝑝0, …, 𝑝𝑚 is a basis of 𝒫𝑚(𝐅).
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Exercise 2.C.11. Suppose 𝑈  and 𝑊  are both four-dimensional subspaces of 𝐂6. Prove
that there exist two vectors in 𝑈 ∩ 𝑊  such that neither of these vectors is a scalar
multiple of the other.

Solution. Notice that

6 = dim 𝐂6 ≥ dim(𝑈 + 𝑊) = dim 𝑈 + dim 𝑊 − dim(𝑈 ∩ 𝑊) = 8 − dim(𝑈 ∩ 𝑊),

where we have used 2.37 and 2.43. It follows that dim(𝑈 ∩ 𝑊) ≥ 2 and thus we can find a
linearly independent list 𝑣1, 𝑣2 in 𝑈 ∩ 𝑊 ; by Exercise 2.A.4 (b), neither of these vectors is a
scalar multiple of the other.

Exercise 2.C.12. Suppose that 𝑈  and 𝑊  are subspaces of 𝐑8 such that dim 𝑈 = 3, 
dim 𝑊 = 5, and 𝑈 + 𝑊 = 𝐑8. Prove that 𝐑8 = 𝑈 ⊕ 𝑊 .

Solution. By 2.43 we have

8 = dim 𝐑8 = dim(𝑈 + 𝑊) = dim 𝑈 + dim 𝑊 − dim(𝑈 ∩ 𝑊) = 8 − dim(𝑈 ∩ 𝑊).

It follows that dim(𝑈 ∩ 𝑊) = 0 and hence that 𝑈 ∩ 𝑊 = {0}. Thus, by 1.46, the sum
𝐑8 = 𝑈 ⊕ 𝑊  is direct.

Exercise 2.C.13. Suppose 𝑈  and 𝑊  are both five-dimensional subspaces of 𝐑9. Prove
that 𝑈 ∩ 𝑊 ≠ {0}.

Solution. By 2.43 we have

9 = dim 𝐑9 ≥ dim(𝑈 + 𝑊) = dim 𝑈 + dim 𝑊 − dim(𝑈 ∩ 𝑊) = 10 − dim(𝑈 ∩ 𝑊).

It follows that dim(𝑈 ∩ 𝑊) ≥ 1 and hence that 𝑈 ∩ 𝑊 ≠ {0}.

Exercise 2.C.14. Suppose 𝑉  is a ten-dimensional vector space and 𝑉1, 𝑉2, 𝑉3 are sub-
spaces of 𝑉  with dim 𝑉1 = dim 𝑉2 = dim 𝑉3 = 7. Prove that 𝑉1 ∩ 𝑉2 ∩ 𝑉3 ≠ {0}.

Solution. By 2.43 we have

dim((𝑉1 ∩ 𝑉2) + 𝑉3) = dim(𝑉1 ∩ 𝑉2) + 7 − dim(𝑉1 ∩ 𝑉2 ∩ 𝑉3), (1)

dim(𝑉1 + 𝑉2) = 14 − dim(𝑉1 ∩ 𝑉2). (2)

Combining equations (1) and (2) gives us

dim(𝑉1 ∩ 𝑉2 ∩ 𝑉3) = 21 − dim(𝑉1 + 𝑉2) − dim((𝑉1 ∩ 𝑉2) + 𝑉3).

Now we use the above equation and 2.37:

dim(𝑉1 ∩ 𝑉2 ∩ 𝑉3) ≥ 21 − 2 dim 𝑉 = 1.

Thus 𝑉1 ∩ 𝑉2 ∩ 𝑉3 ≠ {0}.
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Exercise 2.C.15. Suppose 𝑉  is finite-dimensional and 𝑉1, 𝑉2, 𝑉3 are subspaces of 𝑉
with dim 𝑉1 + dim 𝑉2 + dim 𝑉3 > 2 dim 𝑉 . Prove that 𝑉1 ∩ 𝑉2 ∩ 𝑉3 ≠ {0}.

Solution. By 2.43 we have

dim((𝑉1 ∩ 𝑉2) + 𝑉3) = dim(𝑉1 ∩ 𝑉2) + dim 𝑉3 − dim(𝑉1 ∩ 𝑉2 ∩ 𝑉3), (1)

dim(𝑉1 + 𝑉2) = dim 𝑉1 + dim 𝑉2 − dim(𝑉1 ∩ 𝑉2). (2)

Combining equations (1) and (2) gives us

dim(𝑉1 ∩ 𝑉2 ∩ 𝑉3) = dim 𝑉1 + dim 𝑉2 + dim 𝑉3 − dim(𝑉1 + 𝑉2) − dim((𝑉1 ∩ 𝑉2) + 𝑉3).

Now we use the above equation and 2.37:

dim(𝑉1 ∩ 𝑉2 ∩ 𝑉3) ≥ dim 𝑉1 + dim 𝑉2 + dim 𝑉3 − 2 dim 𝑉 > 0.

Thus 𝑉1 ∩ 𝑉2 ∩ 𝑉3 ≠ {0}.

Exercise 2.C.16. Suppose 𝑉  is finite-dimensional and 𝑈  is a subspace of 𝑉  with 𝑈 ≠ 𝑉 .
Let 𝑛 = dim 𝑉  and 𝑚 = dim 𝑈 . Prove that there exist 𝑛 − 𝑚 subspaces of 𝑉 , each of
dimension 𝑛 − 1, whose intersection equals 𝑈 .

Solution. Let 𝑢1, …, 𝑢𝑚 be a basis of 𝑈  and, using 2.32, extend this to a basis
𝐵 = 𝑢1, …, 𝑢𝑚, 𝑣1, …, 𝑣𝑘 of 𝑉 ; note that 𝑘 ≥ 1 since 𝑈 ≠ 𝑉  and that 𝑛 − 𝑚 = 𝑘. For each 
𝑗 ∈ {1, …, 𝑘}, let 𝐵𝑗 be the list of vectors obtained by removing 𝑣𝑗 from 𝐵, i.e.

𝐵𝑗 = 𝑢1, …, 𝑢𝑚, 𝑣1, …, 𝑣𝑗−1, 𝑣𝑗+1, …, 𝑣𝑘.

Now let 𝑈𝑗 = span 𝐵𝑗. Observe that 𝐵𝑗 is linearly independent since 𝐵 is linearly indepen-
dent and thus 𝐵𝑗 is a basis of 𝑈𝑗, so that dim 𝑈𝑗 = 𝑚 + 𝑘 − 1 = 𝑛 − 1. Furthermore, for 
𝑖 ≠ 𝑗 we have 𝑣𝑗 ∈ 𝑈𝑖 but 𝑣𝑗 ∉ 𝑈𝑗 by the linear independence of 𝐵; it follows that 𝑈𝑖 ≠ 𝑈𝑗.
Thus the collection {𝑈𝑗 : 1 ≤ 𝑗 ≤ 𝑘} consists of 𝑘 = 𝑛 − 𝑚 distinct subspaces of 𝑉  each of
dimension 𝑛 − 1.

We now show that 𝑈 = 𝑈1 ∩ ⋯ ∩ 𝑈𝑘. If 𝑘 = 1 then 𝑈1 = 𝑈  and the equality is clear, so
suppose that 𝑘 ≥ 2. Certainly 𝑈 ⊆ 𝑈𝑗 for each 𝑗 ∈ {1, …, 𝑘} and thus 𝑈 ⊆ 𝑈1 ∩ ⋯ ∩ 𝑈𝑘. Let
𝑢 ∈ 𝑈1 ∩ ⋯ ∩ 𝑈𝑘 be given. In particular 𝑢 ∈ 𝑈1, so there are scalars 𝑎1, …, 𝑎𝑚, 𝑐2, …, 𝑐𝑘 such
that

𝑢 = 𝑎1𝑢1 + ⋯ + 𝑎𝑚𝑢𝑚 + 𝑐2𝑣2 + ⋯ + 𝑐𝑘𝑣𝑘. (∗)

For each 𝑗 ∈ {2, …, 𝑘} we have 𝑢 ∈ 𝑈𝑗 and thus 𝑢 can also be expressed as a linear combina-
tion of the list 𝐵𝑗. The coefficient of 𝑣𝑗 in this linear combination is zero and, because 𝐵 is a
basis of 𝑉 , it then follows from unique representation 2.28 that the coefficient 𝑐𝑗 in the linear
combination (∗) is also zero. Thus 𝑢 = 𝑎1𝑢1 + ⋯ + 𝑎𝑚𝑢𝑚 ∈ 𝑈 , so that 𝑈1 ∩ ⋯ ∩ 𝑈𝑚 ⊆ 𝑈 . We
may conclude that 𝑈 = 𝑈1 ∩ ⋯ ∩ 𝑈𝑘.
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Exercise 2.C.17. Suppose that 𝑉1, …, 𝑉𝑚 are finite-dimensional subspaces of 𝑉 . Prove
that 𝑉1 + ⋯ + 𝑉𝑚 is finite-dimensional and

dim(𝑉1 + ⋯ + 𝑉𝑚) ≤ dim 𝑉1 + ⋯ + dim 𝑉𝑚.

The inequality above is an equality if and only if 𝑉1 + ⋯ + 𝑉𝑚 is a direct sum, as will
be shown in 3.94.

Solution. Each 𝑉𝑗 has a basis 𝐵𝑗 by 2.31, so that 𝑉𝑗 = span 𝐵𝑗. Let 𝐵 be the list 
𝐵1, 𝐵2, …, 𝐵𝑚 (removing duplicate vectors if necessary) and, letting |𝐵| denote the length
of the list 𝐵, notice that |𝐵| ≤ |𝐵1| + ⋯ + |𝐵𝑚|. Notice further that 𝑉1 + ⋯ + 𝑉𝑚 = span 𝐵.
It follows that 𝑉1 + ⋯ + 𝑉𝑚 is finite-dimensional and furthermore, by 2.22,

dim(𝑉1 + ⋯ + 𝑉𝑚) ≤ |𝐵| ≤ |𝐵1| + ⋯ + |𝐵𝑚| = dim 𝑉1 + ⋯ + dim 𝑉𝑚.

Exercise 2.C.18. Suppose 𝑉  is finite-dimensional, with dim 𝑉 = 𝑛 ≥ 1. Prove that
there exist one-dimensional subspaces 𝑉1, …, 𝑉𝑛 of 𝑉  such that

𝑉 = 𝑉1 ⊕ ⋯ ⊕ 𝑉𝑛.

Solution. 𝑉  has a non-empty (since 𝑛 ≥ 1) basis 𝑣1, …, 𝑣𝑛. For each 𝑗 ∈ {1, …, 𝑛} let
𝑉𝑗 = span(𝑣𝑗) and note that dim 𝑉𝑗 = 1 because 𝑣𝑗 ≠ 0. By 2.28 each vector in 𝑉  is a linear
combination of the basis vectors 𝑣1, …, 𝑣𝑛, so that 𝑉 = 𝑉1 + ⋯ + 𝑉𝑛, and furthermore this
linear combination is unique, so that the sum 𝑉 = 𝑉1 ⊕ ⋯ + ⊕ 𝑉𝑛 is direct.

Exercise 2.C.19. Explain why you might guess, motivated by analogy with the for-
mula for the number of elements in the union of three finite sets, that if 𝑉1, 𝑉2, 𝑉3 are
subspaces of a finite-dimensional vector space, then

dim(𝑉1 + 𝑉2 + 𝑉3)

= dim 𝑉1 + dim 𝑉2 + dim 𝑉3

− dim(𝑉1 ∩ 𝑉2) − dim(𝑉1 ∩ 𝑉3) − dim(𝑉2 ∩ 𝑉3)

+ dim(𝑉1 ∩ 𝑉2 ∩ 𝑉3).

Then either prove the formula above or give a counterexample.

Solution. If 𝑆1, 𝑆2, 𝑆3 are finite sets and |𝑆| denotes the number of elements in a finite set
𝑆, then the inclusion-exclusion principle gives us the formula

|𝑆1 ∪ 𝑆2 ∪ 𝑆3| = |𝑆1| + |𝑆2| + |𝑆3| − |𝑆1 ∩ 𝑆2| − |𝑆1 ∩ 𝑆3| − |𝑆2 ∩ 𝑆3| + |𝑆1 ∩ 𝑆2 ∩ 𝑆3|.

However, the analogous formula for the dimensions of finite-dimensional subspaces does not
hold, as the following counterexample shows. Consider 𝐑2 and let 𝑉1, 𝑉2, 𝑉3 be three distinct
lines through the origin, say
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𝑉1 = span((−1, 2)), 𝑉2 = span((1, 1)), and 𝑉3 = span((4, −1)).

𝑥

𝑦
𝑉1 𝑉2

𝑉3

It is straightforward to verify that 𝑉1 + 𝑉2 + 𝑉3 = 𝐑2 and that

𝑉1 ∩ 𝑉2 = 𝑉1 ∩ 𝑉3 = 𝑉2 ∩ 𝑉3 = 𝑉1 ∩ 𝑉2 ∩ 𝑉3 = {0}.

Thus dim(𝑉1 + 𝑉2 + 𝑉3) = dim 𝐑2 = 2, whereas the right-hand side of the proposed formula
is

1 + 1 + 1 − 0 − 0 − 0 + 0 = 3.

Exercise 2.C.20. Prove that if 𝑉1, 𝑉2, and 𝑉3 are subspaces of a finite-dimensional
vector space, then

dim(𝑉1 + 𝑉2 + 𝑉3)

= dim 𝑉1 + dim 𝑉2 + dim 𝑉3

−
dim(𝑉1 ∩ 𝑉2) + dim(𝑉1 ∩ 𝑉3) + dim(𝑉2 ∩ 𝑉3)

3

−
dim((𝑉1 + 𝑉2) ∩ 𝑉3) + dim((𝑉1 + 𝑉3) ∩ 𝑉2) + dim((𝑉2 + 𝑉3) ∩ 𝑉1)

3
.

The formula above may seem strange because the right side does not look like an in-
teger.

Solution. Using 2.43 twice, observe that

dim(𝑉1 + 𝑉2 + 𝑉3) = dim(𝑉1 + 𝑉2) + dim 𝑉3 − dim((𝑉1 + 𝑉2) ∩ 𝑉3)

= dim 𝑉1 + dim 𝑉2 + dim 𝑉3 − dim(𝑉1 ∩ 𝑉2) − dim((𝑉1 + 𝑉2) ∩ 𝑉3).

Similarly, we find that

dim(𝑉1 + 𝑉2 + 𝑉3) = dim 𝑉1 + dim 𝑉2 + dim 𝑉3 − dim(𝑉1 ∩ 𝑉3) − dim((𝑉1 + 𝑉3) ∩ 𝑉2),

dim(𝑉1 + 𝑉2 + 𝑉3) = dim 𝑉1 + dim 𝑉2 + dim 𝑉3 − dim(𝑉2 ∩ 𝑉3) − dim((𝑉2 + 𝑉3) ∩ 𝑉1).
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Adding these three formulas together and then dividing through by 3 gives us the desired
formula.
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Chapter 3. Linear Maps

3.A. Vector Space of Linear Maps

Exercise 3.A.1. Suppose 𝑏, 𝑐 ∈ 𝐑. Define 𝑇 : 𝐑3 → 𝐑2 by

𝑇 (𝑥, 𝑦, 𝑧) = (2𝑥 − 4𝑦 + 3𝑧 + 𝑏, 6𝑥 + 𝑐𝑥𝑦𝑧).

Show that 𝑇  is linear if and only if 𝑏 = 𝑐 = 0.

Solution. First suppose that 𝑏 = 𝑐 = 0, so that 𝑇  is the map

𝑇 (𝑥, 𝑦, 𝑧) = (2𝑥 − 4𝑦 + 3𝑧, 6𝑥).

Let (𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2) ∈ 𝐑3 and 𝜆 ∈ 𝐑 be given. Observe that

𝑇 (𝑥1 + 𝑥2, 𝑦1 + 𝑦2, 𝑧1 + 𝑧2) = (2(𝑥1 + 𝑥2) − 4(𝑦1 + 𝑦2) + 3(𝑧1 + 𝑧2), 6(𝑥1 + 𝑥2))

= (2𝑥1 + 2𝑥2 − 4𝑦1 − 4𝑦2 + 3𝑧1 + 3𝑧2, 6𝑥1 + 6𝑥2)

= (2𝑥1 − 4𝑦1 + 3𝑧1, 6𝑥1) + (2𝑥2 − 4𝑦2 + 3𝑧2, 6𝑥2)

= 𝑇 (𝑥1, 𝑦1, 𝑧1) + 𝑇 (𝑥2, 𝑦2, 𝑧2)

𝑇 (𝜆𝑥1, 𝜆𝑦1, 𝜆𝑧1) = (2𝜆𝑥1 − 4𝜆𝑦1 + 3𝜆𝑧1, 6𝜆𝑥1)

= (𝜆(2𝑥1 − 4𝑦1 + 3𝑧1), 𝜆(6𝑥1))

= 𝜆(2𝑥1 − 4𝑦1 + 3𝑧1, 6𝑥1)

= 𝜆𝑇 (𝑥1, 𝑦1, 𝑧1).

Thus 𝑇  is linear.

Now suppose that 𝑏 ≠ 0 and notice that 𝑇 (0, 0, 0) = (𝑏, 0) ≠ (0, 0); it follows from 3.10 that
𝑇  is not linear. If 𝑐 ≠ 0 then note that

𝑇 (1, 1, 1) = (1 + 𝑏, 6 + 𝑐) and 𝑇 (2, 2, 2) = (2 + 𝑏, 12 + 8𝑐).

Since 2(6 + 𝑐) = 12 + 2𝑐 ≠ 12 + 8𝑐 for 𝑐 ≠ 0, we see that 2𝑇 (1, 1, 1) ≠ 𝑇 (2, 2, 2) and thus 𝑇
is not linear.
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Exercise 3.A.2. Suppose 𝑏, 𝑐 ∈ 𝐑. Define 𝑇 : 𝒫(𝐑) → 𝐑2 by

𝑇𝑝 = (3𝑝(4) + 5𝑝′(6) + 𝑏𝑝(1)𝑝(2), ∫
2

−1
𝑥3𝑝(𝑥) d𝑥 + 𝑐 sin 𝑝(0)).

Show that 𝑇  is linear if and only if 𝑏 = 𝑐 = 0.

Solution. First suppose that 𝑏 = 𝑐 = 0, so that 𝑇  is the map

𝑇𝑝 = (3𝑝(4) + 5𝑝′(6), ∫
2

−1
𝑥3𝑝(𝑥) d𝑥).

Let 𝑝, 𝑞 ∈ 𝒫(𝐑) and 𝜆 ∈ 𝐑 be given. Observe that

𝑇 (𝑝 + 𝑞) = (3(𝑝 + 𝑞)(4) + 5(𝑝 + 𝑞)′(6), ∫
2

−1
𝑥3(𝑝 + 𝑞)(𝑥) d𝑥)

= (3(𝑝(4) + 𝑞(4)) + 5(𝑝′(6) + 𝑞′(6)), ∫
2

−1
𝑥3(𝑝(𝑥) + 𝑞(𝑥)) d𝑥)

= (3𝑝(4) + 3𝑞(4) + 5𝑝′(6) + 5𝑞′(6), ∫
2

−1
𝑥3𝑝(𝑥) d𝑥 + ∫

2

−1
𝑥3𝑞(𝑥) d𝑥)

= (3𝑝(4) + 5𝑝′(6), ∫
2

−1
𝑥3𝑝(𝑥) d𝑥) + (3𝑞(4) + 5𝑞′(6), ∫

2

−1
𝑥3𝑞(𝑥) d𝑥)

= 𝑇𝑝 + 𝑇𝑞.

𝑇 (𝜆𝑝) = (3(𝜆𝑝)(4) + 5(𝜆𝑝)′(6), ∫
2

−1
𝑥3(𝜆𝑝)(𝑥) d𝑥)

= (3(𝜆𝑝(4)) + 5(𝜆𝑝′(6)), ∫
2

−1
𝑥3(𝜆𝑝(𝑥)) d𝑥)

= (𝜆(3𝑝(4) + 5𝑝′(6)), 𝜆 ∫
2

−1
𝑥3𝑝(𝑥) d𝑥)

= 𝜆(3𝑝(4) + 5𝑝′(6), ∫
2

−1
𝑥3𝑝(𝑥) d𝑥)

= 𝜆𝑇𝑝.

Thus 𝑇  is linear.

Now suppose that 𝑇  is linear and observe that

2𝑇 (𝜋) = (6𝜋 + 2𝑏𝜋2, 15
2 𝜋 + 2𝑐) and 𝑇 (2𝜋) = (6𝜋 + 4𝑏𝜋2, 15

2 𝜋).
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Since 𝑇  is linear we must have 2𝑇 (𝜋) = 𝑇(2𝜋):

(6𝜋 + 2𝑏𝜋2, 15
2 𝜋 + 2𝑐) = (6𝜋 + 4𝑏𝜋2, 15

2 𝜋) ⇔ (2𝑏𝜋2, 2𝑐) = (4𝑏𝜋2, 0) ⇔ 𝑏 = 𝑐 = 0.

Exercise 3.A.3. Suppose that 𝑇 ∈ ℒ(𝐅𝑛, 𝐅𝑚). Show that there exist scalars 𝐴𝑗,𝑘 ∈ 𝐅
for 𝑗 = 1, …, 𝑚 and 𝑘 = 1, …, 𝑛 such that

𝑇 (𝑥1, …, 𝑥𝑛) = (𝐴1,1𝑥1 + ⋯ + 𝐴1,𝑛𝑥𝑛, …, 𝐴𝑚,1𝑥1 + ⋯ + 𝐴𝑚,𝑛𝑥𝑛)

for every (𝑥1, …, 𝑥𝑛) ∈ 𝐅𝑛.

This exercise shows that the linear map 𝑇  has the form promised in the second to last
item of Example 3.3.

Solution. Let 𝑒1, …, 𝑒𝑛 be the standard basis of 𝐅𝑛 and let 𝑓1, …, 𝑓𝑚 be the standard basis
of 𝐅𝑚. For any 𝑘 ∈ {1, …, 𝑛}, there are scalars 𝐴1,𝑘, …, 𝐴𝑚,𝑘 such that

𝑇𝑒𝑘 = ∑
𝑚

𝑗=1
𝐴𝑗,𝑘𝑓𝑗.

Let 𝑥 = (𝑥1, …, 𝑥𝑛) = ∑𝑛
𝑘=1 𝑥𝑘𝑒𝑘 be given and observe that by linearity,

𝑇𝑥 = 𝑇(∑
𝑛

𝑘=1
𝑥𝑘𝑒𝑘) = ∑

𝑛

𝑘=1
𝑥𝑘𝑇𝑒𝑘 = ∑

𝑛

𝑘=1
𝑥𝑘 ∑

𝑚

𝑗=1
𝐴𝑗,𝑘𝑓𝑗 = ∑

𝑚

𝑗=1
(∑

𝑛

𝑘=1
𝐴𝑗,𝑘𝑥𝑘)𝑓𝑗

= (∑
𝑛

𝑘=1
𝐴1,𝑘𝑥𝑘, …, ∑

𝑛

𝑘=1
𝐴𝑚,𝑘𝑥𝑘) = (𝐴1,1𝑥1 + ⋯ + 𝐴1,𝑛𝑥𝑛, …, 𝐴𝑚,1𝑥1 + ⋯ + 𝐴𝑚,𝑛𝑥𝑛).

Exercise 3.A.4. Suppose 𝑇 ∈ ℒ(𝑉 , 𝑊) and 𝑣1, …, 𝑣𝑚 is a list of vectors in 𝑉  such
that 𝑇𝑣1, …, 𝑇 𝑣𝑚 is a linearly independent list in 𝑊 . Prove that 𝑣1, …, 𝑣𝑚 is linearly
independent.

Solution. Suppose we have scalars 𝑎1, …, 𝑎𝑚 such that 𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚 = 0. Applying 𝑇
to both sides of this equation and using linearity and 3.10, we obtain

𝑇 (𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚) = 𝑇 (0) ⇔ 𝑎1𝑇𝑣1 + ⋯ + 𝑎𝑚𝑇𝑣𝑚 = 0.

Since the list 𝑇𝑣1, …, 𝑇 𝑣𝑚 is linearly independent, this equation implies that
𝑎1 = ⋯ = 𝑎𝑚 = 0. Thus the list 𝑣1, …, 𝑣𝑚 is linearly independent.

Exercise 3.A.5. Prove that ℒ(𝑉 , 𝑊) is a vector space, as was asserted in 3.6.

Solution. First let us show that ℒ(𝑉 , 𝑊) is closed under addition and scalar multiplication.
Let 𝑆, 𝑇 ∈ ℒ(𝑉 , 𝑊), 𝑢, 𝑣 ∈ 𝑉 , and 𝜆, 𝛼 ∈ 𝐅 be given. Observe that

(𝑆 + 𝑇)(𝑢 + 𝑣) = 𝑆(𝑢 + 𝑣) + 𝑇(𝑢 + 𝑣) = 𝑆𝑢 + 𝑆𝑣 + 𝑇𝑢 + 𝑇𝑣

= 𝑆𝑢 + 𝑇𝑢 + 𝑆𝑣 + 𝑇𝑣 = (𝑆 + 𝑇)(𝑢) + (𝑆 + 𝑇)(𝑣),
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(𝑆 + 𝑇)(𝛼𝑣) = 𝑆(𝛼𝑣) + 𝑇(𝛼𝑣) = 𝛼𝑆𝑣 + 𝛼𝑇𝑣 = 𝛼(𝑆𝑣 + 𝑇𝑣) + 𝛼(𝑆 + 𝑇)(𝑣).

Thus 𝑆 + 𝑇 ∈ ℒ(𝑉 , 𝑊). Similarly,

(𝜆𝑆)(𝑢 + 𝑣) = 𝜆𝑆(𝑢 + 𝑣) = 𝜆(𝑆𝑢 + 𝑆𝑣) = 𝜆𝑆𝑢 + 𝜆𝑆𝑣 = (𝜆𝑆)(𝑢) + (𝜆𝑆)(𝑣),

(𝜆𝑆)(𝛼𝑣) = 𝜆𝑆(𝛼𝑣) = 𝜆(𝛼𝑆𝑣) = 𝛼(𝜆𝑆𝑣) = 𝛼(𝜆𝑆)(𝑣).

Thus 𝜆𝑆 ∈ ℒ(𝑉 , 𝑊). We now verify each requirement in definition 1.20.

Commutativity. Suppose 𝑆, 𝑇 ∈ ℒ(𝑉 , 𝑊) and 𝑣 ∈ 𝑉 . Observe that

(𝑆 + 𝑇)(𝑣) = 𝑆𝑣 + 𝑇𝑣 = 𝑇𝑣 + 𝑆𝑣 = (𝑇 + 𝑆)(𝑣).

Thus 𝑆 + 𝑇 = 𝑇 + 𝑆.

Associativity. Suppose 𝑅, 𝑆, 𝑇 ∈ ℒ(𝑉 , 𝑊), 𝑎, 𝑏 ∈ 𝐅, and 𝑣 ∈ 𝑉 . Observe that

((𝑅 + 𝑆) + 𝑇)(𝑣) = (𝑅 + 𝑆)(𝑣) = 𝑇𝑣 = (𝑅𝑣 + 𝑆𝑣) = 𝑇𝑣

= 𝑅𝑣 + (𝑆𝑣 + 𝑇𝑣) = 𝑅𝑣 + (𝑆 + 𝑇)(𝑣) = (𝑅 + (𝑆 + 𝑇))(𝑣),

((𝑎𝑏)𝑅)(𝑣) = (𝑎𝑏)𝑅𝑣 = 𝑎(𝑏𝑅𝑣) = 𝑎((𝑏𝑅)(𝑣)) = (𝑎(𝑏𝑅))(𝑣).

Thus (𝑅 + 𝑆) + 𝑇 = 𝑅 + (𝑆 + 𝑇) and (𝑎𝑏)𝑅 = 𝑎(𝑏𝑅).

Additive identity. Certainly the map 0 : 𝑉 → 𝑊  given by 𝑣 ↦ 0 belongs to ℒ(𝑉 , 𝑊); we
claim that this map is the additive identity in ℒ(𝑉 , 𝑊). Indeed, let 𝑆 ∈ ℒ(𝑉 , 𝑊) and 𝑣 ∈ 𝑉
be given and observe that

(𝑆 + 0)(𝑣) = 𝑆𝑣 + 0𝑣 = 𝑆𝑣 + 0 = 𝑆𝑣.

Thus 𝑆 + 0 = 𝑆.

Additive inverse. For 𝑆 ∈ ℒ(𝑉 , 𝑊), define 𝑇 : 𝑉 → 𝑊  by 𝑇𝑣 = −𝑆𝑣; it is straightforward
to verify that 𝑇  is linear. We claim that 𝑇  is the additive inverse to 𝑆. Indeed, for any 𝑣 ∈ 𝑉 ,

(𝑆 + 𝑇)(𝑣) = 𝑆𝑣 + 𝑇𝑣 = 𝑆𝑣 + (−𝑆𝑣) = 0.

Thus 𝑆 + 𝑇 = 0.

Multiplicative identity. Let 𝑆 ∈ ℒ(𝑉 , 𝑊) and 𝑣 ∈ 𝑉  be given and observe that

(1𝑆)(𝑣) = 1𝑆𝑣 = 𝑆𝑣.

Thus 1𝑆 = 𝑆.

Distributive properties. Let 𝑆, 𝑇 ∈ ℒ(𝑉 , 𝑊), 𝑎, 𝑏 ∈ 𝐅, and 𝑣 ∈ 𝑉  be given. Observe that

(𝑎(𝑆 + 𝑇))(𝑣) = 𝑎(𝑆 + 𝑇)(𝑣) = 𝑎(𝑆𝑣 + 𝑇𝑣) = 𝑎𝑆𝑣 + 𝑎𝑇𝑣 = (𝑎𝑆)(𝑣) + (𝑎𝑇 )(𝑣),

((𝑎 + 𝑏)𝑆)(𝑣) = (𝑎 + 𝑏)𝑆𝑣 = 𝑎𝑆𝑣 + 𝑏𝑆𝑣 = (𝑎𝑆)(𝑣) + (𝑏𝑆)(𝑣).

Thus 𝑎(𝑆 + 𝑇) = 𝑎𝑆 + 𝑎𝑇  and (𝑎 + 𝑏)𝑆 = 𝑎𝑆 + 𝑏𝑆.
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Exercise 3.A.6. Prove that multiplication of linear maps has the associative, identity,
and distributive properties asserted in 3.8.

Solution. The associative property is immediate from the associativity of composition of
functions.

For the identity property, let 𝐼𝑉  be the identity map on 𝑉  and let 𝐼𝑊  be the identity map
on 𝑊 . For 𝑇 ∈ ℒ(𝑉 , 𝑊) and 𝑣 ∈ 𝑉 , observe that

(𝑇 𝐼𝑉 )(𝑣) = 𝑇 (𝐼𝑉 𝑣) = 𝑇𝑣 and (𝐼𝑊 𝑇 )(𝑣) = 𝐼𝑊 (𝑇 𝑣) = 𝑇𝑣.

Thus 𝑇𝐼𝑉 = 𝐼𝑊 𝑇 = 𝑇 .

For the distributive properties, let 𝑇 , 𝑇1, 𝑇2 ∈ ℒ(𝑈, 𝑉 ) and 𝑆, 𝑆1, 𝑆2 ∈ ℒ(𝑉 , 𝑊) be given.
For any 𝑢 ∈ 𝑈 , observe that

((𝑆1 + 𝑆2)𝑇 )(𝑢) = (𝑆1 + 𝑆2)(𝑇𝑢) = 𝑆1(𝑇𝑢) + 𝑆2(𝑇𝑢) = (𝑆1𝑇 )(𝑢) = (𝑆2𝑇 )(𝑢),

(𝑆(𝑇1 + 𝑇2))(𝑢) = 𝑆((𝑇1 + 𝑇2)(𝑢)) = 𝑆(𝑇1𝑢 + 𝑇2𝑢)

= 𝑆(𝑇1𝑢) + 𝑆(𝑇2𝑢) = (𝑆𝑇1)(𝑢) + (𝑆𝑇2)(𝑢).

Thus (𝑆1 + 𝑆2)𝑇 = 𝑆1𝑇 + 𝑆2𝑇  and 𝑆(𝑇1 + 𝑇2) = 𝑆𝑇1 + 𝑆𝑇2.

Exercise 3.A.7. Show that every linear map from a one-dimensional vector space
to itself is multiplication by some scalar. More precisely, prove that if dim 𝑉 = 1 and
𝑇 ∈ ℒ(𝑉 ), then there exists 𝜆 ∈ 𝐅 such that 𝑇𝑣 = 𝜆𝑣 for all 𝑣 ∈ 𝑉 .

Solution. Since dim 𝑉 = 1 there is a basis 𝑢 of 𝑉  and thus 𝑇𝑢 = 𝜆𝑢 for some 𝜆 ∈ 𝐅. Let 
𝑣 = 𝛼𝑢 ∈ 𝑉  be given and observe that

𝑇𝑣 = 𝑇(𝛼𝑢) = 𝛼𝑇𝑢 = 𝛼(𝜆𝑢) = 𝜆(𝛼𝑢) = 𝜆𝑣.

Exercise 3.A.8. Give an example of a function 𝜑 : 𝐑2 → 𝐑 such that

𝜑(𝑎𝑣) = 𝑎𝜑(𝑣)

for all 𝑎 ∈ 𝐑 and all 𝑣 ∈ 𝐑2 but 𝜑 is not linear.

This exercise and the next exercise show that neither homogeneity nor additivity alone
is enough to imply that a function is a linear map.

Solution. Let 𝜑 : 𝐑2 → 𝐑 be given by 𝜑(𝑥, 𝑦) = (𝑥3 + 𝑦3)1/3 and observe that for any 𝑎 ∈ 𝐑
and (𝑥, 𝑦) ∈ 𝐑2,

𝜑(𝑎𝑥, 𝑎𝑦) = ((𝑎𝑥)3 + (𝑎𝑦)3)
1/3

= (𝑎3)1/3(𝑥3 + 𝑦3)1/3 = 𝑎(𝑥3 + 𝑦3)1/3 = 𝑎𝜑(𝑥, 𝑦).

However, notice that
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𝜑(1, 0) + 𝜑(0, 1) = 1 + 1 = 2 ≠ 21/3 = 𝜑(1, 1).

Thus 𝜑 is not linear.

Exercise 3.A.9. Give an example of a function 𝜑 : 𝐂 → 𝐂 such that

𝜑(𝑤 + 𝑧) = 𝜑(𝑤) + 𝜑(𝑧)

for all 𝑤, 𝑧 ∈ 𝐂 but 𝜑 is not linear. (Here 𝐂 is thought of as a complex vector space.)

There also exists a function 𝜑 : 𝐑 → 𝐑 such that 𝜑 satisfies the additivity condition
above but 𝜑 is not linear. However, showing the existence of such a function involves
considerably more advanced tools.

Solution. Let 𝜑 : 𝐂 → 𝐂 be given by 𝜑(𝑥 + 𝑖𝑦) = 𝑥, i.e. 𝜑 takes a complex number to its
real part.

Real

Imaginary

𝑥

𝑥 + 𝑖𝑦

𝜑

Observe that

𝜑((𝑥 + 𝑖𝑦) + (𝑢 + 𝑖𝑣)) = 𝜑((𝑥 + 𝑢) + 𝑖(𝑦 + 𝑣)) = 𝑥 + 𝑢 = 𝜑(𝑥 + 𝑖𝑦) + 𝜑(𝑢 + 𝑖𝑣).

However, 𝜑(𝑖) = 0 but 𝜑(𝑖2) = 𝜑(−1) = −1 ≠ 𝑖𝜑(𝑖). Thus 𝜑 is not linear.

Exercise 3.A.10. Prove or give a counterexample: If 𝑞 ∈ 𝒫(𝐑) and 𝑇 : 𝒫(𝐑) → 𝒫(𝐑)
is defined by 𝑇𝑝 = 𝑞 ∘ 𝑝, then 𝑇  is linear map.

The function T defined here differs from the function 𝑇  defined in the last bullet point
of 3.3 by the order of the functions in the compositions.

Solution. This does not necessarily define a linear map. For example, consider 𝑞(𝑥) = 1 and
observe that (𝑇 0)(𝑥) = 𝑞(0(𝑥)) = 𝑞(0) = 1 ≠ 0. It follows from 3.10 that 𝑇  is not linear.

Exercise 3.A.11. Suppose 𝑉  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 ). Prove that 𝑇  is a
scalar multiple of the identity if and only if 𝑆𝑇 = 𝑇𝑆 for every 𝑆 ∈ ℒ(𝑉 ).

Solution. Suppose that 𝑇  is a scalar multiple of the identity, say 𝑇 = 𝜆𝐼 for some 𝜆 ∈ 𝐅,
and let 𝑆 ∈ ℒ(𝑉 ) and 𝑣 ∈ 𝑉  be given. Observe that
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𝑆(𝑇𝑣) = 𝑆((𝜆𝐼)(𝑣)) = 𝑆(𝜆𝑣) = 𝜆(𝑆𝑣) = (𝜆𝐼)(𝑆𝑣) = 𝑇 (𝑆𝑣).

Thus 𝑆𝑇 = 𝑇𝑆.

Now suppose that 𝑆𝑇 = 𝑇𝑆 for every 𝑆 ∈ ℒ(𝑉 ). If 𝑉 = {0} then 𝑇 = 0𝐼 and we are done.
Otherwise, let 𝑣1, …, 𝑣𝑚 be a basis of 𝑉  and, using the linear map lemma (3.4), define a
linear map 𝜑 : 𝑉 → 𝐅 satisfying 𝜑(𝑣1) = ⋯ = 𝜑(𝑣𝑚) = 1. Let 𝜆 = 𝜑(𝑇𝑣1) ∈ 𝐅. For a fixed 
𝑣 ∈ 𝑉 , define 𝑆𝑣 ∈ ℒ(𝑉 ) by 𝑆𝑣𝑢 = 𝜑(𝑢)𝑣; the linearity of 𝑆 follows from the linearity of 𝜑.
Now observe that

𝑇𝑣 = 𝑇(𝜑(𝑣1)𝑣) = 𝑇 (𝑆𝑣𝑣1) = 𝑆𝑣(𝑇 𝑣1) = 𝜑(𝑇𝑣1)𝑣 = 𝜆𝑣,

where we have used that 𝑇  commutes with every 𝑆 ∈ ℒ(𝑉 ) for the third equality. Because 
𝑣 ∈ 𝑉  was arbitrary, we may conclude that 𝑇 = 𝜆𝐼 .

Exercise 3.A.12. Suppose 𝑈  is a subspace of 𝑉  with 𝑈 ≠ 𝑉 . Suppose 𝑆 ∈ ℒ(𝑈, 𝑊)
and 𝑆 ≠ 0 (which means that 𝑆𝑢 ≠ 0 for some 𝑢 ∈ 𝑈). Define 𝑇 : 𝑉 → 𝑊  by

𝑇𝑣 = {
𝑆𝑣 if 𝑣 ∈ 𝑈,
0 if 𝑣 ∈ 𝑉 and 𝑣 ∉ 𝑈.

Prove that 𝑇  is not a linear map on 𝑉 .

Solution. There is some 𝑢 ∈ 𝑈  such that 𝑆𝑢 ≠ 0 and since 𝑈 ≠ 𝑉  there is some 𝑣 ∈ 𝑉  such
that 𝑣 ∉ 𝑈 . This implies that 𝑢 − 𝑣 ∉ 𝑈 , otherwise 𝑣 = −(𝑢 − 𝑣) + 𝑢 ∈ 𝑈 . Observe that

𝑇𝑣 + 𝑇(𝑢 − 𝑣) = 0 + 0 = 0 ≠ 𝑆𝑢 = 𝑇𝑢 = 𝑇(𝑣 + 𝑢 − 𝑣).

Thus 𝑇  is not linear.

Exercise 3.A.13. Suppose 𝑉  is finite-dimensional. Prove that every linear map on a
subspace of 𝑉  can be extended to a linear map on 𝑉 . In other words, show that if 𝑈  is
a subspace of 𝑉  and 𝑆 ∈ ℒ(𝑈, 𝑊), then there exists 𝑇 ∈ ℒ(𝑉 , 𝑊) such that 𝑇𝑢 = 𝑆𝑢
for all 𝑢 ∈ 𝑈 .

The result in this exercise is used in the proof of 3.125.

Solution. Let 𝑢1, …, 𝑢𝑚 be a basis of 𝑈  and extend this to a basis 𝑢1, …, 𝑢𝑚, 𝑣1, …, 𝑣𝑛 of 
𝑉 . If we use the linear map lemma (3.4) to define 𝑇 ∈ ℒ(𝑉 , 𝑊) by 𝑇𝑢𝑘 = 𝑆𝑢𝑘 and 𝑇𝑣𝑘 = 0,
then for any 𝑢 = 𝑎1𝑢1 + ⋯ + 𝑎𝑚𝑢𝑚 ∈ 𝑈  we have

𝑇𝑢 = 𝑎1𝑇𝑢1 + ⋯ + 𝑎𝑚𝑇𝑢𝑚 = 𝑎1𝑆𝑢1 + ⋯ + 𝑎𝑚𝑆𝑢𝑚 = 𝑆𝑢.

Thus 𝑇  extends 𝑆.

Exercise 3.A.14. Suppose 𝑉  is finite-dimensional with dim 𝑉 > 0, and suppose 𝑊  is
infinite-dimensional. Prove that ℒ(𝑉 , 𝑊) is infinite-dimensional.
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Solution. By Exercise 2.A.17 there is a sequence 𝑤1, 𝑤2, 𝑤3, … in 𝑊  such that 𝑤1, …, 𝑤𝑚 is
linearly independent for each positive integer 𝑚. Let 𝑣1, …, 𝑣𝑛 be a basis of 𝑉  and note that
𝑛 ≥ 1. For each positive integer 𝑘, use the linear map lemma (3.4) to define a linear map 
𝑇𝑘 ∈ ℒ(𝑉 , 𝑊) satisfying

𝑇𝑘𝑣𝑗 = {𝑤𝑘 if 𝑗 = 1,
0 otherwise.

Let 𝑚 be a positive integer and suppose we have scalars 𝑎1, …, 𝑎𝑚 such that
𝑎1𝑇1 + ⋯ + 𝑎𝑚𝑇𝑚 = 0. In particular,

0 = (𝑎1𝑇1 + ⋯ + 𝑎𝑚𝑇𝑚)(𝑣1) = 𝑎1𝑇1𝑣1 + ⋯ + 𝑎𝑚𝑇𝑚𝑣1 = 𝑎1𝑤1 + ⋯ + 𝑎𝑚𝑤𝑚.

This implies that 𝑎1 = ⋯ = 𝑎𝑚 = 0 since the list 𝑤1, …, 𝑤𝑚 is linearly independent and it
follows that the list 𝑇1, …, 𝑇𝑚 is linearly independent. We may use Exercise 2.A.17 to con-
clude that ℒ(𝑉 , 𝑊) is infinite-dimensional.

Exercise 3.A.15. Suppose 𝑣1, …, 𝑣𝑚 is a linearly dependent list of vectors in 𝑉 . Suppose
also that 𝑊 ≠ {0}. Prove that there exist 𝑤1, …, 𝑤𝑚 ∈ 𝑊  such that no 𝑇 ∈ ℒ(𝑉 , 𝑊)
satisfies 𝑇𝑣𝑘 = 𝑤𝑘 for each 𝑘 = 1, …, 𝑚.

Solution. (We will use complex conjugation for this solution; complex conjugation is defined
and its properties are studied in Chapter 4 of the textbook.)

We will prove the contrapositive statement. That is, assuming that for all lists 𝑤1, …, 𝑤𝑚 ∈ 𝑊
there is a linear map 𝑇 ∈ ℒ(𝑉 , 𝑊) such that 𝑇𝑣𝑘 = 𝑤𝑘 for each 𝑘 ∈ {1, …, 𝑚}, we will prove
that the list 𝑣1, …, 𝑣𝑚 is linearly independent. Indeed, suppose we have scalars 𝑎1, …, 𝑎𝑚 such
that 𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚 = 0. There is some non-zero 𝑤 ∈ 𝑊 ; by assumption there is a linear
map 𝑇 ∈ ℒ(𝑉 , 𝑊) such that 𝑇𝑣𝑘 = 𝑎𝑘𝑤 for each 𝑘 ∈ {1, …, 𝑚}. It follows that

0 = 𝑇(∑
𝑚

𝑘=1
𝑎𝑘𝑣𝑘) = ∑

𝑚

𝑘=1
𝑎𝑘𝑇𝑣𝑘 = ∑

𝑚

𝑘=1
𝑎𝑘𝑎𝑘𝑤 = (∑

𝑚

𝑘=1
|𝑎𝑘|2)𝑤.

Since 𝑤 ≠ 0, Exercise 1.B.2 implies that ∑𝑚
𝑘=1|𝑎𝑘|2 = 0, which is the case if and only if

𝑎𝑘 = 0 for all 𝑘 ∈ {1, …, 𝑚}. Thus the list 𝑣1, …, 𝑣𝑚 is linearly independent.

Exercise 3.A.16. Suppose 𝑉  is finite-dimensional with dim 𝑉 > 1. Prove that there
exist 𝑆, 𝑇 ∈ ℒ(𝑉 ) such that 𝑆𝑇 ≠ 𝑇𝑆.

Solution. There is a basis 𝑣1, 𝑣2, …, 𝑣𝑛 for 𝑉  with 𝑛 ≥ 2. Using the linear map lemma (3.4),
define linear maps 𝑆, 𝑇 ∈ ℒ(𝑉 ) satisfying

𝑆𝑣𝑘 =

⎩{
⎨
{⎧𝑣2 if 𝑘 = 1,

𝑣1 if 𝑘 = 2,
0 otherwise,

𝑇 𝑣𝑘 =

⎩{
⎨
{⎧2𝑣2 if 𝑘 = 1,

𝑣1 if 𝑘 = 2,
0 otherwise.
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Observe that

(𝑆𝑇 − 𝑇𝑆)(𝑣1) = 𝑆(𝑇𝑣1) − 𝑇 (𝑆𝑣1) = 𝑆(2𝑣2) − 𝑇𝑣2 = 2𝑣1 − 𝑣1 = 𝑣1 ≠ 0.

Thus 𝑆𝑇 ≠ 𝑇𝑆.

Exercise 3.A.17. Suppose 𝑉  is finite-dimensional. Show that the only two-sided ideals
of ℒ(𝑉 ) are {0} and ℒ(𝑉 ).

A subspace ℰ of ℒ(𝑉 ) is called a two-sided ideal of ℒ(𝑉 ) if 𝑇𝐸 ∈ ℰ and 𝐸𝑇 ∈ ℰ for
all 𝐸 ∈ ℰ and all 𝑇 ∈ ℒ(𝑉 ).

Solution. Certainly {0} is a two-sided ideal of ℒ(𝑉 ), so suppose that ℰ is a two-sided ideal
of ℒ(𝑉 ) containing some non-zero linear map 𝑇 ∈ ℒ(𝑉 ); we must show that ℰ = ℒ(𝑉 ).

Let 𝑣1, …, 𝑣𝑚 be a basis of 𝑉 . For each pair (𝑖, 𝑗), use the linear map lemma (3.4) to define a
linear map 𝐸𝑖,𝑗 ∈ ℒ(𝑉 ) which sends 𝑣𝑖 to 𝑣𝑗 and each other basis vector to 0. Since 𝑇 ≠ 0,
there must be some ℓ ∈ {1, …, 𝑚} such that

𝑇𝑣ℓ = 𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚 ≠ 0;

there must then be some non-zero coefficient in this linear combination, say 𝑎𝑛. For each 
𝑖 ∈ {1, …, 𝑚}, observe that

𝐸𝑛,𝑖𝑇𝐸𝑖,ℓ𝑣𝑖 = 𝐸𝑛,𝑖𝑇𝑣ℓ = 𝐸𝑛,𝑖(𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚) = 𝑎𝑛𝑣𝑖,

and for 𝑘 ≠ 𝑖, 𝐸𝑛,𝑖𝑇𝐸𝑖,ℓ𝑣𝑘 = 𝐸𝑛,𝑖𝑇 (0) = 0.

Thus, letting 𝐿𝑖 be the linear map 𝐸𝑛,𝑖𝑇𝐸𝑖,ℓ, we have 𝐿𝑖𝑣𝑖 = 𝑎𝑛𝑣𝑖 and 𝐿𝑖𝑣𝑘 = 0 for 𝑘 ≠ 𝑖;
it follows that 𝐿1 + ⋯ + 𝐿𝑚 = 𝑎𝑛𝐼 , where 𝐼 is the identity map on 𝑉 . Now observe that

𝑇 ∈ ℰ ⇒ 𝐸𝑛,𝑖𝑇𝐸𝑖,ℓ = 𝐿𝑖 ∈ ℰ for each 𝑖 ∈ {1, …, 𝑚}

⇒ 𝐿1 + ⋯ + 𝐿𝑚 = 𝑎𝑛𝐼 ∈ ℰ ⇒ 𝑎−1
𝑛 𝑎𝑛𝐼 = 𝐼 ∈ ℰ;

each of these implications is justified because ℰ is a two-sided ideal of ℒ(𝑉 ). It follows that
𝑆𝐼 = 𝑆 ∈ ℰ for any 𝑆 ∈ ℒ(𝑉 ) and we may conclude that ℰ = ℒ(𝑉 ).
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3.B. Null Spaces and Ranges

Exercise 3.B.1. Give an example of a linear map 𝑇  with dim null 𝑇 = 3 and 
dim range 𝑇 = 2.

Solution. Let 𝑇 : 𝐑5 → 𝐑2 be given by

𝑇 (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (𝑥1, 𝑥2)

and observe that

null 𝑇 = {(0, 0, 𝑥3, 𝑥4, 𝑥5) ∈ 𝐑5 : 𝑥3, 𝑥4, 𝑥5 ∈ 𝐑} and range 𝑇 = 𝐑2.

Thus dim null 𝑇 = 3 and dim range 𝑇 = 2.

Exercise 3.B.2. Suppose 𝑆, 𝑇 ∈ ℒ(𝑉 ) are such that range 𝑆 ⊆ null 𝑇 . Prove that 
(𝑆𝑇 )2 = 0.

Solution. For any 𝑣 ∈ 𝑉  we have 𝑆(𝑇𝑣) ∈ range 𝑆 ⊆ null 𝑇 , so that 𝑇 (𝑆(𝑇𝑣)) = 0. It fol-
lows that

(𝑆𝑇 )2(𝑣) = 𝑆(𝑇 (𝑆(𝑇𝑣))) = 𝑆(0) = 0.

Thus (𝑆𝑇 )2 = 0.

Exercise 3.B.3. Suppose 𝑣1, …, 𝑣𝑚 is a list of vectors in 𝑉 . Define 𝑇 ∈ ℒ(𝐅𝑚, 𝑉 ) by

𝑇 (𝑧1, …, 𝑧𝑚) = 𝑧1𝑣1 + ⋯ + 𝑧𝑚𝑣𝑚.

(a) What property of 𝑇  corresponds to 𝑣1, …, 𝑣𝑚 spanning 𝑉 ?

(b) What property of 𝑇  corresponds to the list 𝑣1, …, 𝑣𝑚 being linearly independent?

Solution.

(a) The surjectivity of 𝑇  corresponds to 𝑣1, …, 𝑣𝑚 spanning 𝑉 . Indeed, observe that 
𝑇  is surjective if and only if for every 𝑣 ∈ 𝑉  there exists (𝑧1, …, 𝑧𝑚) ∈ 𝐅𝑚

such that 𝑇 (𝑧1, …, 𝑧𝑚) = 𝑧1𝑣1 + ⋯ + 𝑧𝑚𝑣𝑚 = 𝑣, which is the case if and only if
𝑉 = span(𝑣1, …, 𝑣𝑚).

(b) The injectivity of 𝑇  corresponds to 𝑣1, …, 𝑣𝑚 being linearly independent. By 3.15, 𝑇  is
injective if and only if null 𝑇 = {0}, i.e. if and only if the only choice of (𝑧1, …, 𝑧𝑚) ∈ 𝐅𝑚

which gives 𝑧1𝑣1 + ⋯ + 𝑧𝑚𝑣𝑚 = 0 is (0, …, 0); this is the definition of linear indepen-
dence.
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Exercise 3.B.4. Show that {𝑇 ∈ ℒ(𝐑5, 𝐑4) : dim null 𝑇 > 2} is not a subspace of 
ℒ(𝐑5, 𝐑4).

Solution. Let 𝑊 = {𝑇 ∈ ℒ(𝐑5, 𝐑4) : dim null 𝑇 > 2}. Define 𝑆, 𝑇 ∈ ℒ(𝐑5, 𝐑4) by

𝑆(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (𝑥1, 𝑥2, 0, 0) and 𝑇 (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (0, 0, 𝑥3, 𝑥4)

and observe that

null 𝑆 = {(0, 0, 𝑥3, 𝑥4, 𝑥5) ∈ 𝐑5 : 𝑥3, 𝑥4, 𝑥5 ∈ 𝐑}

and null 𝑇 = {(𝑥1, 𝑥2, 0, 0, 𝑥5) ∈ 𝐑5 : 𝑥1, 𝑥2, 𝑥5 ∈ 𝐑},

so that dim null 𝑆 = dim null 𝑇 = 3. Thus 𝑆, 𝑇 ∈ 𝑊 . However, note that

(𝑆 + 𝑇)(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (𝑥1, 𝑥2, 𝑥3, 𝑥4)

⇒ null(𝑆 + 𝑇) = {(0, 0, 0, 0, 𝑥5) ∈ 𝐑5 : 𝑥5 ∈ 𝐑} ⇒ dim null(𝑆 + 𝑇) = 1.

Thus 𝑆 + 𝑇 ∉ 𝑊 . It follows that 𝑊  is not closed under addition and hence that 𝑊  is not a
subspace of ℒ(𝐑5, 𝐑4).

Exercise 3.B.5. Give an example of 𝑇 ∈ ℒ(𝐑4) such that range 𝑇 = null 𝑇 .

Solution. Let 𝑇 ∈ ℒ(𝐑4) be given by

𝑇 (𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥3, 𝑥4, 0, 0),

which satisfies range 𝑇 = null 𝑇 = {(𝑎, 𝑏, 0, 0) ∈ 𝐑4 : 𝑎, 𝑏 ∈ 𝐑}.

Exercise 3.B.6. Prove that there does not exist 𝑇 ∈ ℒ(𝐑5) such that range 𝑇 = null 𝑇 .

Solution. If 𝑇 ∈ ℒ(𝑉 ) for some finite-dimensional vector space 𝑉  and range 𝑇 = null 𝑇 ,
then the fundamental theorem of linear maps (3.21) implies that

dim 𝑉 = dim null 𝑇 + dim range 𝑇 = 2 dim null 𝑇 .

Thus the dimension of 𝑉  must be a non-negative even integer, which 5 is not.

Exercise 3.B.7. Suppose 𝑉  and 𝑊  are finite-dimensional with 2 ≤ dim 𝑉 ≤ dim 𝑊 .
Show that {𝑇 ∈ ℒ(𝑉 , 𝑊) : 𝑇 is not injective} is not a subspace of ℒ(𝑉 , 𝑊).

Solution. Let 𝑋 = {𝑇 ∈ ℒ(𝑉 , 𝑊) : 𝑇 is not injective} and note that by 3.15 we have

𝑋 = {𝑇 ∈ ℒ(𝑉 , 𝑊) : null 𝑇 ≠ {0}}.

Let 𝑣1, …, 𝑣𝑚 be a basis of 𝑉  and let 𝑤1, …, 𝑤𝑛 be a basis of 𝑊 ; by assumption we have
2 ≤ 𝑚 ≤ 𝑛. Define 𝑆, 𝑇 ∈ ℒ(𝑉 , 𝑊) by
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𝑆𝑣𝑘 =

⎩{
{⎨
{{
⎧0 if 𝑘 = 1,

𝑤2 if 𝑘 = 2,
1
2𝑤𝑘 otherwise,

𝑇 𝑣𝑘 =

⎩{
{⎨
{{
⎧𝑤1 if 𝑘 = 1,

0 if 𝑘 = 2,
1
2𝑤𝑘 otherwise.

Notice that 𝑆, 𝑇 ∈ 𝑋 since 𝑣1, 𝑣2 are non-zero, 𝑣1 ∈ null 𝑆, and 𝑣2 ∈ null 𝑇 . Notice further
that

(𝑆 + 𝑇)(𝑣𝑘) = 𝑤𝑘 for all 𝑘 ∈ {1, …, 𝑚} ⇒ range(𝑆 + 𝑇) = span(𝑤1, …, 𝑤𝑚).

The linear independence of the list 𝑤1, …, 𝑤𝑛 then implies that 𝑤1, …, 𝑤𝑚 is a basis of 
range(𝑆 + 𝑇) and thus dim range(𝑆 + 𝑇) = dim span(𝑤1, …, 𝑤𝑚) = 𝑚. Because dim 𝑉 = 𝑚,
it follows from the fundamental theorem of linear maps (3.21) that dim null(𝑆 + 𝑇) = 0,
hence null(𝑆 + 𝑇) = {0}, hence 𝑆 + 𝑇 ∉ 𝑋. We may conclude that 𝑋 is not closed under
addition and hence is not a subspace of ℒ(𝑉 , 𝑊).

Exercise 3.B.8. Suppose 𝑉  and 𝑊  are finite-dimensional with dim 𝑉 ≥ dim 𝑊 ≥ 2.
Show that {𝑇 ∈ ℒ(𝑉 , 𝑊) : 𝑇 is not surjective} is not a subspace of ℒ(𝑉 , 𝑊).

Solution. Let 𝑋 = {𝑇 ∈ ℒ(𝑉 , 𝑊) : 𝑇 is not surjective}, let 𝑣1, …, 𝑣𝑚 be a basis of 𝑉 , and
let 𝑤1, …, 𝑤𝑛 be a basis of 𝑊 ; by assumption we have 𝑚 ≥ 𝑛 ≥ 2. Define 𝑆, 𝑇 ∈ ℒ(𝑉 , 𝑊) by

𝑆𝑣𝑘 =

⎩{
{⎨
{{
⎧0 if 𝑘 = 1 or 𝑘 > 𝑛,

𝑤2 if 𝑘 = 2,
1
2𝑤𝑘 otherwise,

𝑇 𝑣𝑘 =

⎩{
{⎨
{{
⎧𝑤1 if 𝑘 = 1,

0 if 𝑘 = 2 or 𝑘 > 𝑛,
1
2𝑤𝑘 otherwise.

It is straightforward to verify that range 𝑆 = span(𝑤2, …, 𝑤𝑛). The linear independence of
the list 𝑤1, …, 𝑤𝑛 then implies that 𝑤1 ∉ range 𝑆 and thus 𝑆 is not surjective, i.e. 𝑆 ∈ 𝑋.
Similarly, we find that 𝑤2 ∉ range 𝑇  and thus 𝑇 ∈ 𝑋. Now observe that

(𝑆 + 𝑇)(𝑣𝑘) = {
𝑤𝑘 if 𝑘 ≤ 𝑛,
0 if 𝑘 > 𝑛,

⇒ range(𝑆 + 𝑇) = span(𝑤1, …, 𝑤𝑛) = 𝑊.

Thus 𝑆 + 𝑇  is surjective, i.e. 𝑆 + 𝑇 ∉ 𝑋. It follows that 𝑋 is not closed under addition and
hence is not a subspace of ℒ(𝑉 , 𝑊).

Exercise 3.B.9. Suppose 𝑇 ∈ ℒ(𝑉 , 𝑊) is injective and 𝑣1, …, 𝑣𝑛 is linearly independent
in 𝑉 . Prove that 𝑇𝑣1, …, 𝑇 𝑣𝑛 is linearly independent in 𝑊 .

Solution. Suppose we have scalars 𝑎1, …, 𝑎𝑛 such that 𝑎1𝑇𝑣1 + ⋯ + 𝑎𝑛𝑇𝑣𝑛 = 0. By linearity,
this is equivalent to 𝑇 (𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛) = 0, i.e. 𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛 ∈ null 𝑇 . Because 𝑇  is
injective, it follows from 3.15 that 𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛 = 0. The linear independence of 𝑣1, …, 𝑣𝑛

then implies that 𝑎1 = ⋯ = 𝑎𝑛 = 0. Thus 𝑇𝑣1, …, 𝑇 𝑣𝑛 is linearly independent.
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Exercise 3.B.10. Suppose 𝑣1, …, 𝑣𝑛 spans 𝑉  and 𝑇 ∈ ℒ(𝑉 , 𝑊). Show that 𝑇𝑣1, …, 𝑇 𝑣𝑛

spans range 𝑇 .

Solution. Let 𝑤 ∈ range 𝑇  be given, so that 𝑤 = 𝑇𝑣 for some 𝑣 ∈ 𝑉 . Since 𝑣1, …, 𝑣𝑛 spans 
𝑉 , there are scalars 𝑎1, …, 𝑎𝑛 such that 𝑣 = 𝑎1 + ⋯ + 𝑎𝑛𝑣𝑛. It follows from the linearity of 
𝑇  that

𝑤 = 𝑇𝑣 = 𝑇(𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛) = 𝑎1𝑇𝑣1 + ⋯ + 𝑎𝑛𝑇𝑣𝑛 ∈ span(𝑇𝑣1, …, 𝑇 𝑣𝑛).

Thus range 𝑇 ⊆ span(𝑇𝑣1, …, 𝑇 𝑣𝑛). Now let 𝑎1𝑇𝑣1 + ⋯ + 𝑎𝑛𝑇𝑣𝑛 ∈ span(𝑇𝑣1, …, 𝑇 𝑣𝑛) be
given. The linearity of 𝑇  gives us

𝑎1𝑇𝑣1 + ⋯ + 𝑎𝑛𝑇𝑣𝑛 = 𝑇(𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛) ∈ range 𝑇 .

Thus span(𝑇𝑣1, …, 𝑇 𝑣𝑛) ⊆ range 𝑇  and we may conclude that range 𝑇 = span(𝑇𝑣1, …, 𝑇 𝑣𝑛).

Exercise 3.B.11. Suppose that 𝑉  is finite-dimensional and that 𝑇 ∈ ℒ(𝑉 , 𝑊). Prove
that there exists a subspace 𝑈  of 𝑉  such that

𝑈 ∩ null 𝑇 = {0} and range 𝑇 = {𝑇𝑢 : 𝑢 ∈ 𝑈}.

Solution. By 2.33 there is a subspace 𝑈  of 𝑉  such that 𝑉 = 𝑈 ⊕ null 𝑇  and 1.46 then
gives us 𝑈 ∩ null 𝑇 = {0}. Suppose that 𝑤 ∈ range 𝑇 , so that 𝑤 = 𝑇𝑣 for some 𝑣 ∈ 𝑉 . Since
𝑉 = 𝑈 ⊕ null 𝑇 , there are vectors 𝑢 ∈ 𝑈  and 𝑥 ∈ null 𝑇  such that 𝑣 = 𝑢 + 𝑥 and it follows
that

𝑤 = 𝑇𝑣 = 𝑇(𝑢 + 𝑥) = 𝑇𝑢 + 𝑇𝑥 = 𝑇𝑢.

Thus range 𝑇 ⊆ {𝑇𝑢 : 𝑢 ∈ 𝑈}; the reverse inclusion {𝑇𝑢 : 𝑢 ∈ 𝑈} ⊆ range 𝑇  is clear.

Exercise 3.B.12. Suppose 𝑇  is a linear map from 𝐅4 to 𝐅2 such that

null 𝑇 = {(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝐅4 : 𝑥1 = 5𝑥2 and 𝑥3 = 7𝑥4}.

Prove that 𝑇  is surjective.

Solution. It is straightforward to verify that (5, 1, 0, 0), (0, 0, 7, 1) is a basis of null 𝑇 , so that
dim null 𝑇 = 2. The fundamental theorem of linear maps (3.21) then gives

dim range 𝑇 = dim 𝐅4 − dim null 𝑇 = 2.

Thus dim range 𝑇 = 2 = dim 𝐅2 and it follows from 2.39 that range 𝑇 = 𝐅2, i.e. 𝑇  is surjec-
tive.

Exercise 3.B.13. Suppose 𝑈  is a three-dimensional subspace of 𝐑8 and that 𝑇  is a
linear map from 𝐑8 to 𝐑5 such that null 𝑇 = 𝑈 . Prove that 𝑇  is surjective.
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Solution. The fundamental theorem of linear maps (3.21) gives us

dim range 𝑇 = dim 𝐑8 − dim null 𝑇 = 8 − dim 𝑈 = 5.

Thus dim range 𝑇 = 5 = dim 𝐑5 and it follows from (2.39) that range 𝑇 = 𝐑5, i.e. 𝑇  is sur-
jective.

Exercise 3.B.14. Prove that there does not exist a linear map from 𝐅5 to 𝐅2 whose
null space equals {(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ∈ 𝐅5 : 𝑥1 = 3𝑥2 and 𝑥3 = 𝑥4 = 𝑥5}.

Solution. Let 𝑈 = {(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ∈ 𝐅5 : 𝑥1 = 3𝑥2 and 𝑥3 = 𝑥4 = 𝑥5}. It is straightfor-
ward to verify that (3, 1, 0, 0, 0), (0, 0, 1, 1, 1) is a basis of 𝑈 , so that dim 𝑈 = 2. For any
𝑇 ∈ ℒ(𝐅5, 𝐅2), the fundamental theorem of linear maps (3.21) implies that

dim null 𝑇 = dim 𝐅5 − dim range 𝑇 ≥ 5 − dim 𝐅2 = 3.

It follows that 𝑈  cannot be the null space of 𝑇 .

Exercise 3.B.15. Suppose there exists a linear map on 𝑉  whose null space and range
are both finite-dimensional. Prove that 𝑉  is finite-dimensional.

Solution. Let 𝑇  be the linear map in question, let 𝑇𝑣1, …, 𝑇 𝑣𝑚 be a basis of range 𝑇 , and
let 𝑤1, …, 𝑤𝑛 be a basis of null 𝑇 . For any 𝑣 ∈ 𝑉  there are scalars 𝑎1, …, 𝑎𝑚 such that

𝑇𝑣 = 𝑎1𝑇𝑣1 + ⋯ + 𝑎𝑚𝑇𝑣𝑚 = 𝑇(𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚)

⇒ 𝑇(𝑣 − (𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚)) = 0 ⇒ 𝑣 − (𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚) ∈ null 𝑇 .

It follows that there are scalars 𝑏1, …, 𝑏𝑛 such that

𝑣 − (𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚) = 𝑏1𝑤1 + ⋯ + 𝑏𝑛𝑤𝑛

⇒ 𝑣 = 𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚 + 𝑏1𝑤1 + ⋯ + 𝑏𝑛𝑤𝑛.

Thus the list 𝑣1, …, 𝑣𝑚, 𝑤1, …, 𝑤𝑛 spans 𝑉 . We may conclude that 𝑉  is finite-dimensional.

Exercise 3.B.16. Suppose 𝑉  and 𝑊  are finite-dimensional. Prove that there exists an
injective linear map from 𝑉  to 𝑊  if and only if dim 𝑉 ≤ dim 𝑊 .

Solution. If dim 𝑉 > dim 𝑊  then 3.22 guarantees that no linear map from 𝑉  to 𝑊  is in-
jective. Suppose therefore that dim 𝑉 = 𝑚 ≤ 𝑛 = dim 𝑊 , let 𝑣1, …, 𝑣𝑚 be a basis of 𝑉 , and
let 𝑤1, …, 𝑤𝑛 be a basis of 𝑊 . Define 𝑇 ∈ ℒ(𝑉 , 𝑊) by 𝑇𝑣𝑘 = 𝑤𝑘. The linear independence
of the list 𝑤1, …, 𝑤𝑚 and Exercise 3.B.10 imply that 𝑤1, …, 𝑤𝑚 is a basis of range 𝑇 , so
that dim range 𝑇 = 𝑚 = dim 𝑉 . It then follows from the fundamental theorem of linear maps
(3.21) that dim null 𝑇 = 0, i.e. 𝑇  is injective.
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Exercise 3.B.17. Suppose 𝑉  and 𝑊  are both finite-dimensional. Prove that there ex-
ists a surjective linear map from 𝑉  onto 𝑊  if and only if dim 𝑉 ≥ dim 𝑊 .

Solution. If dim 𝑉 < dim 𝑊  then 3.24 guarantees that no linear map from 𝑉  to 𝑊  is sur-
jective. Suppose therefore that dim 𝑉 = 𝑚 ≥ 𝑛 = dim 𝑊 , let 𝑣1, …, 𝑣𝑚 be a basis of 𝑉 , and
let 𝑤1, …, 𝑤𝑛 be a basis of 𝑊 . Define 𝑇 ∈ ℒ(𝑉 , 𝑊) by

𝑇𝑣𝑘 = {𝑤𝑘 if 𝑘 ≤ 𝑛,
0 otherwise.

It follows from Exercise 3.B.10 that

range 𝑇 = span(𝑇𝑣1, …, 𝑇 𝑣𝑚) = span(𝑤1, …, 𝑤𝑛) = 𝑊.

Thus 𝑇  is surjective.

Exercise 3.B.18. Suppose 𝑉  and 𝑊  are finite-dimensional and that 𝑈  is a sub-
space of 𝑉 . Prove that there exists 𝑇 ∈ ℒ(𝑉 , 𝑊) such that null 𝑇 = 𝑈  if and only if
dim 𝑈 ≥ dim 𝑉 − dim 𝑊 .

Solution. If there exists such a 𝑇  then the fundamental theorem of linear maps (3.21) and
2.37 give us

dim 𝑈 = dim null 𝑇 = dim 𝑉 − dim range 𝑇 ≥ dim 𝑉 − dim 𝑊.

Conversely, suppose that dim 𝑈 ≥ dim 𝑉 − dim 𝑊 . Let 𝑢1, …, 𝑢𝑚 be a basis of 𝑈 , extend this
to a basis 𝑢1, …, 𝑢𝑚, 𝑣1, …, 𝑣𝑛 of 𝑉 , and let 𝑋 = span(𝑣1, …, 𝑣𝑛), so that 𝑉 = 𝑈 ⊕ 𝑋 and 
dim 𝑉 = dim 𝑈 + dim 𝑋. Combining this with our hypothesis dim 𝑈 ≥ dim 𝑉 − dim 𝑊  gives
us dim 𝑋 ≤ dim 𝑊  and so we may invoke Exercise 3.B.16 to obtain an injective linear map
𝑆 : 𝑋 → 𝑊 . Extend this to a linear map 𝑇 : 𝑉 → 𝑊  satisfying 𝑇 (𝑢 + 𝑥) = 𝑆𝑥 as in Exercise
3.A.13 (𝑋 is playing the role of 𝑈  here). Now observe that

𝑇 (𝑢 + 𝑥) = 0 ⇔ 𝑆𝑥 = 0 ⇔ 𝑥 = 0 ⇔ 𝑢 + 𝑥 ∈ 𝑈,

where we have used the injectivity of 𝑆 for the second equivalence. It follows that null 𝑇 = 𝑈 .

Exercise 3.B.19. Suppose 𝑊  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 , 𝑊). Prove that 𝑇  is
injective if and only if there exists 𝑆 ∈ ℒ(𝑊, 𝑉 ) such that 𝑆𝑇  is the identity operator
on 𝑉 .

Solution. Suppose there exists such an 𝑆 and let 𝑣 ∈ null 𝑇  be given. Observe that

𝑣 = (𝑆𝑇 )(𝑣) = 𝑆(0) = 0.

Thus null 𝑇 = {0}, which implies that 𝑇  is injective (by 3.15).
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Now suppose that 𝑇  is injective. Let 𝑇𝑣1, …, 𝑇 𝑣𝑚 be a basis of range 𝑇  and extend this to a
basis 𝑇𝑣1, …, 𝑇 𝑣𝑚, 𝑤1, …, 𝑤𝑛 of 𝑊 . Define 𝑆 ∈ ℒ(𝑊, 𝑉 ) by 𝑆(𝑇𝑣𝑘) = 𝑣𝑘 and 𝑆𝑤𝑘 = 0. For
any 𝑣 ∈ 𝑉  we have 𝑇𝑣 = 𝑎1𝑇𝑣1 + ⋯ + 𝑎𝑚𝑇𝑣𝑚 for some scalars 𝑎1, …, 𝑎𝑚, which implies

𝑇 (𝑣 − (𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚)) = 0.

Because 𝑇  is injective it must then be the case that 𝑣 = 𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚. Now observe that

𝑆(𝑇𝑣) = 𝑎1𝑆(𝑇𝑣1) + ⋯ + 𝑎𝑚𝑆(𝑇𝑣𝑚) = 𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚 = 𝑣.

Thus 𝑆𝑇  is the identity map on 𝑉 .

Exercise 3.B.20. Suppose 𝑊  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 , 𝑊). Prove that 𝑇  is
surjective if and only if there exists 𝑆 ∈ ℒ(𝑊, 𝑉 ) such that 𝑇𝑆 is the identity operator
on 𝑊 .

Solution. Suppose there exists such a map 𝑆 and let 𝑤 ∈ 𝑊  be given. Observe that

𝑤 = 𝑇(𝑆𝑤) ∈ range 𝑇 .

It follows that 𝑊 = range 𝑇 , i.e. 𝑇  is surjective.

Now suppose that 𝑇  is surjective, i.e. 𝑊 = range 𝑇 . Let 𝑇𝑣1, …, 𝑇 𝑣𝑚 be a basis
of range 𝑇 = 𝑊  and define 𝑆 ∈ ℒ(𝑊, 𝑉 ) by 𝑆(𝑇𝑣𝑘) = 𝑣𝑘 for 𝑘 ∈ {1, …, 𝑚}. For any
𝑤 = 𝑎1𝑇𝑣1 + ⋯ + 𝑎𝑚𝑇𝑣𝑚 ∈ 𝑊 , observe that

𝑆𝑤 = 𝑎1𝑆(𝑇𝑣1) + ⋯ + 𝑎𝑚𝑆(𝑇𝑣𝑚) = 𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚

⇒ 𝑇(𝑆𝑤) = 𝑎1𝑇𝑣1 + ⋯ + 𝑎𝑚𝑇𝑣𝑚 = 𝑤.

Thus 𝑇𝑆 is the identity map on 𝑊 .

Exercise 3.B.21. Suppose 𝑉  is finite-dimensional, 𝑇 ∈ ℒ(𝑉 , 𝑊), and 𝑈  is a subspace
of 𝑊 . Prove that {𝑣 ∈ 𝑉 : 𝑇𝑣 ∈ 𝑈} is a subspace of 𝑉  and

dim{𝑣 ∈ 𝑉 : 𝑇𝑣 ∈ 𝑈} = dim null 𝑇 + dim(𝑈 ∩ range 𝑇 ).

Solution. Let 𝑋 = {𝑣 ∈ 𝑉 : 𝑇𝑣 ∈ 𝑈} and note that 0 ∈ 𝑋 since 𝑇 (0) = 0 ∈ 𝑈 . Suppose 
𝑣1, 𝑣2 ∈ 𝑋, so that 𝑇𝑣1, 𝑇 𝑣2 ∈ 𝑈 , and 𝜆 ∈ 𝐅. Because 𝑇  is linear and 𝑈  is a subspace, we
then have

𝑇𝑣1, 𝑇 𝑣2 ∈ 𝑈 ⇒ 𝑇(𝑣1) + 𝑇 (𝑣2) = 𝑇 (𝑣1 + 𝑣2) ∈ 𝑈 and 𝜆𝑇𝑣1 = 𝑇(𝜆𝑣1) ∈ 𝑈.

Thus 𝑣1 + 𝑣2 and 𝜆𝑣1 belong to 𝑋. It follows from 1.34 that 𝑋 is a subspace of 𝑉 .

Let 𝑆 be the restriction of 𝑇  to 𝑋, i.e. 𝑆 : 𝑋 → 𝑊  is given by 𝑆𝑣 = 𝑇𝑣, and notice that 𝑆
is linear because 𝑇  is linear. Notice further that

𝑣 ∈ null 𝑇 ⇒ 𝑇𝑣 = 0 ∈ 𝑈 ⇒ 𝑣 ∈ 𝑋 ⇒ 𝑆𝑣 = 𝑇𝑣 = 0 ⇒ 𝑣 ∈ null 𝑆,

𝑣 ∈ null 𝑆 ⇒ 𝑆𝑣 = 𝑇𝑣 = 0 ⇒ 𝑣 ∈ null 𝑇 .
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Thus null 𝑆 = null 𝑇 . Similarly,

𝑇𝑣 ∈ 𝑈 ∩ range 𝑇 for some 𝑣 ∈ 𝑉 ⇒ 𝑣 ∈ 𝑋 ⇒ 𝑇𝑣 = 𝑆𝑣 ∈ range 𝑆,

𝑆𝑣 ∈ range 𝑆 for some 𝑣 ∈ 𝑋 ⇒ 𝑆𝑣 = 𝑇𝑣 ∈ 𝑈 ∩ range 𝑇 .

Thus range 𝑆 = 𝑈 ∩ range 𝑇 . The fundamental theorem of linear maps (3.21) now implies
that

dim 𝑋 = dim null 𝑆 + dim range 𝑆 = dim null 𝑇 + dim(𝑈 ∩ range 𝑇 ).

Exercise 3.B.22. Suppose 𝑈  and 𝑉  are finite-dimensional vector spaces and
𝑆 ∈ ℒ(𝑉 , 𝑊) and 𝑇 ∈ ℒ(𝑈, 𝑉 ). Prove that

dim null 𝑆𝑇 ≤ dim null 𝑆 + dim null 𝑇 .

Solution. For any 𝑢 ∈ 𝑈  observe that

𝑢 ∈ null 𝑆𝑇 ⇔ 𝑆(𝑇𝑢) = 0 ⇔ 𝑇𝑢 ∈ null 𝑆.

Thus null 𝑆𝑇 = {𝑢 ∈ 𝑈 : 𝑇𝑢 ∈ null 𝑆}. It follows from Exercise 3.B.21 that

dim null 𝑆𝑇 = dim null 𝑇 + dim(null 𝑆 ∩ range 𝑇 ) ≤ dim null 𝑇 + dim null 𝑆.

Exercise 3.B.23. Suppose 𝑈  and 𝑉  are finite-dimensional vector spaces and
𝑆 ∈ ℒ(𝑉 , 𝑊) and 𝑇 ∈ ℒ(𝑈, 𝑉 ). Prove that

dim range 𝑆𝑇 ≤ min{dim range 𝑆, dim range 𝑇}.

Solution. Certainly range 𝑆𝑇 ⊆ range 𝑆 and thus dim range 𝑆𝑇 ≤ dim range 𝑆. Let
𝑅 ∈ ℒ(range 𝑇 , 𝑊) be the restriction of 𝑆 to range 𝑇 , so that range 𝑅 = range 𝑆𝑇 . The fun-
damental theorem of linear maps (3.21) then implies that

dim range 𝑆𝑇 = dim range 𝑅 = dim range 𝑇 − dim null 𝑅 ≤ dim range 𝑇 .

Thus dim range 𝑆𝑇 ≤ dim range 𝑆 and dim range 𝑆𝑇 ≤ dim range 𝑇 ; it follows that

dim range 𝑆𝑇 ≤ min{dim range 𝑆, dim range 𝑇}.

Exercise 3.B.24.

(a) Suppose dim 𝑉 = 5 and 𝑆, 𝑇 ∈ ℒ(𝑉 ) are such that 𝑆𝑇 = 0. Prove that 
dim range 𝑇𝑆 ≤ 2.

(b) Give an example of 𝑆, 𝑇 ∈ ℒ(𝐅5) with 𝑆𝑇 = 0 and dim range 𝑇𝑆 = 2.

Solution.

(a) The fundamental theorem of linear maps (3.21) and Exercise 3.B.23 give us

dim null 𝑆 = 5 − dim range 𝑆 ≤ 5 − dim range 𝑇𝑆. (1)
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Note that 𝑆𝑇 = 0 implies range 𝑇 ⊆ null 𝑆, so that dim range 𝑇 ≤ dim null 𝑆. It then
follows from Exercise 3.B.23 and equation (1) that

dim range 𝑇𝑆 ≤ dim range 𝑇 ≤ dim null 𝑆 ≤ 5 − dim range 𝑇𝑆

⇒ 2 dim range 𝑇𝑆 ≤ 5 ⇒ dim range 𝑇𝑆 ≤ 5
2 .

Thus dim range 𝑇𝑆 ≤ 2, since the dimension of a vector space must be an integer.

(b) Let 𝑆, 𝑇 ∈ ℒ(𝐅5) be given by

𝑆(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (0, 0, 0, 𝑥4, 𝑥5) and 𝑇 (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (𝑥3, 𝑥4, 𝑥5, 0, 0).

Observe that

(𝑆𝑇 )(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (0, 0, 0, 0, 0)

and (𝑇𝑆)(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (0, 𝑥4, 𝑥5, 0, 0).

Thus 𝑆𝑇 = 0 and dim range 𝑇𝑆 = 2.

Exercise 3.B.25. Suppose that 𝑊  is finite-dimensional and 𝑆, 𝑇 ∈ ℒ(𝑉 , 𝑊). Prove
that null 𝑆 ⊆ null 𝑇  if and only if there exists 𝐸 ∈ ℒ(𝑊) such that 𝑇 = 𝐸𝑆.

Solution. If there exists such a map 𝐸 then for any 𝑣 ∈ null 𝑆 we have

𝑇𝑣 = 𝐸(𝑆𝑣) = 𝐸(0) = 0 ⇒ 𝑣 ∈ null 𝑇 .

Thus null 𝑆 ⊆ null 𝑇 .

Now suppose that null 𝑆 ⊆ null 𝑇 . Let 𝑆𝑣1, …, 𝑆𝑣𝑚 be a basis of range 𝑆 and extend this to
a basis 𝑆𝑣1, …, 𝑆𝑣𝑚, 𝑤1, …, 𝑤𝑛 of 𝑊 . Define 𝐸 ∈ ℒ(𝑊) by 𝐸(𝑆𝑣𝑘) = 𝑇𝑣𝑘 and 𝐸𝑤𝑘 = 0. For
any 𝑣 ∈ 𝑉  we have 𝑆𝑣 = 𝑎1𝑆𝑣1 + ⋯ + 𝑎𝑚𝑆𝑣𝑚 for some scalars 𝑎1, …, 𝑎𝑚, which implies

𝑆(𝑣 − (𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚)) = 0 ⇒ 𝑣 − (𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚) ∈ null 𝑆

⇒ 𝑣 − (𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚) ∈ null 𝑇 ⇒ 𝑇(𝑣 − (𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚)) = 0.

Thus 𝑇𝑣 = 𝑎1𝑇𝑣1 + ⋯ + 𝑎𝑚𝑇𝑣𝑚. It follows that

𝐸(𝑆𝑣) = 𝑎1𝐸(𝑆𝑣1) + ⋯ + 𝑎𝑚𝐸(𝑆𝑣𝑚) = 𝑎1𝑇𝑣1 + ⋯ + 𝑎𝑚𝑇𝑣𝑚 = 𝑇𝑣.

Hence 𝑇 = 𝐸𝑆.

Exercise 3.B.26. Suppose that 𝑉  is finite-dimensional and 𝑆, 𝑇 ∈ ℒ(𝑉 , 𝑊). Prove that
range 𝑆 ⊆ range 𝑇  if and only if there exists 𝐸 ∈ ℒ(𝑉 ) such that 𝑆 = 𝑇𝐸.

Solution. If there exists such a map 𝐸 then for any 𝑆𝑣 ∈ range 𝑆 we have
𝑆𝑣 = 𝑇(𝐸𝑣) ∈ range 𝑇  also. Thus range 𝑆 ⊆ range 𝑇 .

Now suppose that range 𝑆 ⊆ range 𝑇  and let 𝑣1, …, 𝑣𝑚 be a basis of 𝑉 . Since
range 𝑆 ⊆ range 𝑇 , for each 𝑘 ∈ {1, …, 𝑚} we have 𝑆𝑣𝑘 = 𝑇𝑢𝑘 for some 𝑢𝑘 ∈ 𝑉 . Define
𝐸 ∈ ℒ(𝑉 ) by 𝐸𝑣𝑘 = 𝑢𝑘 and observe that for any 𝑣 = 𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚 ∈ 𝑉  we have

65 / 366



(𝑇𝐸)(𝑣) = (𝑇𝐸)(𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚) = 𝑎1𝑇 (𝐸(𝑣1)) + ⋯ + 𝑎𝑚𝑇 (𝐸(𝑣𝑚))

= 𝑎1𝑇𝑢1 + ⋯ + 𝑎𝑚𝑇𝑢𝑚 = 𝑎1𝑆𝑣1 + ⋯ + 𝑎𝑚𝑆𝑣𝑚 = 𝑆(𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚) = 𝑆𝑣.

Thus 𝑆 = 𝑇𝐸.

Exercise 3.B.27. Suppose 𝑃 ∈ ℒ(𝑉 ) and 𝑃 2 = 𝑃 . Prove that 𝑉 = null 𝑃 ⊕ range 𝑃 .

Solution. For any 𝑣 ∈ 𝑉  note that

𝑃 2𝑣 = 𝑃𝑣 ⇒ 𝑃(𝑃𝑣) − 𝑃𝑣 = 0 ⇒ 𝑃(𝑃𝑣 − 𝑣) = 0

⇒ 𝑃𝑣 − 𝑣 = 𝑢 ∈ null 𝑃 ⇒ 𝑣 = 𝑢 + 𝑃𝑣 ∈ null 𝑃 + range 𝑃 .

Thus 𝑉 = null 𝑃 + range 𝑃 . Suppose that 𝑣 = 𝑃𝑢 ∈ null 𝑃 ∩ range 𝑃 . It follows that

0 = 𝑃𝑣 = 𝑃 2𝑢 = 𝑃𝑢 = 𝑣.

Thus null 𝑃 ∩ range 𝑃 = {0} and it follows from 1.46 that the sum 𝑉 = null 𝑃 ⊕ range 𝑃  is
direct.

Exercise 3.B.28. Suppose 𝐷 ∈ ℒ(𝒫(𝐑)) is such that deg 𝐷𝑝 = (deg 𝑝) − 1 for every
non-constant polynomial 𝑝 ∈ 𝒫(𝐑). Prove that 𝐷 is surjective.

The notation 𝐷 is used above to remind you of the differentiation map that sends a
polynomial 𝑝 to 𝑝′.

Solution. First, we will recursively define a sequence of polynomials (𝑝𝑘)∞
𝑘=0 such that 

𝐷𝑝𝑘 = 𝑥𝑘. By assumption deg 𝐷𝑥 = (deg 𝑥) − 1 = 0, so that 𝐷𝑥 = 𝑏 for some non-zero 𝑏 ∈ 𝐅.
Define 𝑝0 = 𝑏−1𝑥 and, using the linearity of 𝐷, observe that

𝐷𝑝0 = 𝐷(𝑏−1𝑥) = 𝑏−1𝐷𝑥 = 𝑏−1𝑏 = 1.

Now suppose that we have defined polynomials 𝑝0, …, 𝑝𝑛 such that 𝐷𝑝𝑘 = 𝑥𝑘 for each
𝑘 ∈ {0, …, 𝑛}. By assumption 𝐷(𝑥𝑛+2) must have degree 𝑛 + 1, i.e. must be of the form

𝐷(𝑥𝑛+2) = 𝑏𝑛+1𝑥𝑛+1 + 𝑏𝑛𝑥𝑛 + ⋯ + 𝑏1𝑥 + 𝑏0

where 𝑏𝑛+1 ≠ 0. Because 𝐷𝑝𝑘 = 𝑥𝑘 and 𝐷 is linear, it follows that

𝑏−1
𝑛+1𝐷(𝑥𝑛+2) = 𝑥𝑛+1 + 𝑏−1

𝑛+1(𝑏𝑛𝐷𝑝𝑛 + ⋯ + 𝑏1𝐷𝑝1 + 𝑏0𝐷𝑝0)

⇒ 𝑥𝑛+1 = 𝐷(𝑏−1
𝑛+1(𝑥𝑛+2 − 𝑏𝑛𝑝𝑛 − ⋯ − 𝑏1𝑝1 − 𝑏0𝑝0)).

Thus, defining 𝑝𝑛+1 = 𝑏−1
𝑛+1(𝑥𝑛+2 − 𝑏𝑛𝑝𝑛 − ⋯ − 𝑏1𝑝1 − 𝑏0𝑝0), we have 𝐷𝑝𝑛+1 = 𝑥𝑛+1. We

now obtain the desired sequence (𝑝𝑘)∞
𝑘=0 of polynomials by recursion.

We can now show that 𝐷 is surjective. Let 𝑝 = ∑deg 𝑝
𝑘=0 𝑎𝑘𝑥𝑘 ∈ 𝒫(𝐑) be given. Because 𝐷 is

linear, it follows that

66 / 366



𝐷(∑
deg 𝑝

𝑘=0
𝑎𝑘𝑝𝑘) = ∑

deg 𝑝

𝑘=0
𝑎𝑘𝐷𝑝𝑘 = ∑

deg 𝑝

𝑘=0
𝑎𝑘𝑥𝑘 = 𝑝.

Thus 𝐷 is surjective.

Exercise 3.B.29. Suppose 𝑝 ∈ 𝒫(𝐑). Prove that there exists a polynomial 𝑞 ∈ 𝒫(𝐑)
such that 5𝑞″ + 3𝑞′ = 𝑝.

This exercise can be done without linear algebra, but it’s more fun to do it using linear
algebra.

Solution. Define a map 𝐷 : 𝒫(𝐑) → 𝒫(𝐑) by 𝐷𝑞 = 5𝑞″ + 3𝑞′; it will suffice to show that 
𝐷 is surjective. The linearity of 𝐷 follows from the linearity of differentiation. Suppose
𝑞 ∈ 𝒫(𝐑) is a non-constant polynomial of degree 𝑛 ≥ 1, so that 𝑞 = ∑𝑛

𝑘=0 𝑎𝑘𝑥𝑘 with 𝑎𝑛 ≠ 0.
Some calculations reveals that

𝐷𝑞 =
⎩{
⎨
{⎧3𝑎𝑛 if 𝑛 = 1,

3𝑛𝑎𝑛𝑥𝑛−1 + ∑𝑛−2
𝑘=0 (𝑘 + 1)[3𝑎𝑘+1 + 5(𝑘 + 2)𝑎𝑘+2]𝑥𝑘 if 𝑛 ≥ 2.

In either case, because 𝑎𝑛 ≠ 0, the polynomial 𝐷𝑞 has degree 𝑛 − 1. Thus 𝐷 satisfies the
hypotheses of Exercise 3.B.26 and hence must be surjective.

Exercise 3.B.30. Suppose 𝜑 ∈ ℒ(𝑉 , 𝐅) and 𝜑 ≠ 0. Suppose 𝑢 ∈ 𝑉  is not in null 𝜑.
Prove that

𝑉 = null 𝜑 ⊕ {𝑎𝑢 : 𝑎 ∈ 𝐅}.

Solution. For any 𝑣 ∈ 𝑉 , the linearity of 𝜑 gives us

1 = 𝜑(
1

𝜑(𝑢)
𝑢) ⇒ 𝜑(𝑣) = 𝜑(

𝜑(𝑣)
𝜑(𝑢)

𝑢) ⇒ 𝜑(𝑣 −
𝜑(𝑣)
𝜑(𝑢)

𝑢) = 0

⇒ 𝑣 −
𝜑(𝑣)
𝜑(𝑢)

𝑢 = 𝑤 for some 𝑤 ∈ null 𝜑 ⇒ 𝑣 = 𝑤 +
𝜑(𝑣)
𝜑(𝑢)

𝑢 ∈ null 𝜑 + {𝑎𝑢 : 𝑎 ∈ 𝐅}.

Thus 𝑉 = null 𝜑 + {𝑎𝑢 : 𝑎 ∈ 𝐅}. Suppose that 𝑣 ∈ null 𝜑 ∩ {𝑎𝑢 : 𝑎 ∈ 𝐅}, so that 𝑣 = 𝑎𝑢 for
some 𝑎 ∈ 𝐅. Observe that

0 = 𝜑(𝑣) = 𝜑(𝑎𝑢) = 𝑎𝜑(𝑢).

Since 𝜑(𝑢) ≠ 0, Exercise 1.B.2 implies that 𝑎 = 0 and hence that 𝑣 = 0. Thus

null 𝜑 ∩ {𝑎𝑢 : 𝑎 ∈ 𝐅} = {0}

and it follows from 1.46 that the sum 𝑉 = null 𝜑 ⊕ {𝑎𝑢 : 𝑎 ∈ 𝐅} is direct.
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Exercise 3.B.31. Suppose 𝑉  is finite-dimensional, 𝑋 is a subspace of 𝑉 , and 𝑌  is
a finite-dimensional subspace of 𝑊 . Prove that there exists 𝑇 ∈ ℒ(𝑉 , 𝑊) such that 
null 𝑇 = 𝑋 and range 𝑇 = 𝑌  if and only if dim 𝑋 + dim 𝑌 = dim 𝑉 .

Solution. If there exists such a map 𝑇  then the equality dim 𝑋 + dim 𝑌 = dim 𝑉  is imme-
diate from the fundamental theorem of linear maps (3.21).

Suppose that dim 𝑋 + dim 𝑌 = dim 𝑉 . Let 𝑥1, …, 𝑥ℓ be a basis of 𝑋, which we extend to a
basis 𝑥1, …, 𝑥ℓ, 𝑣1, …, 𝑣𝑚, and let 𝑦1, …, 𝑦𝑛 be a basis of 𝑌 . By assumption we have

dim 𝑋 + dim 𝑌 = dim 𝑉 ⇔ ℓ + 𝑛 = ℓ + 𝑚 ⇔ 𝑛 = 𝑚,

so the map 𝑇 ∈ ℒ(𝑉 , 𝑊) given by 𝑇𝑥𝑘 = 0 and 𝑇𝑣𝑘 = 𝑦𝑘 is well-defined (i.e. there are enough
𝑦𝑘’s to define this map). Suppose 𝑣 = 𝑎1𝑥1 + ⋯ + 𝑎ℓ𝑥ℓ + 𝑏1𝑣1 + ⋯ + 𝑏𝑚𝑣𝑚 ∈ 𝑉  is such that
𝑇𝑣 = 0. Observe that

0 = 𝑇𝑣 = 𝑎1𝑇𝑥1 + ⋯ + 𝑎ℓ𝑇𝑥ℓ + 𝑏1𝑇𝑣1 + ⋯ + 𝑏𝑚𝑇𝑣𝑚 = 𝑏1𝑦1 + ⋯ + 𝑏𝑚𝑦𝑚.

The linear independence of 𝑦1, …, 𝑦𝑛 then implies that 𝑏1 = ⋯ = 𝑏𝑚 = 0 and thus 𝑣 ∈ 𝑋, so
that null 𝑇 ⊆ 𝑋. Certainly 𝑋 ⊆ null 𝑇  and it follows that null 𝑇 = 𝑋. Furthermore, Exercise
3.B.10 implies that

range 𝑇 = span(𝑇𝑥1, …, 𝑇𝑥ℓ, 𝑇 𝑣1, …, 𝑇 𝑣𝑚) = span(𝑦1, …, 𝑦𝑚) = span(𝑦1, …, 𝑦𝑛) = 𝑌 ,

where we have used 𝑚 = 𝑛 for the third equality.

Exercise 3.B.32. Suppose 𝑉  is finite-dimensional with dim 𝑉 > 1. Show that if
𝜑 : ℒ(𝑉 ) → 𝐅 is a linear map such that 𝜑(𝑆𝑇 ) = 𝜑(𝑆)𝜑(𝑇 ) for all 𝑆, 𝑇 ∈ ℒ(𝑉 ), then 
𝜑 = 0.

Hint: The description of the two-sided ideals of ℒ(𝑉 ) given by Exercise 17 in Section
3A might be useful.

Solution. First note that by Exercise 3.A.16 there exist 𝑆, 𝑇 ∈ ℒ(𝑉 ) such that 𝑆𝑇 − 𝑇𝑆 ≠ 0.
Note further that

𝜑(𝑆𝑇 − 𝑇𝑆) = 𝜑(𝑆𝑇 ) − 𝜑(𝑇𝑆) = 𝜑(𝑆)𝜑(𝑇 ) − 𝜑(𝑇 )𝜑(𝑆) = 0,

where we have used that multiplication in 𝐅 is commutative. It follows that 𝑆𝑇 − 𝑇𝑆 ∈ null 𝜑
and hence that null 𝜑 ≠ {0}.

Now suppose that 𝐸 ∈ null 𝜑 and 𝑇 ∈ ℒ(𝑉 ). Observe that

𝜑(𝐸𝑇) = 𝜑(𝐸)𝜑(𝑇 ) = 0 ⋅ 𝜑(𝑇 ) = 0 and 𝜑(𝑇𝐸) = 𝜑(𝑇 )𝜑(𝐸) = 𝜑(𝑇 ) ⋅ 0 = 0.

Thus 𝐸𝑇  and 𝑇𝐸 also belong to null 𝜑, so that null 𝜑 is a two-sided ideal of ℒ(𝑉 ). As we
showed in Exercise 3.A.17, any non-zero two-sided ideal of ℒ(𝑉 ) must be ℒ(𝑉 ) itself, i.e. 
null 𝜑 = ℒ(𝑉 ). It follows that 𝜑 = 0.
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Exercise 3.B.33. Suppose that 𝑉  and 𝑊  are real vector spaces and 𝑇 ∈ ℒ(𝑉 , 𝑊).
Define 𝑇𝐂 : 𝑉𝐂 → 𝑊𝐂 by

𝑇𝐂(𝑢 + 𝑖𝑣) = 𝑇𝑢 + 𝑖𝑇𝑣

for all 𝑢, 𝑣 ∈ 𝑉 .

(a) Show that 𝑇𝐂 is a (complex) linear map from 𝑉𝐂 to 𝑊𝐂.

(b) Show that 𝑇𝐂 is injective if and only if 𝑇  is injective.

(c) Show that range 𝑇𝐂 = 𝑊𝐂 if and only if range 𝑇 = 𝑊 .

See Exercise 8 in Section 1B for the definition of the complexification 𝑉𝐂. The linear
map 𝑇𝐂 is called the complexification of the linear map 𝑇 .

Solution.

(a) Let 𝑢1 + 𝑖𝑣1 and 𝑢2 + 𝑖𝑣2 ∈ 𝑉𝐂 be given. Using the linearity of 𝑇 , observe that

𝑇𝐂((𝑢1 + 𝑖𝑣1) + (𝑢2 + 𝑖𝑣2)) = 𝑇𝐂((𝑢1 + 𝑢2) + 𝑖(𝑣1 + 𝑣2))

= 𝑇 (𝑢1 + 𝑢2) + 𝑖𝑇 (𝑣1 + 𝑣2)

= 𝑇𝑢1 + 𝑇𝑢2 + 𝑖𝑇𝑣1 + 𝑖𝑇𝑣2

= 𝑇𝑢1 + 𝑖𝑇𝑣1 + 𝑇𝑢2 + 𝑖𝑇𝑣2

= 𝑇𝐂(𝑢1 + 𝑖𝑣1) + 𝑇𝐂(𝑢2 + 𝑖𝑣2).

Similarly, let 𝑢 + 𝑖𝑣 ∈ 𝑉𝐂 and 𝑎 + 𝑏𝑖 ∈ 𝐂 be given. The linearity of 𝑇  gives us

𝑇𝐂((𝑎 + 𝑏𝑖)(𝑢 + 𝑖𝑣)) = 𝑇𝐂((𝑎𝑢 − 𝑏𝑣) + 𝑖(𝑎𝑣 + 𝑏𝑢))

= 𝑇 (𝑎𝑢 − 𝑏𝑣) + 𝑖𝑇 (𝑎𝑣 + 𝑏𝑢)

= (𝑎𝑇𝑢 − 𝑏𝑇𝑣) + 𝑖(𝑎𝑇𝑣 + 𝑏𝑇𝑢)

= (𝑎 + 𝑏𝑖)(𝑇𝑢 + 𝑖𝑇𝑣)

= (𝑎 + 𝑏𝑖)𝑇𝐂(𝑢 + 𝑖𝑣).

Thus 𝑇𝐂 is a 𝐂-linear map from 𝑉𝐂 to 𝑊𝐂.

(b) Suppose that 𝑇  is injective and observe that for any 𝑢 + 𝑖𝑣 ∈ 𝑉𝐂,

𝑇𝐂(𝑢 + 𝑖𝑣) = 0 ⇔ 𝑇𝑢 + 𝑖𝑇𝑣 = 0 ⇔ 𝑇𝑢 = 0 and 𝑇𝑣 = 0

⇔ 𝑢 = 0 and 𝑣 = 0 ⇔ 𝑢 + 𝑖𝑣 = 0,

where we have used the injectivity of 𝑇  for the third equivalence. Thus null 𝑇𝐂 = {0},
i.e. 𝑇𝐂 is injective.

Now suppose that 𝑇𝐂 is injective and observe that for any 𝑢 ∈ 𝑉 ,

𝑇𝑢 = 0 ⇔ 𝑇𝐂(𝑢 + 𝑖0) = 0 ⇔ 𝑢 + 𝑖0 = 0 ⇔ 𝑢 = 0,
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where we have used the injectivity of 𝑇𝐂 for the second equivalence. It follows that 
null 𝑇 = {0}, i.e. 𝑇  is injective.

(c) Suppose that range 𝑇 = 𝑊  and let 𝑤 + 𝑖𝑥 ∈ 𝑊𝐂 be given. There exist 𝑢, 𝑣 ∈ 𝑉  such
that 𝑇𝑢 = 𝑤 and 𝑇𝑣 = 𝑥. It follows that

𝑇𝐂(𝑢 + 𝑖𝑣) = 𝑇𝑢 + 𝑖𝑇𝑣 = 𝑤 + 𝑖𝑥.

Thus range 𝑇𝐂 = 𝑊𝐂.

Now suppose that range 𝑇𝐂 = 𝑊𝐂 and let 𝑤 ∈ 𝑊  be given. There exists 𝑢 + 𝑖𝑣 ∈ 𝑉𝐂

such that 𝑇𝐂(𝑢 + 𝑖𝑣) = 𝑤 + 𝑖0. It follows that

𝑇𝐂(𝑢 + 𝑖𝑣) = 𝑇𝑢 + 𝑖𝑇𝑣 = 𝑤 + 𝑖0 ⇒ 𝑇𝑢 = 𝑤.

Thus range 𝑇 = 𝑊 .
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3.C. Matrices

Exercise 3.C.1. Suppose 𝑇 ∈ ℒ(𝑉 , 𝑊). Show that with respect to each choice of bases
of 𝑉  and 𝑊 , the matrix of 𝑇  has at least dim range 𝑇  nonzero entries.

Solution. Let 𝑣1, …, 𝑣𝑛 be a basis of 𝑉  and 𝑤1, …, 𝑤𝑚 be a basis of 𝑊 , so that the matrix of
𝑇  with respect to these bases is the 𝑚-by-𝑛 matrix ℳ(𝑇) whose entries 𝐴𝑗,𝑘 are defined by

𝑇𝑣𝑘 = 𝐴1,𝑘𝑤1 + ⋯ + 𝐴𝑚,𝑘𝑤𝑚.

Let 𝑝 = dim null 𝑇  and 𝑞 = dim range 𝑇 , so that 𝑝 + 𝑞 = 𝑛. Because the list 𝑣1, …, 𝑣𝑛 is lin-
early independent, at most 𝑝 of the 𝑣𝑘’s can belong to null 𝑇 . Equivalently, at least 𝑛 − 𝑝 = 𝑞
of the 𝑣𝑘’s do not belong to null 𝑇 . Letting 𝑣𝑘 be such a vector, we have

𝑇𝑣𝑘 = 𝐴1,𝑘𝑤1 + ⋯ + 𝐴𝑚,𝑘𝑤𝑚 ≠ 0.

This implies that at least one of the scalars 𝐴𝑗,𝑘 is non-zero, i.e. column 𝑘 of ℳ(𝑇) has at
least one non-zero entry. Since there are at least 𝑞 choices of 𝑘 resulting in a non-zero column
𝑘 of ℳ(𝑇), we see that ℳ(𝑇) has at least 𝑞 = dim range 𝑇  non-zero entries.

Exercise 3.C.2. Suppose 𝑉  and 𝑊  are finite-dimensional and 𝑇 ∈ ℒ(𝑉 , 𝑊). Prove
that dim range 𝑇 = 1 if and only if there exist a basis of 𝑉  and a basis of 𝑊  such that
with respect to these bases, all entries of ℳ(𝑇) equal 1.

Solution. Suppose there exists a basis 𝑣1, …, 𝑣𝑛 of 𝑉  and a basis 𝑤1, …, 𝑤𝑚 of 𝑊  such that
with respect to these bases all entries of ℳ(𝑇) equal 1. That is,

𝑇𝑣1 = ⋯ = 𝑇𝑣𝑛 = 𝑤1 + ⋯ + 𝑤𝑚.

It follows from Exercise 3.B.10 that

range 𝑇 = span(𝑇𝑣1, …, 𝑇 𝑣𝑛) = span(𝑤1 + ⋯ + 𝑤𝑚).

Because 𝑤1, …, 𝑤𝑚 is linearly independent, we must have 𝑤1 + ⋯ + 𝑤𝑚 ≠ 0 and thus 
𝑤1, …, 𝑤𝑚 is a basis of range 𝑇 . It follows that dim range 𝑇 = 1.

To prove the converse, let us first prove the following lemmas.
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Lemma L.1. If 𝑊  is finite-dimensional with dim 𝑊 = 𝑚 and 𝑤 ∈ 𝑊  is non-zero, then
there exists a basis 𝑤1, …, 𝑤𝑚 of 𝑊  such that 𝑤 = 𝑤1 + ⋯ + 𝑤𝑚.

Proof. Note that 𝑤 being non-zero implies 𝑚 ≥ 1. If 𝑚 = 1 then take 𝑤1 = 𝑤; other-
wise, extend the list 𝑤 to a basis 𝑤, 𝑤1, …, 𝑤𝑚−1 of 𝑊  and define

𝑤𝑚 = 𝑤 − 𝑤1 − ⋯ − 𝑤𝑚−1,

so that 𝑤 = 𝑤1 + ⋯ + 𝑤𝑚. Observe that each vector in the basis 𝑤, 𝑤1, …, 𝑤𝑚−1 can
be expressed as a linear combination of vectors from the list 𝑤1, …, 𝑤𝑚. It follows that
𝑊 = span(𝑤1…, 𝑤𝑚) and hence, by 2.42, 𝑤1, …, 𝑤𝑚 is a basis of 𝑊 . □

Lemma L.2. If 𝑉  is finite-dimensional with dim 𝑉 = 𝑛 and 𝑈  is a subspace of 𝑉  with
𝑈 ≠ 𝑉 , then there exists a basis 𝑣1, …, 𝑣𝑛 of 𝑉  such that 𝑣𝑘 ∉ 𝑈  for each 𝑘 ∈ {1, …, 𝑛}.

Proof. Note that 𝑈 ≠ 𝑉  implies 𝑛 ≥ 1. We will construct the required basis 𝑣1, …, 𝑣𝑛

via the following process.

Step 1. Because 𝑈 ≠ 𝑉 , there exists some 𝑣1 ∈ 𝑉  such that 𝑣1 ∉ 𝑈 , which implies that
𝑣1 ≠ 0. If span(𝑣1) = 𝑉  then the process stops and 𝑣1 is the required basis. Otherwise,
move to step 2.

Step 𝑘. Suppose we have chosen linearly independent vectors 𝑣1, …, 𝑣𝑘−1, none of which
belong to 𝑈 , such that span(𝑣1, …, 𝑣𝑘−1) ≠ 𝑉 . Observe that

span(𝑣1, …, 𝑣𝑘−1) ∪ 𝑈 = 𝑉 ⇒ 𝑈 ⊆ span(𝑣1, …, 𝑣𝑘−1)

⇒ span(𝑣1, …, 𝑣𝑘−1) = 𝑉 ,

where we have used Exercise 1.C.12 and the fact that span(𝑣1, …, 𝑣𝑘−1) is not contained
in 𝑈  (since 𝑣1 ∉ 𝑈) for the first implication. Given that span(𝑣1, …, 𝑣𝑘−1) ≠ 𝑉 , it must
be the case that span(𝑣1, …, 𝑣𝑘−1) ∪ 𝑈 ≠ 𝑉  and thus there exists some 𝑣𝑘 ∈ 𝑉  such that

𝑣𝑘 ∉ span(𝑣1, …, 𝑣𝑘−1) and 𝑣𝑘 ∉ 𝑈.

It follows from Exercise 2.A.13 that the list 𝑣1, …, 𝑣𝑘 is linearly independent. If 
span(𝑣1, …, 𝑣𝑘) = 𝑉  then the process stops and 𝑣1, …, 𝑣𝑘 is the required basis. Other-
wise, move to step 𝑘 + 1.

Because 𝑉  is finite-dimensional, this process must stop after a finite number of steps
(indeed, it stops after 𝑛 steps). □

Returning to the exercise, suppose that dim range 𝑇 = 1, so that range 𝑇  has a basis 𝑤. By
Lemma L.1 there is a basis 𝑤1, …, 𝑤𝑚 of 𝑊  such that 𝑤 = 𝑤1 + ⋯ + 𝑤𝑚, and by Lemma L.2
there is a basis 𝑢1, …, 𝑢𝑛 of 𝑉  such that each 𝑢𝑘 ∉ null 𝑇 . For any 𝑘 ∈ {1, …, 𝑛} we have 
𝑇𝑢𝑘 ∈ range 𝑇 = span(𝑤) and thus 𝑇𝑢𝑘 = 𝜆𝑘𝑤 for some scalar 𝜆𝑘; this scalar must be non-
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zero since 𝑇𝑢𝑘 ≠ 0. Let 𝑣𝑘 = 𝜆−1
𝑘 𝑢𝑘 and observe that, because each 𝜆−1

𝑘  is non-zero, 𝑣1, …, 𝑣𝑛

is a basis of 𝑉 . It follows that

𝑇𝑣𝑘 = 𝑤 = 𝑤1 + ⋯ + 𝑤𝑚

for each 𝑘 ∈ {1, …, 𝑛}. Thus with respect to the bases 𝑣1, …, 𝑣𝑛 and 𝑤1, …, 𝑤𝑚 all entries of
ℳ(𝑇) equal 1.

Exercise 3.C.3. Suppose 𝑣1, …, 𝑣𝑛 is a basis of 𝑉  and 𝑤1, …, 𝑤𝑚 is a basis of 𝑊 .

(a) Show that if 𝑆, 𝑇 ∈ ℒ(𝑉 , 𝑊), then ℳ(𝑆 + 𝑇) = ℳ(𝑆) + ℳ(𝑇).

(b) Show that if 𝜆 ∈ 𝐅 and 𝑇 ∈ ℒ(𝑉 , 𝑊), then ℳ(𝜆𝑇) = 𝜆ℳ(𝑇).

This exercise asks you to verify 3.35 and 3.38.

Solution.

(a) Suppose ℳ(𝑆) has entries 𝐴𝑗,𝑘 and ℳ(𝑇) has entries 𝐵𝑗,𝑘, i.e.

𝑆𝑣𝑘 = 𝐴1,𝑘𝑤1 + ⋯ + 𝐴𝑚,𝑘𝑤𝑚 and 𝑇𝑣𝑘 = 𝐵1,𝑘𝑤1 + ⋯ + 𝐵𝑚,𝑘𝑤𝑚.

It follows that

(𝑆 + 𝑇)(𝑣𝑘) = 𝑆𝑣𝑘 + 𝑇𝑣𝑘 = (𝐴1,𝑘 + 𝐵1,𝑘)𝑤1 + ⋯ + (𝐴𝑚,𝑘 + 𝐵𝑚,𝑘)𝑤𝑚.

Thus ℳ(𝑆 + 𝑇) has entries 𝐴𝑗,𝑘 + 𝐵𝑗,𝑘. That is, ℳ(𝑆 + 𝑇) = ℳ(𝑆) + ℳ(𝑇).

(b) Suppose ℳ(𝑇) has entries 𝐴𝑗,𝑘, i.e.

𝑇𝑣𝑘 = 𝐴1,𝑘𝑤1 + ⋯ + 𝐴𝑚,𝑘𝑤𝑚.

It follows that

(𝜆𝑇 )(𝑣𝑘) = 𝜆𝑇𝑣𝑘 = (𝜆𝐴1,𝑘)𝑤1 + ⋯ + (𝜆𝐴𝑚,𝑘)𝑤𝑚.

Thus ℳ(𝑆 + 𝑇) has entries 𝜆𝐴𝑗,𝑘. That is, ℳ(𝜆𝑇) = 𝜆ℳ(𝑇).

Exercise 3.C.4. Suppose that 𝐷 ∈ ℒ(𝒫3(𝐑), 𝒫2(𝐑)) is the differentiation map defined
by 𝐷𝑝 = 𝑝′. Find a basis of 𝒫3(𝐑) and a basis of 𝒫2(𝐑) such that the matrix of 𝐷 with
respect to these bases is

⎝
⎜⎛

1
0
0

0
1
0

0
0
1

0
0
0⎠
⎟⎞.

Compare with Example 3.33. The next exercise generalizes this exercise.

Solution. Take 𝑥3, 𝑥2, 𝑥, 1 as a basis of 𝒫3(𝐑) and 3𝑥2, 2𝑥, 1 as a basis of 𝒫2(𝐑) and ob-
serve that

𝐷(𝑥3) = 3𝑥2, 𝐷(𝑥2) = 2𝑥, 𝐷(𝑥) = 1, and 𝐷(1) = 0.

Thus the matrix of 𝐷 with respect to these bases is
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⎝
⎜⎛

1
0
0

0
1
0

0
0
1

0
0
0⎠
⎟⎞.

Exercise 3.C.5. Suppose 𝑉  and 𝑊  are finite-dimensional and 𝑇 ∈ ℒ(𝑉 , 𝑊). Prove that
there exist a basis of 𝑉  and a basis of 𝑊  such that with respect to these bases, all entries
of ℳ(𝑇) are 0 except that the entries in row 𝑘, column 𝑘, equal 1 if 1 ≤ 𝑘 ≤ dim range 𝑇 .

Solution. Let 𝑣1, …, 𝑣𝑚 be a basis of null 𝑇  and extend this to a basis 𝑢1, …, 𝑢ℓ, 𝑣1, …, 𝑣𝑚

of 𝑉  (note the ordering). As the proof of 2.33 shows, we then have 𝑈 ∩ null 𝑇 = {0}, where
𝑈 = span(𝑢1, …, 𝑢ℓ). The restriction of 𝑇  to 𝑈  is a linear map in its own right. Moreover,
this restriction is injective:

𝑢 ∈ 𝑈 and 𝑇𝑢 = 0 ⇒ 𝑢 ∈ 𝑈 ∩ null 𝑇 = {0} ⇒ 𝑢 = 0.

It then follows from Exercise 3.B.9, Exercise 3.B.10, and Exercise 3.B.11 that the list 
𝑇𝑢1, …, 𝑇𝑢ℓ is a basis of {𝑇𝑢 : 𝑢 ∈ 𝑈} = range 𝑇 . Thus dim range 𝑇 = ℓ. Extend the list 
𝑇𝑢1, …, 𝑇𝑢ℓ to a basis 𝑇𝑢1, …, 𝑇𝑢ℓ, 𝑤1, …, 𝑤𝑛 of 𝑊  and let ℳ(𝑇) be the matrix of 𝑇  with
respect to the bases 𝑢1, …, 𝑢ℓ, 𝑣1, …, 𝑣𝑚 and 𝑇𝑢1, …, 𝑇𝑢ℓ, 𝑤1, …, 𝑤𝑛. If ℳ(𝑇) has entries 𝐴𝑗,𝑘,
then notice that 𝐴𝑗,𝑘 = 1 if 𝑗 = 𝑘 and 1 ≤ 𝑘 ≤ ℓ = dim range 𝑇 , and 𝐴𝑗,𝑘 = 0 otherwise.

Exercise 3.C.6. Suppose 𝑣1, …, 𝑣𝑚 is a basis of 𝑉  and 𝑊  is finite-dimensional. Suppose
𝑇 ∈ ℒ(𝑉 , 𝑊). Prove that there exists a basis 𝑤1, …, 𝑤𝑛 of 𝑊  such that all entries in the
first column of ℳ(𝑇) [with respect to the bases 𝑣1, …, 𝑣𝑚 and 𝑤1, …, 𝑤𝑛] are 0 except
for possibly a 1 in the first row, first column.

In this exercise, unlike Exercise 5, you are given the basis of 𝑉  instead of being able
to choose a basis of 𝑉 .

Solution. If 𝑣1 ∈ null 𝑇  then let 𝑤1, …, 𝑤𝑛 be any basis of 𝑊 . Since 𝑇𝑣1 = 0, it follows that
the first column of ℳ(𝑇) is zero.

Suppose that 𝑣1 ∉ null 𝑇 , so that 𝑇𝑣1 ≠ 0. Let 𝑤1 = 𝑇𝑣1 and extend this to a basis 𝑤1, …, 𝑤𝑛

of 𝑊 . It follows that the entries in the first column of ℳ(𝑇) are all 0 except for a 1 in the
first row.

Exercise 3.C.7. Suppose 𝑤1, …, 𝑤𝑛 is a basis of 𝑊  and 𝑉  is finite-dimensional. Suppose
𝑇 ∈ ℒ(𝑉 , 𝑊). Prove that there exists a basis 𝑣1, …, 𝑣𝑚 of 𝑉  such that all entries in the
first row of ℳ(𝑇) [with respect to the bases 𝑣1, …, 𝑣𝑚 and 𝑤1, …, 𝑤𝑛] are 0 except for
possibly a 1 in the first row, first column.

In this exercise, unlike Exercise 5, you are given the basis of 𝑊  instead of being able
to choose a basis of 𝑊 .
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Solution. Let 𝑢1, …, 𝑢𝑚 be any basis of 𝑉  and suppose ℳ(𝑇 , (𝑢1, …, 𝑢𝑚), (𝑤1, …, 𝑤𝑛)) has
entries 𝐴𝑗,𝑘. If the first row of this matrix is zero then 𝑢1, …, 𝑢𝑚 is the desired basis. Other-
wise, there exists some 𝑖 ∈ {1, …, 𝑚} such that 𝐴1,𝑖 is non-zero. Let 𝜆 = 𝐴−1

1,𝑖 and define

𝑣1 = 𝜆𝑢𝑖, 𝑣𝑖 = 𝑢1 − 𝜆𝐴1,1𝑢𝑖, and 𝑣𝑘 = 𝑢𝑘 − 𝜆𝐴1,𝑘𝑢𝑖 for 2 ≤ 𝑘 ≤ 𝑚 and 𝑘 ≠ 𝑖.

Because each 𝑢𝑘 belongs to span(𝑣1, …, 𝑣𝑚), the list 𝑣1, …, 𝑣𝑚 spans 𝑉 . It follows from 2.42
that 𝑣1, …, 𝑣𝑚 is a basis of 𝑉 . Now observe that

𝑇𝑣1 = 𝜆𝑇𝑢𝑖 = 𝜆(𝐴1,𝑖𝑤1 + ⋯ + 𝐴𝑛,𝑖𝑤𝑛) = 1𝑤1 + ⋯ + 𝜆𝐴𝑛,𝑖𝑤𝑛,

𝑇 𝑣𝑖 = 𝑇𝑢1 − 𝐴1,1(𝜆𝑇𝑢𝑖) = 𝐴1,1𝑤1 + ⋯ + 𝐴𝑛,1𝑤𝑛 − 𝐴1,1(𝑤1 + ⋯ + 𝜆𝐴𝑛,𝑖𝑤𝑛)

= 0𝑤1 + ⋯ + (𝐴𝑛,1 − 𝜆𝐴1,1𝐴𝑛,𝑖)𝑤𝑛.

For 2 ≤ 𝑘 ≤ 𝑚 and 𝑘 ≠ 𝑖,

𝑇𝑣𝑘 = 𝑇𝑢𝑘 − 𝐴1,𝑘(𝜆𝑇𝑢𝑖) = 𝐴1,𝑘𝑤1 + ⋯ + 𝐴𝑛,𝑘𝑤𝑛 − 𝐴1,𝑘(𝑤1 + ⋯ + 𝜆𝐴𝑛,𝑖𝑤𝑛)

= 0𝑤1 + ⋯ + (𝐴𝑛,𝑘 − 𝜆𝐴1,𝑘𝐴𝑛,𝑖)𝑤𝑛.

Thus the entries in the first row of the matrix of 𝑇  with respect to the bases 𝑣1, …, 𝑣𝑚 and 
𝑤1, …, 𝑤𝑛 are 0, except for a 1 in the first column.

Exercise 3.C.8. Suppose 𝐴 is an 𝑚-by-𝑛 matrix and 𝐵 is an 𝑛-by-𝑝 matrix. Prove that

(𝐴𝐵)𝑗,⋅ = 𝐴𝑗,⋅𝐵

for each 1 ≤ 𝑗 ≤ 𝑚. In other words, show that row 𝑗 of 𝐴𝐵 equals (row 𝑗 of 𝐴) times
𝐵.

This exercise gives the row version of 3.48.

Solution. (𝐴𝐵)𝑗,⋅ is a 1-by-𝑝 matrix whose entry in the 𝑘th column is

((𝐴𝐵)𝑗,⋅)1,𝑘 = (𝐴𝐵)𝑗,𝑘 = ∑
𝑛

𝑟=1
𝐴𝑗,𝑟𝐵𝑟,𝑘.

𝐴𝑗,⋅ is a 1-by-𝑛 matrix and so 𝐴𝑗,⋅𝐵 is a 1-by-𝑝 matrix whose entry in the 𝑘th column is

(𝐴𝑗,⋅𝐵)1,𝑘 = ∑
𝑛

𝑟=1
(𝐴𝑗,⋅)1,𝑟𝐵𝑟,𝑘 = ∑

𝑛

𝑟=1
𝐴𝑗,𝑟𝐵𝑟,𝑘.

Thus (𝐴𝐵)𝑗,⋅ = 𝐴𝑗,⋅𝐵.
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Exercise 3.C.9. Suppose 𝑎 = ( 𝑎1 ⋯ 𝑎𝑛 ) is a 1-by-𝑛 matrix and 𝐵 is an 𝑛-by-𝑝 ma-
trix. Prove that

𝑎𝐵 = 𝑎1𝐵1,⋅ + ⋯ + 𝑎𝑛𝐵𝑛,⋅ .

In other words, show that 𝑎𝐵 is a linear combination of the rows of 𝐵, with the scalars
that multiply the rows coming from 𝑎.

This exercise gives the row version of 3.50.

Solution. 𝑎𝐵 is a 1-by-𝑝 matrix whose entry in the 𝑘th column is

(𝑎𝐵)1,𝑘 = ∑
𝑛

𝑟=1
𝑎𝑟𝐵𝑟,𝑘 = 𝑎1𝐵1,𝑘 + ⋯ + 𝑎𝑛𝐵𝑛,𝑘.

Thus

𝑎𝐵 = 𝑎1𝐵1,⋅ + ⋯ + 𝑎𝑛𝐵𝑛,⋅ .

Exercise 3.C.10. Give an example of 2-by-2 matrices 𝐴 and 𝐵 such that 𝐴𝐵 ≠ 𝐵𝐴.

Solution. Let

𝐴 = (1
0

0
0) and 𝐵 = (1

0
1
0)

and observe that

𝐴𝐵 = (1
0

1
0) ≠ (1

0
0
0) = 𝐵𝐴.

Exercise 3.C.11. Prove that the distributive property holds for matrix addition and
matrix multiplication. In other words, suppose 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, and 𝐹  are matrices whose
sizes are such that 𝐴(𝐵 + 𝐶) and (𝐷 + 𝐸)𝐹  make sense. Explain why 𝐴𝐵 + 𝐴𝐶 and 
𝐷𝐹 + 𝐸𝐹  both make sense and prove that

𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶 and (𝐷 + 𝐸)𝐹 = 𝐷𝐹 + 𝐸𝐹.

Solution. For 𝐵 + 𝐶 to make sense, 𝐵 and 𝐶 must have the same sizes; suppose they are
both 𝑛-by-𝑝 matrices. For 𝐴(𝐵 + 𝐶) to make sense, 𝐴 must then be an 𝑚-by-𝑛 matrix for
some 𝑚. Given this, both 𝐴𝐵 and 𝐴𝐶 are 𝑚-by-𝑝 matrices and thus 𝐴𝐵 + 𝐴𝐶 makes sense.

Similarly, suppose 𝐷 and 𝐸 are both 𝑚-by-𝑛 matrices. For (𝐷 + 𝐸)𝐹  to make sense, 𝐹  must
be an 𝑛-by-𝑝 matrix for some 𝑝. Given this, both 𝐷𝐹  and 𝐸𝐹  are 𝑚-by-𝑝 matrices and thus
𝐷𝐹 + 𝐸𝐹  makes sense.

The entry of 𝐴(𝐵 + 𝐶) in row 𝑗, column 𝑘 is given by
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∑
𝑛

𝑟=1
𝐴𝑗,𝑟(𝐵 + 𝐶)𝑟,𝑘 = ∑

𝑛

𝑟=1
𝐴𝑗,𝑟(𝐵𝑟,𝑘 + 𝐶𝑟,𝑘) = ∑

𝑛

𝑟=1
𝐴𝑗,𝑟𝐵𝑟,𝑘 + ∑

𝑛

𝑟=1
𝐴𝑗,𝑟𝐶𝑟,𝑘,

where we have used distributivity in 𝐅. The expression on the right-hand side gives the entry
of 𝐴𝐵 + 𝐴𝐶 in row 𝑗, column 𝑘. Thus 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶. A similar argument shows
that (𝐷 + 𝐸)𝐹 = 𝐷𝐹 + 𝐸𝐹 .

Exercise 3.C.12. Prove that matrix multiplication is associative. In other words, sup-
pose 𝐴, 𝐵, and 𝐶 are matrices whose sizes are such that (𝐴𝐵)𝐶 makes sense. Explain
why 𝐴(𝐵𝐶) makes sense and prove that

(𝐴𝐵)𝐶 = 𝐴(𝐵𝐶).

Try to find a clean proof that illustrates the following quote from Emil Artin: “It is my
experience that proofs involving matrices can be shortened by 50% if one throws the
matrices out.”

Solution. If 𝐴 is an 𝑚-by-𝑛 matrix then for 𝐴𝐵 to make sense, 𝐵 must be an 𝑛-by-𝑝 matrix
for some 𝑝, so that 𝐴𝐵 is an 𝑚-by-𝑝 matrix. For (𝐴𝐵)𝐶 to make sense, 𝐶 must then be a 𝑝
-by-𝑞 matrix for some 𝑞, so that (𝐴𝐵)𝐶 is an 𝑚-by-𝑞 matrix. Thus 𝐵𝐶 is an 𝑛-by-𝑞 matrix
and 𝐴(𝐵𝐶) is an 𝑚-by-𝑞 matrix.

Let 𝑒1, …, 𝑒𝑛 be the standard basis of 𝐅𝑛, let 𝑓1, …, 𝑓𝑚 be the standard basis of 𝐅𝑚, and
define 𝑅 ∈ ℒ(𝐅𝑛, 𝐅𝑚) by 𝑅𝑒𝑘 = 𝐴1,𝑘𝑓1 + ⋯ + 𝐴𝑚,𝑘𝑓𝑚. Thus, with respect to the standard
bases, ℳ(𝑅) = 𝐴. Define 𝑆 ∈ ℒ(𝐅𝑝, 𝐅𝑛) and 𝑇 ∈ ℒ(𝐅𝑞, 𝐅𝑝) similarly, so that ℳ(𝑆) = 𝐵
and ℳ(𝑇) = 𝐶, with respect to the standard bases. Now observe that

(𝐴𝐵)𝐶 = (ℳ(𝑅)ℳ(𝑆))ℳ(𝑇 ) =
(3.43)

ℳ(𝑅𝑆)ℳ(𝑇) =
(3.43)

ℳ((𝑅𝑆)𝑇 )

=
(3.8)

ℳ(𝑅(𝑆𝑇 )) =
(3.43)

ℳ(𝑅)ℳ(𝑆𝑇) =
(3.43)

ℳ(𝑅)(ℳ(𝑆)ℳ(𝑇 )) = 𝐴(𝐵𝐶);

the number above the equals sign is the textbook reference justifying the equality.

Exercise 3.C.13. Suppose 𝐴 is an 𝑛-by-𝑛 matrix and 1 ≤ 𝑗, 𝑘 ≤ 𝑛. Show that the entry
in row 𝑗, column 𝑘, of 𝐴3 (which is defined to mean 𝐴𝐴𝐴) is

∑
𝑛

𝑝=1
∑

𝑛

𝑟=1
𝐴𝑗,𝑝𝐴𝑝,𝑟𝐴𝑟,𝑘.

Solution. By the definition of matrix multiplication, we have

(𝐴3)𝑗,𝑘 = (𝐴2𝐴)𝑗,𝑘 = ∑
𝑛

𝑟=1
(𝐴2)𝑗,𝑟𝐴𝑟,𝑘 = ∑

𝑛

𝑟=1
(∑

𝑛

𝑝=1
𝐴𝑗,𝑝𝐴𝑝,𝑟)𝐴𝑟,𝑘 = ∑

𝑛

𝑝=1
∑

𝑛

𝑟=1
𝐴𝑗,𝑝𝐴𝑝,𝑟𝐴𝑟,𝑘.
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Exercise 3.C.14. Suppose 𝑚 and 𝑛 are positive integers. Prove that the function
𝐴 ↦ 𝐴t is a linear map from 𝐅𝑚,𝑛 to 𝐅𝑛,𝑚.

Solution. Let 𝐴, 𝐵 ∈ 𝐅𝑚,𝑛 and 𝜆 ∈ 𝐅 be given. Observe that

((𝐴 + 𝐵)t)𝑘,𝑗 = (𝐴 + 𝐵)𝑗,𝑘 = 𝐴𝑗,𝑘 + 𝐵𝑗,𝑘 = (𝐴t)𝑘,𝑗 + (𝐵t)𝑘,𝑗,

((𝜆𝐴)t)𝑘,𝑗 = (𝜆𝐴)𝑗,𝑘 = 𝜆𝐴𝑗,𝑘 = 𝜆(𝐴t)𝑘,𝑗.

Thus (𝐴 + 𝐵)t = 𝐴t + 𝐵t and (𝜆𝐴)t = 𝜆𝐴t.

Exercise 3.C.15. Prove that if 𝐴 is an 𝑚-by-𝑛 matrix and 𝐶 is an 𝑛-by-𝑝 matrix, then

(𝐴𝐶)t = 𝐶t𝐴t.

This exercise shows that the transpose of the product of two matrices is the product of
the transposes in the opposite order.

Solution. Observe that

((𝐴𝐶)t)𝑘,𝑗 = (𝐴𝐶)𝑗,𝑘 = ∑
𝑛

𝑟=1
𝐴𝑗,𝑟𝐶𝑟,𝑘 = ∑

𝑛

𝑟=1
(𝐶t)𝑘,𝑟(𝐴t)𝑟,𝑗 = (𝐶t𝐴t)𝑘,𝑗.

Thus (𝐴𝐶)t = 𝐶t𝐴t.

Exercise 3.C.16. Suppose 𝐴 is an 𝑚-by-𝑛 matrix with 𝐴 ≠ 0. Prove that the rank of 𝐴
is 1 if and only if there exist (𝑐1, …, 𝑐𝑚) ∈ 𝐅𝑚 and (𝑑1, …, 𝑑𝑛) ∈ 𝐅𝑛 such that 𝐴𝑗,𝑘 = 𝑐𝑗𝑑𝑘

for every 𝑗 = 1, …, 𝑚 and every 𝑘 = 1, …, 𝑛.

Solution. If the rank of 𝐴 is 1 then by 3.56 there is an 𝑚-by-1 matrix 𝐶 and a 1-by-𝑛 matrix
𝑅 such that 𝐴 = 𝐶𝑅; take 𝑐𝑗 to be the 𝑗th entry of 𝐶 and take 𝑑𝑘 to be the 𝑘th entry of 𝑅.

Now suppose there exist (𝑐1, …, 𝑐𝑚) ∈ 𝐅𝑚 and (𝑑1, …, 𝑑𝑛) ∈ 𝐅𝑛 such that 𝐴𝑗,𝑘 = 𝑐𝑗𝑑𝑘 for
every 𝑗 = 1, …, 𝑚 and every 𝑘 = 1, …, 𝑛. If we define

𝐶 =
⎝
⎜⎛

𝑐1
⋮

𝑐𝑚⎠
⎟⎞ ∈ 𝐅𝑚,1 and 𝐷 = (𝑑1 ⋯ 𝑑𝑛) ∈ 𝐅1,𝑛,

then 𝐴 = 𝐶𝐷. By (3.51) (a), every column of 𝐴 is a scalar multiple of 𝐶. It follows that 
rank 𝐴 ≤ 1, and since 𝐴 ≠ 0 we must have rank 𝐴 ≥ 1. Thus rank 𝐴 = 1.
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Exercise 3.C.17. Suppose 𝑇 ∈ ℒ(𝑉 ), and 𝑢1, …, 𝑢𝑛 and 𝑣1, …, 𝑣𝑛 are bases of 𝑉 . Prove
that the following are equivalent.

(a) 𝑇  is injective.

(b) The columns of ℳ(𝑇) are linearly independent in 𝐅𝑛,1.

(c) The columns of ℳ(𝑇) span 𝐅𝑛,1.

(d) The rows of ℳ(𝑇) span 𝐅1,𝑛.

(e) The rows of ℳ(𝑇) are linearly independent in 𝐅1,𝑛.

Here ℳ(𝑇) means ℳ(𝑇 , (𝑢1, …, 𝑢𝑛), (𝑣1, …, 𝑣𝑛)).

Solution. Suppose that ℳ(𝑇) has entries 𝐴𝑗,𝑘 and suppose that (a) holds. Let 𝑏1, …, 𝑏𝑛 be
scalars such that

𝑏1

⎝
⎜⎜
⎜⎛

𝐴1,1

⋮
𝐴𝑛,1⎠

⎟⎟
⎟⎞ + ⋯ + 𝑏𝑛

⎝
⎜⎜
⎜⎛

𝐴1,𝑛

⋮
𝐴𝑛,𝑛⎠

⎟⎟
⎟⎞ =

⎝
⎜⎜
⎜⎛

𝑏1𝐴1,1 + ⋯ + 𝑏𝑛𝐴1,𝑛

⋮
𝑏1𝐴𝑛,1 + ⋯ + 𝑏𝑛𝐴𝑛,𝑛⎠

⎟⎟
⎟⎞ =

⎝
⎜⎛

0
⋮
0⎠
⎟⎞.

Let 𝑢 = 𝑏1𝑢1 + ⋯ + 𝑏𝑛𝑢𝑛 and observe that

𝑇𝑢 = 𝑏1𝑇𝑢1 + ⋯ + 𝑏𝑛𝑇𝑢𝑛

= 𝑏1(𝐴1,1𝑣1 + ⋯ + 𝐴𝑛,1𝑣𝑛) + ⋯ + 𝑏𝑛(𝐴1,𝑛𝑣1 + ⋯ + 𝐴𝑛,𝑛𝑣𝑛)

= (𝑏1𝐴1,1 + ⋯ + 𝑏𝑛𝐴1,𝑛)𝑣1 + ⋯ + (𝑏1𝐴𝑛,1 + ⋯ + 𝑏𝑛𝐴𝑛,𝑛)𝑣𝑛

= 0𝑣1 + ⋯ + 0𝑣𝑛 = 0.

Thus 𝑢 ∈ null 𝑇 . Since 𝑇  is injective, this implies that 𝑢 = 0. The linear independence of
the basis 𝑢1, …, 𝑢𝑛 then gives us 𝑏1 = ⋯ = 𝑏𝑛 = 0. Thus the columns of ℳ(𝑇) are linearly
independent, i.e. (b) holds.

Now suppose that (b) holds and let 𝑢 = 𝑏1𝑢1 + ⋯ + 𝑏𝑛𝑢𝑛 be such that 𝑇𝑢 = 0. As in the
previous paragraph, this is equivalent to

(𝑏1𝐴1,1 + ⋯ + 𝑏𝑛𝐴1,𝑛)𝑣1 + ⋯ + (𝑏1𝐴𝑛,1 + ⋯ + 𝑏𝑛𝐴𝑛,𝑛)𝑣𝑛 = 0.

The linear independence of the basis 𝑣1, …, 𝑣𝑛 then implies that

𝑏1𝐴1,1 + ⋯ + 𝑏𝑛𝐴1,𝑛 = ⋯ = 𝑏1𝐴𝑛,1 + ⋯ + 𝑏𝑛𝐴𝑛,𝑛 = 0,

which in turn gives us

⎝
⎜⎜
⎜⎛

𝑏1𝐴1,1 + ⋯ + 𝑏𝑛𝐴1,𝑛

⋮
𝑏1𝐴𝑛,1 + ⋯ + 𝑏𝑛𝐴𝑛,𝑛⎠

⎟⎟
⎟⎞ = 𝑏1

⎝
⎜⎜
⎜⎛

𝐴1,1

⋮
𝐴𝑛,1⎠

⎟⎟
⎟⎞ + ⋯ + 𝑏𝑛

⎝
⎜⎜
⎜⎛

𝐴1,𝑛

⋮
𝐴𝑛,𝑛⎠

⎟⎟
⎟⎞ =

⎝
⎜⎛

0
⋮
0⎠
⎟⎞.

It follows from the linear independence of the columns of ℳ(𝑇) that 𝑏1 = ⋯ = 𝑏𝑛 = 0, so
that 𝑢 = 0. Thus 𝑇  is injective, i.e. (a) holds. This gives us the equivalence of (a) and (b).
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For the equivalence of (b) and (c), note that dim 𝐅𝑛,1 = 𝑛 by 3.40 and thus, by 2.38 and
2.40, a list of 𝑛 vectors in 𝐅𝑛,1 is linearly independent if and only if it spans 𝐅𝑛,1. The same
argument gives us the equivalence of (d) and (e), since we also have dim 𝐅1,𝑛 = 𝑛 by 3.40.

Finally, the equivalence of (c) and (d) is given by 3.57.
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3.D. Invertibility and Isomorphisms

Exercise 3.D.1. Suppose 𝑇 ∈ ℒ(𝑉 , 𝑊) is invertible. Show that 𝑇 −1 is invertible and

(𝑇 −1)−1 = 𝑇 .

Solution. By the definition of invertibility of 𝑇  we have 𝑇𝑇 −1 = 𝐼 and 𝑇 −1𝑇 = 𝐼 . These
equations show that 𝑇 −1 is invertible and its inverse is 𝑇 .

Exercise 3.D.2. Suppose 𝑇 ∈ ℒ(𝑈, 𝑉 ) and 𝑆 ∈ ℒ(𝑉 , 𝑊) are both invertible linear
maps. Prove that 𝑆𝑇 ∈ ℒ(𝑈, 𝑊) is invertible and that (𝑆𝑇 )−1 = 𝑇 −1𝑆−1.

Solution. Using the algebraic properties of 3.8, observe that

𝑇 −1𝑆−1𝑆𝑇 = 𝑇 −1𝐼𝑇 = 𝑇 −1𝑇 = 𝐼 and 𝑆𝑇𝑇 −1𝑆−1 = 𝑆𝐼𝑆−1 = 𝑆𝑆−1 = 𝐼.

Thus 𝑇 −1𝑆−1𝑆𝑇  is the identity map on 𝑈  and 𝑆𝑇𝑇 −1𝑆−1 is the identity map on 𝑊 . It
follows that 𝑆𝑇  is invertible and that (𝑆𝑇 )−1 = 𝑇 −1𝑆−1.

Exercise 3.D.3. Suppose 𝑉  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 ). Prove that the follow-
ing are equivalent.

(a) 𝑇  is invertible.

(b) 𝑇𝑣1, …, 𝑇 𝑣𝑛 is a basis of 𝑉  for every basis 𝑣1, …, 𝑣𝑛 of 𝑉 .

(c) 𝑇𝑣1, …, 𝑇 𝑣𝑛 is a basis of 𝑉  for some basis 𝑣1, …, 𝑣𝑛 of 𝑉 .

Solution. Suppose that (a) holds and let 𝑣1, …, 𝑣𝑛 be a basis of 𝑉 . Since 𝑇  is invertible, it
is injective. It follows from Exercise 3.B.9 that 𝑇𝑣1, …, 𝑇 𝑣𝑛 is linearly independent. Thus by
2.38, 𝑇𝑣1, …, 𝑇 𝑣𝑛 is a basis of 𝑉 . Hence (b) holds.

Suppose that (b) holds. By 2.31 there is a basis 𝑣1, …, 𝑣𝑛 of 𝑉 . By assumption 𝑇𝑣1, …, 𝑇 𝑣𝑛

is a basis of 𝑉 . Thus (c) holds.

Suppose that (c) holds, so that there is a basis 𝑣1, …, 𝑣𝑛 of 𝑉  such that 𝑇𝑣1, …, 𝑇 𝑣𝑛 is a basis
of 𝑉 . Let 𝑣 = 𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛 be such that 𝑇𝑣 = 0 and observe that

0 = 𝑇𝑣 = 𝑇(𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛) = 𝑎1𝑇𝑣1 + ⋯ + 𝑎𝑛𝑇𝑣𝑛.

The linear independence of 𝑇𝑣1, …, 𝑇 𝑣𝑛 then implies that 𝑎1 = ⋯ = 𝑎𝑛 = 0 and thus 𝑣 = 0.
It follows that null 𝑇 = {0} and hence that 𝑇  is injective. Thus by 3.65, 𝑇  is invertible.

Exercise 3.D.4. Suppose 𝑉  is finite-dimensional and dim 𝑉 > 1. Prove that the set of
noninvertible linear maps from 𝑉  to itself is not a subspace of ℒ(𝑉 ).
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Solution. By 3.65 this is equivalent to showing that the set of linear maps from 𝑉  to itself
which are not injective is not a subspace of ℒ(𝑉 ). We showed this in Exercise 3.B.7.

Exercise 3.D.5. Suppose 𝑉  is finite-dimensional, 𝑈  is a subspace of 𝑉 , and
𝑆 ∈ ℒ(𝑈, 𝑉 ). Prove that there exists an invertible linear map 𝑇  from 𝑉  to itself such
that 𝑇𝑢 = 𝑆𝑢 for every 𝑢 ∈ 𝑈  if and only if 𝑆 is injective.

Solution. If there is such a map 𝑇 , then

null 𝑆 = null 𝑇 ∩ 𝑈 = {0} ∩ 𝑈 = {0}.

Thus 𝑆 is injective.

Suppose that 𝑆 is injective. Let 𝑢1, …, 𝑢𝑚 be a basis of 𝑈 , which we extend to a basis 
𝑢1, …, 𝑢𝑚, 𝑥1, …, 𝑥𝑛 of 𝑉 . The injectivity of 𝑆 and Exercise 3.B.9 imply that 𝑆𝑢1, …, 𝑆𝑢𝑚 is
linearly independent and thus can be extended to a basis 𝑆𝑢1, …, 𝑆𝑢𝑚, 𝑦1, …, 𝑦𝑛 of 𝑉 . Define
𝑇 ∈ ℒ(𝑉 ) by 𝑇𝑢𝑘 = 𝑆𝑢𝑘 and 𝑇𝑥𝑘 = 𝑦𝑘. Certainly 𝑇  extends 𝑆. Furthermore, since 𝑇  maps
a basis of 𝑉  to a basis of 𝑉 , 𝑇  must be invertible by Exercise 3.B.3.

Exercise 3.D.6. Suppose that 𝑊  is finite-dimensional and 𝑆, 𝑇 ∈ ℒ(𝑉 , 𝑊). Prove that
null 𝑆 = null 𝑇  if and only if there exists an invertible 𝐸 ∈ ℒ(𝑊) such that 𝑆 = 𝐸𝑇 .

Solution. Suppose there exists an invertible 𝐸 ∈ ℒ(𝑊) such that 𝑆 = 𝐸𝑇 , which implies 
𝑇 = 𝐸−1𝑆. It follows from Exercise 3.B.25 that null 𝑇 ⊆ null 𝑆 and null 𝑆 ⊆ null 𝑇 . Thus 
null 𝑆 = null 𝑇 .

Now suppose that null 𝑆 = null 𝑇 . It follows from Exercise 3.B.25 that there are maps 
𝑅, 𝑅′ ∈ ℒ(𝑊) such that 𝑇 = 𝑅𝑆 and 𝑆 = 𝑅′𝑇  and thus by Exercise 3.B.23 we have 
dim range 𝑇 = dim range 𝑆. Let 𝑇𝑣1, …, 𝑇 𝑣𝑚 be a basis of range 𝑇  and notice that this linearly
independent list is equal to 𝑅(𝑆𝑣1), …, 𝑅(𝑆𝑣𝑚). It follows from Exercise 3.A.4 that the list 
𝑆𝑣1, …, 𝑆𝑣𝑚 is linearly independent and hence is a basis of range 𝑆, since dim range 𝑆 = 𝑚.
Extend these lists to bases

𝑇𝑣1, …, 𝑇 𝑣𝑚, 𝑥1, …, 𝑥𝑛 and 𝑆𝑣1, …, 𝑆𝑣𝑚, 𝑦1, …, 𝑦𝑛

of 𝑊 , and define 𝐸 ∈ ℒ(𝑊) by 𝐸(𝑇𝑣𝑘) = 𝑆𝑣𝑘 and 𝐸𝑥𝑘 = 𝑦𝑘. Notice that 𝐸 maps a basis of
𝑊  to a basis of 𝑊 ; it follows from Exercise 3.D.3 that 𝐸 is invertible. For any 𝑣 ∈ 𝑉  we have
𝑇𝑣 = 𝑎1𝑇𝑣1 + ⋯ + 𝑎𝑚𝑇𝑣𝑚 for some scalars 𝑎1, …, 𝑎𝑚. As we showed in Exercise 3.B.25, this
implies 𝑆𝑣 = 𝑎1𝑆𝑣1 + ⋯ + 𝑎𝑚𝑆𝑣𝑚 since null 𝑇 = null 𝑆. It follows that

𝐸(𝑇𝑣) = 𝑎1𝐸(𝑇𝑣1) + ⋯ + 𝑎𝑚𝐸(𝑇𝑣𝑚) = 𝑎1𝑆𝑣1 + ⋯ + 𝑎𝑚𝑆𝑣𝑚 = 𝑆𝑣.

Thus 𝑆 = 𝐸𝑇 .

Exercise 3.D.7. Suppose that 𝑉  is finite-dimensional and 𝑆, 𝑇 ∈ ℒ(𝑉 , 𝑊). Prove that
range 𝑆 = range 𝑇  if and only if there exists an invertible 𝐸 ∈ ℒ(𝑉 ) such that 𝑆 = 𝑇𝐸.
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Solution. Suppose there exists an invertible 𝐸 ∈ ℒ(𝑉 ) such that 𝑆 = 𝑇𝐸, which implies 
𝑇 = 𝑆𝐸−1. It follows from Exercise 3.B.26 that range 𝑇 ⊆ range 𝑆 and range 𝑆 ⊆ range 𝑇 .
Thus range 𝑆 = range 𝑇 .

Now suppose that range 𝑆 = range 𝑇 . Let 𝑢1, …, 𝑢𝑚 be a basis of null 𝑆 and extend this
to a basis of 𝑢1, …, 𝑢𝑚, 𝑥1, …, 𝑥𝑛 of 𝑉 ; as the proof of the fundamental theorem of linear
maps (3.21) shows, 𝑆𝑥1, …, 𝑆𝑥𝑛 is a basis of range 𝑆. Our assumption range 𝑆 = range 𝑇
implies that 𝑆𝑥𝑘 = 𝑇𝑦𝑘 for some 𝑦1, …, 𝑦𝑛 ∈ 𝑉 , and also that dim null 𝑇 = dim null 𝑆 = 𝑚.
Let 𝑣1, …, 𝑣𝑚 be a basis of null 𝑇  and suppose we have scalars 𝑎1, …, 𝑎𝑚, 𝑏1, …, 𝑏𝑛 such that

𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚 + 𝑏1𝑦1 + ⋯ + 𝑏𝑛𝑦𝑛 = 0.

Applying 𝑇  to both sides of this equation gives us

𝑏1𝑇𝑦1 + ⋯ + 𝑏𝑛𝑇𝑦𝑛 = 𝑏1𝑆𝑥1 + ⋯ + 𝑏𝑛𝑆𝑥𝑛 = 0.

The linear independence of 𝑆𝑥1, …, 𝑆𝑥𝑛 implies that 𝑏1 = ⋯ = 𝑏𝑛 = 0 and the linear inde-
pendence of 𝑣1, …, 𝑣𝑚 then gives us 𝑎1 = ⋯ = 𝑎𝑚 = 0. Thus the list 𝑣1, …, 𝑣𝑚, 𝑦1, …, 𝑦𝑛 is
linearly independent and hence is a basis of 𝑉  by 2.38. Define 𝐸 ∈ ℒ(𝑉 ) by 𝐸𝑢𝑘 = 𝑣𝑘 and 
𝐸𝑥𝑘 = 𝑦𝑘. Because 𝐸 maps a basis of 𝑉  to a basis of 𝑉 , Exercise 3.D.3 shows that 𝐸 is
invertible. For any 𝑣 = 𝑎1𝑢1 + ⋯ + 𝑎𝑚𝑢𝑚 + 𝑏1𝑥1 + ⋯ + 𝑏𝑛𝑥𝑛 ∈ 𝑉 , observe that

𝑇 (𝐸𝑣) = 𝑇(𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚 + 𝑏1𝑦1 + ⋯ + 𝑏𝑛𝑦𝑛)

= 𝑏1𝑇𝑦1 + ⋯ + 𝑏𝑛𝑇𝑦𝑛 = 𝑏1𝑆𝑥1 + ⋯ + 𝑏𝑛𝑆𝑥𝑛 = 𝑆𝑣.

Thus 𝑆 = 𝑇𝐸.

Exercise 3.D.8. Suppose 𝑉  and 𝑊  are finite-dimensional and 𝑆, 𝑇 ∈ ℒ(𝑉 , 𝑊). Prove
that there exist invertible 𝐸1 ∈ ℒ(𝑉 ) and 𝐸2 ∈ ℒ(𝑊) such that 𝑆 = 𝐸2𝑇𝐸1 if and only
if dim null 𝑆 = dim null 𝑇 .

Solution. Suppose there exist such maps 𝐸1, 𝐸2. It follows from Exercise 3.B.22 that

dim null 𝑆 ≤ dim null 𝐸2 + dim null 𝑇 + dim null 𝐸1 = dim null 𝑇 .

Notice that 𝑇 = 𝐸−1
2 𝑆𝐸−1

1 ; repeating the previous argument gives us dim null 𝑇 ≤ dim null 𝑆
and thus dim null 𝑆 = dim null 𝑇 .

Now suppose that dim null 𝑆 = dim null 𝑇 . Let 𝑢1, …, 𝑢𝑚 be a basis of null 𝑆 and let 𝑣1, …, 𝑣𝑚

be a basis of null 𝑇 . Extend these to bases

𝑢1, …, 𝑢𝑚, 𝑥1, …, 𝑥𝑛 and 𝑣1, …, 𝑣𝑚, 𝑦1, …, 𝑦𝑛

of 𝑉 , and define 𝐸1 ∈ ℒ(𝑉 ) by 𝐸1𝑢𝑘 = 𝑣𝑘 and 𝐸1𝑥𝑘 = 𝑦𝑘. Because 𝐸1 maps a basis to
a basis, Exercise 3.D.3 shows that 𝐸1 is invertible. It is straightforward to verify that
null 𝑆 = null 𝑇𝐸1 and thus by Exercise 3.D.6 there is an invertible 𝐸2 ∈ ℒ(𝑊) such that 
𝑆 = 𝐸2𝑇𝐸1.
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Exercise 3.D.9. Suppose 𝑉  is finite-dimensional and 𝑇 : 𝑉 → 𝑊  is a surjective linear
map of 𝑉  onto 𝑊 . Prove that there is a subspace 𝑈  of 𝑉  such that 𝑇 |𝑈  is an isomor-
phism of 𝑈  onto 𝑊 .

Here 𝑇 |𝑈  means the function 𝑇  restricted to 𝑈 . Thus 𝑇 |𝑈  is the function whose domain
is 𝑈 , with 𝑇 |𝑈  defined by 𝑇 |𝑈 (𝑢) = 𝑇𝑢 for every 𝑢 ∈ 𝑈 .

Solution. By Exercise 3.B.11 there is a subspace 𝑈  of 𝑉  such that

𝑈 ∩ null 𝑇 = {0} and 𝑊 = range 𝑇 = {𝑇𝑢 : 𝑢 ∈ 𝑈}.

The equation 𝑈 ∩ null 𝑇 = {0} shows that 𝑇 |𝑈  is injective and the equation
𝑊 = {𝑇𝑢 : 𝑢 ∈ 𝑈} shows that 𝑇 |𝑈  is surjective. Thus 𝑇 |𝑈  is an isomorphism of 𝑈  onto 𝑊 .

Exercise 3.D.10. Suppose 𝑉  and 𝑊  are finite-dimensional and 𝑈  is a subspace of 
𝑉 . Let

ℰ = {𝑇 ∈ ℒ(𝑉 , 𝑊) : 𝑈 ⊆ null 𝑇 }.

(a) Show that ℰ is a subspace of ℒ(𝑉 , 𝑊).

(b) Find a formula for dim ℰ in terms of dim 𝑉 , dim 𝑊 , and dim 𝑈 .

Hint: Define Φ : ℒ(𝑉 , 𝑊) → ℒ(𝑈, 𝑊) by Φ(𝑇 ) = 𝑇 |𝑈 . What is null Φ? What is 
range Φ?

Solution.

(a) Because the null space of the zero map is all of 𝑉 , we certainly have 0 ∈ ℰ. Suppose
that 𝑆, 𝑇 ∈ ℰ and 𝜆 ∈ 𝐅. For any 𝑢 ∈ 𝑈 , observe that

(𝑆 + 𝑇)(𝑢) = 𝑆𝑢 + 𝑇𝑢 = 0 and (𝜆𝑇 )(𝑢) = 𝜆𝑇𝑢 = 0,

where we have used that 𝑢 ∈ null 𝑆 and 𝑢 ∈ null 𝑇 . It follows that 𝑈 ⊆ null(𝑆 + 𝑇) and
𝑈 ⊆ null(𝜆𝑇 ), so that 𝑆 + 𝑇 ∈ ℰ and 𝜆𝑇 ∈ ℰ. Thus ℰ is a subspace of ℒ(𝑉 , 𝑊).

(b) Following the hint, define Φ : ℒ(𝑉 , 𝑊) → ℒ(𝑈, 𝑊) by Φ(𝑇 ) = 𝑇 |𝑈 ; it is straightfor-
ward to verify that Φ is linear. Note that

Φ(𝑇 ) = 0 ⇔ 𝑇 |𝑈 = 0 ⇔ 𝑇𝑢 = 0 for all 𝑢 ∈ 𝑈 ⇔ 𝑈 ⊆ null 𝑇 .

Thus null Φ = ℰ. For any 𝑆 ∈ ℒ(𝑈, 𝑊) we can use Exercise 3.B.13 to extend 𝑆
to a linear map 𝑇 ∈ ℒ(𝑉 , 𝑊); it follows that Φ(𝑇 ) = 𝑆. Thus Φ is surjective, i.e.
range Φ = ℒ(𝑈, 𝑊). It now follows from the fundamental theorem of linear maps (3.21)
and 3.72 that

dim ℒ(𝑉 , 𝑊) = dim null Φ + dim range Φ ⇒ dim ℰ = dim 𝑊(dim 𝑉 − dim 𝑈).
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Exercise 3.D.11. Suppose 𝑉  is finite-dimensional and 𝑆, 𝑇 ∈ ℒ(𝑉 ). Prove that

𝑆𝑇 is invertible ⇔ 𝑆 and 𝑇 are invertible.

Solution. If 𝑆 and 𝑇  are invertible then Exercise 3.D.2 shows that 𝑆𝑇  is invertible. If 𝑆 is
not invertible then 𝑆 is not surjective by 3.65, so that dim range 𝑆 < dim 𝑉 . It follows from
Exercise 3.B.23 that

dim range 𝑆𝑇 ≤ dim range 𝑆 < dim 𝑉 .

Thus 𝑆𝑇  is not surjective and hence not invertible. A similar argument shows that if 𝑇  is
not invertible then 𝑆𝑇  is not invertible.

Exercise 3.D.12. Suppose 𝑉  is finite-dimensional and 𝑆, 𝑇 , 𝑈 ∈ ℒ(𝑉 ) and 𝑆𝑇𝑈 = 𝐼 .
Show that 𝑇  is invertible and that 𝑇 −1 = 𝑈𝑆.

Solution. It follows from 3.68 that 𝑆 commutes with 𝑇𝑈  and that 𝑆𝑇  commutes with 
𝑈 . Thus

𝑆𝑇𝑈 = 𝐼 ⇒ 𝑇𝑈𝑆 = 𝐼 and 𝑈𝑆𝑇 = 𝐼.

Hence 𝑇  is invertible and 𝑇 −1 = 𝑈𝑆.

Exercise 3.D.13. Show that the result in Exercise 12 can fail without the hypothesis
that 𝑉  is finite-dimensional.

Solution. Consider 𝑉 = 𝐅∞. Let 𝑆 be the backward shift operator, let 𝑇  be the forward
shift operator, and let 𝑈  be the identity on 𝐅∞. For any (𝑥1, 𝑥2, 𝑥3, …) ∈ 𝐅∞, observe that

(𝑆𝑇𝑈)(𝑥1, 𝑥2, 𝑥3, …) = 𝑆(𝑇 (𝑥1, 𝑥2, 𝑥3, …)) = 𝑆(0, 𝑥1, 𝑥2, 𝑥3, …) = (𝑥1, 𝑥2, 𝑥3, …).

Thus 𝑆𝑇𝑈 = 𝐼 . However, 𝑇  is not invertible because 𝑇  is not surjective: (1, 0, 0, …) ∉ range 𝑇 .

Exercise 3.D.14. Prove or give a counterexample: If 𝑉  is a finite-dimensional vector
space and 𝑅, 𝑆, 𝑇 ∈ ℒ(𝑉 ) are such that 𝑅𝑆𝑇  is surjective, then 𝑆 is injective.

Solution. This is true. 𝑅𝑆𝑇  must be invertible by 3.65 and thus by Exercise 3.D.11 𝑆 is
invertible and hence injective.

Exercise 3.D.15. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝑣1, …, 𝑣𝑚 is a list in 𝑉  such that 𝑇𝑣1, …, 𝑇 𝑣𝑚

spans 𝑉 . Prove that 𝑣1, …, 𝑣𝑚 spans 𝑉 .

Solution. Using 2.30 we can reduce the list 𝑇𝑣1, …, 𝑇 𝑣𝑚 to a basis 𝑇𝑣𝑘1 , …, 𝑇 𝑣𝑘𝑛 for some
indices 1 ≤ 𝑘1 < ⋯ < 𝑘𝑛 ≤ 𝑚. It follows from Exercise 3.A.4 and 2.38 that 𝑣𝑘1 , …, 𝑣𝑘𝑛 is a
basis of 𝑉  and thus
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𝑉 = span(𝑣𝑘1 , …, 𝑣𝑘𝑛) ⊆ span(𝑣1, …, 𝑣𝑚) ⇒ 𝑉 = span(𝑣1, …, 𝑣𝑚).

Exercise 3.D.16. Prove that every linear map from 𝐅𝑛,1 to 𝐅𝑚,1 is given by a matrix
multiplication. In other words, prove that if 𝑇 ∈ ℒ(𝐅𝑛,1, 𝐅𝑚,1), then there exists an 𝑚
-by-𝑛 matrix 𝐴 such that 𝑇𝑥 = 𝐴𝑥 for every 𝑥 ∈ 𝐅𝑛,1.

Solution. Let 𝐴 be the matrix of 𝑇  with respect to the standard bases of 𝐅𝑛,1 and 𝐅𝑚,1.
With respect to these standard bases we have ℳ(𝑥) = 𝑥 and ℳ(𝑦) = 𝑦 for any 𝑥 ∈ 𝐅𝑛,1 and
𝑦 ∈ 𝐅𝑚,1. It then follows from 3.76 that

𝑇𝑥 = ℳ(𝑇𝑥) = ℳ(𝑇)ℳ(𝑥) = 𝐴𝑥

for every 𝑥 ∈ 𝐅𝑛,1.

Exercise 3.D.17. Suppose 𝑉  is finite-dimensional and 𝑆 ∈ ℒ(𝑉 ). Define 𝒜 ∈ ℒ(ℒ(𝑉 ))
by

𝒜(𝑇) = 𝑆𝑇

for 𝑇 ∈ ℒ(𝑉 ).

(a) Show that dim null 𝒜 = (dim 𝑉 )(dim null 𝑆).

(b) Show that dim range 𝒜 = (dim 𝑉 )(dim range 𝑆).

Solution.

(a) For 𝑇 ∈ ℒ(𝑉 ), note that 𝑆𝑇 = 0 if and only if range 𝑇 ⊆ null 𝑆. Thus we can identify
null 𝒜 with ℒ(𝑉 , null 𝑆) and it follows from 3.72 that

dim null 𝒜 = (dim 𝑉 )(dim null 𝑆).

(b) For 𝑅 ∈ ℒ(𝑉 ), Exercise 3.B.26 implies that 𝑅 = 𝑆𝑇  for some 𝑇 ∈ ℒ(𝑉 ) if and only
if range 𝑅 ⊆ range 𝑆. Thus we can identify range 𝒜 with ℒ(𝑉 , range 𝑆) and it follows
from 3.72 that

dim range 𝒜 = (dim 𝑉 )(dim range 𝑆).

Exercise 3.D.18. Show that 𝑉  and ℒ(𝐅, 𝑉 ) are isomorphic vector spaces.

Solution. Define a map Φ : ℒ(𝐅, 𝑉 ) → 𝑉  by

Φ(𝑇 ) = 𝑇(1).

It is straightforward to verify that Φ is linear. Now define a map Ψ : 𝑉 → ℒ(𝐅, 𝑉 ) by

[Ψ(𝑣)](𝑥) = 𝑥𝑣.

It is straightforward to check that Ψ(𝑣) indeed belongs to ℒ(𝐅, 𝑉 ) for any 𝑣 ∈ 𝑉 . For any 
𝑇 ∈ ℒ(𝐅, 𝑉 ), observe that
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[Ψ(Φ(𝑇 ))](𝑥) = [Ψ(𝑇 (1))](𝑥) = 𝑥𝑇 (1) = 𝑇 (𝑥).

Thus Ψ(Φ(𝑇 )) = 𝑇 , i.e. Ψ ∘ Φ is the identity map on ℒ(𝐅, 𝑉 ). Now let 𝑣 ∈ 𝑉  be given and
observe that

Φ(Ψ(𝑣)) = [Ψ(𝑣)](1) = 𝑣.

Thus Φ ∘ Ψ is the identity map on 𝑉 . As the proof of 3.63 shows, it now follows that Ψ is a
linear map. Thus Φ is an isomorphism from ℒ(𝐅, 𝑉 ) to 𝑉  and its inverse is Ψ.

Exercise 3.D.19. Suppose 𝑉  is a finite-dimensional and 𝑇 ∈ ℒ(𝑉 ). Prove that 𝑇  has
the same matrix with respect to every basis of 𝑉  if and only if 𝑇  is a scalar multiple of
the identity operator.

Solution. If 𝑇 = 𝜆𝐼 for some 𝜆 ∈ 𝐅 then the matrix of 𝑇  with respect to any basis of 𝑉
must be 𝜆𝐼 (here 𝐼 is the identity matrix).

Suppose that 𝑇  has the same matrix with respect to every basis of 𝑉 , i.e. there is some
matrix 𝐴 with entries 𝐴𝑗,𝑘 such that

𝑇𝑢𝑘 = 𝐴1,𝑘𝑢1 + ⋯ + 𝐴𝑚,𝑘𝑢𝑚

for any basis 𝑢1, …, 𝑢𝑚 of 𝑉 . Let 𝑣1, …, 𝑣𝑚 be a fixed basis of 𝑉  and let 𝑘 ∈ {1, …, 𝑚} be
given; it is straightforward to verify that 𝑣1, …, 1

2𝑣𝑘, …, 𝑣𝑚 is also a basis of 𝑉 . By assumption
we must then have

𝑇(1
2𝑣𝑘) = 𝐴1,𝑘𝑣1 + ⋯ + 𝐴𝑘,𝑘(1

2𝑣𝑘) + ⋯ + 𝐴𝑚,𝑘𝑣𝑚

⇒ 𝑇𝑣𝑘 = 2𝐴1,𝑘𝑣1 + ⋯ + 𝐴𝑘,𝑘𝑣𝑘 + ⋯ + 2𝐴𝑚,𝑘𝑣𝑚.

On the other hand we must have

𝑇𝑣𝑘 = 𝐴1,𝑘𝑣1 + ⋯ + 𝐴𝑘,𝑘𝑣𝑘 + ⋯ + 𝐴𝑚,𝑘𝑣𝑚.

Hence by unique representation we must have 𝐴𝑗,𝑘 = 2𝐴𝑗,𝑘, so that 𝐴𝑗,𝑘 = 0, for all 𝑗 ≠ 𝑘;
it follows that 𝑇𝑢𝑘 = 𝐴𝑘,𝑘𝑢𝑘 for any basis 𝑢1, …, 𝑢𝑚 of 𝑉 . Let 1 ≤ 𝑗 < 𝑘 ≤ 𝑚 be given and
consider the basis 𝑣1, …, 𝑣𝑘, …, 𝑣𝑗, …, 𝑣𝑚 of 𝑉 , i.e. the basis obtained by swapping the basis
vectors 𝑣𝑗 and 𝑣𝑘. This gives us the two equations

𝑇𝑣𝑘 = 𝐴𝑘,𝑘𝑣𝑘 and 𝑇𝑣𝑘 = 𝐴𝑗,𝑗𝑣𝑘.

It follows from unique representation that 𝐴𝑗,𝑗 = 𝐴𝑘,𝑘 and thus, letting 𝜆 = 𝐴1,1, we have 
𝑇𝑣𝑘 = 𝜆𝑣𝑘 for all 𝑘 ∈ {1, …, 𝑚}. Thus 𝑇 = 𝜆𝐼 .
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Exercise 3.D.20. Suppose 𝑞 ∈ 𝒫(𝐑). Prove that there exists a polynomial 𝑝 ∈ 𝒫(𝐑)
such that

𝑞(𝑥) = (𝑥2 + 𝑥)𝑝″(𝑥) + 2𝑥𝑝′(𝑥) + 𝑝(3)

for all 𝑥 ∈ 𝐑.

Solution. There is a non-negative integer 𝑚 such that 𝑞 ∈ 𝒫𝑚(𝐑); either 𝑚 = deg 𝑞 if 𝑞 ≠ 0
or 𝑚 = 0 if 𝑞 = 0. Define 𝑇 : 𝒫𝑚(𝐑) → 𝒫𝑚(𝐑) by

𝑇𝑝 = (𝑥2 + 𝑥)𝑝″(𝑥) + 2𝑥𝑝′(𝑥) + 𝑝(3).

It is straightforward to check that 𝑇  is linear and some calculations reveal that deg 𝑇𝑝 = deg 𝑝
for any 𝑝 ∈ 𝒫𝑚(𝐑). It follows that if 𝑝 ∈ 𝒫𝑚(𝐑) is such that 𝑇𝑝 = 0, so that deg 𝑇𝑝 = −∞,
then deg 𝑝 = −∞, i.e. 𝑝 = 0. Thus 𝑇  is injective. By 3.65 this implies that 𝑇  is surjective
and so there must exist some 𝑝 ∈ 𝒫𝑚(𝐑) such that 𝑇𝑝 = 𝑞.

Exercise 3.D.21. Suppose 𝑛 is a positive integer and 𝐴𝑗,𝑘 ∈ 𝐅 for all 𝑗, 𝑘 = 1, …, 𝑛.
Prove that the following are equivalent (note that in both parts below, the number of
equations equals the number of variables).

(a) The trivial solution 𝑥1 = ⋯ = 𝑥𝑛 = 0 is the only solution to the homogeneous sys-
tem of equations

∑
𝑛

𝑘=1
𝐴1,𝑘𝑥𝑘 = 0

⋮

∑
𝑛

𝑘=1
𝐴𝑛,𝑘𝑥𝑘 = 0.

(b) For every 𝑐1, …, 𝑐𝑛 ∈ 𝐅, there exists a solution to the system of equations

∑
𝑛

𝑘=1
𝐴1,𝑘𝑥𝑘 = 𝑐1

⋮

∑
𝑛

𝑘=1
𝐴𝑛,𝑘𝑥𝑘 = 𝑐𝑛.

Solution. Define 𝑇 ∈ ℒ(𝐅𝑛) by

𝑇 (𝑥1, …, 𝑥𝑛) = (∑
𝑛

𝑘=1
𝐴1,𝑘𝑥𝑘, …, ∑

𝑛

𝑘=1
𝐴𝑛,𝑘𝑥𝑘)

88 / 366



and notice that (a) is equivalent to the injectivity of 𝑇  and (b) is equivalent to the surjectivity
of (b). It then follows from 3.65 that (a) and (b) are equivalent.

Exercise 3.D.22. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝑣1, …, 𝑣𝑛 is a basis of 𝑉 . Prove that

ℳ(𝑇 , (𝑣1, …, 𝑣𝑛)) is invertible ⇔ 𝑇 is invertible.

Solution. In what follows, all matrices of linear maps and vectors are understood to be with
respect to the basis 𝑣1, …, 𝑣𝑛 of 𝑉 .

Suppose that ℳ(𝑇) is invertible and let 𝐵 be its inverse. Define 𝑆 ∈ ℒ(𝑉 ) by

𝑆𝑣𝑘 = 𝐵1,𝑘𝑣1 + ⋯ + 𝐵𝑛,𝑘𝑣𝑛,

so that ℳ(𝑆) = 𝐵. Note that for any 𝑢, 𝑣 ∈ 𝑉  we have 𝑢 = 𝑣 if and only if ℳ(𝑢) = ℳ(𝑣),
by unique representation in the basis 𝑣1, …, 𝑣𝑛. Let 𝑣 ∈ 𝑉  be given and observe that

ℳ((𝑆𝑇 )(𝑣)) =
(3.76)

ℳ(𝑆𝑇)ℳ(𝑣) =
(3.43)

ℳ(𝑆)ℳ(𝑇)ℳ(𝑣) = 𝐼ℳ(𝑣) = ℳ(𝑣).

The number above the equals sign is the textbook reference justifying the equality; the third
equality is justified as ℳ(𝑆) = 𝐵 is the inverse of ℳ(𝑇). Thus (𝑆𝑇 )(𝑣) = 𝑣 for all 𝑣 ∈ 𝑉 , so
that 𝑆𝑇  is the identity map on 𝑉 . It follows from 3.68 that 𝑇𝑆 is also the identity map on 
𝑉  and we may conclude that 𝑇  is invertible with inverse 𝑆.

The converse statement is the content of 3.86, which we now prove. Suppose that 𝑇  is in-
vertible. Using 3.43, observe that

ℳ(𝑇)ℳ(𝑇 −1) = ℳ(𝑇𝑇 −1) = ℳ(𝐼) = 𝐼 = ℳ(𝐼) = ℳ(𝑇 −1𝑇) = ℳ(𝑇 −1)ℳ(𝑇 ).

Thus (ℳ(𝑇 ))−1 = ℳ(𝑇 −1).

Exercise 3.D.23. Suppose that 𝑢1, …, 𝑢𝑛 and 𝑣1, …, 𝑣𝑛 are bases of 𝑉 . Let 𝑇 ∈ ℒ(𝑉 )
be such that 𝑇𝑣𝑘 = 𝑢𝑘 for each 𝑘 = 1, …, 𝑛. Prove that

ℳ(𝑇 , (𝑣1, …, 𝑣𝑛)) = ℳ(𝐼, (𝑢1, …, 𝑢𝑛), (𝑣1, …, 𝑣𝑛)).

Solution. For ease of notation, let us write

ℳ(𝑇 , 𝑢, 𝑣) = ℳ(𝑇 , (𝑢1, …, 𝑢𝑛), (𝑣1, …, 𝑣𝑛)) and ℳ(𝑇 , 𝑣) = ℳ(𝑇 , (𝑣1, …, 𝑣𝑛)).

Note that, by 3.81,

ℳ(𝑇 , 𝑢)ℳ(𝐼, 𝑣, 𝑢) = ℳ(𝑇𝐼, 𝑣, 𝑢) = ℳ(𝑇 , 𝑣, 𝑢) = 𝐼, (∗)

where the last equality follows from the definition of 𝑇 . Using 3.84, 3.82, and (∗), observe
that

ℳ(𝑇 , 𝑣) = (ℳ(𝐼, 𝑣, 𝑢))−1ℳ(𝑇 , 𝑢)ℳ(𝐼, 𝑣, 𝑢) = ℳ(𝐼, 𝑢, 𝑣)ℳ(𝑇 , 𝑢)ℳ(𝐼, 𝑣, 𝑢) = ℳ(𝐼, 𝑢, 𝑣).
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Exercise 3.D.24. Suppose 𝐴 and 𝐵 are square matrices of the same size and 𝐴𝐵 = 𝐼 .
Prove that 𝐵𝐴 = 𝐼 .

Solution. Suppose that 𝐴 and 𝐵 are 𝑛-by-𝑛 matrices and let 𝑒1, …, 𝑒𝑛 be the standard basis
of 𝐅𝑛. In what follows, all matrices of linear maps are understood to be with respect to this
standard basis.

Let 𝑆, 𝑇 ∈ ℒ(𝐅𝑛) be given by

𝑆𝑒𝑘 = ∑
𝑛

𝑗=1
𝐴𝑗,𝑘𝑒𝑘 and 𝑇𝑒𝑘 = ∑

𝑛

𝑗=1
𝐵𝑗,𝑘𝑒𝑘,

so that ℳ(𝑆) = 𝐴 and ℳ(𝑇) = 𝐵. Using 3.43, we then have

ℳ(𝑆𝑇) = ℳ(𝑆)ℳ(𝑇 ) = 𝐴𝐵 = 𝐼 = ℳ(𝐼).

Thus, by the uniqueness part of the linear map lemma (3.4), we have 𝑆𝑇 = 𝐼 , which implies
𝑇𝑆 = 𝐼 by 3.68. It follows from 3.43 that

𝐵𝐴 = ℳ(𝑇)ℳ(𝑆) = ℳ(𝑇𝑆) = ℳ(𝐼) = 𝐼.
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3.E. Products and Quotients of Vector Spaces

Exercise 3.E.1. Suppose 𝑇  is a function from 𝑉  to 𝑊 . The graph of 𝑇  is the subset of
𝑉 × 𝑊  defined by

graph of 𝑇 = {(𝑣, 𝑇 𝑣) ∈ 𝑉 × 𝑊 : 𝑣 ∈ 𝑉 }.

Prove that 𝑇  is a linear map if and only if the graph of 𝑇  is a subspace of 𝑉 × 𝑊 .

Formally, a function 𝑇  from 𝑉  to 𝑊  is a subset 𝑇  of 𝑉 × 𝑊  such that for each 𝑣 ∈ 𝑉 ,
there exists exactly one element (𝑣, 𝑤) ∈ 𝑇 . In other words, formally a function is what
is called above its graph. We do not usually think of functions in this formal manner.
However, if we do become formal, then this exercise could be rephrased as follows:
Prove that a function 𝑇  from 𝑉  to 𝑊  is a linear map if and only if 𝑇  is a subspace of
𝑉 × 𝑊 .

Solution. Let 𝗀𝗋𝖺𝗉𝗁(𝑇 ) be the graph of 𝑇 . First suppose that 𝑇  is linear, so that 𝑇 (0) = 0;
it follows that (0, 0) = (0, 𝑇 (0)) ∈ 𝗀𝗋𝖺𝗉𝗁(𝑇 ). For any (𝑢, 𝑇𝑢), (𝑣, 𝑇 𝑣) ∈ 𝗀𝗋𝖺𝗉𝗁(𝑇 ) and 𝜆 ∈ 𝐅,
the linearity of 𝑇  implies that

(𝑢, 𝑇𝑢) + (𝑣, 𝑇 𝑣) = (𝑢 + 𝑣, 𝑇𝑢 + 𝑇𝑣) = (𝑢 + 𝑣, 𝑇 (𝑢 + 𝑣)) ∈ 𝗀𝗋𝖺𝗉𝗁(𝑇 ),

𝜆(𝑣, 𝑇 𝑣) = (𝜆𝑣, 𝜆𝑇𝑣) = (𝜆𝑣, 𝑇 (𝜆𝑣)) ∈ 𝗀𝗋𝖺𝗉𝗁(𝑇 ).

Thus 𝗀𝗋𝖺𝗉𝗁(𝑇 ) is a subspace of 𝑉 × 𝑊 .

Now suppose that 𝗀𝗋𝖺𝗉𝗁(𝑇 ) is a subspace of 𝑉 × 𝑊 . Let 𝑢, 𝑣 ∈ 𝑉  and 𝜆 ∈ 𝐅 be given. Ob-
serve that

(𝑢, 𝑇𝑢), (𝑣, 𝑇 𝑣) ∈ 𝗀𝗋𝖺𝗉𝗁(𝑇 ) ⇒ (𝑢, 𝑇𝑢) + (𝑣, 𝑇 𝑣) = (𝑢 + 𝑣, 𝑇𝑢 + 𝑇𝑣) ∈ 𝗀𝗋𝖺𝗉𝗁(𝑇 ).

Because the second component of an element of 𝗀𝗋𝖺𝗉𝗁(𝑇 ) must be 𝑇  applied to the first
component, and (𝑢 + 𝑣, 𝑇𝑢 + 𝑇𝑣) belongs to 𝗀𝗋𝖺𝗉𝗁(𝑇 ), it must be that 𝑇 (𝑢 + 𝑣) = 𝑇𝑢 + 𝑇𝑣.
Similarly,

(𝑣, 𝑇 𝑣) ∈ 𝗀𝗋𝖺𝗉𝗁(𝑇 ) ⇒ 𝜆(𝑣, 𝑇 𝑣) = (𝜆𝑣, 𝜆𝑇𝑣) ∈ 𝗀𝗋𝖺𝗉𝗁(𝑇 ) ⇒ 𝑇(𝜆𝑣) = 𝜆𝑇𝑣.

Thus 𝑇  is linear.

Exercise 3.E.2. Suppose that 𝑉1, …, 𝑉𝑚 are vector spaces such that 𝑉1 × ⋯ × 𝑉𝑚 is
finite-dimensional. Prove that 𝑉𝑘 is finite-dimensional for each 𝑘 = 1, …, 𝑚.

Solution. For any 𝑘 ∈ {1, …, 𝑚}, let 𝑝𝑘 : 𝑉1 × ⋯ × 𝑉𝑚 → 𝑉𝑘 be given by 𝑝𝑘(𝑣1, …, 𝑣𝑚) = 𝑣𝑘.
It is straightforward to verify that 𝑝𝑘 is a surjective linear map and thus, by the fundamental
theorem of linear maps (3.21), range 𝑝𝑘 = 𝑉𝑘 is finite-dimensional.
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Exercise 3.E.3. Suppose 𝑉1, …, 𝑉𝑚 are vector spaces. Prove that ℒ(𝑉1 × ⋯ × 𝑉𝑚, 𝑊)
and ℒ(𝑉1, 𝑊) × ⋯ × ℒ(𝑉𝑚, 𝑊) are isomorphic vector spaces.

Solution. Define a map

Φ : ℒ(𝑉1, 𝑊) × ⋯ × ℒ(𝑉𝑚, 𝑊) → ℒ(𝑉1 × ⋯ × 𝑉𝑚, 𝑊),

where Φ(𝑇1, …, 𝑇𝑚) is the map 𝑉1 × ⋯ × 𝑉𝑚 → 𝑊  given by

(𝑣1, …, 𝑣𝑚) ↦ 𝑇1𝑣1 + ⋯ + 𝑇𝑚𝑣𝑚.

It is straightforward to verify that Φ(𝑇1, …, 𝑇𝑚) is indeed a linear map for any (𝑇1, …, 𝑇𝑚),
and that Φ itself is linear.

For 𝑘 ∈ {1, …, 𝑚}, define 𝜄𝑘 : 𝑉𝑘 → 𝑉1 × ⋯ × 𝑉𝑚 by 𝜄𝑘(𝑣) = (0, …, 𝑣, …, 0), where the 𝑣 is in
the 𝑘th position; it is straightforward to check that each 𝜄𝑘 is a linear map. Define a map

Ψ : ℒ(𝑉1 × ⋯ × 𝑉𝑚, 𝑊) → ℒ(𝑉1, 𝑊) × ⋯ × ℒ(𝑉𝑚, 𝑊),

where Ψ(𝑇 ) is given by (𝑇 ∘ 𝜄1, …, 𝑇 ∘ 𝜄𝑚). The linearity of each 𝑇 ∘ 𝜄𝑘 follows from the lin-
earity of 𝑇  and the linearity of 𝜄𝑘. Let (𝑇1, …, 𝑇𝑚) ∈ ℒ(𝑉1, 𝑊) × ⋯ × ℒ(𝑉𝑚, 𝑊) be given and
observe that

Ψ(Φ(𝑇1, …, 𝑇𝑚)) = (Φ(𝑇1, …, 𝑇𝑚) ∘ 𝜄1, …, Φ(𝑇1, …, 𝑇𝑚) ∘ 𝜄𝑚).

For any 𝑘 ∈ {1, …, 𝑚} and 𝑣 ∈ 𝑉𝑘 we have

[Φ(𝑇1, …, 𝑇𝑚)](𝜄𝑘(𝑣)) = [Φ(𝑇1, …, 𝑇𝑚)](0, …, 𝑣, …, 0) = 𝑇1(0) + ⋯ + 𝑇𝑘𝑣 + ⋯ + 𝑇𝑚(0) = 𝑇𝑘𝑣.

Thus Φ(𝑇1, …, 𝑇𝑚) ∘ 𝜄𝑘 = 𝑇𝑘 and it follows that Ψ(Φ(𝑇1, …, 𝑇𝑚)) = (𝑇1, …, 𝑇𝑚), i.e. Ψ ∘ Φ is
the identity map on ℒ(𝑉1, 𝑊) × ⋯ × ℒ(𝑉𝑚, 𝑊). Now let 𝑇 ∈ ℒ(𝑉1 × ⋯ × 𝑉𝑚, 𝑊) be given
and observe that

[Φ(Ψ(𝑇 ))](𝑣1, …, 𝑣𝑚) = [Φ(𝑇 ∘ 𝜄1, …, 𝑇 ∘ 𝜄𝑚)](𝑣1, …, 𝑣𝑚)

= (𝑇 ∘ 𝜄1)(𝑣1) + ⋯ + (𝑇 ∘ 𝜄𝑚)(𝑣𝑚)

= 𝑇 (𝑣1, …, 0) + ⋯ + 𝑇(0, …, 𝑣𝑚)

= 𝑇 (𝑣1, …, 𝑣𝑚).

Thus Φ(Ψ(𝑇 )) = 𝑇 , i.e. Φ ∘ Ψ is the identity map on ℒ(𝑉1 × ⋯ × 𝑉𝑚, 𝑊). As the proof
of 3.63 shows, it now follows that Ψ is a linear map. Thus Φ is an isomorphism from
ℒ(𝑉1, 𝑊) × ⋯ × ℒ(𝑉𝑚, 𝑊) to ℒ(𝑉1 × ⋯ × 𝑉𝑚, 𝑊) and its inverse is Ψ.

Exercise 3.E.4. Suppose 𝑊1, …, 𝑊𝑚 are vector spaces. Prove that ℒ(𝑉 , 𝑊1 × ⋯ × 𝑊𝑚)
and ℒ(𝑉 , 𝑊1) × ⋯ × ℒ(𝑉 , 𝑊𝑚) are isomorphic vector spaces.

Solution. Define a map

Φ : ℒ(𝑉 , 𝑊1) × ⋯ × ℒ(𝑉 , 𝑊𝑚) → ℒ(𝑉 , 𝑊1 × ⋯ × 𝑊𝑚),
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where Φ(𝑇1, …, 𝑇𝑚) is the map 𝑉 → 𝑊1 × ⋯ × 𝑊𝑚 given by

𝑣 ↦ (𝑇1𝑣, …, 𝑇𝑚𝑣).

It is straightforward to verify that Φ(𝑇1, …, 𝑇𝑚) is indeed a linear map for any (𝑇1, …, 𝑇𝑚),
and that Φ itself is linear.

For each 𝑘 ∈ {1, …, 𝑚}, define 𝑝𝑘 : 𝑊1 × ⋯ × 𝑊𝑚 → 𝑊𝑘 by 𝑝𝑘(𝑤1, …, 𝑤𝑚) = 𝑤𝑘; it is
straightforward to check that each 𝑝𝑘 is a linear map. Define a map

Ψ : ℒ(𝑉 , 𝑊1 × ⋯ × 𝑊𝑚) → ℒ(𝑉 , 𝑊1) × ⋯ × ℒ(𝑉 , 𝑊𝑚),

where Ψ(𝑇 ) is given by (𝑝1 ∘ 𝑇 , …, 𝑝𝑚 ∘ 𝑇 ). The linearity of each 𝑝𝑘 ∘ 𝑇  is given by the lin-
earity of 𝑝𝑘 and the linearity of 𝑇 . Let (𝑇1, …, 𝑇𝑚) ∈ ℒ(𝑉 , 𝑊1) × ⋯ × ℒ(𝑉 , 𝑊𝑚) be given
and observe that

Ψ(Φ(𝑇1, …, 𝑇𝑚)) = (𝑝1 ∘ Φ(𝑇1, …, 𝑇𝑚), …, 𝑝𝑚 ∘ Φ(𝑇1, …, 𝑇𝑚)).

For any 𝑘 ∈ {1, …, 𝑚} and 𝑣 ∈ 𝑉  we have

𝑝𝑘([Φ(𝑇1, …, 𝑇𝑚)](𝑣)) = 𝑝𝑘(𝑇1𝑣, …, 𝑇𝑚𝑣) = 𝑇𝑘𝑣.

Thus 𝑝𝑘 ∘ Φ(𝑇1, …, 𝑇𝑚) = 𝑇𝑘 and it follows that Ψ(Φ(𝑇1, …, 𝑇𝑚)) = (𝑇1, …, 𝑇𝑚), i.e. Ψ ∘ Φ is
the identity map on ℒ(𝑉 , 𝑊1) × ⋯ × ℒ(𝑉 , 𝑊𝑚). Now let 𝑇 ∈ ℒ(𝑉 , 𝑊1 × ⋯ × 𝑊𝑚) be given
and observe that

[Φ(Ψ(𝑇 ))](𝑣) = [Φ(𝑝1 ∘ 𝑇 , …, 𝑝𝑚 ∘ 𝑇 )](𝑣) = (𝑝1(𝑇 𝑣), …, 𝑝𝑚(𝑇 𝑣)) = 𝑇𝑣.

Thus Φ(Ψ(𝑇 )) = 𝑇 , i.e. Φ ∘ Ψ is the identity map on ℒ(𝑉 , 𝑊1 × ⋯ × 𝑊𝑚). As the proof
of 3.63 shows, it now follows that Ψ is a linear map. Thus Φ is an isomorphism from
ℒ(𝑉 , 𝑊1) × ⋯ × ℒ(𝑉 , 𝑊𝑚) to ℒ(𝑉 , 𝑊1 × ⋯ × 𝑊𝑚) and its inverse is Ψ.

Exercise 3.E.5. For 𝑚 a positive integer, define 𝑉 𝑚 by

𝑉 𝑚 = 𝑉 × ⋯ × 𝑉⏟⏟⏟⏟⏟
𝑚 times

.

Prove that 𝑉 𝑚 and ℒ(𝐅𝑚, 𝑉 ) are isomorphic vector spaces.

Solution. Define a map Φ : ℒ(𝐅𝑚, 𝑉 ) → 𝑉 𝑚 by

Φ(𝑇 ) = (𝑇𝑒1, …, 𝑇 𝑒𝑚),

where 𝑒1, …, 𝑒𝑚 is the standard basis of 𝐅𝑚. It is straightforward to verify that Φ is linear.
Now define a map Ψ : 𝑉 𝑚 → ℒ(𝐅𝑚, 𝑉 ) by

[Ψ(𝑣1, …, 𝑣𝑚)](𝑥1, …, 𝑥𝑚) = 𝑥1𝑣1 + ⋯ + 𝑥𝑚𝑣𝑚.

It is straightforward to check that Ψ(𝑣1, …, 𝑣𝑚) indeed belongs to ℒ(𝐅𝑚, 𝑉 ) for any 
(𝑣1, …, 𝑣𝑚) ∈ 𝑉 𝑚. For any 𝑇 ∈ ℒ(𝐅𝑚, 𝑉 ), observe that
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[Ψ(Φ(𝑇 ))](𝑥1, …, 𝑥𝑚) = [Ψ(𝑇𝑒1, …, 𝑇 𝑒𝑚)](𝑥1, …, 𝑥𝑚)

= 𝑥1𝑇𝑒1 + ⋯ + 𝑥𝑚𝑇𝑒𝑚

= 𝑇(𝑥1𝑒1 + ⋯ + 𝑥𝑚𝑒𝑚)

= 𝑇 (𝑥1, …, 𝑥𝑚).

Thus Ψ(Φ(𝑇 )) = 𝑇 , i.e. Ψ ∘ Φ is the identity map on ℒ(𝐅𝑚, 𝑉 ). Now let (𝑣1, …, 𝑣𝑚) ∈ 𝑉 𝑚

be given and observe that

Φ(Ψ(𝑣1, …, 𝑣𝑚)) = ([Ψ(𝑣1, …, 𝑣𝑚)](𝑒1), …, [Ψ(𝑣1, …, 𝑣𝑚)](𝑒𝑚)) = (𝑣1, …, 𝑣𝑚).

Thus Φ ∘ Ψ is the identity map on 𝑉 𝑚. As the proof of 3.63 shows, it now follows that Ψ is
a linear map. Thus Φ is an isomorphism from ℒ(𝐅𝑚, 𝑉 ) to 𝑉 𝑚 and its inverse is Ψ.

Exercise 3.E.6. Suppose that 𝑣, 𝑥 are vectors in 𝑉  and that 𝑈, 𝑊  are subspaces of 𝑉
such that 𝑣 + 𝑈 = 𝑥 + 𝑊 . Prove that 𝑈 = 𝑊 .

Solution. Since 𝑣 ∈ 𝑣 + 𝑈 = 𝑥 + 𝑊 , there is some 𝑤 ∈ 𝑊  such that 𝑣 = 𝑥 + 𝑤, which im-
plies that 𝑥 − 𝑣 = −𝑤 ∈ 𝑊 . For any 𝑢 ∈ 𝑈  we have 𝑣 + 𝑢 = 𝑥 + 𝑤 for some 𝑤 ∈ 𝑊 , so that
𝑢 = 𝑥 − 𝑣 + 𝑤 ∈ 𝑊 . Thus 𝑈 ⊆ 𝑊 . A similar argument shows that 𝑊 ⊆ 𝑈  and it follows that
𝑈 = 𝑊 .

Exercise 3.E.7. Let 𝑈 = {(𝑥, 𝑦, 𝑧) ∈ 𝐑3 : 2𝑥 + 3𝑦 + 5𝑧 = 0}. Suppose 𝐴 ⊆ 𝐑3. Prove
that 𝐴 is a translate of 𝑈  if and only if there exists 𝑐 ∈ 𝐑 such that

𝐴 = {(𝑥, 𝑦, 𝑧) ∈ 𝐑3 : 2𝑥 + 3𝑦 + 5𝑧 = 𝑐}.

Solution. Suppose that 𝐴 is a translate of 𝑈 , i.e. there is some (𝑎1, 𝑎2, 𝑎3) ∈ 𝐑3 such that 
𝐴 = (𝑎1, 𝑎2, 𝑎3) + 𝑈 . Let 𝑐 = 2𝑎1 + 3𝑎2 + 5𝑎3 and let

𝑊 = {(𝑥1, 𝑥2, 𝑥3) ∈ 𝐑3 : 2𝑥1 + 3𝑥2 + 5𝑥3 = 𝑐}.

We need to show that 𝐴 = 𝑊 . Suppose that (𝑥1, 𝑥2, 𝑥3) ∈ 𝐴, so that

(𝑥1, 𝑥2, 𝑥3) = (𝑎1, 𝑎2, 𝑎3) + (𝑢1, 𝑢2, 𝑢3)

for some (𝑢1, 𝑢2, 𝑢3) ∈ 𝑈 . It follows that

2𝑥1 + 3𝑥2 + 5𝑥3 = 2𝑢1 + 3𝑢2 + 5𝑢3 + 2𝑎1 + 3𝑎2 + 5𝑎3 = 0 + 𝑐 = 𝑐.

Thus 𝐴 ⊆ 𝑊 . If (𝑥1, 𝑥2, 𝑥3) ∈ 𝑊  then note that

2𝑥1 + 3𝑥2 + 5𝑥3 = 𝑐 = 2𝑎1 + 3𝑎2 + 5𝑎3 ⇒ (𝑥1 − 𝑎1, 𝑥2 − 𝑎2, 𝑥3 − 𝑎3) ∈ 𝑈.

Thus (𝑥1, 𝑥2, 𝑥3) = (𝑎1, 𝑎2, 𝑎3) + (𝑥1 − 𝑎1, 𝑥2 − 𝑎2, 𝑥3 − 𝑎3) ∈ (𝑎1, 𝑎2, 𝑎3) + 𝑈 = 𝐴 and it fol-
lows that 𝑊 ⊆ 𝐴. Hence 𝐴 = 𝑊 .

Now suppose that there is some 𝑐 ∈ 𝐑 such that
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𝐴 = {(𝑥1, 𝑥2, 𝑥3) ∈ 𝐑3 : 2𝑥1 + 3𝑥2 + 5𝑥3 = 𝑐}.

We claim that 𝐴 = ( 𝑐
6 , 𝑐

9 , 𝑐
15) + 𝑈 . If (𝑥1, 𝑥2, 𝑥3) ∈ 𝐴 then observe that

(𝑥1, 𝑥2, 𝑥3) = ( 𝑐
6 , 𝑐

9 , 𝑐
15) + (𝑥1 − 𝑐

6 , 𝑥2 − 𝑐
9 , 𝑥3 − 𝑐

15) ∈ ( 𝑐
6 , 𝑐

9 , 𝑐
15) + 𝑈,

where (𝑥1 − 𝑐
6 , 𝑥2 − 𝑐

9 , 𝑥3 − 𝑐
15) ∈ 𝑈  since

2(𝑥1 − 𝑐
6) + 3(𝑥2 − 𝑐

9) + 5(𝑥3 − 𝑐
15) = 2𝑥1 + 3𝑥2 + 5𝑥3 − ( 𝑐

3 + 𝑐
3 + 𝑐

3) = 𝑐 − 𝑐 = 0.

Thus 𝐴 ⊆ ( 𝑐
6 , 𝑐

9 , 𝑐
15) + 𝑈 . If ( 𝑐

6 , 𝑐
9 , 𝑐

15) + (𝑢1, 𝑢2, 𝑢3) ∈ ( 𝑐
6 , 𝑐

9 , 𝑐
15) + 𝑈  then

2( 𝑐
6 + 𝑢1) + 3( 𝑐

9 + 𝑢2) + 5( 𝑐
15 + 𝑢3) = ( 𝑐

3 + 𝑐
3 + 𝑐

3) + 2𝑢1 + 3𝑢2 + 5𝑢3 = 𝑐 + 0 = 𝑐.

Thus ( 𝑐
6 , 𝑐

9 , 𝑐
15) + (𝑢1, 𝑢2, 𝑢3) ∈ 𝐴 and we may conclude that 𝐴 = ( 𝑐

6 , 𝑐
9 , 𝑐

15) + 𝑈 .

Exercise 3.E.8.

(a) Suppose 𝑇 ∈ ℒ(𝑉 , 𝑊) and 𝑐 ∈ 𝑊 . Prove that {𝑥 ∈ 𝑉 : 𝑇𝑥 = 𝑐} is either the empty
set or is a translate of null 𝑇 .

(b) Explain why the set of solutions to a system of linear equations such as 3.27 is
either the empty set or is a translate of some subspace of 𝐅𝑛.

Solution.

(a) If 𝑐 ∉ range 𝑇  then {𝑥 ∈ 𝑉 : 𝑇𝑥 = 𝑐} must be empty. Suppose that 𝑐 ∈ range 𝑇 , so
that 𝑐 = 𝑇𝑢 for some 𝑢 ∈ 𝑉 . We claim that {𝑥 ∈ 𝑉 : 𝑇𝑥 = 𝑐} = 𝑢 + null 𝑇 . Indeed, for
𝑥 = 𝑢 + 𝑣 ∈ 𝑢 + null 𝑇  we have

𝑇𝑥 = 𝑇𝑢 + 𝑇𝑣 = 𝑐 ⇒ 𝑥 ∈ {𝑥 ∈ 𝑉 : 𝑇𝑥 = 𝑐}.

Thus 𝑢 + null 𝑇 ⊆ {𝑥 ∈ 𝑉 : 𝑇𝑥 = 𝑐}. If 𝑥 ∈ 𝑉  is such that 𝑇𝑥 = 𝑐 then observe that

𝑇𝑥 = 𝑐 = 𝑇𝑢 ⇒ 𝑇(𝑥 − 𝑢) = 0 ⇒ 𝑥 − 𝑢 ∈ null 𝑇

⇒ 𝑥 = 𝑢 + 𝑣 for some 𝑣 ∈ null 𝑇 .

Thus {𝑥 ∈ 𝑉 : 𝑇𝑥 = 𝑐} ⊆ 𝑢 + null 𝑇  and our claim follows.

(b) Consider a system of linear equations

∑
𝑛

𝑘=1
𝐴1,𝑘𝑥𝑘 = 𝑐1

⋮

∑
𝑛

𝑘=1
𝐴𝑚,𝑘𝑥𝑘 = 𝑐𝑚.

Define 𝑇 ∈ ℒ(𝐅𝑛, 𝐅𝑚) by
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𝑇 (𝑥1, …, 𝑥𝑛) = (∑
𝑛

𝑘=1
𝐴1,𝑘𝑥𝑘, …, ∑

𝑛

𝑘=1
𝐴𝑚,𝑘𝑥𝑘)

and let 𝑐 = (𝑐1, …, 𝑐𝑚) ∈ 𝐅𝑚. The solution set of the system of linear equations is then
precisely the set

{(𝑥1, …, 𝑥𝑛) ∈ 𝐅𝑛 : 𝑇 (𝑥1, …, 𝑥𝑛) = 𝑐}.

As we showed in part (a), this set is either empty or is a translate of the subspace
null 𝑇 .

Exercise 3.E.9. Prove that a nonempty subset 𝐴 of 𝑉  is a translate of some subspace
of 𝑉  if and only if 𝜆𝑣 + (1 − 𝜆)𝑤 ∈ 𝐴 for all 𝑣, 𝑤 ∈ 𝐴 and all 𝜆 ∈ 𝐅.

Solution. Suppose that 𝐴 = 𝑥 + 𝑈  for some 𝑥 ∈ 𝑉  and some subspace 𝑈  of 𝑉 . Let 𝑣, 𝑤 ∈ 𝐴
and 𝜆 ∈ 𝐅 be given and note that 𝑣 = 𝑥 + 𝑡 and 𝑤 = 𝑥 + 𝑢 for some 𝑡, 𝑢 ∈ 𝑈 . It follows that

𝜆𝑣 + (1 − 𝜆)𝑤 = 𝜆(𝑥 + 𝑡) + (1 − 𝜆)(𝑥 + 𝑢) = 𝑥 + (𝜆𝑡 + (1 − 𝜆)𝑢) ∈ 𝑥 + 𝑈 = 𝐴.

Now suppose that 𝜆𝑣 + (1 − 𝜆)𝑤 ∈ 𝐴 for all 𝑣, 𝑤 ∈ 𝐴 and all 𝜆 ∈ 𝐅. Because 𝐴 is non-
empty, there is some 𝑥 ∈ 𝐴. We claim that −𝑥 + 𝐴 is a subspace of 𝑉 . Certainly
0 = −𝑥 + 𝑥 ∈ −𝑥 + 𝐴. Suppose that −𝑥 + 𝑣, −𝑥 + 𝑤 ∈ −𝑥 + 𝐴 and 𝜆 ∈ 𝐅, and observe that

𝑥, 𝑣 ∈ 𝐴 ⇒ −𝑥 + 2𝑣 ∈ 𝐴 and 𝑥, 𝑤 ∈ 𝐴 ⇒ −𝑥 + 2𝑤 ∈ 𝐴.

It follows that

(−1
2𝑥 + 𝑣) + (−1

2𝑥 + 𝑤) = −𝑥 + 𝑣 + 𝑤 ∈ 𝐴 ⇒ −2𝑥 + 𝑣 + 𝑤 ∈ −𝑥 + 𝐴.

Thus (−𝑥 + 𝑣) + (−𝑥 + 𝑤) ∈ −𝑥 + 𝐴, so that −𝑥 + 𝐴 is closed under vector addition. Fur-
thermore, −𝑥 + 𝐴 is closed under scalar multiplication:

𝑥, 𝑣 ∈ 𝐴 ⇒ 𝜆(−𝑥 + 𝑣) = −𝑥 + (𝜆𝑣 + (1 − 𝜆)𝑥) ∈ −𝑥 + 𝐴.

Thus −𝑥 + 𝐴 is a subspace of 𝑉 . It follows that 𝐴 = 𝑥 + (−𝑥 + 𝐴) is a translate of the
subspace −𝑥 + 𝐴.

Exercise 3.E.10. Suppose 𝐴1 = 𝑣 + 𝑈1 and 𝐴2 = 𝑤 + 𝑈2 for some 𝑣, 𝑤 ∈ 𝑉  and some
subspaces 𝑈1, 𝑈2 of 𝑉 . Prove that the intersection 𝐴1 ∩ 𝐴2 is either a translate of some
subspace of 𝑉  or is the empty set.

Solution. If 𝐴1 ∩ 𝐴2 is non-empty, so that there is some 𝑥 ∈ 𝐴1 ∩ 𝐴2, then by 3.101 we have
𝐴1 = 𝑥 + 𝑈1 and 𝐴2 = 𝑥 + 𝑈2. We claim that 𝐴1 ∩ 𝐴2 = 𝑥 + (𝑈1 ∩ 𝑈2). If 𝑦 ∈ 𝐴1 ∩ 𝐴2 then
𝑦 = 𝑥 + 𝑢1 = 𝑥 + 𝑢2 for some 𝑢1 ∈ 𝑈1 and some 𝑢2 ∈ 𝑈2. It follows that 𝑢1 = 𝑢2 ∈ 𝑈1 ∩ 𝑈2

and thus 𝑦 ∈ 𝑥 + (𝑈1 ∩ 𝑈2). This gives us the inclusion 𝐴1 ∩ 𝐴2 ⊆ 𝑥 + (𝑈1 ∩ 𝑈2). If
𝑦 = 𝑥 + 𝑢 ∈ 𝑥 + (𝑈1 ∩ 𝑈2) then 𝑦 = 𝑥 + 𝑢 ∈ 𝑥 + 𝑈1 = 𝐴1 and 𝑦 = 𝑥 + 𝑢 ∈ 𝑥 + 𝑈2 = 𝐴2, so
that 𝑦 ∈ 𝐴1 ∩ 𝐴2. Thus 𝑥 + (𝑈1 ∩ 𝑈2) ⊆ 𝐴1 ∩ 𝐴2 and our claim follows.
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Exercise 3.E.11. Suppose 𝑈 = {(𝑥1, 𝑥2, …) ∈ 𝐅∞ : 𝑥𝑘 ≠ 0 for only finitely many 𝑘}.

(a) Show that 𝑈  is a subspace of 𝐅∞.

(b) Prove that 𝐅∞/𝑈  is infinite-dimensional.

Solution.

(a) Notice that

𝑈 = {(𝑥1, 𝑥2, …) ∈ 𝐅∞ : there exists 𝐾 such that 𝑥𝑘 = 0 for all 𝑘 ≥ 𝐾}.

Certainly (0, 0, 0, …) ∈ 𝑈 . Suppose that (𝑥1, 𝑥2, …), (𝑦1, 𝑦2, …) ∈ 𝑈  and 𝜆 ∈ 𝐅. There
are positive integers 𝐾, 𝐿 such that 𝑥𝑘 = 0 for all 𝑘 ≥ 𝐾 and 𝑦𝑘 = 0 for all 𝑘 ≥ 𝐿. It
follows that 𝑥𝑘 + 𝑦𝑘 = 0 for all 𝑘 ≥ max{𝐾, 𝐿} and 𝜆𝑥𝑘 = 0 for all 𝑘 ≥ 𝐾. Thus

(𝑥1, 𝑥2, …) + (𝑦1, 𝑦2, …) ∈ 𝑈 and 𝜆(𝑥1, 𝑥2, …) ∈ 𝑈.

It follows that 𝑈  is a subspace of 𝐅∞.

(b) For 𝑥 ∈ 𝐅∞ we will use the notation 𝑥(𝑘) to denote the 𝑘th term of 𝑥. Let 𝑒𝑛 ∈ 𝐅∞ be
the sequence given by

𝑒𝑛(𝑘) = {1 if 𝑘 is divisible by 2𝑛,
0 otherwise.

𝑒1 = (0, 1, 0, 1, 0, 1, 0, 1, …),

𝑒2 = (0, 0, 0, 1, 0, 0, 0, 1, …),

𝑒3 = (0, 0, 0, 0, 0, 0, 0, 1, …),  etc.

Let 𝑚 ∈ 𝐍 be given. We claim that the list 𝑒1 + 𝑈, …, 𝑒𝑚 + 𝑈  is linearly independent.
Suppose 𝑎1, …, 𝑎𝑚 are such that

𝑎1(𝑒1 + 𝑈) + ⋯ + 𝑎𝑚(𝑒𝑚 + 𝑈) = (𝑎1𝑒1 + ⋯ + 𝑎𝑚𝑒𝑚) + 𝑈 = 0.

This is the case if and only if 𝑒 ∈ 𝑈 , where 𝑒 = 𝑎1𝑒1 + ⋯ + 𝑎𝑚𝑒𝑚, which implies that
there is a positive integer 𝐾 such that 𝑒(𝑘) = 0 for all 𝑘 ≥ 𝐾. Let 𝑁 ∈ 𝐍 be such that
2𝑚𝑁 ≥ 𝐾 and note that 2𝑚𝑁 + 2 is divisible by 2 but not by 22, …, 2𝑚. It follows that

0 = 𝑒(2𝑚𝑁 + 2) = 𝑎1𝑒1(2𝑚𝑁 + 2) + 𝑎2𝑒2(2𝑚𝑁 + 2) + ⋯ + 𝑎𝑚𝑒𝑚(2𝑚𝑁 + 2) = 𝑎1.

Similarly, 2𝑚𝑁 + 22 is divisible by 22 but not by 23, …, 2𝑚 and thus

0 = 𝑒(2𝑚𝑁 + 22) = 𝑎2𝑒2(2𝑚𝑁 + 22) + 𝑎3𝑒3(2𝑚𝑁 + 22)

+ ⋯ + 𝑎𝑚𝑒𝑚(2𝑚𝑁 + 22) = 𝑎2.

Continuing in this manner, we find that 𝑎1 = ⋯ = 𝑎𝑚 = 0 and our claim follows.

We can now use Exercise 2.A.17 to conclude that 𝐅∞/𝑈  is infinite-dimensional.
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Exercise 3.E.12. Suppose 𝑣1, …, 𝑣𝑚 ∈ 𝑉 . Let

𝐴 = {𝜆1𝑣1 + ⋯ + 𝜆𝑚𝑣𝑚 : 𝜆1, …, 𝜆𝑚 ∈ 𝐅 and 𝜆1 + ⋯ + 𝜆𝑚 = 1}.

(a) Prove that 𝐴 is a translate of some subspace of 𝑉 .

(b) Prove that if 𝐵 is a translate of some subspace of 𝑉  and {𝑣1, …, 𝑣𝑚} ⊆ 𝐵, then 
𝐴 ⊆ 𝐵.

(c) Prove that 𝐴 is a translate of some subspace of 𝑉  of dimension less than 𝑚.

Solution.

(a) Suppose 𝑣 = ∑𝑚
𝑘=1 𝜆𝑘𝑣𝑘 and 𝑤 = ∑𝑚

𝑘=1 𝜇𝑘𝑣𝑘 belong to 𝐴 and 𝛾 ∈ 𝐅. Observe that

∑
𝑚

𝑘=1
[𝛾𝜆𝑘 + (1 − 𝛾)𝜇𝑘] = 𝛾 ∑

𝑚

𝑘=1
𝜆𝑘 + (1 − 𝛾) ∑

𝑚

𝑘=1
𝜇𝑘 = 𝛾 + (1 − 𝛾) = 1.

It follows that

𝛾𝑣 + (1 − 𝛾)𝑤 = 𝛾 ∑
𝑚

𝑘=1
𝜆𝑘𝑣𝑘 + (1 − 𝛾) ∑

𝑚

𝑘=1
𝜇𝑘𝑣𝑘 = ∑

𝑚

𝑘=1
[𝛾𝜆𝑘 + (1 − 𝛾)𝜇𝑘]𝑣𝑘

belongs to 𝐴. Thus 𝐴 is a translate of some subspace of 𝑉  by Exercise 3.E.9.

(b) Suppose that 𝐵 = 𝑣 + 𝑈  for some 𝑣 ∈ 𝑈  and some subspace 𝑈  of 𝑉 , and suppose that
{𝑣1, …, 𝑣𝑚} ⊆ 𝐵, so that each 𝑣𝑘 = 𝑣 + 𝑢𝑘 for some 𝑢𝑘 ∈ 𝑈 . Let ∑𝑚

𝑘=1 𝜆𝑘𝑣𝑘 ∈ 𝐴 be
given and observe that

∑
𝑚

𝑘=1
𝜆𝑘𝑣𝑘 = ∑

𝑚

𝑘=1
𝜆𝑘(𝑣 + 𝑢𝑘) = (∑

𝑚

𝑘=1
𝜆𝑘)𝑣 + ∑

𝑚

𝑘=1
𝜆𝑘𝑢𝑘 = 𝑣 + ∑

𝑚

𝑘=1
𝜆𝑘𝑢𝑘 ∈ 𝑣 + 𝑈 = 𝐵.

Thus 𝐴 ⊆ 𝐵.

(c) If 𝑚 = 1 then 𝐴 = {𝑣1} = 𝑣1 + {0}. If 𝑚 ≥ 2 then let 𝑈 = span(𝑣2 − 𝑣1, …, 𝑣𝑚 − 𝑣1)
and note that dim 𝑈 ≤ 𝑚 − 1. Note further that 𝑣1 + 𝑈  is a translate of 𝑈  containing
{𝑣1, …, 𝑣𝑚}; it follows from part (b) that 𝐴 ⊆ 𝑣1 + 𝑈 . Let 𝑣1 + ∑𝑚

𝑘=2 𝑎𝑘(𝑣𝑘 − 𝑣1) in 
𝑣1 + 𝑈  be given and observe that

𝑣1 + ∑
𝑚

𝑘=2
𝑎𝑘(𝑣𝑘 − 𝑣1) = (1 − ∑

𝑚

𝑘=2
𝑎𝑘)𝑣1 + ∑

𝑚

𝑘=2
𝑎𝑘𝑣𝑘 ∈ 𝐴.

Thus 𝑣1 + 𝑈 ⊆ 𝐴 and we may conclude that 𝐴 = 𝑣1 + 𝑈 , where dim 𝑈 ≤ 𝑚 − 1.

Exercise 3.E.13. Suppose 𝑈  is a subspace of 𝑉  such that 𝑉 /𝑈  is finite-dimensional.
Prove that 𝑉  is isomorphic to 𝑈 × (𝑉 /𝑈).

Solution. Let 𝑣1 + 𝑈, …, 𝑣𝑚 + 𝑈  be a basis of 𝑉 /𝑈 . Define 𝑇 ∈ ℒ(𝑉 /𝑈, 𝑉 ) by
𝑇 (𝑣𝑘 + 𝑈) = 𝑣𝑘 and notice that 𝜋 ∘ 𝑇  is the identity map on 𝑉 /𝑈 . Now define
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𝑆 : 𝑈 × (𝑉 /𝑈) → 𝑉  by 𝑆(𝑢, 𝑣 + 𝑈) = 𝑢 + 𝑇(𝑣 + 𝑈); the linearity of 𝑆 follows from the lin-
earity of 𝑇 .

Suppose (𝑢, 𝑣 + 𝑈) is such that

𝑆(𝑢, 𝑣 + 𝑈) = 𝑢 + 𝑇(𝑣 + 𝑈) = 0.

Using null 𝜋 = 𝑈  and 𝜋 ∘ 𝑇 = 𝐼 , applying 𝜋 to the equation above shows that 𝑣 + 𝑈 = 0. It
follows that 𝑇 (𝑣 + 𝑈) = 0 and hence that 𝑢 = 0. Thus 𝑆 is injective.

For any 𝑣 ∈ 𝑉  there are scalars 𝑎1, …, 𝑎𝑚 such that 𝑣 + 𝑈 = 𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚 + 𝑈  and thus
by 3.101 we have 𝑣 = 𝑢 + 𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚 for some 𝑢 ∈ 𝑈 . Observe that

𝑆(𝑢, 𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚 + 𝑈) = 𝑢 + 𝑇(𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚 + 𝑈)

= 𝑢 + 𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚 = 𝑣.

Thus 𝑆 is surjective and we may conclude that 𝑆 is an isomorphism from 𝑈 × (𝑉 /𝑈) to 𝑉 .

Exercise 3.E.14. Suppose 𝑈  and 𝑊  are subspaces of 𝑉  and 𝑉 = 𝑈 ⊕ 𝑊 . Suppose 
𝑤1, …, 𝑤𝑚 is a basis of 𝑊 . Prove that 𝑤1 + 𝑈, …, 𝑤𝑚 + 𝑈  is a basis of 𝑉 /𝑈 .

Solution. Suppose 𝑎1, …, 𝑎𝑚 are scalars such that 𝑎1𝑤1 + ⋯ + 𝑎𝑚𝑤𝑚 + 𝑈 = 0, which by
3.101 is the case if and only if 𝑎1𝑤1 + ⋯ + 𝑎𝑚𝑤𝑚 ∈ 𝑈 . Because the sum 𝑈 ⊕ 𝑊  is direct, 1.46
shows that 𝑎1𝑤1 + ⋯ + 𝑎𝑚𝑤𝑚 = 0 and it follows from the linear independence of 𝑤1, …, 𝑤𝑚

that 𝑎1 = ⋯ = 𝑎𝑚 = 0. Thus 𝑤1 + 𝑈, …, 𝑤𝑚 + 𝑈  is linearly independent.

For any 𝑣 + 𝑈 ∈ 𝑉 /𝑈 , we have 𝑣 = 𝑢 + 𝑎1𝑤1 + ⋯ + 𝑎𝑚𝑤𝑚 for some 𝑢 ∈ 𝑈  and some scalars
𝑎1, …, 𝑎𝑚. It follows that

𝑣 + 𝑈 = 𝜋(𝑣) = 𝑎1𝑤1 + ⋯ + 𝑎𝑚𝑤𝑚 + 𝑈 = 𝑎1(𝑤1 + 𝑈) + ⋯ + 𝑎𝑚(𝑤𝑚 + 𝑈).

Thus 𝑤1 + 𝑈, …, 𝑤𝑚 + 𝑈  spans 𝑉 /𝑈  and we may conclude that 𝑤1 + 𝑈, …, 𝑤𝑚 + 𝑈  is a basis
of 𝑉 /𝑈 .

Exercise 3.E.15. Suppose 𝑈  is a subspace of 𝑉  and 𝑣1 + 𝑈, …, 𝑣𝑚 + 𝑈  is a basis of 
𝑉 /𝑈  and 𝑢1, …, 𝑢𝑛 is a basis of 𝑈 . Prove that 𝑣1, …, 𝑣𝑚, 𝑢1, …, 𝑢𝑛 is a basis of 𝑉 .

Solution. Suppose there are scalars 𝑎1, …, 𝑎𝑚, 𝑏1, …, 𝑏𝑛 such that

𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚 + 𝑏1𝑢1 + ⋯ + 𝑏𝑛𝑢𝑛 = 0.

Applying 𝜋 to both sides of this equation shows that 𝑎1(𝑣1 + 𝑈) + ⋯ + 𝑎𝑚(𝑣𝑚 + 𝑈) = 0.
The linear independence of 𝑣1 + 𝑈, …, 𝑣𝑚 + 𝑈  then implies that 𝑎1 = ⋯ = 𝑎𝑚 = 0, and the
linear independence of 𝑢1, …, 𝑢𝑛 then gives us 𝑏1 = ⋯ = 𝑏𝑛 = 0. Thus 𝑣1, …, 𝑣𝑚, 𝑢1, …, 𝑢𝑛 is
linearly independent.

Let 𝑣 ∈ 𝑉  be given. There are scalars 𝑎1, …, 𝑎𝑚 such that 𝑣 + 𝑈 = 𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚 + 𝑈 . It
follows from 3.101 that 𝑣 = 𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚 + 𝑢 for some 𝑢 ∈ 𝑈 , so that there are scalars
𝑏1, …, 𝑏𝑛 such that
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𝑣 = 𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚 + 𝑏1𝑢1 + ⋯ + 𝑏𝑛𝑢𝑛.

Thus 𝑣1, …, 𝑣𝑚, 𝑢1, …, 𝑢𝑛 spans 𝑉  and we may conclude that 𝑣1, …, 𝑣𝑚, 𝑢1, …, 𝑢𝑛 is a basis
of 𝑉 .

Exercise 3.E.16. Suppose 𝜑 ∈ ℒ(𝑉 , 𝐅) and 𝜑 ≠ 0. Prove that dim 𝑉 /(null 𝜑) = 1.

Solution. There is some 𝑢 ∈ 𝑉  such that 𝜑(𝑢) ≠ 0; Exercise 3.B.30 then implies that

𝑉 = null 𝜑 ⊕ {𝑎𝑢 : 𝑎 ∈ 𝐅}.

Notice that 𝑢 is a basis of {𝑎𝑢 : 𝑎 ∈ 𝐅}. It follows from Exercise 3.E.14 that 𝑢 + null 𝜑 is a
basis of 𝑉 /(null 𝜑). Thus dim 𝑉 /(null 𝜑) = 1.

Exercise 3.E.17. Suppose 𝑈  is a subspace of 𝑉  such that dim 𝑉 /𝑈 = 1. Prove that
there exists 𝜑 ∈ ℒ(𝑉 , 𝐅) such that null 𝜑 = 𝑈 .

Solution. Let 𝑤 + 𝑈  be a basis of 𝑉 /𝑈 . For any 𝑣 ∈ 𝑉  there is a unique 𝑎 ∈ 𝐅 such that
𝑣 + 𝑈 = 𝑎𝑤 + 𝑈 . Given this uniqueness, the map 𝜑 : 𝑉 → 𝐅 defined by 𝜑(𝑣) = 𝑎 is well-
defined. Moreover, 𝜑 is linear. For any 𝑣1, 𝑣2 ∈ 𝑉  there are unique scalars 𝑎1, 𝑎2 such that 
𝑣1 + 𝑈 = 𝑎1𝑤 + 𝑈  and 𝑣2 + 𝑈 = 𝑎2𝑤 + 𝑈 . Let 𝜆 ∈ 𝐅 be given. Since

(𝑣1 + 𝑣2) + 𝑈 = (𝑎1 + 𝑎2)𝑤 + 𝑈 and 𝜆𝑣1 + 𝑈 = (𝜆𝑎1)𝑤 + 𝑈,

𝑎1 + 𝑎2 must be the unique coefficient of 𝑤 in the linear combination representing
(𝑣1 + 𝑣2) + 𝑈  in the basis 𝑤 + 𝑈  of 𝑉 /𝑈 ; similarly, 𝜆𝑎1 must be the unique coefficient of 𝑤
in the representation of 𝜆𝑣1 + 𝑈 . It follows that

𝜑(𝑣1 + 𝑣2) = 𝑎1 + 𝑎2 = 𝜑(𝑣1) + 𝜑(𝑣2) and 𝜑(𝜆𝑣1) = 𝜆𝑎1 = 𝜆𝜑(𝑣1).

Thus 𝜑 is linear.

For any 𝑢 ∈ 𝑈  we have 𝑢 + 𝑈 = 0𝑤 + 𝑈  and thus 𝜑(𝑢) = 0, so that 𝑈 ⊆ null 𝜑. Conversely,
if 𝑣 ∈ 𝑉  is such that 𝜑(𝑣) = 0 then 𝑣 + 𝑈 = 0𝑤 + 𝑈 ; it follows from 3.101 that 𝑣 ∈ 𝑈 . Thus
null 𝜑 = 𝑈 .

Exercise 3.E.18. Suppose that 𝑈  is a subspace of 𝑉  such that 𝑉/𝑈  is finite-dimen-
sional.

(a) Show that if 𝑊  is a finite-dimensional subspace of 𝑉  and 𝑉 = 𝑈 + 𝑊 , then 
dim 𝑊 ≥ dim 𝑉/𝑈 .

(b) Prove that there exists a finite-dimensional subspace 𝑊  of 𝑉  such that
dim 𝑊 = dim 𝑉/𝑈  and 𝑉 = 𝑈 ⊕ 𝑊 .

Solution.

(a) Let 𝑤1, …, 𝑤𝑚 be a basis of 𝑊 . For any 𝑣 + 𝑈 ∈ 𝑉/𝑈  we have
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𝑣 = 𝑢 + 𝑎1𝑤1 + ⋯ + 𝑎𝑚𝑤𝑚

for some 𝑢 ∈ 𝑈  and some scalars 𝑎1, …, 𝑎𝑚, so that

𝑣 + 𝑈 = 𝑎1(𝑤1 + 𝑈) + ⋯ + 𝑎𝑚(𝑤𝑚 + 𝑈).

Thus 𝑤1 + 𝑈, …, 𝑤𝑚 + 𝑈  spans 𝑉/𝑈 . It follows that dim 𝑉/𝑈 ≤ 𝑚 = dim 𝑊 .

(b) Let 𝑣1 + 𝑈, …, 𝑣𝑚 + 𝑈  be a basis of 𝑉/𝑈  and define 𝑇 ∈ ℒ(𝑉/𝑈, 𝑉 ) by 𝑇 (𝑣𝑘 + 𝑈) = 𝑣𝑘.
Notice that

𝜋 ∘ 𝑇 = 𝐼 and range 𝑇 = span(𝑣1, …, 𝑣𝑚).

It follows from Exercise 3.B.19 that 𝑇  is injective; letting 𝑊 = range 𝑇 , we see that 𝑇
is an isomorphism between 𝑉/𝑈  and 𝑊 . Thus dim 𝑊 = dim 𝑉/𝑈 .

For any 𝑣 ∈ 𝑉  we have 𝑣 + 𝑈 = 𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚 + 𝑈  for some scalars 𝑎1, …, 𝑎𝑚. It
follows from 3.101 that 𝑣 = 𝑢 + 𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚 for some 𝑢 ∈ 𝑈 . Thus 𝑉 = 𝑈 + 𝑊 .
Suppose that 𝑣 ∈ 𝑈 ∩ 𝑊 , so that 𝑣 + 𝑈 = 0 and 𝑣 = 𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚 for some scalars
𝑎1, …, 𝑎𝑚. It follows that

0 = 𝑣 + 𝑈 = 𝑎1(𝑣1 + 𝑈) + ⋯ + 𝑎𝑚(𝑣𝑚 + 𝑈).

The linear independence of 𝑣1 + 𝑈, …, 𝑣𝑚 + 𝑈  then implies that 𝑎1 = ⋯ = 𝑎𝑚 = 0,
whence 𝑣 = 0. Thus 𝑈 ∩ 𝑊 = {0} and we may use 1.46 to conclude that the sum
𝑉 = 𝑈 ⊕ 𝑊  is direct.

Exercise 3.E.19. Suppose 𝑇 ∈ ℒ(𝑉 , 𝑊) and 𝑈  is a subspace of 𝑉 . Let 𝜋 denote the
quotient map from 𝑉  onto 𝑉 /𝑈 . Prove that there exists 𝑆 ∈ ℒ(𝑉 /𝑈, 𝑊) such that
𝑇 = 𝑆 ∘ 𝜋 if and only if 𝑈 ⊆ null 𝑇 .

Solution. If there exists such a map 𝑆 and 𝑢 ∈ 𝑈 , then

𝑇𝑢 = 𝑆(𝜋(𝑢)) = 𝑆(0) = 0.

Thus 𝑈 ⊆ null 𝑇 .

Now suppose 𝑈 ⊆ null 𝑇 . Define 𝑆 : 𝑉 /𝑈 → 𝑊  by 𝑆(𝑣 + 𝑈) = 𝑇𝑣. This map is well-defined:

𝑣1 + 𝑈 = 𝑣2 + 𝑈 ⇔ 𝑣1 − 𝑣2 ∈ 𝑈 ⇒ 𝑣1 − 𝑣2 ∈ null 𝑇 ⇒ 𝑇𝑣1 = 𝑇𝑣2.

The linearity of 𝑆 follows from the linearity of 𝑇  and the definition of 𝑆 makes it clear that
𝑇 = 𝑆 ∘ 𝜋.
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3.F. Duality

Exercise 3.F.1. Explain why each linear functional is surjective or is the zero map.

Solution. Suppose 𝜑 ∈ 𝑉 ′ is non-zero, so that there is some 𝑣 ∈ 𝑉  such that 𝜑(𝑣) ≠ 0, and
notice that

𝜑(
𝜆

𝜑(𝑣)
𝑣) = 𝜆

for any 𝜆 ∈ 𝐅. Thus 𝜑 is surjective.

Exercise 3.F.2. Give three distinct examples of linear functionals on 𝐑[0,1].

Solution. For 𝑘 ∈ {0, 1, 2}, define 𝜑𝑘 : 𝐑[0,1] → 𝐑 by 𝜑𝑘(𝑓) = 𝑓(𝑘
2). It is straightforward to

check that each 𝜑𝑘 is a linear functional on 𝐑[0,1].

Exercise 3.F.3. Suppose 𝑉  is finite-dimensional and 𝑣 ∈ 𝑉  with 𝑣 ≠ 0. Prove that there
exists 𝜑 ∈ 𝑉 ′ such that 𝜑(𝑣) = 1.

Solution. Let 𝑣1 = 𝑣 and extend this to a basis 𝑣1, …, 𝑣𝑛 of 𝑉 . Now define 𝜑 ∈ 𝑉 ′ by 
𝜑(𝑣𝑘) = 1 for each 𝑘 ∈ {1, …, 𝑛}.

Exercise 3.F.4. Suppose 𝑉  is finite-dimensional and 𝑈  is a subspace of 𝑉  such that 
𝑈 ≠ 𝑉 . Prove that there exists 𝜑 ∈ 𝑉 ′ such that 𝜑(𝑢) = 0 for every 𝑢 ∈ 𝑈  but 𝜑 ≠ 0.

Solution. Let 𝑢1, …, 𝑢𝑚 be a basis of 𝑈  and extend this to a basis 𝑢1, …, 𝑢𝑚, 𝑣1, …, 𝑣𝑛 of 𝑉 ;
there must be at least one 𝑣𝑘 since 𝑈 ≠ 𝑉 . Define 𝜑 ∈ 𝑉 ′ by

𝜑(𝑢1) = ⋯ = 𝜑(𝑢𝑚) = 0 and 𝜑(𝑣1) = ⋯ = 𝜑(𝑣𝑛) = 1.

It follows that 𝜑(𝑢) = 0 for all 𝑢 ∈ 𝑈  but 𝜑 ≠ 0.

Exercise 3.F.5. Suppose 𝑇 ∈ ℒ(𝑉 , 𝑊) and 𝑤1, …, 𝑤𝑚 is a basis of range 𝑇 . Hence for
each 𝑣 ∈ 𝑉 , there exist unique numbers 𝜑1(𝑣), …, 𝜑𝑚(𝑣) such that

𝑇𝑣 = 𝜑1(𝑣)𝑤1 + ⋯ + 𝜑𝑚(𝑣)𝑤𝑚,

thus defining functions 𝜑1, …, 𝜑𝑚 from 𝑉  to 𝐅. Show that each of the functions 𝜑1, …, 𝜑𝑚

is a linear functional on 𝑉 .

Solution. Let us think of 𝑇  as a linear map 𝑉 → range 𝑇 , so that the dual map 𝑇 ′ is a
linear map (range 𝑇 )′ → 𝑉 ′. Let 𝜓1, …, 𝜓𝑚 be the dual basis to 𝑤1, …, 𝑤𝑚. For any 𝑣 ∈ 𝑉 ,
the definition of each 𝜑𝑘 and 3.114 show that
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𝜑1(𝑣)𝑤1 + ⋯ + 𝜑𝑚(𝑣)𝑤𝑚 = 𝑇𝑣 = 𝜓1(𝑇 𝑣)𝑤1 + ⋯ + 𝜓𝑚(𝑇 𝑣)𝑤𝑚.

It follows from unique representation that 𝜑𝑘(𝑣) = 𝜓𝑘(𝑇 𝑣) for all 𝑣 ∈ 𝑉 , i.e.

𝜑𝑘 = 𝜓𝑘 ∘ 𝑇 = 𝑇 ′(𝜓𝑘) ∈ 𝑉 ′.

Exercise 3.F.6. Suppose 𝜑, 𝛽 ∈ 𝑉 ′. Prove that null 𝜑 ⊆ null 𝛽 if and only if there exists
𝑐 ∈ 𝐅 such that 𝛽 = 𝑐𝜑.

Solution. By Exercise 3.B.25 we have null 𝜑 ⊆ null 𝛽 if and only if there exists 𝐸 ∈ ℒ(𝐅)
such that 𝛽 = 𝐸 ∘ 𝜑. If there exists such an 𝐸, then let 𝑐 = 𝐸(1) and observe that, for any 
𝑣 ∈ 𝑉 ,

𝛽(𝑣) = 𝐸(𝜑(𝑣)) = 𝐸(1)𝜑(𝑣) = 𝑐𝜑(𝑣) ⇒ 𝛽 = 𝑐𝜑.

Conversely, if there exists such a 𝑐 ∈ 𝐅 then define 𝐸 ∈ ℒ(𝐅) by 𝐸(𝑥) = 𝑐𝑥 and observe that,
for any 𝑣 ∈ 𝑉 ,

𝛽(𝑣) = 𝑐𝜑(𝑣) = 𝐸(𝜑(𝑣)) ⇒ 𝛽 = 𝐸 ∘ 𝜑.

Exercise 3.F.7. Suppose that 𝑉1, …, 𝑉𝑚 are vector spaces. Prove that (𝑉1 × ⋯ × 𝑉𝑚)′

and 𝑉 ′
1 × ⋯ × 𝑉 ′

𝑚 are isomorphic vector spaces.

Solution. This is immediate from Exercise 3.E.3, taking 𝑊 = 𝐅.

Exercise 3.F.8. Suppose 𝑣1, …, 𝑣𝑛 is a basis of 𝑉  and 𝜑1, …, 𝜑𝑛 is the dual basis of 𝑉 ′.
Define Γ : 𝑉 → 𝐅𝑛 and Λ : 𝐅𝑛 → 𝑉  by

Γ(𝑣) = (𝜑1(𝑣), …, 𝜑𝑛(𝑣)) and Λ(𝑎1, …, 𝑎𝑛) = 𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛.

Explain why Γ and Λ are inverses of each other.

Solution. It is straightforward to verify that Γ and Λ are linear. For any (𝑎1, …, 𝑎𝑛) ∈ 𝐅𝑛,
3.114 shows that

Γ(Λ(𝑎1, …, 𝑎𝑛)) = Γ(𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛)

= (𝜑1(𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛), …, 𝜑𝑛(𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛)) = (𝑎1, …, 𝑎𝑛).

Thus ΓΛ is the identity on 𝐅𝑛. For any 𝑣 ∈ 𝑉 , 3.114 gives us

Λ(Γ(𝑣)) = Λ(𝜑1(𝑣), …, 𝜑𝑛(𝑣)) = 𝜑1(𝑣)𝑣1 + ⋯ + 𝜑𝑛(𝑣)𝑣𝑛 = 𝑣.

Thus ΛΓ is the identity on 𝑉  and we may conclude that Γ and Λ are inverses of each other.
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Exercise 3.F.9. Suppose 𝑚 is a positive integer. Show that the dual basis of the basis
1, 𝑥, …, 𝑥𝑚 of 𝒫𝑚(𝐑) is 𝜑0, 𝜑1, …, 𝜑𝑚, where

𝜑𝑘(𝑝) =
𝑝(𝑘)(0)

𝑘!
.

Here 𝑝(𝑘) denotes the 𝑘th derivative of 𝑝, with the understanding that the 0th derivative
of 𝑝 is 𝑝.

Solution. Let 𝑘 ∈ {0, …, 𝑚} be given and observe that, for 𝑗 ≠ 𝑘,

𝜑𝑘(𝑥𝑘) =
(𝑥𝑘)(𝑘)(0)

𝑘!
=

𝑘!
𝑘!

= 1 and 𝜑𝑘(𝑥𝑗) =
(𝑥𝑗)(𝑘)(0)

𝑘!
=

0
𝑘!

= 0.

Thus the linear functionals 𝜑𝑘 and 𝑝 ↦ 𝑝(𝑘)(0)
𝑘!  agree on the basis 1, 𝑥, …, 𝑥𝑚; it follows that

they are equal as functions.

Exercise 3.F.10. Suppose 𝑚 is a positive integer.

(a) Show that 1, 𝑥 − 5, …, (𝑥 − 5)𝑚 is a basis of 𝒫𝑚(𝐑).

(b) What is the dual basis of the basis in (a)?

Solution.

(a) This is immediate from Exercise 2.C.9.

(b) We can argue as we did in Exercise 3.F.9 to see that the dual basis is 𝜑0, …, 𝜑𝑚, where

𝜑𝑘(𝑝) =
𝑝(𝑘)(5)

𝑘!
.

Exercise 3.F.11. Suppose 𝑣1, …, 𝑣𝑛 is a basis of 𝑉  and 𝜑1, …, 𝜑𝑛 is the corresponding
dual basis of 𝑉 ′. Suppose 𝜓 ∈ 𝑉 ′. Prove that

𝜓 = 𝜓(𝑣1)𝜑1 + ⋯ + 𝜓(𝑣𝑛)𝜑𝑛.

Solution. Let 𝑣 = 𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛 ∈ 𝑉  be given and note that, by 3.114, we have 
𝜑𝑘(𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛) = 𝑎𝑘. It follows that

[𝜓(𝑣1)𝜑1 + ⋯ + 𝜓(𝑣𝑛)𝜑𝑛](𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛) = 𝜓(𝑣1)𝜑1(𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛)

+ ⋯ + 𝜓(𝑣𝑛)𝜑𝑛(𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛)

= 𝜓(𝑣1)𝑎1 + ⋯ + 𝜓(𝑣𝑛)𝑎𝑛

= 𝜓(𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛).

Thus 𝜓(𝑣1)𝜑1 + ⋯ + 𝜓(𝑣𝑛)𝜑𝑛 = 𝜓.
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Exercise 3.F.12. Suppose 𝑆, 𝑇 ∈ ℒ(𝑉 , 𝑊).

(a) Prove that (𝑆 + 𝑇)′ = 𝑆′ + 𝑇 ′.

(b) Prove that (𝜆𝑇 )′ = 𝜆𝑇 ′ for all 𝜆 ∈ 𝐅.

This exercise asks you to verify (a) and (b) in 3.120.

Solution.

(a) For any 𝜓 ∈ 𝑊 ′ and 𝑣 ∈ 𝑉 , observe that

[(𝑆 + 𝑇)′(𝜓)](𝑣) = 𝜓((𝑆 + 𝑇)(𝑣)) = 𝜓(𝑆𝑣 + 𝑇𝑣) = 𝜓(𝑆𝑣) + 𝜓(𝑇𝑣)

= [𝑆′(𝜓)](𝑣) + [𝑇 ′(𝜓)](𝑣) = [𝑆′(𝜓) + 𝑇 ′(𝜓)](𝑣) = [(𝑆′ + 𝑇 ′)(𝜓)](𝑣).

Thus (𝑆 + 𝑇)′ = 𝑆′ + 𝑇 ′.

(b) For any 𝜓 ∈ 𝑊 ′ and 𝑣 ∈ 𝑉 , observe that

[(𝜆𝑇 )′(𝜓)](𝑣) = 𝜓((𝜆𝑇 )(𝑣)) = 𝜓(𝜆𝑇𝑣) = 𝜆𝜓(𝑇𝑣)

= 𝜆[𝑇 ′(𝜓)](𝑣) = [𝜆𝑇 ′(𝜓)](𝑣) = [(𝜆𝑇 ′)(𝜓)](𝑣).

Thus (𝜆𝑇 )′ = 𝜆𝑇 ′.

Exercise 3.F.13. Show that the dual map of the identity operator on 𝑉  is the identity
operator on 𝑉 ′.

Solution. For any 𝜑 ∈ 𝑉 ′ and 𝑣 ∈ 𝑉 , observe that

[𝐼′(𝜑)](𝑣) = 𝜑(𝐼𝑣) = 𝜑(𝑣).

Thus 𝐼′(𝜑) = 𝜑, i.e. 𝐼′ is the identity operator on 𝑉 ′.

Exercise 3.F.14. Define 𝑇 : 𝐑3 → 𝐑2 by

𝑇 (𝑥, 𝑦, 𝑧) = (4𝑥 + 5𝑦 + 6𝑧, 7𝑥 + 8𝑦 + 9𝑧).

Suppose 𝜑1, 𝜑2 denotes the dual basis of the standard basis of 𝐑2 and 𝜓1, 𝜓2, 𝜓3 denotes
the dual basis of the standard basis of 𝐑3.

(a) Describe the linear functionals 𝑇 ′(𝜑1) and 𝑇 ′(𝜑2).

(b) Write 𝑇 ′(𝜑1) and 𝑇 ′(𝜑2) as linear combinations of 𝜓1, 𝜓2, 𝜓3.

Solution.

(a) By the definition of the dual map, we have

[𝑇 ′(𝜑1)](𝑥, 𝑦, 𝑧) = 𝜑1(𝑇 (𝑥, 𝑦, 𝑧)) = 𝜑1(4𝑥 + 5𝑦 + 6𝑧, 7𝑥 + 8𝑦 + 9𝑧) = 4𝑥 + 5𝑦 + 6𝑧,

[𝑇 ′(𝜑2)](𝑥, 𝑦, 𝑧) = 𝜑2(𝑇 (𝑥, 𝑦, 𝑧)) = 𝜑2(4𝑥 + 5𝑦 + 6𝑧, 7𝑥 + 8𝑦 + 9𝑧) = 7𝑥 + 8𝑦 + 9𝑧.
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(b) Note that

𝜓1(𝑥, 𝑦, 𝑧) = 𝑥, 𝜓2(𝑥, 𝑦, 𝑧) = 𝑦, and 𝜓3(𝑥, 𝑦, 𝑧) = 𝑧.

Thus

𝑇 ′(𝜑1) = 4𝜓1 + 5𝜓2 + 6𝜓3 and 𝑇 ′(𝜑2) = 6𝜓1 + 7𝜓2 + 8𝜓3.

Exercise 3.F.15. Define 𝑇 : 𝒫(𝐑) → 𝒫(𝐑) by

(𝑇𝑝)(𝑥) = 𝑥2𝑝(𝑥) + 𝑝″(𝑥)

for each 𝑥 ∈ 𝐑.

(a) Suppose 𝜑 ∈ 𝒫(𝐑)′ is defined by 𝜑(𝑝) = 𝑝′(4). Describe the linear functional 𝑇 ′(𝜑)
on 𝒫(𝐑).

(b) Suppose 𝜑 ∈ 𝒫(𝐑)′ is defined by 𝜑(𝑝) = ∫1
0

𝑝. Evaluate (𝑇 ′(𝜑))(𝑥3).

Solution.

(a) We have

[𝑇 ′(𝜑)](𝑝) = 𝜑(𝑇𝑝) = 𝜑(𝑥2𝑝 + 𝑝″) = (𝑥2𝑝 + 𝑝″)′(4)

= (2𝑥𝑝 + 𝑥2𝑝′ + 𝑝‴)(4) = 8𝑝(4) + 16𝑝′(4) + 𝑝‴(4).

(b) We have

[𝑇 ′(𝜑)](𝑥3) = 𝜑(𝑇𝑥3) = 𝜑(𝑥5 + 6𝑥) = ∫
1

0
𝑥5 + 6𝑥 d𝑥 = 19

6 .

Exercise 3.F.16. Suppose 𝑊  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 , 𝑊). Prove that

𝑇 ′ = 0 ⇔ 𝑇 = 0.

Solution. If 𝑇 = 0 and 𝜓 ∈ 𝑊 ′, then

𝑇 ′(𝜓) = 𝜓 ∘ 𝑇 = 𝜓 ∘ 0 = 0.

Thus 𝑇 ′ = 0.

Now suppose that 𝑇 ′ = 0, so that null 𝑇 ′ = 𝑊 ′. It follows from 3.128(a) that
(range 𝑇 )0 = 𝑊 ′, which by 3.127(b) is equivalent to range 𝑇 = {0}. Thus 𝑇 = 0.

Exercise 3.F.17. Suppose 𝑉  and 𝑊  are finite-dimensional and 𝑇 ∈ ℒ(𝑉 , 𝑊). Prove
that 𝑇  is invertible if and only if 𝑇 ′ ∈ ℒ(𝑊 ′, 𝑉 ′) is invertible.

Solution. If either of 𝑇 , 𝑇 ′ is invertible then, using 3.111, it must be the case that

dim 𝑉 ′ = dim 𝑉 = dim 𝑊 = dim 𝑊 ′.

Thus, by 3.65 and 3.129,
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𝑇 is invertible ⇔ 𝑇 is surjective ⇔ 𝑇 ′ is injective ⇔ 𝑇 ′ is invertible.

Exercise 3.F.18. Suppose 𝑉  and 𝑊  are finite-dimensional. Prove that the map that
takes 𝑇 ∈ ℒ(𝑉 , 𝑊) to 𝑇 ′ ∈ ℒ(𝑊 ′, 𝑉 ′) is an isomorphism of ℒ(𝑉 , 𝑊) onto ℒ(𝑊 ′, 𝑉 ′).

Solution. Let Φ : ℒ(𝑉 , 𝑊) → ℒ(𝑊 ′, 𝑉 ′) be the map in question, i.e. Φ(𝑇 ) = 𝑇 ′. Exercise
3.F.12 shows that Φ is linear and Exercise 3.F.16 shows that Φ is injective. Note that, by
3.72 and 3.111,

dim ℒ(𝑉 , 𝑊) = (dim 𝑉 )(dim 𝑊) = (dim 𝑉 ′)(dim 𝑊 ′) = dim ℒ(𝑊 ′, 𝑉 ′).

3.65 allows us to conclude that Φ is an isomorphism.

Exercise 3.F.19. Suppose 𝑈 ⊆ 𝑉 . Explain why

𝑈0 = {𝜑 ∈ 𝑉 ′ : 𝑈 ⊆ null 𝜑}.

Solution. This is immediate from the equivalence

𝜑(𝑢) = 0 for all 𝑢 ∈ 𝑈 ⇔ 𝑈 ⊆ null 𝜑.

Exercise 3.F.20. Suppose 𝑉  is finite-dimensional and 𝑈  is a subspace of 𝑉 . Show that

𝑈 = {𝑣 ∈ 𝑉 : 𝜑(𝑣) = 0 for every 𝜑 ∈ 𝑈0}.

Solution. If 𝑣 ∈ 𝑈  then certainly 𝜑(𝑣) = 0 for every 𝜑 ∈ 𝑈0. Suppose 𝑣 ∉ 𝑈  and let 𝑢1, …, 𝑢𝑚

be a basis of 𝑈 . Let 𝑣1 = 𝑣 and note that the list 𝑢1, …, 𝑢𝑚, 𝑣1 is linearly independent since
𝑣1 ∉ 𝑈 = span(𝑢1, …, 𝑢𝑚). Extend this list to a basis 𝑢1, …, 𝑢𝑚, 𝑣1, …, 𝑣𝑛 of 𝑉  and define 
𝜑 ∈ 𝑉 ′ by

𝜑(𝑢1) = ⋯ = 𝜑(𝑢𝑚) = 0 and 𝜑(𝑣1) = ⋯ = 𝜑(𝑣𝑛) = 1.

It follows that 𝜑 ∈ 𝑈0 and 𝜑(𝑣) ≠ 0. Thus

𝑣 ∈ 𝑈 ⇔ 𝑣 ∈ {𝑣 ∈ 𝑉 : 𝜑(𝑣) = 0 for every 𝜑 ∈ 𝑈0}.

Exercise 3.F.21. Suppose 𝑉  is finite-dimensional and 𝑈  and 𝑊  are subspaces of 𝑉 .

(a) Prove that 𝑊 0 ⊆ 𝑈0 if and only if 𝑈 ⊆ 𝑊 .

(b) Prove that 𝑊 0 = 𝑈0 if and only if 𝑈 = 𝑊 .

Solution. For a subspace 𝑈  of 𝑉 , let

𝐴𝑈 = {𝑣 ∈ 𝑉 : 𝜑(𝑣) = 0 for every 𝜑 ∈ 𝑈0}.
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(a) If 𝑊 0 ⊆ 𝑈0 and 𝑣 ∈ 𝐴𝑈  then in particular 𝜑(𝑣) = 0 for every 𝜑 ∈ 𝑊 0, i.e. 𝑣 ∈ 𝐴𝑊 . Thus
𝐴𝑈 ⊆ 𝐴𝑊 , which by Exercise 3.F.21 is equivalent to 𝑈 ⊆ 𝑊 . If 𝑈 ⊆ 𝑊  and 𝜑 ∈ 𝑊 0

then in particular 𝜑(𝑣) = 0 for all 𝑣 ∈ 𝑈 , i.e. 𝜑 ∈ 𝑈0. Thus 𝑊 0 ⊆ 𝑈0.

(b) This follows from part (a):

𝑊 0 = 𝑈0 ⇔ 𝑊 0 ⊆ 𝑈0 and 𝑈0 ⊆ 𝑊 0 ⇔ 𝑈 ⊆ 𝑊 and 𝑊 ⊆ 𝑈 ⇔ 𝑈 = 𝑊.

Exercise 3.F.22. Suppose 𝑉  is finite-dimensional and 𝑈  and 𝑊  are subspaces of 𝑉 .

(a) Show that (𝑈 + 𝑊)0 = 𝑈0 ∩ 𝑊 0.

(b) Show that (𝑈 ∩ 𝑊)0 = 𝑈0 + 𝑊 0.

Solution.

(a) Suppose 𝜑 ∈ (𝑈 + 𝑊)0. For any 𝑢 ∈ 𝑈  and 𝑤 ∈ 𝑊  observe that 𝑢, 𝑤 ∈ 𝑈 + 𝑊 , so that
𝜑(𝑢) = 𝜑(𝑤) = 0. Thus 𝜑 ∈ 𝑈0 ∩ 𝑊 0 and it follows that (𝑈 + 𝑊)0 ⊆ 𝑈0 ∩ 𝑊 0.

Suppose 𝜑 ∈ 𝑈0 ∩ 𝑊 0 and observe that, for any 𝑢 + 𝑤 ∈ 𝑈 + 𝑊 , we have

𝜑(𝑢 + 𝑤) = 𝜑(𝑢) + 𝜑(𝑤) = 0 ⇒ 𝜑 ∈ (𝑈 + 𝑊)0.

It follows that 𝑈0 ∩ 𝑊 0 ⊆ (𝑈 + 𝑊)0 and thus (𝑈 + 𝑊)0 = 𝑈0 ∩ 𝑊 0.

(b) Suppose 𝜑 ∈ (𝑈 ∩ 𝑊)0. There are subspaces 𝑋, 𝑌  of 𝑉  such that 𝑉 = 𝑈 ⊕ 𝑋 and
𝑉 = 𝑊 ⊕ 𝑌 . Define 𝜓, 𝛽 ∈ 𝑉 ′ by

𝜓(𝑢 + 𝑥) = 1
2𝜑(𝑥) and 𝛽(𝑤 + 𝑦) = 1

2𝜑(𝑦).

It is straightforward to verify that 𝜓 ∈ 𝑈0 and 𝛽 ∈ 𝑊 0. Let 𝑣 = 𝑢 + 𝑥 = 𝑤 + 𝑦 ∈ 𝑉  be
given and note that, because 𝜑 ∈ (𝑈 ∩ 𝑊)0, 𝜑(𝑣) = 𝜑(𝑥) = 𝜑(𝑦). It follows that

𝜑(𝑣) = 1
2𝜑(𝑣) + 1

2𝜑(𝑣) = 1
2𝜑(𝑥) + 1

2𝜑(𝑦) = 𝜓(𝑣) + 𝛽(𝑣).

Thus 𝜑 ∈ 𝑈0 + 𝑊 0, whence (𝑈 ∩ 𝑊)0 ⊆ 𝑈0 + 𝑊 0.

Now suppose that 𝜑 ∈ 𝑈0 + 𝑊 0, so that 𝜑 = 𝜓 + 𝛽 for some 𝜓 ∈ 𝑈0 and some 𝛽 ∈ 𝑊 0.
Let 𝑣 ∈ 𝑈 ∩ 𝑊  be given and observe that

𝜑(𝑣) = 𝜓(𝑣) + 𝛽(𝑣) = 0 ⇒ 𝜑 ∈ (𝑈 ∩ 𝑊)0.

It follows that 𝑈0 + 𝑊 0 ⊆ (𝑈 ∩ 𝑊)0 and thus (𝑈 ∩ 𝑊)0 = 𝑈0 + 𝑊 0.

Exercise 3.F.23. Suppose 𝑉  is finite-dimensional and 𝜑1, …, 𝜑𝑚 ∈ 𝑉 ′. Prove that the
following three sets are equal to each other.

(a) span(𝜑1, …, 𝜑𝑚)

(b) ((null 𝜑1) ∩ ⋯ ∩ (null 𝜑𝑚))0

(c) {𝜑 ∈ 𝑉 ′ : (null 𝜑1) ∩ ⋯ ∩ (null 𝜑𝑚) ⊆ null 𝜑}
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Solution. (b) and (c) are equal by Exercise 3.F.19.

To show that (a) and (b) are equal, let us prove the following lemma.

Lemma L.3. If 𝜑 ∈ 𝑉 ′ then span(𝜑) ⊆ (null 𝜑)0; if 𝑉  is finite-dimensional then this
containment is an equality.

Proof. For any 𝑎 ∈ 𝐅 and 𝑣 ∈ null 𝜑 we have 𝑎𝜑(𝑣) = 0. Thus span(𝜑) ⊆ (null 𝜑)0. Now
observe that dim span(𝜑) = dim range 𝜑, since

𝜑 = 0 ⇒ dim span(𝜑) = 0 = dim range 𝜑,

𝜑 ≠ 0 ⇒ dim span(𝜑) = 1 = dim range 𝜑,

where we have used Exercise 3.F.1 for the second implication. Assuming that 𝑉  is
finite-dimensional, we can use (3.21) and (3.125) to obtain the equality

dim span(𝜑) = dim range 𝜑 = dim (null 𝜑)0.

2.39 allows us to conclude that span(𝜑) = (null 𝜑)0. □

Using Exercise 3.F.22 and Lemma L.3, observe that

((null 𝜑1) ∩ ⋯ ∩ (null 𝜑𝑚))0 = (null 𝜑1)
0 + ⋯ + (null 𝜑𝑚)0

= span(𝜑1) + ⋯ + span(𝜑𝑚) = span(𝜑1, …, 𝜑𝑚).

Thus (a) and (b) are equal.

Exercise 3.F.24. Suppose 𝑉  is finite-dimensional and 𝑣1, …, 𝑣𝑚 ∈ 𝑉 . Define a linear
map Γ : 𝑉 ′ → 𝐅𝑚 by Γ(𝜑) = (𝜑(𝑣1), …, 𝜑(𝑣𝑚)).

(a) Prove that 𝑣1, …, 𝑣𝑚 spans 𝑉  if and only if Γ is injective.

(b) Prove that 𝑣1, …, 𝑣𝑚 is linearly independent if and only if Γ is surjective.

Solution. Let 𝑒1, …, 𝑒𝑚 be the standard basis of 𝐅𝑚 and let 𝜓1, …, 𝜓𝑚 be the corresponding
dual basis of (𝐅𝑚)′, so that the map Ψ : 𝐅𝑚 → (𝐅𝑚)′ given by Ψ(𝑒𝑘) = 𝜓𝑘 is an isomor-
phism. Define 𝑇 ∈ ℒ(𝐅𝑚, 𝑉 ) by 𝑇𝑒𝑘 = 𝑣𝑘, i.e.

𝑇 (𝑥1, …, 𝑥𝑚) = 𝑥1𝑣1 + ⋯ + 𝑥𝑚𝑣𝑚.

For any 𝜑 ∈ 𝑉 ′ and 𝑘 ∈ {1, …, 𝑚}, observe that

[𝑇 ′(𝜑)](𝑒𝑘) = 𝜑(𝑇𝑒𝑘) = 𝜑(𝑣𝑘) = ∑
𝑚

𝑗=1
𝜑(𝑣𝑗)𝜓𝑗(𝑒𝑘)

= [Ψ(𝜑(𝑣1), …, 𝜑(𝑣𝑚))](𝑒𝑘) = [Ψ(Γ(𝜑))](𝑒𝑘).

Thus 𝑇 ′ = Ψ ∘ Γ. Because Ψ is a bĳection, it follows that the injectivity of Γ is equivalent
to the injectivity of 𝑇 ′ and the surjectivity of Γ is equivalent to the surjectivity of 𝑇 ′.
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(a) Observe that

span(𝑣1, …, 𝑣𝑚) = 𝑉 ⇔ 𝑇 is surjective ⇔ 𝑇 ′ is injective ⇔ Γ is injective,

where the first equivalence follows from Exercise 3.B.3, the second equivalence follows
from 3.129, and the third equivalence follows from our previous discussion.

(b) Observe that

𝑣1, …, 𝑣𝑚 is linearly independent ⇔ 𝑇 is injective

⇔ 𝑇 ′ is surjective ⇔ Γ is surjective,

where the first equivalence follows from Exercise 3.B.3, the second equivalence follows
from 3.131, and the third equivalence follows from our previous discussion.

Exercise 3.F.25. Suppose 𝑉  is finite-dimensional and 𝜑1, …, 𝜑𝑚 ∈ 𝑉 ′. Define a linear
map Γ : 𝑉 → 𝐅𝑚 by Γ(𝑣) = (𝜑1(𝑣), …, 𝜑𝑚(𝑣)).

(a) Prove that 𝜑1, …, 𝜑𝑚 spans 𝑉 ′ if and only if Γ is injective.

(b) Prove that 𝜑1, …, 𝜑𝑚 is linearly independent if and only if Γ is surjective.

Solution. Let 𝑒1, …, 𝑒𝑚 be the standard basis of 𝐅𝑚 and let 𝜓1, …, 𝜓𝑚 be the corresponding
dual basis of (𝐅𝑚)′, so that the map Ψ : 𝐅𝑚 → (𝐅𝑚)′ given by Ψ(𝑒𝑘) = 𝜓𝑘 is an isomor-
phism. For any (𝑥1, …, 𝑥𝑚) ∈ 𝐅𝑚 and 𝑣 ∈ 𝑉 , observe that

[Γ′(Ψ(𝑥1, …, 𝑥𝑚))](𝑣) = [Γ′(𝑥1𝜓1 + ⋯ + 𝑥𝑚𝜓𝑚)](𝑣)

= [𝑥1𝜓1 + ⋯ + 𝑥𝑚𝜓𝑚](Γ(𝑣))

= [𝑥1𝜓1 + ⋯ + 𝑥𝑚𝜓𝑚](𝜑1(𝑣), …, 𝜑𝑚(𝑣))

= 𝑥1𝜑1(𝑣) + ⋯ + 𝑥𝑚𝜑𝑚(𝑣)

= [𝑥1𝜑1 + ⋯ + 𝑥𝑚𝜑𝑚](𝑣).

It follows that Γ′ ∘ Ψ : 𝐅𝑚 → 𝑉 ′ is given by

Γ′(Ψ(𝑥1, …, 𝑥𝑚)) = 𝑥1𝜑1 + ⋯ + 𝑥𝑚𝜑𝑚.

Because Ψ is a bĳection, the injectivity of Γ′ is equivalent to the injectivity of Γ′ ∘ Ψ and
the surjectivity of Γ′ is equivalent to the surjectivity of Γ′ ∘ Ψ.

(a) Observe that

span(𝜑1, …, 𝜑𝑚) = 𝑉 ′ ⇔ Γ′ ∘ Ψ is surjective

⇔ Γ′ is surjective ⇔ Γ is injective,

where the first equivalence follows from Exercise 3.B.3, the second equivalence follows
from our previous discussion, and the third equivalence follows from 3.131.

(b) Observe that
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𝜑1, …, 𝜑𝑚 is linearly independent ⇔ Γ′ ∘ Ψ is injective

⇔ Γ′ is injective ⇔ Γ is surjective,

where the first equivalence follows from Exercise 3.B.3, the second equivalence follows
from our previous discussion, and third equivalence follows from 3.129.

Exercise 3.F.26. Suppose 𝑉  is finite-dimensional and Ω is a subspace of 𝑉 ′. Prove that

Ω = {𝑣 ∈ 𝑉 : 𝜑(𝑣) = 0 for every 𝜑 ∈ Ω}0.

Solution. Let 𝑈 = {𝑣 ∈ 𝑉 : 𝜑(𝑣) = 0 for every 𝜑 ∈ Ω} and let 𝜑1, …, 𝜑𝑚 be a basis of Ω.
Certainly 𝑈 ⊆ (null 𝜑1) ∩ ⋯ ∩ (null 𝜑𝑚). Suppose 𝑣 ∈ (null 𝜑1) ∩ ⋯ ∩ (null 𝜑𝑚) and let 𝜑 ∈ Ω
be given. There are scalars 𝑎1, …, 𝑎𝑚 such that 𝜑 = 𝑎1𝜑1 + ⋯ + 𝑎𝑚𝜑𝑚, which gives us

𝜑(𝑣) = (𝑎1𝜑1 + ⋯ + 𝑎𝑚𝜑𝑚)(𝑣) = 𝑎1𝜑1(𝑣) + ⋯ + 𝑎𝑚𝜑𝑚(𝑣) = 0.

Thus 𝑣 ∈ 𝑈  and it follows that 𝑈 = (null 𝜑1) ∩ ⋯ ∩ (null 𝜑𝑚). We may now apply Exercise
3.F.23 to see that

𝑈0 = ((null 𝜑1) ∩ ⋯ ∩ (null 𝜑𝑚))0 = span(𝜑1, …, 𝜑𝑚) = Ω.

Exercise 3.F.27. Suppose 𝑇 ∈ ℒ(𝒫5(𝐑)) and null 𝑇 ′ = span(𝜑), where 𝜑 is the linear
functional on 𝒫5(𝐑) defined by 𝜑(𝑝) = 𝑝(8). Prove that

range 𝑇 = {𝑝 ∈ 𝒫5(𝐑) : 𝑝(8) = 0}.

Solution. Observe that

range 𝑇 = {𝑝 ∈ 𝒫5(𝐑) : 𝜓(𝑝) = 0 for every 𝜓 ∈ (range 𝑇 )0} (Exercise 3.F.20)

= {𝑝 ∈ 𝒫5(𝐑) : 𝜓(𝑝) = 0 for every 𝜓 ∈ null 𝑇 ′} (3.128)

= {𝑝 ∈ 𝒫5(𝐑) : 𝜓(𝑝) = 0 for every 𝜓 ∈ span(𝜑)}

= {𝑝 ∈ 𝒫5(𝐑) : 𝜆𝜑(𝑝) = 0 for every 𝜆 ∈ 𝐑}

= {𝑝 ∈ 𝒫5(𝐑) : 𝜆𝑝(8) = 0 for every 𝜆 ∈ 𝐑}

= {𝑝 ∈ 𝒫5(𝐑) : 𝑝(8) = 0}.

Exercise 3.F.28. Suppose 𝑉  is finite-dimensional and 𝜑1, …, 𝜑𝑚 is a linearly indepen-
dent list in 𝑉 ′. Prove that

dim((null 𝜑1) ∩ ⋯ ∩ (null 𝜑𝑚)) = (dim 𝑉 ) − 𝑚.

Solution. By Exercise 3.F.23 and the linear independence of the list 𝜑1, …, 𝜑𝑚 we have
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dim ((null 𝜑1) ∩ ⋯ ∩ (null 𝜑𝑚))0 = dim span(𝜑1, …, 𝜑𝑚) = 𝑚.

It then follows from 3.125 that

dim((null 𝜑1) ∩ ⋯ ∩ (null 𝜑𝑚)) = (dim 𝑉 ) − 𝑚.

Exercise 3.F.29. Suppose 𝑉  and 𝑊  are finite-dimensional and 𝑇 ∈ ℒ(𝑉 , 𝑊).

(a) Prove that if 𝜑 ∈ 𝑊 ′ and null 𝑇 ′ = span(𝜑), then range 𝑇 = null 𝜑.

(b) Prove that if 𝜓 ∈ 𝑉 ′ and range 𝑇 ′ = span(𝜓), then null 𝑇 = null 𝜓.

Solution.

(a) Observe that

range 𝑇 = {𝑤 ∈ 𝑊 : 𝜓(𝑤) = 0 for every 𝜓 ∈ (range 𝑇 )0} (Exercise 3.F.20)

= {𝑤 ∈ 𝑊 : 𝜓(𝑤) = 0 for every 𝜓 ∈ null 𝑇 ′} (3.128)

= {𝑤 ∈ 𝑊 : 𝜓(𝑤) = 0 for every 𝜓 ∈ span(𝜑)}

= {𝑤 ∈ 𝑊 : 𝜆𝜑(𝑤) = 0 for every 𝜆 ∈ 𝐅}

= {𝑤 ∈ 𝑊 : 𝜑(𝑤) = 0}

= null 𝜑.

(b) Observe that

null 𝑇 = {𝑣 ∈ 𝑉 : 𝜑(𝑣) = 0 for every 𝜑 ∈ (null 𝑇 )0} (Exercise 3.F.20)

= {𝑣 ∈ 𝑉 : 𝜑(𝑣) = 0 for every 𝜑 ∈ range 𝑇 ′} (3.130)

= {𝑣 ∈ 𝑉 : 𝜑(𝑣) = 0 for every 𝜑 ∈ span(𝜓)}

= {𝑣 ∈ 𝑉 : 𝜆𝜓(𝑣) = 0 for every 𝜆 ∈ 𝐅}

= {𝑣 ∈ 𝑉 : 𝜓(𝑣) = 0}

= null 𝜓.

Exercise 3.F.30. Suppose 𝑉  is finite-dimensional and 𝜑1, …, 𝜑𝑛 is a basis of 𝑉 ′. Show
that there exists a basis of 𝑉  whose dual basis is 𝜑1, …, 𝜑𝑛.

Solution. Let 𝑘 ∈ {1, …, 𝑛} be given and define

𝑈𝑘 = ⋂{null 𝜑𝑗 : 𝑗 ∈ {1, …, 𝑛} ∖ {𝑘}}.

By 3.111 and Exercise 3.F.28 we have dim 𝑈𝑘 = 1 and thus there is some non-zero 𝑢𝑘 ∈ 𝑉
such that 𝑈𝑘 = span(𝑢𝑘). Note that Exercise 3.F.28 also implies that
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(null 𝜑1) ∩ ⋯ ∩ (null 𝜑𝑛) = {0}.

Since 𝑢𝑘 ≠ 0 it must then be the case that 𝑢𝑘 ∉ null 𝜑𝑘. Thus we can define
𝑣𝑘 = (𝜑𝑘(𝑢𝑘))−1𝑢𝑘. Notice that 𝜑𝑘(𝑣𝑘) = 1 and, for 𝑗 ≠ 𝑘,

𝑢𝑘 ∈ null 𝜑𝑗 ⇒ 𝜑𝑗(𝑣𝑘) = 0.

If 𝑎1, …, 𝑎𝑛 are scalars such that 𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛 = 0 then, for each 𝑗 ∈ {1, …, 𝑛}, applying
𝜑𝑗 to both sides of this equation shows that 𝑎𝑗 = 0. Thus 𝑣1, …, 𝑣𝑛 is a linearly independent
list of length 𝑛 = dim 𝑉 ; it follows that 𝑣1, …, 𝑣𝑛 is a basis of 𝑉 . Because

𝜑𝑗(𝑣𝑘) = {
1 if 𝑗 = 𝑘,
0 if 𝑗 ≠ 𝑘,

the uniqueness part of the linear map lemma (3.4) shows that 𝜑1, …, 𝜑𝑛 is the dual basis of
𝑣1, …, 𝑣𝑛.

Exercise 3.F.31. Suppose 𝑈  is a subspace of 𝑉 . Let 𝑖 : 𝑈 → 𝑉  be the inclusion map
defined by 𝑖(𝑢) = 𝑢. Thus 𝑖′ ∈ ℒ(𝑉 ′, 𝑈 ′).

(a) Show that null 𝑖′ = 𝑈0.

(b) Prove that if 𝑉  is finite-dimensional, then range 𝑖′ = 𝑈 ′.

(c) Prove that if 𝑉  is finite-dimensional, then ̃𝑖′ is an isomorphism from 𝑉 ′/𝑈0 onto
𝑈 ′.

The isomorphism in (c) is natural in that it does not depend on a choice of basis in
either vector space.

Solution.

(a) For 𝜑 ∈ 𝑉 ′ the map 𝑖′(𝜑) = 𝜑 ∘ 𝑖 is simply the restriction of 𝜑 to 𝑈 . Thus

𝑖′(𝜑) = 0 ⇔ 𝜑(𝑢) = 0 for all 𝑢 ∈ 𝑈.

It follows that null 𝑖′ = 𝑈0.

(b) Let 𝜓 ∈ 𝑈 ′ be given. By Exercise 3.A.13 we can extend 𝜓 to a linear functional 𝜑 ∈ 𝑉 ′

such that the restriction of 𝜑 to 𝑈  is equal to 𝜓. Thus 𝑖′(𝜑) = 𝜓 and it follows that 𝑖′

is surjective.

(c) By 3.107 and parts (a) and (b), ̃𝑖′ is an isomorphism from 𝑉 ′/ null 𝑖′ = 𝑉 ′/𝑈0 onto 
range 𝑖′ = 𝑈 ′.
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Exercise 3.F.32. The double dual space of 𝑉 , denoted by 𝑉 ″, is defined to be the dual
space of 𝑉 ′. In other words, 𝑉 ″ = (𝑉 ′)′. Define Λ : 𝑉 → 𝑉 ″ by

(Λ𝑣)(𝜑) = 𝜑(𝑣)

for each 𝑣 ∈ 𝑉  and each 𝜑 ∈ 𝑉 ′.

(a) Show that Λ is a linear map from 𝑉  to 𝑉 ″.

(b) Show that if 𝑇 ∈ ℒ(𝑉 ), then 𝑇 ″ ∘ Λ = Λ ∘ 𝑇 , where 𝑇 ″ = (𝑇 ′)′.

(c) Show that if 𝑉  is finite-dimensional, then Λ is an isomorphism from 𝑉  onto 𝑉 ″.

Suppose 𝑉  is finite-dimensional. Then 𝑉  and 𝑉 ′ are isomorphic, but finding an iso-
morphism from 𝑉  onto 𝑉 ′ generally requires choosing a basis of 𝑉 . In contrast, the
isomorphism Λ from 𝑉  onto 𝑉 ″ does not require a choice of basis and thus is consid-
ered more natural.

Solution.

(a) Suppose 𝑢, 𝑣 ∈ 𝑉  and 𝜇 ∈ 𝐅. For any 𝜑 ∈ 𝑉 ′ we have

(Λ(𝑢 + 𝑣))(𝜑) = 𝜑(𝑢 + 𝑣) = 𝜑(𝑢) + 𝜑(𝑣) = (Λ𝑢)(𝜑) + (Λ𝑣)(𝜑) = (Λ𝑢 + Λ𝑣)(𝜑).

Thus Λ(𝑢 + 𝑣) = Λ𝑢 + Λ𝑣. Similarly, for any 𝜑 ∈ 𝑉 ′,

(Λ(𝜇𝑣))(𝜑) = 𝜑(𝜇𝑣) = 𝜇𝜑(𝑣) = 𝜇(Λ𝑣)(𝜑) = (𝜇Λ𝑣)(𝜑).

Thus Λ(𝜇𝑣) = 𝜇Λ𝑣. It follows that Λ is linear.

(b) Let 𝑣 ∈ 𝑉  be given and observe that

(𝑇 ″(Λ𝑣))(𝜑) = (Λ𝑣)(𝑇 ′(𝜑)) = (Λ𝑣)(𝜑 ∘ 𝑇 ) = 𝜑(𝑇𝑣) and (Λ(𝑇𝑣))(𝜑) = 𝜑(𝑇𝑣).

Thus 𝑇 ″ ∘ Λ = Λ ∘ 𝑇 .

(c) Let 𝑣1, …, 𝑣𝑛 be a basis of 𝑉  and let 𝜑1, …, 𝜑𝑛 be the corresponding dual basis of 𝑉 ′.
Suppose 𝑣 = 𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛 is such that Λ𝑣 = 0, i.e. 𝜑(𝑣) = 0 for every 𝜑 ∈ 𝑉 ′. For
each 𝑘 ∈ {1, …, 𝑛} it follows that

0 = 𝜑𝑘(𝑣) = 𝜑𝑘(𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛) = 𝑎𝑘.

Thus 𝑣 = 0, so that null Λ = {0}, i.e. Λ is injective. By 3.111 we have

dim 𝑉 ″ = dim 𝑉 ′ = dim 𝑉

and so, by 3.65, we may conclude that Λ is an isomorphism.
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Exercise 3.F.33. Suppose 𝑈  is a subspace of 𝑉 . Let 𝜋 : 𝑉 → 𝑉/𝑈  be the usual quotient
map. Thus 𝜋′ ∈ ℒ((𝑉/𝑈)′, 𝑉 ′).

(a) Show that 𝜋′ is injective.

(b) Show that range 𝜋′ = 𝑈0.

(c) Conclude that 𝜋′ is an isomorphism from (𝑉/𝑈)′ onto 𝑈0.

The isomorphism in (c) is natural in that it does not depend on a choice of basis in
either vector space. In fact, there is no assumption here that any of these vector spaces
are finite-dimensional.

Solution.

(a) Suppose 𝜑 ∈ (𝑉/𝑈)′ is such that 𝜋′(𝜑) = 0, i.e. 𝜑(𝑣 + 𝑈) = 0 for all 𝑣 + 𝑈 ∈ 𝑉/𝑈 . Thus
𝜑 = 0, so that null 𝜋′ = {0}. It follows that 𝜋′ is injective.

(b) Note that 𝑈0 = {𝜑 ∈ 𝑉 ′ : 𝑈 ⊆ null 𝜑} by Exercise 3.F.19. Taking 𝑊 = 𝐅 in Exercise
3.E.19 then shows that range 𝜋′ = 𝑈0.

(c) This is immediate from parts (a) and (b).
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Chapter 4. Polynomials

Exercise 4.1. Suppose 𝑤, 𝑧 ∈ 𝐂. Verify the following equalities and inequalities.

(a) 𝑧 + 𝑧 = 2 Re 𝑧

(b) 𝑧 − 𝑧 = 2(Im 𝑧)𝑖

(c) 𝑧𝑧 = |𝑧|2

(d) 𝑤 + 𝑧 = 𝑤 + 𝑧 and 𝑤𝑧 = 𝑤 𝑧

(e) 𝑧 = 𝑧

(f) |Re 𝑧| ≤ |𝑧| and |Im 𝑧| ≤ |𝑧|

(g) |𝑧| = |𝑧|

(h) |𝑤𝑧| = |𝑤||𝑧|

The results above are the parts of 4.4 that were left to the reader.

Solution. Suppose 𝑤 = 𝑎 + 𝑏𝑖 and 𝑧 = 𝑥 + 𝑦𝑖.

(a) Observe that

𝑧 + 𝑧 = (𝑥 + 𝑦𝑖) + (𝑥 − 𝑦𝑖) = 2𝑥 = 2 Re 𝑧.

(b) Observe that

𝑧 − 𝑧 = (𝑥 + 𝑦𝑖) − (𝑥 − 𝑦𝑖) = 2𝑦𝑖 = 2(Im 𝑧)𝑖.

(c) Observe that

𝑧𝑧 = (𝑥 + 𝑦𝑖)(𝑥 − 𝑦𝑖) = 𝑥2 + 𝑦2 = (Re 𝑧)2 + (Im 𝑧)2 = |𝑧|2.

(d) Observe that

𝑤 + 𝑧 = (𝑎 + 𝑥) − (𝑏 + 𝑦)𝑖 = (𝑎 − 𝑏𝑖) + (𝑥 − 𝑦𝑖) = 𝑤 + 𝑧,

𝑤𝑧 = (𝑎𝑥 − 𝑏𝑦) − (𝑎𝑦 + 𝑏𝑥)𝑖 = (𝑎 − 𝑏𝑖)(𝑥 − 𝑦𝑖) = 𝑤 𝑧.

(e) Observe that

𝑧 = 𝑥 − 𝑦𝑖 = 𝑥 + 𝑦𝑖 = 𝑧.

(f) Since each quantity involved is positive, it will suffice to show that
|Re 𝑧|2 ≤ |𝑧|2 and |Im(𝑧)|2 ≤ |𝑧|2; these inequalities are immediate from the equation
|𝑧|2 = |Re 𝑧|2 + |Im 𝑧|2.

(g) Observe that

|𝑧| = (Re 𝑧)2 + (Im 𝑧)2 = (Re 𝑧)2 + (− Im 𝑧)2 = (Re 𝑧)2 + (Im 𝑧)2 = |𝑧|.
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(h) Since both sides are positive, it will suffice to show that |𝑤𝑧|2 = |𝑤|2|𝑧|2. Indeed, using
parts (c) and (d),

|𝑤𝑧|2 = 𝑤𝑧𝑤𝑧 = 𝑤𝑧𝑤 𝑧 = 𝑤𝑤𝑧𝑧 = |𝑤|2|𝑧|2.

Exercise 4.2. Prove that if 𝑤, 𝑧 ∈ 𝐂, then ||𝑤| − |𝑧|| ≤ |𝑤 − 𝑧|.

The inequality above is called the reverse triangle inequality.

Solution. Notice that

|𝑤| = |𝑤 − 𝑧 + 𝑧| ≤ |𝑤 − 𝑧| + |𝑧| ⇒ |𝑤| − |𝑧| ≤ |𝑤 − 𝑧|,

|𝑧| = |𝑧 − 𝑤 + 𝑤| ≤ |𝑧 − 𝑤| + |𝑤| ⇒ |𝑧| − |𝑤| ≤ |𝑤 − 𝑧|.

Thus ||𝑤| − |𝑧|| ≤ |𝑤 − 𝑧|.

Exercise 4.3. Suppose 𝑉  is a complex vector space and 𝜑 ∈ 𝑉 ′. Define 𝜎 : 𝑉 → 𝐑 by
𝜎(𝑣) = Re 𝜑(𝑣) for each 𝑣 ∈ 𝑉 . Show that

𝜑(𝑣) = 𝜎(𝑣) − 𝑖𝜎(𝑖𝑣)

for all 𝑣 ∈ 𝑉 .

Solution. For any 𝑧 = 𝑥 + 𝑖𝑦 ∈ 𝐂, note that

Re(𝑖𝑧) = Re(−𝑦 + 𝑖𝑥) = −𝑦 = − Im 𝑧.

For any 𝑣 ∈ 𝑉  it follows that

𝜎(𝑣) − 𝑖𝜎(𝑖𝑣) = Re 𝜑(𝑣) − 𝑖 Re(𝜑(𝑖𝑣)) = Re 𝜑(𝑣) − 𝑖 Re(𝑖𝜑(𝑣)) = Re 𝜑(𝑣) + Im 𝜑(𝑣) = 𝜑(𝑣).

Exercise 4.4. Suppose 𝑚 is a positive integer. Is the set

{0} ∪ {𝑝 ∈ 𝒫(𝐅) : deg 𝑝 = 𝑚}

a subspace of 𝒫(𝐅)?

Solution. Let 𝑈  be the set in question and observe that 𝑥𝑚, 1 − 𝑥𝑚 ∈ 𝑈  but

𝑥𝑚 + 1 − 𝑥𝑚 = 1 ∉ 𝑈.

Thus 𝑈  is not a subspace of 𝒫(𝐅).

Exercise 4.5. Is the set

{0} ∪ {𝑝 ∈ 𝒫(𝐅) : deg 𝑝 is even}

a subspace of 𝒫(𝐅)?

Solution. Let 𝑈  be the set in question and observe that 𝑥2, 𝑥 − 𝑥2 ∈ 𝑈  but
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𝑥2 + 𝑥 − 𝑥2 = 𝑥 ∉ 𝑈.

Thus 𝑈  is not a subspace of 𝒫(𝐅).

Exercise 4.6. Suppose that 𝑚 and 𝑛 are positive integers with 𝑚 ≤ 𝑛, and suppose 
𝜆1, …, 𝜆𝑚 ∈ 𝐅. Prove that there exists a polynomial 𝑝 ∈ 𝒫(𝐅) with deg 𝑝 = 𝑛 such that
0 = 𝑝(𝜆1) = ⋯ = 𝑝(𝜆𝑚) and such that 𝑝 has no other zeros.

Solution. Let 𝑝(𝑧) = (𝑧 − 𝜆1)(𝑧 − 𝜆2) ⋯ (𝑧 − 𝜆𝑚)𝑛−𝑚+1 and note that deg 𝑝 = 𝑛 and that
each 𝜆𝑘 is a zero of 𝑝. The uniqueness parts of 4.13 and 4.16, together with 4.6, shows that
𝑝 can have no other zeros.

Exercise 4.7. Suppose that 𝑚 is a nonnegative integer, 𝑧1, …, 𝑧𝑚+1 are distinct elements
of 𝐅, and 𝑤1, …, 𝑤𝑚+1 ∈ 𝐅. Prove that there exists a unique polynomial 𝑝 ∈ 𝒫𝑚(𝐅)
such that

𝑝(𝑧𝑘) = 𝑤𝑘

for each 𝑘 = 1, …, 𝑚 + 1.

This result can be proved without using linear algebra. However, try to find the clearer,
shorter proof that uses some linear algebra.

Solution. Note that the list 𝑝0, …, 𝑝𝑚+1 ∈ 𝒫𝑚(𝐅) given by

𝑝0 = 1,
𝑝1 = 𝑧 − 𝑧1,

𝑝2 = (𝑧 − 𝑧1)(𝑧 − 𝑧2),
⋮

𝑝𝑚 = (𝑧 − 𝑧1)(𝑧 − 𝑧2) ⋯ (𝑧 − 𝑧𝑚)

is a basis of 𝒫𝑚(𝐅) by Exercise 2.C.9. Define a map 𝑇 ∈ ℒ(𝒫𝑚(𝐅), 𝐅𝑚+1) by

𝑇𝑝 = (𝑝(𝑧1), …, 𝑝(𝑧𝑚+1)).

Notice that the matrix of 𝑇  with respect to the basis 𝑝0, …, 𝑝𝑚 of 𝒫𝑚(𝐅) and the standard
basis of 𝐅𝑚+1 is

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛1

1
1
⋮
1

0
𝐴1,1

𝐴2,1

⋮
𝐴𝑚,1

0
0

𝐴2,2

⋮
𝐴𝑚,2

⋯
⋯
⋯
⋱
⋯

0
0
0
⋮

𝐴𝑚,𝑚⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

, where 𝐴𝑗,𝑘 = ∏
𝑘

𝑖=1
(𝑧𝑗+1 − 𝑧𝑖) for 𝑗 ≥ 𝑘.

Notice further that each 𝐴𝑗,𝑘 is non-zero because the elements 𝑧1, …, 𝑧𝑚+1 are distinct.
A straightforward calculation then shows that the rows of this matrix are linearly

118 / 366



independent; it follows from Exercise 3.C.17 that 𝑇  is injective and hence, because
dim 𝒫𝑚(𝐅) = dim 𝐅𝑚+1, invertible. Thus there exists a unique 𝑝 ∈ 𝒫𝑚(𝐅) such that

𝑇𝑝 = (𝑝(𝑧1), …, 𝑝(𝑧𝑚+1)) = (𝑤1, 𝑤2, …, 𝑤𝑚+1).

Exercise 4.8. Suppose 𝑝 ∈ 𝒫(𝐂) has degree 𝑚. Prove that 𝑝 has 𝑚 distinct zeros if
and only if 𝑝 and its derivative 𝑝′ have no zeros in common.

Solution. The cases 𝑚 = 0 and 𝑚 = 1 are straightforward to check. For 𝑚 ≥ 2, we will
prove the equivalent statement

𝑝 has strictly less than 𝑚 distinct zeros ⇔ 𝑝 and 𝑝′ have a zero in common.

If 𝑝 has strictly less than 𝑚 distinct zeros then it must be the case that 𝑝 has a zero 𝜆 ∈ 𝐂
such that 𝑝(𝑧) = (𝑧 − 𝜆)𝑘𝑞(𝑧) for some positive integer 𝑘 ≥ 2 and some 𝑞 ∈ 𝒫(𝐂). It follows
that

𝑝′(𝑧) = 𝑘(𝑧 − 𝜆)𝑘−1𝑞(𝑧) + (𝑧 − 𝜆)𝑘𝑞′(𝑧)

and hence that 𝑝′(𝜆) = 0, since 𝑘 ≥ 2. Thus 𝑝 and 𝑝′ have the zero 𝜆 in common.

Now suppose that 𝑝 and 𝑝′ have a zero in common, say 𝜆 ∈ 𝐅, so that

𝑝(𝑧) = (𝑧 − 𝜆)𝑞(𝑧) and 𝑝′(𝑧) = (𝑧 − 𝜆)𝑟(𝑧)

for some 𝑞, 𝑟 ∈ 𝒫(𝐂). The product rule gives us

𝑞(𝑧) + (𝑧 − 𝜆)𝑞′(𝑧) = 𝑝′(𝑧) = (𝑧 − 𝜆)𝑟(𝑧).

Evaluating this expression at 𝑧 = 𝜆 shows that 𝑞(𝜆) = 0, so that 𝑧 − 𝜆 is a factor of 𝑞. It
follows that 𝑝 is of the form 𝑝(𝑧) = (𝑧 − 𝜆)2𝑡(𝑧) for some 𝑡 ∈ 𝒫(𝐂) satisfying deg 𝑡 = 𝑚 − 2.
Thus 𝑝 has strictly less than 𝑚 zeros.

Exercise 4.9. Prove that every polynomial of odd degree with real coefficients has a
real zero.

Solution. Let 𝑝 ∈ 𝒫(𝐑) be a polynomial of odd degree. By 4.16, 𝑝 is of the form

𝑝(𝑥) = 𝑐(𝑥 − 𝜆1) ⋯ (𝑥 − 𝜆𝑚)(𝑥2 + 𝑏1𝑥 + 𝑐1) ⋯ (𝑥2 + 𝑏𝑀𝑥 + 𝑐𝑀),

where 𝑐, 𝜆1, …, 𝜆𝑚, 𝑏1, …, 𝑏𝑀 , 𝑐1, …, 𝑐𝑀 ∈ 𝐑, 𝑐 > 0, and 𝑏2
𝑘 < 4𝑐𝑘 for each 𝑘. This implies that

deg 𝑝 = 𝑚 + 2𝑀 ; since deg 𝑝 is odd, it must be the case that 𝑚 > 0. Thus 𝑝 has at least one
real zero.
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Exercise 4.10. For 𝑝 ∈ 𝒫(𝐑), define 𝑇𝑝 : 𝐑 → 𝐑 by

(𝑇𝑝)(𝑥) =

⎩{
{⎨
{{
⎧𝑝(𝑥) − 𝑝(3)

𝑥 − 3
if 𝑥 ≠ 3,

𝑝′(3) if 𝑥 = 3

for each 𝑥 ∈ 𝐑. Show that 𝑇𝑝 ∈ 𝒫(𝐑) for every polynomial 𝑝 ∈ 𝒫(𝐑) and also show
that 𝑇 : 𝒫(𝐑) → 𝒫(𝐑) is a linear map.

Solution. Let 𝑝 ∈ 𝒫(𝐑) be given and notice that 𝑝(𝑥) − 𝑝(3) has a zero at 𝑥 = 3, so that

𝑝(𝑥) − 𝑝(3) = (𝑥 − 3)𝑞(𝑥)

for some unique 𝑞 ∈ 𝒫(𝐑). It follows that for any 𝑥 ≠ 3 we have

𝑞(𝑥) =
𝑝(𝑥) − 𝑝(3)

𝑥 − 3
.

Differentiating the equality 𝑝(𝑥) − 𝑝(3) = (𝑥 − 3)𝑞(𝑥) gives us 𝑝′(𝑥) = 𝑞(𝑥) + (𝑥 − 3)𝑞′(𝑥),
whence 𝑝′(3) = 𝑞(3). Thus 𝑇𝑝 = 𝑞 ∈ 𝒫(𝐑).

Let 𝑝1, 𝑝2, ∈ 𝒫(𝐑) and 𝜆 ∈ 𝐑 be given. There are unique polynomials 𝑞1, 𝑞2 ∈ 𝒫(𝐑) such
that

𝑝1(𝑥) − 𝑝1(3) = (𝑥 − 3)𝑞1(𝑥) and 𝑝2(𝑥) − 𝑝2(3) = (𝑥 − 3)𝑞2(𝑥).

As we showed above, it follows that 𝑇𝑝1 = 𝑞1 and 𝑇𝑝2 = 𝑞2. Notice that

(𝑝1 + 𝑝2)(𝑥) − (𝑝1 + 𝑝2)(3) = (𝑥 − 3)(𝑞1 + 𝑞2)(𝑥)

and (𝜆𝑝1)(𝑥) − (𝜆𝑝1)(3) = (𝑥 − 3)(𝜆𝑞1)(𝑥).

By uniqueness we must have 𝑇 (𝑝1 + 𝑝2) = 𝑞1 + 𝑞2 = 𝑇𝑝1 + 𝑇𝑝2 and 𝑇 (𝜆𝑝1) = 𝜆𝑞1 = 𝜆𝑇𝑝1.
Thus 𝑇  is linear.

Exercise 4.11. Suppose 𝑝 ∈ 𝒫(𝐂). Define 𝑞 : 𝐂 → 𝐂 by

𝑞(𝑧) = 𝑝(𝑧)𝑝(𝑧).

Prove that 𝑞 is a polynomial with real coefficients.

Solution. Suppose 𝑝(𝑧) = 𝑎0 + 𝑎1𝑧 + ⋯ + 𝑎𝑚𝑧𝑚 for some non-negative integer 𝑚. Observe
that 𝑝(𝑧) = 𝑎0 + 𝑎1𝑧 + ⋯ + 𝑎𝑚𝑧𝑚. It follows that

𝑞(𝑧) = 𝑝(𝑧)𝑝(𝑧) = ∑
2𝑚

𝑘=0
( ∑

𝑖+𝑗=𝑘
𝑎𝑖𝑎𝑗)𝑧𝑘.

For any 𝑘 ∈ {0, …, 2𝑚} note that
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∑
𝑖+𝑗=𝑘

𝑎𝑖𝑎𝑗 = ∑
𝑖+𝑗=𝑘

𝑎𝑖𝑎𝑗 = ∑
𝑖+𝑗=𝑘

𝑎𝑗𝑎𝑖 = ∑
𝑖+𝑗=𝑘

𝑎𝑖𝑎𝑗,

where the last equality follows by reindexing. Thus ∑𝑖+𝑗=𝑘 𝑎𝑖𝑎𝑗 ∈ 𝐑 for each 𝑘 ∈ {0, …, 2𝑚},
i.e. 𝑞 has real coefficients.

Exercise 4.12. Suppose 𝑚 is a nonnegative integer and 𝑝 ∈ 𝒫𝑚(𝐂) is such that there
are distinct real numbers 𝑥0, 𝑥1, …, 𝑥𝑚 with 𝑝(𝑥𝑘) ∈ 𝐑 for each 𝑘 = 0, 1, …, 𝑚. Prove
that all coefficients of 𝑝 are real.

Solution. By Exercise 4.7 there is a unique polynomial 𝑞 ∈ 𝒫𝑚(𝐑) such that 𝑞(𝑥𝑘) = 𝑝(𝑥𝑘)
for each 𝑘 ∈ {0, …, 𝑚}. It follows that the polynomial 𝑝 − 𝑞 ∈ 𝒫𝑚(𝐂) has 𝑚 + 1 distinct
zeros and thus, by (4.8), 𝑝 = 𝑞 ∈ 𝒫𝑚(𝐑).

Exercise 4.13. Suppose 𝑝 ∈ 𝒫(𝐅) with 𝑝 ≠ 0. Let 𝑈 = {𝑝𝑞 : 𝑞 ∈ 𝒫(𝐅)}.

(a) Show that dim 𝒫(𝐅)/𝑈 = deg 𝑝.

(b) Find a basis of 𝒫(𝐅)/𝑈 .

Solution.

(a) Let 𝑚 = deg 𝑝. If 𝑚 = 0, i.e. 𝑝 is a non-zero constant polynomial, then 𝑈 = 𝒫(𝐅)
and thus 𝒫(𝐅)/𝑈 = {0}, so that dim 𝒫(𝐅)/𝑈 = 0 = deg 𝑝. Suppose that 𝑚 ≥ 1. For
any 𝑠 ∈ 𝒫(𝐅), the division algorithm for polynomials (4.9) implies that there are
unique polynomials 𝑞, 𝑟 ∈ 𝒫(𝐅) such that 𝑠 = 𝑝𝑞 + 𝑟 and deg 𝑟 < deg 𝑝. Thus the map
𝑇 : 𝒫(𝐅) → 𝒫𝑚−1(𝐅) given by 𝑇𝑠 = 𝑟 is well-defined. Let 𝑠1, 𝑠2 ∈ 𝒫(𝐅) and 𝜆 ∈ 𝐅 be
given. There are unique polynomials 𝑞1, 𝑞2, 𝑟1, 𝑟2 ∈ 𝒫(𝐅) such that

𝑠1 = 𝑝𝑞1 + 𝑟1, 𝑠2 = 𝑝𝑞2 + 𝑟2, deg 𝑟1 < deg 𝑝, and deg 𝑟2 < deg 𝑝.

Thus 𝑇𝑠1 = 𝑟1 and 𝑇𝑠2 = 𝑟2. Observe that

𝑠1 + 𝑠2 = 𝑝(𝑞1 + 𝑞2) + (𝑟1 + 𝑟2), deg(𝑟1 + 𝑟2) ≤ max{deg 𝑟1, deg 𝑟2} < deg 𝑝,

𝜆𝑠1 = 𝑝(𝜆𝑞1) + (𝜆𝑟1), deg(𝜆𝑟1) ≤ deg 𝑟1 < deg 𝑝.

It follows from the uniqueness part of the division algorithm that

𝑇 (𝑠1 + 𝑠2) = 𝑟1 + 𝑟2 = 𝑇𝑠1 + 𝑇𝑠2 and 𝑇 (𝜆𝑠1) = 𝜆𝑟1 = 𝜆𝑇𝑠1.

Thus 𝑇  is linear.

For any 𝑟 ∈ 𝒫𝑚−1(𝐅) we have deg 𝑟 < deg 𝑝 and thus 𝑇𝑟 = 𝑟. Hence 𝑇  is surjective.
Notice that 𝑝𝑞 ∈ 𝑈  has remainder zero upon division by 𝑝; it follows that 𝑇 (𝑝𝑞) =
0. Conversely, if 𝑠 = 𝑝𝑞 + 𝑟 is such that 𝑇𝑠 = 𝑟 = 0 then 𝑠 = 𝑝𝑞 ∈ 𝑈 . Thus null 𝑇 =
𝑈 . It now follows from 3.107 that 𝒫(𝐅)/𝑈  is isomorphic to 𝒫𝑚−1(𝐅) via the map
̃𝑇 : 𝒫(𝐅)/𝑈 → 𝒫𝑚−1(𝐅) given by ̃𝑇 (𝑠 + 𝑈) = 𝑇𝑠. Thus
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dim 𝒫(𝐅)/𝑈 = dim 𝒫𝑚−1(𝐅) = 𝑚 = deg 𝑝.

(b) Notice that ̃𝑇 (1 + 𝑈), ̃𝑇 (𝑧 + 𝑈), …, ̃𝑇 (𝑧𝑚−1 + 𝑈) is the list 1, 𝑧, …, 𝑧𝑚−1, i.e. the stan-
dard basis of 𝒫𝑚−1(𝐅). Because ̃𝑇 −1 is an isomorphism, it follows that

̃𝑇 −1(1), ̃𝑇 −1(𝑧), …, ̃𝑇 −1(𝑧𝑚−1) = 1 + 𝑈, 𝑧 + 𝑈, …, 𝑧𝑚−1 + 𝑈

is a basis of 𝒫(𝐅)/𝑈 .

Exercise 4.14. Suppose 𝑝, 𝑞 ∈ 𝒫(𝐂) are nonconstant polynomials with no zeros in
common. Let 𝑚 = deg 𝑝 and 𝑛 = deg 𝑞. Use linear algebra as outlined below in (a)-(c)
to prove that there exist 𝑟 ∈ 𝒫𝑛−1(𝐂) and 𝑠 ∈ 𝒫𝑚−1(𝐂) such that

𝑟𝑝 + 𝑠𝑞 = 1.

(a) Define 𝑇 : 𝒫𝑛−1(𝐂) × 𝒫𝑚−1(𝐂) → 𝒫𝑚+𝑛−1(𝐂) by

𝑇 (𝑟, 𝑠) = 𝑟𝑝 + 𝑠𝑞.

Show that the linear map 𝑇  is injective.

(b) Show that the linear map 𝑇  in (a) is surjective.

(c) Use (b) to conclude that there exist 𝑟 ∈ 𝒫𝑛−1(𝐂) and 𝑠 ∈ 𝒫𝑚−1(𝐂) such that 
𝑟𝑝 + 𝑠𝑞 = 1.

Solution.

(a) Note that 𝑚, 𝑛 ≥ 1 since 𝑝, 𝑞 are non-constant. Let 𝜆1, …, 𝜆𝑚 be the zeros of 𝑝 and let
𝜇1, …, 𝜇𝑛 be the zeros of 𝑞; by assumption we have 𝑝(𝜇𝑘) ≠ 0 and 𝑞(𝜆𝑘) ≠ 0 for all 𝑘.
Suppose that 𝑟 ∈ 𝒫𝑛−1(𝐂) and 𝑠 ∈ 𝒫𝑚−1(𝐂) are such that 𝑟𝑝 + 𝑠𝑞 = 0. In particular,
for each 𝑘 ∈ {1, …, 𝑛},

𝑟(𝜇𝑘)𝑝(𝜇𝑘) + 𝑠(𝜇𝑘)𝑞(𝜇𝑘) = 𝑟(𝜇𝑘)𝑝(𝜇𝑘) = 0 ⇒ 𝑟(𝜇𝑘) = 0,

where we have used that 𝑞(𝜇𝑘) = 0 and 𝑝(𝜇𝑘) ≠ 0. Thus 𝑟 is a polynomial of degree at
most 𝑛 − 1 with 𝑛 zeros; it follows from 4.8 that 𝑟 = 0. A similar argument with the 
𝜆𝑘’s shows that 𝑠 = 0. Thus null 𝑇 = {0}, i.e. 𝑇  is injective.

(b) Notice that

dim(𝒫𝑛−1(𝐂) × 𝒫𝑚−1(𝐂)) = dim 𝒫𝑛−1(𝐂) + dim 𝒫𝑚−1(𝐂)

= 𝑛 + 𝑚 = dim 𝒫𝑚+𝑛−1(𝐂).

Since 𝑇  is injective, it follows from 3.65 that 𝑇  is also surjective.

(c) This is immediate from the surjectivity of 𝑇 .
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Chapter 5. Eigenvalues and Eigenvectors

5.A. Invariant Subspaces

Exercise 5.A.1. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝑈  is a subspace of 𝑉 .

(a) Prove that if 𝑈 ⊆ null 𝑇 , then 𝑈  is invariant under 𝑇 .

(b) Prove that if range 𝑇 ⊆ 𝑈 , then 𝑈  is invariant under 𝑇 .

Solution.

(a) Let 𝑢 ∈ 𝑈 ⊆ null 𝑇  be given and observe that 𝑇𝑢 = 0 ∈ 𝑈 . Thus 𝑈  is invariant under
𝑇 .

(b) Let 𝑢 ∈ 𝑈  be given and observe that 𝑇𝑢 ∈ range 𝑇 ⊆ 𝑈 . Thus 𝑈  is invariant under 𝑇 .

Exercise 5.A.2. Suppose that 𝑇 ∈ ℒ(𝑉 ) and 𝑉1, …, 𝑉𝑚 are subspaces of 𝑉  invariant
under 𝑇 . Prove that 𝑉1 + ⋯ + 𝑉𝑚 is invariant under 𝑇 .

Solution. Let 𝑣 = 𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚 ∈ 𝑉1 + ⋯ + 𝑉𝑚 be given. By assumption each 𝑇𝑣𝑘 ∈ 𝑉𝑘

and thus

𝑇𝑣 = 𝑎1𝑇𝑣1 + ⋯ + 𝑎𝑚𝑇𝑣𝑘 ∈ 𝑉1 + ⋯ + 𝑉𝑚.

Hence 𝑉1 + ⋯ + 𝑉𝑚 is invariant under 𝑇 .

Exercise 5.A.3. Suppose 𝑇 ∈ ℒ(𝑉 ). Prove that the intersection of every collection of
subspaces of 𝑉  invariant under 𝑇  is invariant under 𝑇 .

Solution. Let 𝒰 be a collection of subspaces of 𝑉  invariant under 𝑇 . For any 𝑢 ∈ ⋂ 𝒰 and
any 𝑈 ∈ 𝒰, we have 𝑢 ∈ 𝑈  and thus 𝑇𝑢 ∈ 𝑈 . It follows that 𝑇𝑢 ∈ ⋂ 𝒰 and hence that ⋂ 𝒰
is invariant under 𝑇 .

Exercise 5.A.4. Prove or give a counterexample: If 𝑉  is finite-dimensional and 𝑈  is a
subspace of 𝑉  that is invariant under every operator on 𝑉 , then 𝑈 = {0} or 𝑈 = 𝑉 .

Solution. This is true. It will suffice to show that if 𝑈 ≠ {0} then 𝑈 = 𝑉 . Suppose therefore
that there exists some 𝑣1 ∈ 𝑈  with 𝑣1 ≠ 0 and extend this to a basis 𝑣1, …, 𝑣𝑚 of 𝑉 . For
each 𝑘 ∈ {1, …, 𝑚} define an operator 𝑇𝑘 ∈ ℒ(𝑉 ) by 𝑇𝑘𝑣1 = 𝑣𝑘 and 𝑇𝑘𝑣𝑗 = 0 for 𝑗 ≠ 1. By
assumption 𝑈  is invariant under 𝑇𝑘 and thus 𝑇𝑘𝑣1 = 𝑣𝑘 ∈ 𝑈 . It follows that 𝑈  contains the
basis 𝑣1, …, 𝑣𝑚 of 𝑉  and hence that 𝑈 = 𝑉 .
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Exercise 5.A.5. Suppose 𝑇 ∈ ℒ(𝐑2) is defined by 𝑇 (𝑥, 𝑦) = (−3𝑦, 𝑥). Find the eigen-
values of 𝑇 .

Solution. Geometrically, we can observe that 𝑇  is a counterclockwise rotation by 90° about
the origin followed by a dilation of the 𝑥-axis by a factor of 3. We can now argue as in 5.9(a)
to see that 𝑇  has no eigenvalues.

Algebraically, for 𝜆 ∈ 𝐑 we can try to solve the equation 𝑇 (𝑥, 𝑦) = (−3𝑦, 𝑥) = (𝜆𝑥, 𝜆𝑦). Sub-
stituting 𝑥 = 𝜆𝑦 into −3𝑦 = 𝜆𝑥 gives us −3𝑦 = 𝜆2𝑦. Because 𝑦 = 0 implies 𝑥 = 0, and eigen-
vectors are non-zero, we may assume that 𝑦 ≠ 0 and thus obtain the equation 𝜆2 + 3 = 0.
Since this equation has no real solutions, we see that 𝑇  has no eigenvalues.

Exercise 5.A.6. Define 𝑇 ∈ ℒ(𝐅2) by 𝑇 (𝑤, 𝑧) = (𝑧, 𝑤). Find all eigenvalues and eigen-
vectors of 𝑇 .

Solution. 𝑇  is a reflection in the line 𝑤 = 𝑧. An appeal to our geometric intuition sug-
gests that 1 is an eigenvalue with corresponding eigenvector (1, 1) and that −1 is an eigen-
value with corresponding eigenvector (−1, 1). To see this algebraically, suppose 𝜆 ∈ 𝐅 and
(𝑤, 𝑧) ≠ (0, 0) are such that 𝑇 (𝑤, 𝑧) = (𝑧, 𝑤) = (𝜆𝑤, 𝜆𝑧). Substituting 𝑧 = 𝜆𝑤 into 𝑤 = 𝜆𝑧
gives us 𝑤 = 𝜆2𝑤. Since 𝑤 = 0 implies 𝑧 = 0, and eigenvectors are non-zero, we may assume
that 𝑤 ≠ 0 and thus obtain the equation 𝜆2 − 1 = 0, which has solutions 𝜆 = ±1. These are
both indeed eigenvalues, since

𝑇 (1, 1) = (1, 1) and 𝑇 (−1, 1) = (1, −1) = −(−1, 1).

Since dim 𝐅2 = 2, it follows from 5.11 and 5.12 that there are no other eigenvalues of 𝑇  and
no other eigenvectors of 𝑇  linearly independent from the two given above. We may conclude
that the eigenvalues and eigenvectors of 𝑇  are precisely:

eigenvalue corresponding eigenvectors

1 (𝑤, 𝑤) for 𝑤 ∈ 𝐅 ∖ {0}

−1 (−𝑤, 𝑤) for 𝑤 ∈ 𝐅 ∖ {0}

Exercise 5.A.7. Define 𝑇 ∈ ℒ(𝐅3) by 𝑇 (𝑧1, 𝑧2, 𝑧3) = (2𝑧2, 0, 5𝑧3). Find all eigenvalues
and eigenvectors of 𝑇 .

Solution. 𝑇  can be thought of as the composition of the following transformations:

• a projection onto the 𝑧2𝑧3-plane;

• a clockwise rotation of 90° around the 𝑧3-axis; after the projection onto the 𝑧2𝑧3-plane,
this is equivalent to a reflection in the plane 𝑧1 = 𝑧2;

• a dilation of the 𝑧1-axis by a factor of 2;
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• a dilation of the 𝑧3-axis by a factor of 5.

In other words, 𝑇  maps (𝑧1, 𝑧2, 𝑧3) ∈ 𝐅3 like so:

(𝑧1, 𝑧2, 𝑧3) ↦ (0, 𝑧2, 𝑧3) ↦ (𝑧2, 0, 𝑧3) ↦ (2𝑧2, 0, 𝑧3) ↦ (2𝑧2, 0, 5𝑧3).

An appeal to our geometric intuition suggests that 5 is an eigenvalue with corresponding
eigenvector (0, 0, 1) and that 0 is an eigenvector with corresponding eigenvector (1, 0, 0). To
prove this algebraically, suppose that 𝜆 ∈ 𝐅 and (𝑧1, 𝑧2, 𝑧3) ≠ (0, 0, 0) are such that

𝑇 (𝑧1, 𝑧2, 𝑧3) = (2𝑧2, 0, 5𝑧3) = (𝜆𝑧1, 𝜆𝑧2, 𝜆𝑧3).

If 𝜆 ≠ 0 then the equation 𝜆𝑧2 = 0 implies that 𝑧2 = 0 and thus the equation 2𝑧2 = 𝜆𝑧1

gives us 𝑧1 = 0. Since eigenvectors are non-zero, it must be the case that 𝑧3 ≠ 0 and so the
equation 5𝑧3 = 𝜆𝑧3 implies that 𝜆 = 5. So the only possible eigenvalues are 0 and 5, which
are indeed eigenvalues since

𝑇 (0, 0, 1) = (0, 0, 5) = 5(0, 0, 1) and 𝑇 (1, 0, 0) = (0, 0, 0) = 0(1, 0, 0).

We claim that there are no other eigenvectors of 𝑇  linearly independent from these two.
As we just showed, any eigenvector of 𝑇  corresponding to the eigenvalue 5 must satisfy 
𝑧1 = 𝑧2 = 0 and thus each such eigenvector is a scalar multiple of (0, 0, 1). If (𝑧1, 𝑧2, 𝑧3) is an
eigenvector corresponding to the eigenvalue 0, i.e. (𝑧1, 𝑧2, 𝑧3) ∈ null 𝑇 , then

𝑇 (𝑧1, 𝑧2, 𝑧3) = (2𝑧2, 0, 5𝑧3) = (0, 0, 0) ⇒ 𝑧2 = 𝑧3 = 0 ⇒ (𝑧1, 𝑧2, 𝑧3) = 𝑧1(1, 0, 0).

We may conclude that the eigenvalues and eigenvectors of 𝑇  are precisely:

eigenvalue corresponding eigenvectors

5 (0, 0, 𝑤) for 𝑤 ∈ 𝐅 ∖ {0}

0 (𝑤, 0, 0) for 𝑤 ∈ 𝐅 ∖ {0}

Exercise 5.A.8. Suppose 𝑃 ∈ ℒ(𝑉 ) is such that 𝑃 2 = 𝑃 . Prove that if 𝜆 is an eigen-
value of 𝑃 , then 𝜆 = 0 or 𝜆 = 1.

Solution. Suppose that 𝜆 is an eigenvalue of 𝑃 , i.e. there is some 𝑣 ≠ 0 such that 𝑃𝑣 = 𝜆𝑣.
Notice that

𝜆𝑣 = 𝑃𝑣 = 𝑃(𝑃𝑣) = 𝑃(𝜆𝑣) = 𝜆𝑃𝑣 = 𝜆2𝑣.

Because 𝑣 ≠ 0, this implies that 𝜆 = 𝜆2. Thus 𝜆 = 0 or 𝜆 = 1.

Exercise 5.A.9. Define 𝑇 : 𝒫(𝐑) → 𝒫(𝐑) by 𝑇𝑝 = 𝑝′. Find all eigenvalues and eigen-
vectors of 𝑇 .
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Solution. Note that 𝑇 (1) = 0 = 0(1), so that 0 is an eigenvalue of 𝑇 . Note further that the
only polynomials whose derivative is zero are the constant polynomials. Thus the eigenvec-
tors corresponding to the eigenvalue 0 of 𝑇  are precisely the non-zero constant polynomials.

Suppose 𝑝 ∈ 𝒫(𝐑) satisfies deg 𝑝 ≥ 1. If 𝜆 ≠ 0 then deg(𝜆𝑝) = deg 𝑝, whereas
deg 𝑝′ = deg 𝑝 − 1. Thus it cannot be the case that 𝑇𝑝 = 𝑝′ = 𝜆𝑝 and we may conclude that
the eigenvalues and eigenvectors of 𝑇  are precisely:

eigenvalue corresponding eigenvectors

0 non-zero constant polynomials in 𝒫(𝐑)

Exercise 5.A.10. Define 𝑇 ∈ ℒ(𝒫4(𝐑)) by (𝑇𝑝)(𝑥) = 𝑥𝑝′(𝑥) for all 𝑥 ∈ 𝐑. Find all
eigenvalues and eigenvectors of 𝑇 .

Solution. Letting 𝑝𝑘 ∈ 𝒫4(𝐑) be given by 𝑝𝑘(𝑥) = 𝑥𝑘 for 𝑘 ∈ {0, …, 4}, notice that

(𝑇𝑝𝑘)(𝑥) = 𝑘𝑥𝑘 = 𝑘𝑝𝑘(𝑥).

By 5.11 and 5.12 we may conclude that the eigenvalues and eigenvectors of 𝑇  are precisely:

eigenvalue corresponding eigenvectors

𝑘 ∈ {0, …, 4} 𝛼𝑝𝑘 for 𝛼 ∈ 𝐑 ∖ {0}

Exercise 5.A.11. Suppose 𝑉  is finite-dimensional, 𝑇 ∈ ℒ(𝑉 ), and 𝛼 ∈ 𝐅. Prove that
there exists 𝛿 > 0 such that 𝑇 − 𝜆𝐼 is invertible for all 𝜆 ∈ 𝐅 such that 0 < |𝛼 − 𝜆| < 𝛿.

Solution. If 𝑇  has no eigenvalues then 5.7 shows that 𝑇 − 𝜆𝐼 is invertible for all 𝜆 ∈ 𝐅, so
that any 𝛿 > 0 will suffice, say 𝛿 = 1. Suppose therefore that 𝑇  has at least one eigenvalue
and let 𝜆1, …, 𝜆𝑛 be the distinct eigenvalues of 𝑇 ; there are only finitely many eigenvalues of
𝑇  by 5.12. Let

𝛿 = min{|𝛼 − 𝜆𝑘| : 𝑘 ∈ {1, …, 𝑛} and 𝜆𝑘 ≠ 𝛼}.

It follows from this definition that 𝛿 is positive and furthermore that 𝜆 ≠ 𝜆𝑘 for any
𝑘 ∈ {1, …, 𝑛} and any 𝜆 ∈ 𝐅 such that 0 < |𝛼 − 𝜆| < 𝛿. That is, 𝜆 is not an eigenvalue of 𝑇
for any 𝜆 ∈ 𝐅 such that 0 < |𝛼 − 𝜆| < 𝛿. By 5.7 this is equivalent to saying that 𝑇 − 𝜆𝐼 is
invertible for any 𝜆 ∈ 𝐅 such that 0 < |𝛼 − 𝜆| < 𝛿.

Exercise 5.A.12. Suppose 𝑉 = 𝑈 ⊕ 𝑊 , where 𝑈  and 𝑊  are nonzero subspaces of 𝑉 .
Define 𝑃 ∈ ℒ(𝑉 ) by 𝑃(𝑢 + 𝑤) = 𝑢 for each 𝑢 ∈ 𝑈  and each 𝑤 ∈ 𝑊 . Find all eigenvalues
and eigenvectors of 𝑃 .
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Solution. Notice that 𝑃 2 = 𝑃 . It follows from Exercise 5.A.8 that the only possible eigen-
values of 𝑃  are 1 and 0. Because 𝑈  and 𝑊  are non-zero, there is some non-zero 𝑢 ∈ 𝑈  and
some non-zero 𝑤 ∈ 𝑊 . Observe that

𝑃𝑢 = 1𝑢 and 𝑃𝑤 = 0𝑤.

Thus 1 and 0 are indeed eigenvalues of 𝑃 . The above equations show that any non-zero
elements of 𝑈  are eigenvectors of 𝑇  corresponding to the eigenvalue 1 and any non-zero
elements of 𝑊  are eigenvectors of 𝑇  corresponding to the eigenvalue 0. If 𝑣 = 𝑢 + 𝑤 is an
eigenvector of 𝑇  corresponding to the eigenvalue 1, then observe that

𝑢 + 𝑤 = 𝑃(𝑢 + 𝑤) = 𝑢 ⇒ 𝑤 = 0 ⇒ 𝑣 ∈ 𝑈 ∖ {0}.

Similarly, if 𝑣 = 𝑢 + 𝑤 is an eigenvector of 𝑇  corresponding to the eigenvalue 0, then observe
that

0 = 𝑃(𝑢 + 𝑤) = 𝑢 ⇒ 𝑣 ∈ 𝑊 ∖ {0}.

We may conclude that the eigenvalues and eigenvectors of 𝑃  are precisely:

eigenvalue corresponding eigenvectors

1 𝑢 ∈ 𝑈 ∖ {0}

0 𝑤 ∈ 𝑊 ∖ {0}

Exercise 5.A.13. Suppose 𝑇 ∈ ℒ(𝑉 ). Suppose 𝑆 ∈ ℒ(𝑉 ) is invertible.

(a) Prove that 𝑇  and 𝑆−1𝑇𝑆 have the same eigenvalues.

(b) What is the relationship between the eigenvectors of 𝑇  and the eigenvectors of
𝑆−1𝑇𝑆?

Solution.

(a) Suppose 𝜆 ∈ 𝐅 is an eigenvalue of 𝑇  a corresponding eigenvector 𝑣 ∈ 𝑉 . Because 𝑆
is surjective there is some 𝑢 ∈ 𝑉  such that 𝑣 = 𝑆𝑢; notice that 𝑢 ≠ 0 since 𝑣 ≠ 0. It
follows that

𝑇𝑣 = 𝜆𝑣 ⇔ (𝑇𝑆)(𝑢) = 𝜆𝑆𝑢 ⇔ (𝑆−1𝑇𝑆)(𝑢) = 𝜆𝑢.

Thus 𝜆 is an eigenvalue of 𝑆−1𝑇𝑆 with a corresponding eigenvector 𝑢.

Similarly, suppose 𝜆 ∈ 𝐅 is an eigenvalue of 𝑆−1𝑇𝑆 with a corresponding eigenvector 
𝑢 ∈ 𝑉 . Because 𝑆−1 is surjective there is some 𝑣 ∈ 𝑉  such that 𝑢 = 𝑆−1𝑣; notice that 
𝑣 ≠ 0 since 𝑢 ≠ 0. It follows that

(𝑆−1𝑇𝑆)(𝑢) = 𝜆𝑢 ⇔ (𝑆−1𝑇)(𝑣) = 𝜆𝑆−1𝑣 ⇔ 𝑇𝑣 = 𝜆𝑣.

Thus 𝜆 is an eigenvalue of 𝑇  with a corresponding eigenvector 𝑣.
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(b) Let 𝜆 ∈ 𝐅 be an eigenvalue of 𝑇 . As we showed in part (a), this is the case if and only
if 𝜆 is an eigenvalue of 𝑆−1𝑇𝑆. Define

𝐸(𝜆, 𝑇 ) = {𝑣 ∈ 𝑉 : 𝑣 ≠ 0 and 𝑇𝑣 = 𝜆𝑣}

and 𝐸(𝜆, 𝑆−1𝑇𝑆) = {𝑢 ∈ 𝑉 : 𝑢 ≠ 0 and (𝑆−1𝑇𝑆)(𝑢) = 𝜆𝑢}.

That is, 𝐸(𝜆, 𝑇 ) is the collection of eigenvectors of 𝑇  corresponding to the eigenvalue 
𝜆 and 𝐸(𝜆, 𝑆−1𝑇𝑆) is the collection of eigenvectors of 𝑆−1𝑇𝑆 corresponding to the
eigenvalue 𝜆. Our calculations in part (a) show that

𝐸(𝜆, 𝑇 ) = {𝑆𝑢 : 𝑢 ∈ 𝐸(𝜆, 𝑆−1𝑇𝑆)} and 𝐸(𝜆, 𝑆−1𝑇𝑆) = {𝑆−1𝑣 : 𝑣 ∈ 𝐸(𝜆, 𝑇 )}.

Exercise 5.A.14. Give an example of an operator on 𝐑4 that has no (real) eigenvalues.

Solution. Define 𝑇 ∈ ℒ(𝐑4) by 𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = (𝑦, 𝑧, 𝑡, −𝑥) and suppose 𝜆 ∈ 𝐑 is such that

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = (𝑦, 𝑧, 𝑡, −𝑥) = 𝜆(𝑥, 𝑦, 𝑧, 𝑡).

We then have −𝑥 = 𝜆𝑡 = 𝜆2𝑧 = 𝜆3𝑦 = 𝜆4𝑥. Notice that 𝑥 = 0 implies 𝑦 = 𝑧 = 𝑡 = 0. Since
we are looking for eigenvectors, we can assume that 𝑥 ≠ 0 and thus arrive at the equation 
𝜆4 + 1 = 0, which has no real solutions. It follows that 𝑇  has no real eigenvalues.

Exercise 5.A.15. Suppose 𝑉  is finite-dimensional, 𝑇 ∈ ℒ(𝑉 ), and 𝜆 ∈ 𝐅. Show that 𝜆
is an eigenvalue of 𝑇  if and only if 𝜆 is an eigenvalue of the dual operator 𝑇 ′ ∈ ℒ(𝑉 ′).

Solution. Observe that

𝜆 is an eigenvalue of 𝑇 ⇔ 𝑇 − 𝜆𝐼 is not injective (5.7)

⇔ (𝑇 − 𝜆𝐼)′ is not surjective (3.131)

⇔ 𝑇 ′ − 𝜆𝐼′ is not surjective (Exercise 3.F.12)

⇔ 𝑇 ′ − 𝜆𝐼 is not surjective (Exercise 3.F.13)

⇔ 𝜆 is an eigenvalue of 𝑇 ′. (5.7)

Exercise 5.A.16. Suppose 𝑣1, …, 𝑣𝑛 is a basis of 𝑉  and 𝑇 ∈ ℒ(𝑉 ). Prove that if 𝜆 is
an eigenvalue of 𝑇 , then

|𝜆| ≤ 𝑛 max{|ℳ(𝑇 )𝑗,𝑘| : 1 ≤ 𝑗, 𝑘 ≤ 𝑛},

where ℳ(𝑇)𝑗,𝑘 denotes the entry in row 𝑗, column 𝑘 of the matrix of 𝑇  with respect to
the basis 𝑣1, …, 𝑣𝑛.

See Exercise 19 in Section 6A for a different bound on |𝜆|.
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Solution. Let 𝐴𝑗,𝑘 = ℳ(𝑇)𝑗,𝑘 and suppose that 𝑣 = 𝑏1𝑣1 + ⋯ + 𝑏𝑛𝑣𝑛 is an eigenvector of 
𝑇  corresponding to the eigenvalue 𝜆. Notice that

𝜆𝑏1𝑣1 + ⋯ + 𝜆𝑏𝑛𝑣𝑛 = 𝑏1𝑇𝑣1 + ⋯ + 𝑏𝑛𝑇𝑣𝑛

= 𝑏1(∑
𝑛

𝑗=1
𝐴𝑗,1𝑣𝑗) + ⋯ + 𝑏𝑛(∑

𝑛

𝑗=1
𝐴𝑗,𝑛𝑣𝑗) = ∑

𝑛

𝑗=1
(∑

𝑛

𝑘=1
𝐴𝑗,𝑘𝑏𝑘)𝑣𝑗.

It follows from unique representation that

𝜆𝑏𝑗 = ∑
𝑛

𝑘=1
𝐴𝑗,𝑘𝑏𝑘 ⇒ |𝜆||𝑏𝑗| ≤ ∑

𝑛

𝑘=1
|𝐴𝑗,𝑘||𝑏𝑘|

for each 𝑗 ∈ {1, …, 𝑛}. Let |𝑏𝑖| be the largest amongst the values |𝑏1|, …, |𝑏𝑛| and notice that
|𝑏𝑖| > 0, since |𝑏𝑖| = 0 implies 𝑏1 = ⋯ = 𝑏𝑛 = 0, so that 𝑣 is zero—but 𝑣 is an eigenvector and
thus non-zero. Let 𝑀 = max{|ℳ(𝑇 )𝑗,𝑘| : 1 ≤ 𝑗, 𝑘 ≤ 𝑛} and observe that

|𝜆||𝑏𝑖| ≤ ∑
𝑛

𝑘=1
|𝐴𝑖,𝑘||𝑏𝑘| ⇒ |𝜆| ≤ ∑

𝑛

𝑘=1
|𝐴𝑖,𝑘|

|𝑏𝑘|
|𝑏𝑖|

≤ ∑
𝑛

𝑘=1
|𝐴𝑖,𝑘| ≤ ∑

𝑛

𝑘=1
𝑀 = 𝑛𝑀.

Exercise 5.A.17. Suppose 𝐅 = 𝐑, 𝑇 ∈ ℒ(𝑉 ), and 𝜆 ∈ 𝐑. Prove that 𝜆 is an eigenvalue
of 𝑇  if and only if 𝜆 is an eigenvalue of the complexification 𝑇𝐂.

See Exercise 33 in Section 3B for the definition of 𝑇𝐂.

Solution. Suppose that 𝜆 is an eigenvalue of 𝑇  with a corresponding eigenvector 𝑣 ∈ 𝑉 .
Notice that 𝑣 + 𝑖0 is non-zero since 𝑣 is non-zero, and notice further that

𝑇𝐂(𝑣 + 0𝑖) = 𝑇𝑣 + 𝑖𝑇 (0) = 𝜆𝑣 + 0𝑖 = 𝜆(𝑣 + 0𝑖).

Thus 𝜆 is an eigenvalue of 𝑇𝐂 with a corresponding eigenvector 𝑣 + 0𝑖.

Now suppose that 𝜆 is an eigenvalue of 𝑇𝐂 with a corresponding eigenvector 𝑢 + 𝑖𝑣. It fol-
lows that

𝑇𝐂(𝑢 + 𝑖𝑣) = 𝑇𝑢 + 𝑖𝑇𝑣 = 𝜆(𝑢 + 𝑖𝑣) = 𝜆𝑢 + 𝑖(𝜆𝑣) ⇒ 𝑇𝑢 = 𝜆𝑢 and 𝑇𝑣 = 𝜆𝑣.

Since 𝑢 + 𝑖𝑣 ≠ 0, at least one of 𝑢, 𝑣 is non-zero. Thus 𝜆 is an eigenvalue of 𝑇  with 𝑢 or 𝑣
(or both) as a corresponding eigenvector.

Exercise 5.A.18. Suppose 𝐅 = 𝐑, 𝑇 ∈ ℒ(𝑉 ), and 𝜆 ∈ 𝐂. Prove that 𝜆 is an eigenvalue
of the complexification 𝑇𝐂 if and only if 𝜆 is an eigenvalue of 𝑇𝐂.

Solution. Suppose that 𝜆 = 𝑎 + 𝑏𝑖 and 𝑢 + 𝑖𝑣 is an eigenvector of 𝑇𝐂 corresponding to 𝜆.
Observe that

𝜆(𝑢 + 𝑖𝑣) = 𝑇𝐂(𝑢 + 𝑖𝑣) ⇔ (𝑎 + 𝑏𝑖)(𝑢 + 𝑖𝑣) = (𝑎𝑢 − 𝑏𝑣) + (𝑎𝑣 + 𝑏𝑢)𝑖 = 𝑇𝑢 + 𝑖𝑇𝑣.

Thus 𝑇𝑢 = 𝑎𝑢 − 𝑏𝑣 and 𝑇𝑣 = 𝑎𝑣 + 𝑏𝑢. It follows that
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𝑇𝐂(𝑢 − 𝑖𝑣) = 𝑇𝑢 − 𝑖𝑇𝑣 = (𝑎𝑢 − 𝑏𝑣) − (𝑎𝑣 + 𝑏𝑢) = (𝑎 + 𝑏𝑖)(𝑢 − 𝑖𝑣) = 𝜆(𝑢 − 𝑖𝑣).

Furthermore, 𝑢 − 𝑖𝑣 is non-zero since 𝑢 + 𝑖𝑣 is non-zero. Thus 𝜆 is an eigenvalue of 𝑇𝐂 with
a corresponding eigenvector 𝑢 − 𝑖𝑣.

We have now shown that

𝜆 ∈ 𝐂 is an eigenvalue of 𝑇𝐂 ⇒ 𝜆 is an eigenvalue of 𝑇𝐂.

The converse can be obtained by replacing 𝜆 with 𝜆 in the implication above and using that
𝜆 = 𝜆.

Exercise 5.A.19. Show that the forward shift operator 𝑇 ∈ ℒ(𝐅∞) defined by

𝑇 (𝑧1, 𝑧2, …) = (0, 𝑧1, 𝑧2, …)

has no eigenvalues.

Solution. We are looking for solutions to the equation

(0, 𝑧1, 𝑧2, …) = (𝜆𝑧1, 𝜆𝑧2, 𝜆𝑧3, …),

where (𝑧1, 𝑧2, …) ≠ 0 and 𝜆 ∈ 𝐅. Notice that 𝜆 = 0 implies that each 𝑧𝑘 = 0. If 𝜆 ≠ 0 then
the equation 0 = 𝜆𝑧1 implies that 𝑧1 = 0, which gives us the equation 0 = 𝜆𝑧2, which implies
that 𝑧2 = 0, and so on. Thus both assumptions 𝜆 = 0 and 𝜆 ≠ 0 imply that (𝑧1, 𝑧2, …) = 0.
We may conclude that 𝑇  has no eigenvalues.

Exercise 5.A.20. Define the backward shift operator 𝑆 ∈ ℒ(𝐅∞) by

𝑆(𝑧1, 𝑧2, 𝑧3, …) = (𝑧2, 𝑧3, …).

(a) Show that every element of 𝐅 is an eigenvalue of 𝑆.

(b) Find all eigenvectors of 𝑆.

Solution.

(a) Observe that for any 𝜆 ∈ 𝐅 and any 𝛼 ∈ 𝐅 ∖ {0} we have 𝛼(1, 𝜆, 𝜆2, …) ≠ 0 and

𝑆(𝛼(1, 𝜆, 𝜆2, …)) = 𝛼(𝜆, 𝜆2, 𝜆3, …) = 𝜆𝛼(1, 𝜆, 𝜆2, …).

Thus each 𝜆 ∈ 𝐅 is an eigenvalue of 𝑆.

(b) Let 𝜆 ∈ 𝐅 be given and suppose that (𝑧1, 𝑧2, 𝑧3, …) is an eigenvector of 𝑆 corresponding
to 𝜆, i.e.

(𝑧2, 𝑧3, 𝑧4, …) = (𝜆𝑧1, 𝜆𝑧2, 𝜆𝑧3, …).

This equation implies that 𝑧2 = 𝜆𝑧1, which gives us 𝑧3 = 𝜆𝑧2 = 𝜆2𝑧1, and so on. Thus

(𝑧1, 𝑧2, 𝑧3, …) = (𝑧1, 𝜆𝑧1, 𝜆2𝑧1, …) = 𝑧1(1, 𝜆, 𝜆2, …);
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this implies 𝑧1 ≠ 0 since eigenvectors are non-zero. Conversely, any vector of the form
𝛼(1, 𝜆, 𝜆2, …) for 𝛼 ∈ 𝐅 ∖ {0} is an eigenvector of 𝑆 corresponding to 𝜆, as we showed
in part (a). We may conclude that the eigenvalues and eigenvectors of 𝑆 are precisely:

eigenvalue corresponding eigenvectors

𝜆 ∈ 𝐅 𝛼(1, 𝜆, 𝜆2, …) for 𝛼 ∈ 𝐅 ∖ {0}

Exercise 5.A.21. Suppose 𝑇 ∈ ℒ(𝑉 ) is invertible.

(a) Suppose 𝜆 ∈ 𝐅 with 𝜆 ≠ 0. Prove that 𝜆 is an eigenvalue of 𝑇  if and only if 1
𝜆  is

an eigenvalue of 𝑇 −1.

(b) Prove that 𝑇  and 𝑇 −1 have the same eigenvectors.

Solution.

(a) For 𝜆 ≠ 0 and 𝑣 ≠ 0, observe that

𝑇𝑣 = 𝜆𝑣 ⇔ 𝑣 = 𝜆𝑇 −1𝑣 ⇔ 𝜆−1𝑣 = 𝑇 −1𝑣.

(b) Notice that 𝑇  and 𝑇 −1 are both injective and so neither has 0 as an eigenvalue. Thus
any eigenvector of 𝑇  or 𝑇 −1 must correspond to a non-zero eigenvalue. It follows from
part (a) that

𝑣 is an eigenvector of 𝑇 ⇔ 𝑣 is an eigenvector of 𝑇 −1.

Exercise 5.A.22. Suppose 𝑇 ∈ ℒ(𝑉 ) and there exist nonzero vectors 𝑢 and 𝑤 in 𝑉
such that

𝑇𝑢 = 3𝑤 and 𝑇𝑤 = 3𝑢.

Prove that 3 or −3 is an eigenvalue of 𝑇 .

Solution. Applying 𝑇  to both sides of the equation 𝑇𝑢 = 3𝑤 shows that 𝑇 2𝑢 = 9𝑢 or
equivalently (𝑇 2 − 9𝐼)(𝑢) = 0. Because 𝑢 is non-zero, this demonstrates that the operator
𝑇 2 − 9𝐼 = (𝑇 − 3𝐼)(𝑇 + 3𝐼) is not injective. It must then be the case that at least one of
the operators 𝑇 − 3𝐼, 𝑇 + 3𝐼 is not injective and thus 3 or −3 is an eigenvalue of 𝑇 .

Exercise 5.A.23. Suppose 𝑉  is finite-dimensional and 𝑆, 𝑇 ∈ ℒ(𝑉 ). Prove that 𝑆𝑇
and 𝑇𝑆 have the same eigenvalues.

Solution. Exercise 3.D.11 shows that 𝑆𝑇  is invertible if and only if 𝑇𝑆 is invertible; by 5.7,
this is equivalent to 𝑆𝑇  having 0 as an eigenvalue if and only if 𝑇𝑆 has 0 as an eigenvalue.

Suppose that 𝜆 ≠ 0 is an eigenvalue of 𝑆𝑇  with corresponding eigenvector 𝑣 ∈ 𝑉 , i.e. 
𝑆(𝑇𝑣) = 𝜆𝑣, and note that 𝑇𝑣 ≠ 0 since 𝜆 ≠ 0 and 𝑣 ≠ 0. Note further that

(𝑇𝑆)(𝑇𝑣) = 𝑇 (𝑆(𝑇𝑣)) = 𝑇 (𝜆𝑣) = 𝜆𝑇𝑣.
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Thus 𝜆 is an eigenvalue of 𝑇𝑆 with a corresponding eigenvector 𝑇𝑣. Swapping the roles of 𝑆
and 𝑇  in this argument shows that any non-zero eigenvalue of 𝑇𝑆 must also be an eigenvalue
of 𝑆𝑇 .

Exercise 5.A.24. Suppose 𝐴 is an 𝑛-by-𝑛 matrix with entries in 𝐅. Define 𝑇 ∈ ℒ(𝐅𝑛)
by 𝑇𝑥 = 𝐴𝑥, where elements of 𝐅𝑛 are thought of as 𝑛-by-1 column vectors.

(a) Suppose the sum of the entries in each row of 𝐴 equals 1. Prove that 1 is an
eigenvalue of 𝑇 .

(b) Suppose the sum of the entries in each column of 𝐴 equals 1. Prove that 1 is an
eigenvalue of 𝑇 .

Solution.

(a) Let 𝐴𝑗,𝑘 be the entries of 𝐴; our assumption is that ∑𝑛
𝑘=1 𝐴𝑗,𝑘 = 1 for each 𝑗 ∈ {1, …, 𝑛}.

Observe that

𝑇 (1, …, 1) =

⎝
⎜⎜
⎜⎛

𝐴1,1

⋮
𝐴𝑛,1

⋯
⋱
⋯

𝐴1,𝑛

⋮
𝐴𝑛,𝑛⎠

⎟⎟
⎟⎞

⎝
⎜⎜
⎜⎛

1
⋮
1⎠
⎟⎟
⎟⎞ =

⎝
⎜⎜
⎜⎛

∑𝑛
𝑘=1 𝐴1,𝑘

⋮
∑𝑛

𝑘=1 𝐴𝑛,𝑘⎠
⎟⎟
⎟⎞ =

⎝
⎜⎜
⎜⎛

1
⋮
1⎠
⎟⎟
⎟⎞.

Thus 1 is an eigenvalue of 𝑇 .

(b) Here are two arguments.

(1) Let 𝑒1, …, 𝑒𝑛 be the standard basis of 𝐅𝑛 and let 𝜓 ∈ (𝐅𝑛)′ be the linear functional
given by 𝜓(𝑒𝑘) = 1. Certainly the matrix of 𝑇  with respect to 𝑒1, …, 𝑒𝑛 is 𝐴. It
follows that

(𝜓 ∘ (𝑇 − 𝐼))(𝑒𝑘) = 𝜓((∑
𝑛

𝑗=1
𝐴𝑗,𝑘𝑒𝑗) − 𝑒𝑘) = (∑

𝑛

𝑗=1
𝐴𝑗,𝑘) − 1 = 0,

where we have used our assumption that the sum of the entries in each column of
𝐴 equals 1. Thus 𝜓 ∘ (𝑇 − 𝐼) ∈ (𝐅𝑛)′ is the zero map. If the operator 𝑇 − 𝐼 were
invertible then it would have to be the case that 𝜓 = 0; because 𝜓 is non-zero, we
see that 𝑇 − 𝐼 is not invertible. That is, 1 is an eigenvalue of 𝑇 .

(2) Define 𝑆 ∈ ℒ(𝐅𝑛) by 𝑆𝑥 = 𝐴t𝑥. Because the rows of 𝐴t are the columns of 𝐴,
part (a) shows that 1 is an eigenvalue of 𝑆. Let 𝑒1, …, 𝑒𝑛 be the standard basis
of 𝐅𝑛, let 𝜑1, …, 𝜑𝑛 be the corresponding dual basis, and define an isomorphism
Φ ∈ ℒ(𝐅𝑛, (𝐅𝑛)′) by Φ𝑒𝑘 = 𝜑𝑘. Certainly the matrix of 𝑇  with respect to 𝑒1, …, 𝑒𝑛

is 𝐴 and thus, by 3.132, the matrix of 𝑇 ′ with respect to 𝜑1, …, 𝜑𝑛 is 𝐴t. It fol-
lows that

(Φ−1𝑇 ′Φ)(𝑒𝑘) = (Φ−1𝑇 ′)(𝜑𝑘) = Φ−1(𝐴𝑘,1𝜓1 + ⋯ + 𝐴𝑘,𝑛𝜓𝑛)

= 𝐴𝑘,1𝑒1 + ⋯ + 𝐴𝑘,𝑛𝑒𝑛 = 𝐴t𝑒𝑘 = 𝑆𝑒𝑘.
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Thus Φ−1𝑇 ′Φ = 𝑆, so that Φ−1𝑇 ′Φ has 1 as an eigenvalue. A small modification
of the argument given in Exercise 5.A.13 (a) shows that Φ−1𝑇 ′Φ and 𝑇 ′ have the
same eigenvalues. It follows that 1 is an eigenvalue of 𝑇 ′ and hence, by Exercise
5.A.15, 1 is an eigenvalue of 𝑇 .

Exercise 5.A.25. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝑢, 𝑤 are eigenvectors of 𝑇  such that 𝑢 + 𝑤
is also an eigenvector of 𝑇 . Prove that 𝑢 and 𝑤 are eigenvectors of 𝑇  corresponding to
the same eigenvalue.

Solution. Suppose that the eigenvectors 𝑢, 𝑤, 𝑢 + 𝑤 correspond to the eigenvalues 𝛼, 𝛽, 𝜆,
respectively. Observe that

𝛼𝑢 + 𝛽𝑤 = 𝑇𝑢 + 𝑇𝑤 = 𝑇(𝑢 + 𝑤) = 𝜆(𝑢 + 𝑤) = 𝜆𝑢 + 𝜆𝑤.

It follows that (𝛼 − 𝜆)𝑢 + (𝛽 − 𝜆)𝑤 = 0. If we suppose that 𝛼 ≠ 𝛽 then 5.11 shows that 𝑢
and 𝑤 are linearly independent and the equation (𝛼 − 𝜆)𝑢 + (𝛽 − 𝜆)𝑤 = 0 then implies that
𝛼 = 𝛽 = 𝜆, contradicting our assumption. Thus 𝛼 = 𝛽.

Exercise 5.A.26. Suppose 𝑇 ∈ ℒ(𝑉 ) is such that every nonzero vector in 𝑉  is an
eigenvector of 𝑇 . Prove that 𝑇  is a scalar multiple of the identity operator.

Solution. The case where 𝑉 = {0} is easily handled, so assume that 𝑉 ≠ {0} and fix some
non-zero 𝑢 ∈ 𝑉 ; by assumption we have 𝑇𝑢 = 𝜆𝑢 for some 𝜆 ∈ 𝐅. Suppose that 𝑣 ∈ 𝑉  is non-
zero. If 𝑢 + 𝑣 ≠ 0 then by assumption 𝑣 and 𝑢 + 𝑣 are both eigenvectors of 𝑇 . It then follows
from Exercise 5.A.25 that 𝑢 and 𝑣 correspond to the same eigenvalue 𝜆, so that 𝑇𝑣 = 𝜆𝑣. If
𝑢 + 𝑣 = 0 then 𝑇𝑣 = −𝑇𝑢 = −𝜆𝑢 = 𝜆𝑣. Thus we have 𝑇𝑣 = 𝜆𝑣 for all 𝑣 ∈ 𝑉 , i.e. 𝑇 = 𝜆𝐼 .

Exercise 5.A.27. Suppose that 𝑉  is finite-dimensional and 𝑘 ∈ {1, …, dim 𝑉 − 1}. Sup-
pose 𝑇 ∈ ℒ(𝑉 ) is such that every subspace of 𝑉  of dimension 𝑘 is invariant under 𝑇 .
Prove that 𝑇  is a scalar multiple of the identity operator.

Solution. If dim 𝑉 = 0 then 𝑇 = 0𝐼 and if dim 𝑉 = 1 then Exercise 3.A.7 shows that 𝑇 = 𝜆𝐼
for some 𝜆 ∈ 𝐅. Suppose that dim 𝑉 ≥ 2. For 𝑘 ∈ {1, …, dim 𝑉 − 1}, let 𝑃(𝑘) be the state-
ment that if every subspace of 𝑉  of dimension 𝑘 is invariant under 𝑇 , then 𝑇  is a scalar
multiple of the identity operator. We will prove that 𝑃(1) holds and that 𝑃(𝑘) implies
𝑃(𝑘 + 1), provided 𝑘 + 1 ∈ {1, …, dim 𝑉 − 1}.

Suppose that every one-dimensional subspace of 𝑉  is invariant under 𝑇  and let 𝑣 ∈ 𝑉  be
non-zero. By assumption the subspace span(𝑣) is invariant under 𝑇  and thus 𝑇𝑣 = 𝜆𝑣 for
some 𝜆 ∈ 𝐅, i.e. 𝑣 is an eigenvector of 𝑇 . It follows from Exercise 5.A.26 that 𝑇  is a scalar
multiple of the identity operator. Thus 𝑃(1) holds.

Now suppose that 𝑃(𝑘) holds for some 𝑘 such that 𝑘 + 1 ∈ {1, …, dim 𝑉 − 1} and suppose
that every subspace of dimension 𝑘 + 1 is invariant under 𝑇 . Let 𝑈  be a subspace of dimen-
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sion 𝑘. Because 𝑘 ≤ dim 𝑉 − 2, we can find linearly independent vectors 𝑣, 𝑤 ∈ 𝑉  such that
𝑣, 𝑤 ∉ 𝑈 . Let 𝑢 ∈ 𝑈  be given. By assumption the subspaces 𝑈 ⊕ span(𝑣) and 𝑈 ⊕ span(𝑤),
which have dimension 𝑘 + 1, are invariant under 𝑇 . Since 𝑢 belongs to each of these sub-
spaces, it follows that

𝑇𝑢 = 𝑎1𝑢1 + 𝑏𝑣 and 𝑇𝑢 = 𝑎2𝑢2 + 𝑐𝑤

for some 𝑢1, 𝑢2 ∈ 𝑈  and some 𝑎1, 𝑎2, 𝑏, 𝑐 ∈ 𝐅. This implies that 𝑎1𝑢1 − 𝑎2𝑢2 = 𝑐𝑤 − 𝑏𝑣, so
that 𝑐𝑤 − 𝑏𝑣 ∈ 𝑈 ∩ span(𝑣, 𝑤) = {0}. Thus 𝑐𝑤 − 𝑏𝑣 = 0 and the linear independence of 𝑣, 𝑤
then gives us 𝑏 = 𝑐 = 0, so that 𝑇𝑢 ∈ 𝑈 . That is, 𝑈  is invariant under 𝑇 . Because we assumed
that 𝑃(𝑘) holds, it now follows that 𝑇  is a scalar multiple of the identity, i.e. 𝑃(𝑘 + 1) holds.

Thus, by induction, 𝑃(𝑘) holds for each 𝑘 ∈ {1, …, dim 𝑉 − 1}.

Exercise 5.A.28. Suppose 𝑉  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 ). Prove that 𝑇  has at
most 1 + dim range 𝑇  distinct eigenvalues.

Solution. Suppose 𝜆1, …, 𝜆𝑛 are 𝑛 distinct eigenvalues of 𝑇  with corresponding eigenvectors
𝑣1, …, 𝑣𝑛 and note that each 𝑇𝑣𝑘 = 𝜆𝑘𝑣𝑘 ∈ range 𝑇 . The list 𝑣1, …, 𝑣𝑛 is linearly independent
by 5.11 and thus the list 𝜆1𝑣1, …, 𝜆𝑛𝑣𝑛 is also linearly independent, provided each 𝜆𝑘 is
non-zero; if some 𝜆𝑘 = 0 (since the eigenvalues are distinct there can be at most one such 
𝜆𝑘), we can discard 𝜆𝑘𝑣𝑘 from the list and be left with a linearly independent list of 𝑛 − 1
vectors. In either case, there are at least 𝑛 − 1 linearly independent vectors in range 𝑇  and
thus 𝑛 ≤ 1 + dim range 𝑇 .

Exercise 5.A.29. Suppose 𝑇 ∈ ℒ(𝐑3) and −4, 5, and 
√

7 are eigenvalues of 𝑇 . Prove
that there exists 𝑥 ∈ 𝐑3 such that 𝑇𝑥 − 9𝑥 = (−4, 5,

√
7).

Solution. Because 𝑇  has 3 = dim 𝐑3 distinct eigenvalues, 5.12 shows that 9 cannot be an
eigenvalue of 𝑇 . By 5.7 this is equivalent to the operator 𝑇 − 9𝐼 being invertible. Thus the
desired 𝑥 ∈ 𝐑3 is (𝑇 − 9𝐼)−1(−4, 5,

√
7).

Exercise 5.A.30. Suppose 𝑇 ∈ ℒ(𝑉 ) and (𝑇 − 2𝐼)(𝑇 − 3𝐼)(𝑇 − 4𝐼) = 0. Suppose 𝜆 is
an eigenvalue of 𝑇 . Prove that 𝜆 = 2 or 𝜆 = 3 or 𝜆 = 4.

Solution. We have 𝑇𝑣 = 𝜆𝑣 for some 𝑣 ≠ 0. Observe that

0 = (𝑇 − 2𝐼)(𝑇 − 3𝐼)(𝑇 − 4𝐼)𝑣 = (𝜆 − 2)(𝜆 − 3)(𝜆 − 4)𝑣.

Since 𝑣 is non-zero, this equation implies that 𝜆 ∈ {2, 3, 4}.

Exercise 5.A.31. Give an example of 𝑇 ∈ ℒ(𝐑2) such that 𝑇 4 = −𝐼 .

Solution. Define 𝑇 ∈ ℒ(𝐑2) by
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𝑇 (1, 0) = (cos 𝜋
4 , sin 𝜋

4 ) = 1√
2
(1, 1) and 𝑇 (0, 1) = (cos 3𝜋

4 , sin 3𝜋
4 ) = 1√

2
(−1, 1).

Note that 𝑇  is a counterclockwise rotation about the origin by 45°. It follows that 𝑇 4 is a
counterclockwise rotation about the origin by 180°, i.e.

𝑇 4(1, 0) = (cos 𝜋, sin 𝜋) = (−1, 0) and 𝑇 (0, 1) = (cos 3𝜋
2 , sin 3𝜋

2 ) = (0, −1).

Thus 𝑇 4 = −𝐼 .

Exercise 5.A.32. Suppose 𝑇 ∈ ℒ(𝑉 ) has no eigenvalues and 𝑇 4 = 𝐼 . Prove that
𝑇 2 = −𝐼 .

Solution. Observe that 𝑇 4 = 𝐼 is equivalent to (𝑇 2 − 𝐼)(𝑇 2 + 𝐼) = 0. Because 𝑇  has no
eigenvalues, the operators 𝑇 − 𝐼 and 𝑇 + 𝐼 must be injective and thus their product
(𝑇 − 𝐼)(𝑇 + 𝐼) = 𝑇 2 − 𝐼 is also injective. It follows that for any 𝑣 ≠ 0,

0 = (𝑇 2 − 𝐼)(𝑇 2 + 𝐼)𝑣 ⇔ 0 = (𝑇 2 + 𝐼)𝑣 ⇔ 𝑇 2𝑣 = −𝑣.

Thus 𝑇 2 = −𝐼 .

Exercise 5.A.33. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝑚 is a positive integer.

(a) Prove that 𝑇  is injective if and only if 𝑇 𝑚 is injective.

(b) Prove that 𝑇  is surjective if and only if 𝑇 𝑚 is surjective.

Solution. Certainly these results are true if 𝑚 = 1, so suppose that 𝑚 ≥ 2.

(a) The composition of injective functions is again injective, so 𝑇 𝑚 is injective if 𝑇  is in-
jective. Suppose that 𝑇 𝑚 is injective and let 𝑣 ∈ null 𝑇  be given. It follows that

𝑇𝑣 = 0 ⇒ 𝑇 𝑚𝑣 = 𝑇 𝑚−1(0) = 0 ⇒ 𝑣 ∈ null 𝑇 𝑚 = {0} ⇒ 𝑣 = 0.

Thus null 𝑇 = {0}, i.e. 𝑇  is injective.

(b) Suppose that 𝑇 𝑚 is surjective and let 𝑤 ∈ 𝑉  be given. There exists some 𝑣 ∈ 𝑉  such
that 𝑇 𝑚𝑣 = 𝑤, which is equivalent to 𝑇(𝑇 𝑚−1𝑣) = 𝑤. Thus 𝑇  is surjective.

Suppose that 𝑇  is surjective and let 𝑤 ∈ 𝑉  be given. There exist vectors 𝑣1, …, 𝑣𝑚 such
that:

𝑇𝑣1 = 𝑤 and 𝑇𝑣𝑘 = 𝑣𝑘−1 for 𝑘 ≥ 2.

It follows that 𝑇 𝑚𝑣𝑚 = 𝑤 and hence that 𝑇 𝑚 is surjective.

Exercise 5.A.34. Suppose 𝑉  is finite-dimensional and 𝑣1, …, 𝑣𝑚 ∈ 𝑉 . Prove that the
list 𝑣1, …, 𝑣𝑚 is linearly independent if and only if there exists 𝑇 ∈ ℒ(𝑉 ) such that 
𝑣1, …, 𝑣𝑚 are eigenvectors of 𝑇  corresponding to distinct eigenvalues.
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Solution. Suppose 𝑣1, …, 𝑣𝑚 is linearly independent and extend this to a basis 
𝑣1, …, 𝑣𝑚, 𝑤1, …, 𝑤𝑛 of 𝑉 . Define 𝑇 ∈ ℒ(𝑉 ) by

𝑇𝑣𝑘 = 𝑘𝑣𝑘 for 𝑘 ∈ {1, …, 𝑚} and 𝑇𝑤𝑘 = 0 for 𝑘 ∈ {1, …, 𝑛}.

It follows that 𝑣1, …, 𝑣𝑚 are eigenvectors of 𝑇  corresponding to distinct eigenvalues.

The converse implication is the content of 5.11.

Exercise 5.A.35. Suppose that 𝜆1, …, 𝜆𝑛 is a list of distinct real numbers. Prove that
the list 𝑒𝜆1𝑥, …, 𝑒𝜆𝑛𝑥 is linearly independent in the vector space of real-valued functions
on 𝐑.

Hint: Let 𝑉 = span(𝑒𝜆1𝑥, …, 𝑒𝜆𝑛𝑥), and define an operator 𝐷 ∈ ℒ(𝑉 ) by 𝐷𝑓 = 𝑓 ′.
Find eigenvalues and eigenvectors of 𝐷.

Solution. Let 𝑉 = span(𝑒𝜆1𝑥, …, 𝑒𝜆𝑛𝑥), and define an operator 𝐷 ∈ ℒ(𝑉 ) by 𝐷𝑓 = 𝑓 ′. For
each 𝑘 ∈ {1, …, 𝑛},

𝐷(𝑒𝜆𝑘𝑥) = (𝑒𝜆𝑘𝑥)′ = 𝜆𝑘𝑒𝜆𝑘𝑥.

This demonstrates that 𝐷 indeed maps 𝑉  into 𝑉  and also that each 𝜆𝑘 is an eigenvalue of 𝐷
with a corresponding eigenvector 𝑒𝜆𝑘𝑥. Because the eigenvalues 𝜆1, …, 𝜆𝑛 are distinct, 5.11
shows that the corresponding eigenvectors 𝑒𝜆1𝑥, …, 𝑒𝜆𝑛𝑥 are linearly independent.

Exercise 5.A.36. Suppose that 𝜆1, …, 𝜆𝑛 is a list of distinct positive numbers. Prove
that the list cos(𝜆1𝑥), …, cos(𝜆𝑛𝑥) is linearly independent in the vector space of real-
valued functions on 𝐑.

Solution. Let 𝑉 = span(cos(𝜆1𝑥), …, cos(𝜆𝑛𝑥)) and define 𝐷 ∈ ℒ(𝑉 ) by 𝐷𝑓 = d4

d𝑥4 𝑓 . For
each 𝑘 ∈ {1, …, 𝑛},

𝐷(cos(𝜆𝑘𝑥)) =
d4

d𝑥4 cos(𝜆𝑘𝑥) = 𝜆4
𝑘 cos(𝜆𝑘𝑥).

This demonstrates that 𝐷 indeed maps 𝑉  into 𝑉  and also that each 𝜆4
𝑘 is an eigenvalue

of 𝐷 with a corresponding eigenvector cos(𝜆𝑘𝑥). Because 𝜆1, …, 𝜆𝑛 are distinct and posi-
tive, the real numbers 𝜆4

1, …, 𝜆4
𝑛 are also distinct. It then follows from 5.11 that the list 

cos(𝜆1𝑥), …, cos(𝜆𝑛𝑥) is linearly independent.

Exercise 5.A.37. Suppose 𝑉  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 ). Define 𝒜 ∈ ℒ(ℒ(𝑉 ))
by

𝒜(𝑆) = 𝑇𝑆

for each 𝑆 ∈ ℒ(𝑉 ). Prove that the set of eigenvalues of 𝑇  equals the set of eigenvalues
of 𝒜.
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Solution. Suppose that 𝜆 ∈ 𝐅 is an eigenvalue of 𝑇 , so that there is some non-zero 𝑣1 ∈ 𝑉
such that 𝑇𝑣1 = 𝜆𝑣1. Extend 𝑣1 to a basis 𝑣1, …, 𝑣𝑚 of 𝑉  and define 𝑆 ∈ ℒ(𝑉 ) by

𝑆𝑣1 = 𝑣1 and 𝑆𝑣𝑘 = 0 for 𝑘 ≥ 2.

Notice that 𝑆 ≠ 0 and that

(𝑇 − 𝜆𝐼)𝑆𝑣1 = (𝑇 − 𝜆𝐼)𝑣1 = 0 and (𝑇 − 𝜆𝐼)𝑆𝑣𝑘 = 0 for 𝑘 ≥ 2.

Thus (𝑇 − 𝜆𝐼)𝑆 = 0, i.e. 𝑇𝑆 = 𝜆𝑆. It follows that 𝜆 is an eigenvalue of 𝒜 with a correspond-
ing eigenvector 𝑆.

Now suppose that 𝜆 ∈ 𝐅 is an eigenvalue of 𝒜, i.e. there is some non-zero 𝑆 ∈ ℒ(𝑉 ) such
that 𝑇𝑆 = 𝜆𝑆, or equivalently (𝑇 − 𝜆𝐼)𝑆 = 0. If 𝑇 − 𝜆𝐼 were injective then the equation 
(𝑇 − 𝜆𝐼)𝑆 = 0 would imply that 𝑆 = 0. Given that 𝑆 is non-zero, it must be the case that 
𝑇 − 𝜆𝐼 is not injective and thus 𝜆 is an eigenvalue of 𝑇 .

Exercise 5.A.38. Suppose 𝑉  is finite-dimensional, 𝑇 ∈ ℒ(𝑉 ), and 𝑈  is a subspace of 
𝑉  invariant under 𝑇 . The quotient operator 𝑇/𝑈 ∈ ℒ(𝑉/𝑈) is defined by

(𝑇/𝑈)(𝑣 + 𝑈) = 𝑇𝑣 + 𝑈

for each 𝑣 ∈ 𝑉 .

(a) Show that the definition of 𝑇/𝑈  makes sense (which requires using the condition
that 𝑈  is invariant under 𝑇 ) and show that 𝑇/𝑈  is an operator on 𝑉/𝑈 .

(b) Show that each eigenvalue of 𝑇/𝑈  is an eigenvalue of 𝑇 .

Solution.

(a) Suppose that 𝑣, 𝑤 ∈ 𝑉  are such that 𝑣 + 𝑈 = 𝑤 + 𝑈 , which by 3.101 is equivalent to 
𝑣 − 𝑤 ∈ 𝑈 . Because 𝑈  is invariant under 𝑇  it follows that 𝑇𝑣 − 𝑇𝑤 ∈ 𝑈  and another
application of 3.101 gives us 𝑇𝑣 + 𝑈 = 𝑇𝑤 + 𝑈 . Thus the definition of 𝑇/𝑈  makes sense.

Certainly 𝑇/𝑈  maps 𝑉/𝑈  into 𝑉/𝑈 . Let 𝑣 + 𝑈, 𝑤 + 𝑈 ∈ 𝑉/𝑈  and 𝜆 ∈ 𝐅 be given. Ob-
serve that

(𝑇/𝑈)((𝑣 + 𝑈) + (𝑤 + 𝑈)) = (𝑇/𝑈)((𝑣 + 𝑤) + 𝑈) = 𝑇(𝑣 + 𝑤) + 𝑈

= (𝑇𝑣 + 𝑇𝑤) + 𝑈 = (𝑇𝑣 + 𝑈) + (𝑇𝑤 + 𝑈) = (𝑇/𝑈)(𝑣 + 𝑈) + (𝑇/𝑈)(𝑤 + 𝑈),

(𝑇/𝑈)(𝜆(𝑣 + 𝑈)) = (𝑇/𝑈)(𝜆𝑣 + 𝑈) = 𝑇(𝜆𝑣) + 𝑈

= 𝜆𝑇𝑣 + 𝑈 = 𝜆(𝑇𝑣 + 𝑈) = 𝜆(𝑇/𝑈)(𝑣 + 𝑈).

Thus 𝑇/𝑈  is a linear operator on 𝑉/𝑈 .

(b) Suppose 𝜆 ∈ 𝐅 is an eigenvalue of 𝑇/𝑈 , i.e. there exists a non-zero 𝑣 + 𝑈 ∈ 𝑉/𝑈  such
that

(𝑇/𝑈)(𝑣 + 𝑈) = 𝑇𝑣 + 𝑈 = 𝜆(𝑣 + 𝑈) = 𝜆𝑣 + 𝑈.
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Note that 𝑈  is invariant under 𝑇 − 𝜆𝐼 : for any 𝑢 ∈ 𝑈  we have 𝑇𝑢 − 𝜆𝑢 ∈ 𝑈  since 𝑈  is
invariant under 𝑇 . Here are two ways to proceed; notice that in each argument we only
require that 𝑈  is finite-dimensional.

(1) Consider the restriction operator 𝑅 ≔ (𝑇 − 𝜆𝐼)|𝑈 ∈ ℒ(𝑈). There are two cases.

Suppose that 𝑅 is not surjective; by 3.65 this is equivalent to null 𝑅 ≠ {0}, so
that there exists some non-zero 𝑢 ∈ 𝑈  such that 𝑅𝑢 = 0, i.e. 𝑇𝑢 = 𝜆𝑢. Thus 𝜆 is
an eigenvalue of 𝑇 .

Now suppose that 𝑅 is surjective. Because 𝑇𝑣 + 𝑈 = 𝜆𝑣 + 𝑈 , we have
𝑇𝑣 = 𝜆𝑣 + 𝑤 for some 𝑤 ∈ 𝑈 . The surjectivity of 𝑅 implies that there exists some
𝑢 ∈ 𝑈  such that −𝑤 = 𝑅𝑢 = 𝑇𝑢 − 𝜆𝑢. Observe that

𝑇 (𝑣 + 𝑢) = 𝑇𝑣 + 𝑇𝑢 = 𝜆𝑣 + 𝑤 + 𝑇𝑢 = 𝜆𝑣 + 𝜆𝑢 = 𝜆(𝑣 + 𝑢).

Note that 𝑣 + 𝑢 must be non-zero, otherwise 𝑣 would belong to 𝑈 , contradicting
that 𝑣 + 𝑈  is non-zero. Thus 𝜆 is an eigenvalue of 𝑇 .

(2) Let 𝑢1, …, 𝑢𝑛 be a basis of 𝑈 . Because 𝑇𝑣 + 𝑈 = 𝜆𝑣 + 𝑈  and 𝑈  is invariant under
𝑇 − 𝜆𝐼 , the list

(𝑇 − 𝜆𝐼)𝑣, (𝑇 − 𝜆𝐼)𝑢1, …, (𝑇 − 𝜆𝐼)𝑢𝑛

is contained in 𝑈 . This is a list of 𝑛 + 1 vectors in an 𝑛-dimensional space and
hence must be linearly dependent, i.e. there are scalars 𝑎0, 𝑎1, …, 𝑎𝑛, not all zero,
such that 𝑤 ≔ 𝑎0𝑣 + 𝑎1𝑢1 + ⋯ + 𝑎𝑛𝑢𝑛 satisfies (𝑇 − 𝜆𝐼)𝑤 = 0. Note that 𝑤 must
be non-zero: if 𝑤 = 0 and 𝑎0 ≠ 0 then 𝑣 ∈ 𝑈 , contradicting 𝑣 + 𝑈 ≠ 0, and if 𝑤 = 0
and 𝑎0 = 0 then 𝑎1𝑢1 + ⋯ + 𝑎𝑛𝑢𝑛 is a non-trivial linear combination, contradict-
ing the linear independence of 𝑢1, …, 𝑢𝑛. Thus 𝜆 is an eigenvalue of 𝑇 .

Exercise 5.A.39. Suppose 𝑉  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 ). Prove that 𝑇  has an
eigenvalue if and only if there exists a subspace of 𝑉  of dimension dim 𝑉 − 1 that is
invariant under 𝑇 .

Solution. Suppose that 𝑇  has an eigenvalue 𝜆 ∈ 𝐅 with a corresponding eigenvector 𝑣 ∈ 𝑉
it follows that dim null(𝑇 − 𝜆𝐼) ≥ 1 and hence that dim range(𝑇 − 𝜆𝐼) ≤ dim 𝑉 − 1. By tak-
ing a basis of range(𝑇 − 𝜆𝐼) and, if necessary, extending it to a linearly independent list
of length dim 𝑉 − 1, we can obtain a subspace 𝑈  of 𝑉  satisfying range(𝑇 − 𝜆𝐼) ⊆ 𝑈  and
dim 𝑈 = dim 𝑉 − 1. Exercise 5.A.39 shows that 𝑈  is invariant under 𝑇 − 𝜆𝐼 , which implies
that 𝑈  is invariant under 𝑇 :

𝑢 ∈ 𝑈 ⇒ 𝑇𝑢 − 𝜆𝑢 ∈ 𝑈 ⇒ 𝑇𝑢 ∈ 𝑈.

Now suppose that there exists a subspace 𝑈  of 𝑉  such that 𝑈  is invariant under 𝑇  and 
dim 𝑈 = dim 𝑉 − 1, and consider the quotient operator 𝑇/𝑈 ∈ ℒ(𝑉/𝑈). Since dim 𝑉/𝑈 = 1,
Exercise 3.A.7 shows that 𝑇/𝑈 = 𝜆𝐼 for some 𝜆 ∈ 𝐅; it follows that 𝜆 is an eigenvalue of 
𝑇/𝑈  and thus, by Exercise 5.A.38, 𝜆 is an eigenvalue of 𝑇 .
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Exercise 5.A.40. Suppose 𝑆, 𝑇 ∈ ℒ(𝑉 ) and 𝑆 is invertible. Suppose 𝑝 ∈ 𝒫(𝐅) is a
polynomial. Prove that

𝑝(𝑆𝑇𝑆−1) = 𝑆𝑝(𝑇 )𝑆−1.

Solution. Notice that (𝑆𝑇𝑆−1)0 = 𝐼 = 𝑆𝑆−1 = 𝑆𝐼𝑆−1 = 𝑆𝑇 0𝑆−1. For a non-negative inte-
ger 𝑘, suppose that (𝑆𝑇𝑆−1)𝑘 = 𝑆𝑇 𝑘𝑆−1 and observe that

(𝑆𝑇𝑆−1)𝑘+1 = (𝑆𝑇𝑆−1)𝑘𝑆𝑇𝑆−1 = 𝑆𝑇 𝑘𝑆−1𝑆𝑇𝑆−1 = 𝑆𝑇 𝑘𝐼𝑇𝑆−1 = 𝑆𝑇 𝑘+1𝑆−1.

Thus (𝑆𝑇𝑆−1)𝑘 = 𝑆𝑇 𝑘𝑆−1 for all non-negative integers 𝑘. Suppose 𝑝 = ∑𝑛
𝑘=0 𝑎𝑘𝑧𝑘 and ob-

serve that

𝑝(𝑆𝑇𝑆−1) = ∑
𝑛

𝑘=0
𝑎𝑘(𝑆𝑇𝑆−1)𝑘 = ∑

𝑛

𝑘=0
𝑎𝑘𝑆𝑇 𝑘𝑆−1 = 𝑆(∑

𝑛

𝑘=0
𝑎𝑘𝑇 𝑘)𝑆−1 = 𝑆𝑝(𝑇 )𝑆−1.

Exercise 5.A.41. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝑈  is a subspace of 𝑉  invariant under 𝑇 .
Prove that 𝑈  is invariant under 𝑝(𝑇 ) for every polynomial 𝑝 ∈ 𝒫(𝐅).

Solution. Certainly 𝑈  is invariant under 𝑇 𝑘 for any non-negative integer 𝑘. Suppose
𝑝 = ∑𝑛

𝑘=0 𝑎𝑘𝑧𝑘 and observe that

𝑝(𝑇 )𝑢 = (∑
𝑛

𝑘=0
𝑎𝑘𝑇 𝑘)𝑢 = ∑

𝑛

𝑘=0
𝑎𝑘𝑇 𝑘𝑢;

this belongs to 𝑈  since each 𝑇 𝑘𝑢 ∈ 𝑈  and 𝑈  is closed under vector addition and scalar mul-
tiplication.

Exercise 5.A.42. Define 𝑇 ∈ ℒ(𝐅𝑛) by 𝑇 (𝑥1, 𝑥2, 𝑥3, …, 𝑥𝑛) = (𝑥1, 2𝑥2, 3𝑥3, …, 𝑛𝑥𝑛).

(a) Find all eigenvalues and eigenvectors of 𝑇 .

(b) Find all subspaces of 𝐅𝑛 that are invariant under 𝑇 .

Solution.

(a) Let 𝑒1, …, 𝑒𝑛 be the standard basis of 𝐅𝑛 and notice that 𝑇𝑒𝑘 = 𝑘𝑒𝑘 for each
𝑘 ∈ {1, …, 𝑛}. Thus 𝑘 is an eigenvalue of 𝑇  with a corresponding eigenvector 𝑒𝑘. By
5.11 and 5.12 we can conclude that the eigenvalues and eigenvectors of 𝑇  are precisely:

eigenvalue corresponding eigenvectors

𝑘 ∈ {1, …, 𝑛} span(𝑒𝑘) ∖ {0}

(b) First, let us prove some useful results.
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Lemma L.4. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝑈  is a subspace of 𝑉  invariant under 𝑇 . If
𝜆1, …, 𝜆𝑚 are distinct eigenvalues of 𝑇  with corresponding eigenvectors 𝑣1, …, 𝑣𝑚,
then

𝑣1 + ⋯ + 𝑣𝑚 ∈ 𝑈 ⇔ 𝑣𝑘 ∈ 𝑈 for each 𝑘 ∈ {1, …, 𝑚}.

Proof. If 𝑣𝑘 ∈ 𝑈  for each 𝑘 ∈ {1, …, 𝑚} then 𝑣1 + ⋯ + 𝑣𝑚 ∈ 𝑈  since 𝑈  is a sub-
space of 𝑉 .

For the converse, we will proceed by induction on 𝑚. The base case 𝑚 = 1 is clear,
so suppose that the result holds for some positive integer 𝑚 and let 𝜆1, …, 𝜆𝑚+1

be distinct eigenvalues of 𝑇  with corresponding eigenvectors 𝑣1, …, 𝑣𝑚+1. Suppose
that 𝑣 = 𝑣1 + ⋯ + 𝑣𝑚+1 ∈ 𝑈 . Because 𝑈  is invariant under 𝑇  we have

𝑇𝑣 = 𝜆1𝑣1 + ⋯ + 𝜆𝑚+1𝑣𝑚+1 ∈ 𝑈

⇒ 𝑇𝑣 − 𝜆𝑚+1𝑣 = (𝜆1 − 𝜆𝑚+1)𝑣1 + ⋯ + (𝜆𝑚 − 𝜆𝑚+1)𝑣𝑚 ∈ 𝑈

Let 𝑘 ∈ {1, …, 𝑚} be given. By assumption the eigenvalues 𝜆1, …, 𝜆𝑚+1 are dis-
tinct and thus 𝜆𝑘 − 𝜆𝑚+1 ≠ 0. It follows that (𝜆𝑘 − 𝜆𝑚+1)𝑣𝑘 is an eigenvector of
𝑇  corresponding to the eigenvalue 𝜆𝑘. Our induction hypothesis then guarantees
that (𝜆𝑘 − 𝜆𝑚+1)𝑣𝑘 belongs to 𝑈 . Thus 𝑣𝑘 belongs to 𝑈  for each 𝑘 ∈ {1, …, 𝑚},
which gives us

𝑣𝑚+1 = 𝑣 − 𝑣1 − ⋯ − 𝑣𝑚 ∈ 𝑈.

This completes the induction step and the proof. □
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Lemma L.5. Suppose 𝑇 ∈ ℒ(𝑉 ), dim 𝑉 = 𝑛, and 𝜆1, …, 𝜆𝑛 are distinct eigenval-
ues of 𝑇  with corresponding eigenvectors 𝑣1, …, 𝑣𝑛. If 𝑈  is a subspace of 𝑉  invari-
ant under 𝑇 , then

𝑈 = (𝑈 ∩ 𝐸1) ⊕ ⋯ ⊕ (𝑈 ∩ 𝐸𝑛) where 𝐸𝑘 = span(𝑣𝑘).

Proof. By 5.11 the eigenvectors 𝑣1, …, 𝑣𝑛 are linearly independent and hence form
a basis of 𝑉 , so that 𝑉 = 𝐸1 ⊕ ⋯ ⊕ 𝐸𝑛. For any 𝑢 ∈ 𝑈  we have 𝑢 = 𝑒1 + ⋯ + 𝑒𝑛,
where each 𝑒𝑘 ∈ 𝐸𝑘. If any 𝑒𝑘 = 0 then certainly 𝑒𝑘 ∈ 𝑈 ; otherwise, 𝑒𝑘 is an eigen-
vector of 𝑇  corresponding to the eigenvalue 𝜆𝑘 and thus, by Lemma L.4, the
non-zero 𝑒𝑘’s belong to 𝑈  also. It follows that 𝑢 ∈ (𝑈 ∩ 𝐸1) + ⋯ + (𝑈 ∩ 𝐸𝑛) and
hence that

𝑈 = (𝑈 ∩ 𝐸1) + ⋯ + (𝑈 ∩ 𝐸𝑛).

The directness of this sum follows immediately from the directness of the sum 
𝑉 = 𝐸1 ⊕ ⋯ ⊕ 𝐸𝑛. □

Lemma L.6. If 𝑇 ∈ ℒ(𝑉 ), dim 𝑉 = 𝑛 ≥ 1, and 𝜆1, …, 𝜆𝑛 are distinct eigenvalues
of 𝑇  with corresponding eigenvectors 𝑣1, …, 𝑣𝑛, then the non-zero subspaces of 𝑉
which are invariant under 𝑇  are precisely those of the form

span(𝑣𝑘1 , …, 𝑣𝑘𝑚)

for some choice of integers 1 ≤ 𝑘1 < ⋯ < 𝑘𝑚 ≤ 𝑛 with 1 ≤ 𝑚 ≤ 𝑛.

Proof. It is straightforward to verify that each span(𝑣𝑘1 , …, 𝑣𝑘𝑚) is indeed a sub-
space of 𝑉  invariant under 𝑇 . For 𝑘 ∈ {1, …, 𝑛} let 𝐸𝑘 = span(𝑣𝑘) and suppose 
𝑈  is a non-zero subspace of 𝑉  invariant under 𝑇 . By Lemma L.5 we have

𝑈 = (𝑈 ∩ 𝐸1) ⊕ ⋯ ⊕ (𝑈 ∩ 𝐸𝑛).

For each 𝑘, since dim 𝐸𝑘 = 1, we can either have 𝑈 ∩ 𝐸𝑘 = {0} or 𝑈 ∩ 𝐸𝑘 = 𝐸𝑘.
Because 𝑈  is non-zero, there must be at least one 𝑘 such that 𝑈 ∩ 𝐸𝑘 = 𝐸𝑘; let 
1 ≤ 𝑘1 < ⋯ < 𝑘𝑚 ≤ 𝑛 be those indices for which 𝑈 ∩ 𝐸𝑘 = 𝐸𝑘. It follows that

𝑈 = (𝑈 ∩ 𝐸1) ⊕ ⋯ ⊕ (𝑈 ∩ 𝐸𝑛) = 𝐸𝑘1 ⊕ ⋯ ⊕ 𝐸𝑘𝑚 = span(𝑣𝑘1 , …, 𝑣𝑘𝑚). □

Now let us return to the exercise. As we showed in part (a), the eigenvalues of 𝑇  are 
1, …, 𝑛 with corresponding eigenvectors 𝑒1, …, 𝑒𝑛. It then follows from Lemma L.6 that
the non-zero subspaces of 𝐅𝑛 which are invariant under 𝑇  are precisely those of the form

span(𝑒𝑘1 , …, 𝑒𝑘𝑚)

for some choice of integers 1 ≤ 𝑘1 < ⋯ < 𝑘𝑚 ≤ 𝑛 with 1 ≤ 𝑚 ≤ 𝑛.
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Exercise 5.A.43. Suppose that 𝑉  is finite-dimensional, dim 𝑉 > 1, and 𝑇 ∈ ℒ(𝑉 ).
Prove that {𝑝(𝑇 ) : 𝑝 ∈ 𝒫(𝐅)} ≠ ℒ(𝑉 ).

Solution. If every operator in ℒ(𝑉 ) could be realized as 𝑝(𝑇 ) for some 𝑝 ∈ 𝒫(𝐅), then
each pair of operators in ℒ(𝑉 ) would commute with each other by 5.17. However, because 
dim 𝑉 > 1, Exercise 3.A.16 shows that there exist two operators in ℒ(𝑉 ) which do not com-
mute with each other.
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5.B. The Minimal Polynomial

Exercise 5.B.1. Suppose 𝑇 ∈ ℒ(𝑉 ). Prove that 9 is an eigenvalue of 𝑇 2 if and only if
3 or −3 is an eigenvalue of 𝑇 .

Solution. We showed in the solution to Exercise 5.A.22 that if 9 is an eigenvalue of 𝑇 2 then
3 or −3 is an eigenvalue of 𝑇 . Conversely, suppose there is some non-zero 𝑣 ∈ 𝑉  such that 
𝑇𝑣 = ±3𝑣. It follows that 𝑇 2𝑣 = (±3)2𝑣 = 9𝑣 and thus 9 is an eigenvalue of 𝑇 2.

Exercise 5.B.2. Suppose 𝑉  is a complex vector space and 𝑇 ∈ ℒ(𝑉 ) has no eigenvalues.
Prove that every subspace of 𝑉  invariant under 𝑇  is either {0} or infinite-dimensional.

Solution. Suppose 𝑈  is a non-zero subspace of 𝑉  invariant under 𝑇  and consider the re-
striction operator 𝑇 |𝑈 . If 𝑈  were finite-dimensional then 5.19 would imply that 𝑇 |𝑈  has an
eigenvalue, which would also be an eigenvalue of 𝑇 . Since 𝑇  has no eigenvalues it must be
the case that 𝑈  is infinite-dimensional.

Exercise 5.B.3. Suppose 𝑛 is a positive integer and 𝑇 ∈ ℒ(𝐅𝑛) is defined by

𝑇 (𝑥1, …, 𝑥𝑛) = (𝑥1 + ⋯ + 𝑥𝑛, …, 𝑥1 + ⋯ + 𝑥𝑛).

(a) Find all eigenvalues and eigenvectors of 𝑇 .

(b) Find the minimal polynomial of 𝑇 .

The matrix of 𝑇  with respect to the standard basis of 𝐅𝑛 consists of all 1’s.

Solution.

(a) If 𝑛 = 1 then 𝑇  is the identity operator on 𝐅, whose only eigenvalue is 1 with corre-
sponding eigenvectors 𝑥 ∈ 𝐅 ∖ {0}.

Suppose that 𝑛 ≥ 2. Some straightforward calculations reveal that

null 𝑇 = {(−𝑥2 − ⋯ − 𝑥𝑛, 𝑥2, …, 𝑥𝑛) ∈ 𝐅𝑛 : 𝑥2, …, 𝑥𝑛 ∈ 𝐅}

and range 𝑇 = span((1, …, 1)).

Note that dim null 𝑇 = 𝑛 − 1 and dim range 𝑇 = 1. Since dim null 𝑇 ≥ 1, it follows that
0 is an eigenvalue of 𝑇 . Notice that 𝑛 is also an eigenvalue of 𝑇 , since

𝑇 (1, …, 1) = (𝑛, …, 𝑛) = 𝑛(1, …, 1).

We claim that these are the only eigenvalues of 𝑇 . Indeed, if 𝑥 ≠ 0 and 𝜆 ≠ 0 are such
that 𝑇𝑥 = 𝜆𝑥, then since range 𝑇 = span((1, …, 1)) there must exist some 𝛼 ∈ 𝐅 such
that

𝑇𝑥 = 𝜆𝑥 = 𝛼(1, …, 1) ⇒ 𝑥 = 𝜆−1𝛼(1, …, 1).
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Thus the eigenvector 𝑥, which corresponds to the eigenvalue 𝜆, and the eigenvector 
(1, …, 1), which corresponds to the eigenvalue 𝑛, are linearly dependent. It follows from
the contrapositive of 5.11 that 𝜆 = 𝑛.

Certainly null 𝑇 ∖ {0} is the collection of eigenvectors of 𝑇  corresponding to the eigen-
value 0. Because range 𝑇 = span((1, …, 1)), the collection of eigenvectors of 𝑇  corre-
sponding to the eigenvalue 𝑛 must be span((1, …, 1)) ∖ {0}.

(b) If 𝑛 = 1 then 𝑇  is the identity operator on 𝐅 and it is then clear that the minimal
polynomial of 𝑇  is 𝑝(𝑧) = 𝑧 − 1.

Suppose that 𝑛 ≥ 2 and let 𝑝 ∈ 𝒫(𝐅) be the minimal polynomial of 𝑇 . As we showed in
part (a) the eigenvalues of 𝑇  are 0 and 𝑛, which must be the zeros of 𝑝 by 5.27(a), i.e.
𝑝 is divisible by 𝑧 and 𝑧 − 𝑛. This implies that deg 𝑝 ≥ 2. A straightforward calculation
shows that 𝑇 (𝑇 − 𝑛𝐼) = 0. The uniqueness of 𝑝 and the minimality of its degree allow
us to conclude that 𝑝(𝑧) = 𝑧(𝑧 − 𝑛).

Exercise 5.B.4. Suppose 𝐅 = 𝐂, 𝑇 ∈ ℒ(𝑉 ), 𝑝 ∈ 𝒫(𝐂), and 𝛼 ∈ 𝐂. Prove that 𝛼 is an
eigenvalue of 𝑝(𝑇 ) if and only if 𝛼 = 𝑝(𝜆) for some eigenvalue 𝜆 of 𝑇 .

Solution. Suppose that 𝛼 = 𝑝(𝜆) for some eigenvalue 𝜆 of 𝑇 . There is some non-zero 𝑣 ∈ 𝑉
such that 𝑇𝑣 = 𝜆𝑣; as shown in the proof of 5.27 we then have 𝑝(𝑇 )𝑣 = 𝑝(𝜆)𝑣 = 𝛼𝑣 and thus
𝛼 is an eigenvalue of 𝑝(𝑇 ).

For the converse, we must assume that 𝑝 is non-constant (see the errata for the third edition
of LADR), or that 𝑉  is finite-dimensional. To demonstrate this, let 𝑉 = 𝐂∞, 𝑝(𝑧) = 𝛼 ∈ 𝐂,
and let 𝑇 ∈ ℒ(𝐂∞) be the forward shift operator. Certainly 𝛼 is an eigenvalue of 𝑝(𝑇 ) = 𝛼𝐼 ,
but we may not express 𝛼 as 𝑝(𝜆) for some eigenvalue 𝜆 of 𝑇  because 𝑇  has no eigenvalues,
as shown in Exercise 5.A.19. Since any operator on a non-zero complex vector space has an
eigenvalue (5.19), we will not encounter this issue if we assume that 𝑉  is finite-dimensional.
The result as stated is true if we assume that 𝑝 is non-constant, as we now show.

Suppose that deg 𝑝 ≥ 1 and that 𝛼 is an eigenvalue of 𝑝(𝑇 ), i.e. there is some non-zero 𝑣 ∈ 𝑉
such that 𝑝(𝑇 )𝑣 = 𝛼𝑣. Let 𝑞 ∈ 𝒫(𝐂) be given by 𝑞(𝑧) = 𝑝(𝑧) − 𝛼. Because 𝑞 is a polynomial
over 𝐂, 4.13 shows that there is a factorization

𝑞(𝑧) = 𝑐(𝑧 − 𝜆1) ⋯ (𝑧 − 𝜆𝑚)

for some 𝑐, 𝜆1, …, 𝜆𝑚 ∈ 𝐂. Since deg 𝑞 = deg 𝑝 ≥ 1, it must be the case that 𝑐 ≠ 0 and 𝑚 ≥ 1.
Note that 𝑞(𝑇 )𝑣 = 0 since 𝑝(𝑇 )𝑣 = 𝛼𝑣 and thus

0 = 𝑞(𝑇 )𝑣 = 𝑐(𝑇 − 𝜆1𝐼) ⋯ (𝑇 − 𝜆𝑚𝐼)𝑣.

Because 𝑐 ≠ 0 and 𝑣 ≠ 0, the equation above implies that there is some 𝑘 ∈ {1, …, 𝑚}
such that 𝑇 − 𝜆𝑘𝐼 is not injective, i.e. 𝜆𝑘 is an eigenvalue of 𝑇 . Furthermore,
𝑝(𝜆𝑘) = 𝑞(𝜆𝑘) + 𝛼 = 𝛼 since 𝜆𝑘 is a zero of 𝑞.
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Exercise 5.B.5. Give an example of an operator on 𝐑2 that shows the result in Exercise
4 does not hold if 𝐂 is replaced with 𝐑.

Solution. Let 𝑇 ∈ ℒ(𝐑2) be given by 𝑇 (𝑥, 𝑦) = (−𝑦, 𝑥), i.e. a counterclockwise rotation
about the origin by 90°. Let 𝑝(𝑡) = 𝑡2 and notice that 𝑝(𝑇 ) = 𝑇 2 = −𝐼 , since 𝑇 2 is a counter-
clockwise rotation about the origin by 180°. Thus 𝑝(𝑇 ) has the eigenvalue −1. However, we
cannot possibly express −1 as 𝑝(𝜆) for some eigenvalue 𝜆 of 𝑇  because 𝑇  has no eigenvalues,
as shown in 5.9(a).

Exercise 5.B.6. Suppose 𝑇 ∈ ℒ(𝐅2) is defined by 𝑇 (𝑤, 𝑧) = (−𝑧, 𝑤). Find the minimal
polynomial of 𝑇 .

Solution. Let 𝑒1, 𝑒2 be the standard basis of 𝐅2 and note that 𝑇𝑒1 = 𝑒2 and 𝑇 2𝑒1 = −𝑒1.
Note further that the system

𝑐0𝑒1 + 𝑐1𝑇𝑒1 = −𝑇 2𝑒1, i.e. 𝑐0𝑒1 + 𝑐1𝑒2 = 𝑒1,

has the unique solution 𝑐0 = 1 and 𝑐1 = 0. As shown in the textbook (see the discussion after
5.24), this implies that the minimal polynomial of 𝑇  is 𝑝(𝑡) = 1 + 𝑡2.

Exercise 5.B.7.

(a) Give an example of 𝑆, 𝑇 ∈ ℒ(𝐅2) such that the minimal polynomial of 𝑆𝑇  does
not equal the minimal polynomial of 𝑇𝑆.

(b) Suppose 𝑉  is finite-dimensional and 𝑆, 𝑇 ∈ ℒ(𝑉 ). Prove that if at least one of 𝑆, 𝑇
is invertible, then the minimal polynomial of 𝑆𝑇  equals the minimal polynomial
of 𝑇𝑆.

Hint: Show that if 𝑆 is invertible and 𝑝 ∈ 𝒫(𝐅), then 𝑝(𝑇𝑆) = 𝑆−1𝑝(𝑆𝑇 )𝑆.

Solution.

(a) Let 𝑆, 𝑇 ∈ ℒ(𝐅2) be the operators whose matrices with respect to the standard basis
of 𝐅2 are

ℳ(𝑆) = (1
0

0
0) and ℳ(𝑇) = (0

0
1
0).

A simple computation shows that

ℳ(𝑆𝑇) = (0
0

1
0) and ℳ(𝑇𝑆) = (0

0
0
0).

It follows that the minimal polynomial of 𝑇𝑆 is 𝑝(𝑧) = 𝑧. Since 𝑝(𝑆𝑇 ) = 𝑆𝑇 ≠ 0, it
cannot be the case that 𝑝 is the minimal polynomial of 𝑆𝑇 .
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(b) Suppose at least one of 𝑆, 𝑇  is invertible, say 𝑆 (the case where 𝑇  is invertible
is handled similarly). Notice that (𝑇𝑆)0 = 𝐼 = 𝑆−1𝐼𝑆 = 𝑆−1(𝑆𝑇 )0𝑆. Suppose that
(𝑇𝑆)𝑘 = 𝑆−1(𝑆𝑇 )𝑘𝑆 for some non-negative integer 𝑘 and observe that

(𝑇𝑆)𝑘+1 = (𝑇𝑆)𝑘𝑇𝑆 = 𝑆−1(𝑆𝑇 )𝑘𝑆𝑇𝑆 = 𝑆−1(𝑆𝑇 )𝑘+1𝑆.

It follows by induction that (𝑇𝑆)𝑘 = 𝑆−1(𝑆𝑇 )𝑘𝑆 for all non-negative integers 𝑘. Now
suppose 𝑝(𝑧) = ∑𝑛

𝑘=0 𝑎𝑘𝑧𝑘 is some polynomial in 𝒫(𝐅) and observe that

𝑝(𝑇𝑆) = ∑
𝑛

𝑘=0
𝑎𝑘(𝑇𝑆)𝑘 = ∑

𝑛

𝑘=0
𝑎𝑘𝑆−1(𝑆𝑇 )𝑘𝑆 = 𝑆−1(∑

𝑛

𝑘=0
𝑎𝑘(𝑆𝑇 )𝑘)𝑆 = 𝑆−1𝑝(𝑆𝑇 )𝑆.

We can now show that the minimal polynomial of 𝑆𝑇  equals the minimal polynomial
of 𝑇𝑆. Let 𝑝 be the minimal polynomial of 𝑆𝑇  and let 𝑞 be the minimal polynomial of
𝑇𝑆. Notice that

𝑝(𝑇𝑆) = 𝑆−1𝑝(𝑆𝑇 )𝑆 = 0 and 0 = 𝑞(𝑇𝑆) = 𝑆−1𝑞(𝑆𝑇 )𝑆 ⇒ 𝑞(𝑆𝑇 ) = 0.

It follows from 5.29 that 𝑝 is a polynomial multiple of 𝑞 and 𝑞 is a polynomial multiple
of 𝑝. This implies 𝑝 = 𝑐𝑞 for some 𝑐 ∈ 𝐅 (as the next lemma shows); because 𝑝 and 𝑞
are monic we must have 𝑐 = 1 and thus 𝑝 = 𝑞.

Lemma L.7. Suppose 𝑝, 𝑞 ∈ 𝒫(𝐅) are non-zero. If 𝑝 is a polynomial multiple of
𝑞 and 𝑞 is a polynomial multiple of 𝑝 then 𝑝 = 𝑐𝑞 for some 𝑐 ∈ 𝐅 ∖ {0}.

Proof. There are polynomials 𝑟, 𝑠 ∈ 𝒫(𝐅) such that 𝑝 = 𝑟𝑞 and 𝑞 = 𝑠𝑝, which gives
us 𝑝 = 𝑟𝑠𝑝. This implies that 𝑟(𝑥)𝑠(𝑥) = 1 for all 𝑥 ∈ 𝐅 such that 𝑝(𝑥) ≠ 0; there
are finitely many such 𝑥 because 𝑝 is non-zero. Thus 𝑟(𝑥)𝑠(𝑥) = 1 holds for in-
finitely many 𝑥 and so must hold for all 𝑥 ∈ 𝐅 (otherwise 𝑟𝑠 − 1 is a non-zero
polynomial with infinitely many roots). This equation forces deg 𝑟 = 1, so that 
𝑟 = 𝑐 for some 𝑐 ∈ 𝐅 ∖ {0}. Thus 𝑝 = 𝑐𝑞. □

Exercise 5.B.8. Suppose 𝑇 ∈ ℒ(𝐑2) is the operator of counterclockwise rotation by 
1°. Find the minimal polynomial of 𝑇 .

Because dim 𝐑2 = 2, the degree of the minimal polynomial of 𝑇  is at most 2. Thus
the minimal polynomial of 𝑇  is not the tempting polynomial 𝑥180 + 1, even though
𝑇 180 = −𝐼 .

Solution. Let 𝑒1, 𝑒2 be the standard basis of 𝐑2 and observe that

𝑇𝑒1 = cos( 𝜋
180)𝑒1 + sin( 𝜋

180)𝑒2 and 𝑇 2𝑒1 = cos( 𝜋
90)𝑒1 + sin( 𝜋

90)𝑒2.

Thus, solving the system of equations 𝑐0𝑒1 + 𝑐1𝑇𝑒1 = −𝑇𝑒2 amounts to solving the system
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⎝
⎜⎜
⎛1

0

cos( 𝜋
180)

sin( 𝜋
180)⎠

⎟⎟
⎞(

𝑐0

𝑐1
) =

⎝
⎜⎜
⎛− cos( 𝜋

90)

− sin( 𝜋
90)⎠

⎟⎟
⎞.

This system of equations has the unique solution 𝑐0 = 1 and 𝑐1 = −2 cos( 𝜋
180). As shown in

the textbook (see the discussion after 5.24), this implies that the minimal polynomial of 𝑇
is 𝑝(𝑥) = 1 − 2 cos( 𝜋

180)𝑥 + 𝑥2.

Exercise 5.B.9. Suppose 𝑇 ∈ ℒ(𝑉 ) is such that with respect to some basis of 𝑉 , all
entries of the matrix of 𝑇  are rational numbers. Explain why all coefficients of the min-
imal polynomial of 𝑇  are rational numbers.

Solution. By 5.22, there exists a minimal positive integer 𝑚 ≤ dim 𝑉  such that the equation

𝑐0𝐼 + 𝑐1𝑇 + ⋯ + 𝑐𝑚−1𝑇 𝑚−1 = −𝑇 𝑚 (1)

has a unique solution 𝑐0, 𝑐1, …, 𝑐𝑚−1 ∈ 𝐅. Moreover, the numbers 𝑐0, 𝑐1, …, 𝑐𝑚−1, 1 are the
coefficients of the minimal polynomial of 𝑇 . Thus it will suffice to show that each 𝑐𝑖 is a
rational number.

By assumption there is a basis 𝑣1, …, 𝑣𝑛 of 𝑉  such that the entries of the matrix of 𝑇  with
respect to this basis are rational numbers. Let 𝐴 denote this matrix and consider the matrix
equation

𝑥0𝐼 + 𝑥1𝐴 + ⋯ + 𝑥𝑚−1𝐴𝑚−1 = −𝐴𝑚.

As noted in the textbook (see the discussion after 5.24), this equation can be thought of as
a system of 𝑛2 equations in the 𝑚 unknowns 𝑥0, 𝑥1, …, 𝑥𝑚−1. That is, letting (𝐴𝑖)𝑗,𝑘 be the
entry in the 𝑗th row and 𝑘th column of 𝐴𝑖, for each 𝑗, 𝑘 ∈ {1, …, 𝑛} we have a linear equation

∑
𝑚−1

𝑖=0
(𝐴𝑖)𝑗,𝑘 𝑥𝑖 = (−𝐴𝑚)𝑗,𝑘.

Because the entries of 𝐴 are rational, it follows from the definition of matrix multiplication
that each (𝐴𝑖)𝑗,𝑘 is also rational. Thus each coefficient in this system of equations is a rational
number. If this system has a solution (𝑥0, 𝑥1, …, 𝑥𝑚−1), then Gaussian elimination (or some
other method) shows that each 𝑥𝑖 is a rational function of the coefficients of the system; it
follows that each 𝑥𝑖 is rational. Now observe that equation (1) implies that (𝑐0, 𝑐1, …, 𝑐𝑚−1)
is a solution of this system of equations. Thus each 𝑐𝑖 is rational.

Exercise 5.B.10. Suppose 𝑉  is finite-dimensional, 𝑇 ∈ ℒ(𝑉 ), and 𝑣 ∈ 𝑉 . Prove that

span(𝑣, 𝑇 𝑣, …, 𝑇 𝑚𝑣) = span(𝑣, 𝑇 𝑣, …, 𝑇 dim 𝑉 −1𝑣)

for all integers 𝑚 ≥ dim 𝑉 − 1.
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Solution. Let 𝑛 = dim 𝑉  and let 𝑈𝑚 = span(𝑣, 𝑇 𝑣, …, 𝑇 𝑚𝑣) for a non-negative integer 𝑚;
define 𝑈−1 = {0}. Our goal is to show that 𝑈𝑚 = 𝑈𝑛−1 for all 𝑚 ≥ 𝑛 − 1.

First we will use induction to show that if 𝑇 𝑘+1𝑣 ∈ 𝑈𝑘 for some 𝑘 ≥ −1 then 𝑇 𝑚𝑣 ∈ 𝑈𝑘

for all 𝑚 ≥ 𝑘 + 1. The base case 𝑚 = 𝑘 + 1 is clear, so suppose that 𝑇 𝑚𝑣 ∈ 𝑈𝑘 for some
𝑚 ≥ 𝑘 + 1, i.e.

𝑇 𝑚𝑣 = 𝑎0𝑣 + 𝑎1𝑇𝑣 + ⋯ + 𝑎𝑘−1𝑇 𝑘−1𝑣 + 𝑎𝑘𝑇 𝑘𝑣.

Now observe that

𝑇 𝑚+1𝑣 = 𝑎0𝑇𝑣 + 𝑎1𝑇 2𝑣 + ⋯ + 𝑎𝑘−1𝑇 𝑘𝑣 + 𝑎𝑘𝑇 𝑘+1𝑣.

Certainly 𝑎0𝑇𝑣 + 𝑎1𝑇 2𝑣 + ⋯ + 𝑎𝑘−1𝑇 𝑘𝑣 ∈ 𝑈𝑘, and since 𝑇 𝑘+1𝑣 belongs to 𝑈𝑘 by assumption,
it follows that 𝑇 𝑚+1𝑣 ∈ 𝑈𝑘. This completes the induction step.

The previous result implies that if 𝑇 𝑘+1𝑣 ∈ 𝑈𝑘 for some 𝑘 then 𝑈𝑚 = 𝑈𝑘 for all 𝑚 ≥ 𝑘. For
a non-negative integer 𝑚, note that if 𝑇 𝑘+1𝑣 ∉ 𝑈𝑘 for all 𝑘 ∈ {−1, …, 𝑚 − 1} then the linear
dependence lemma (2.19) shows that the list 𝑣, 𝑇 𝑣, …, 𝑇 𝑚𝑣 is linearly independent. Because
the list 𝑣, 𝑇 𝑣, …, 𝑇 𝑛𝑣 is linearly dependent (it has length 𝑛 + 1 and dim 𝑉 = 𝑛), it follows
that there exists some 𝑘 ∈ {−1, …, 𝑛 − 1} such that 𝑇 𝑘+1𝑣 ∈ 𝑈𝑘, which implies that 𝑈𝑚 = 𝑈𝑘

for all 𝑚 ≥ 𝑘. In particular, 𝑈𝑚 = 𝑈𝑛−1 for all 𝑚 ≥ 𝑛 − 1.

Exercise 5.B.11. Suppose 𝑉  is a two-dimensional vector space, 𝑇 ∈ ℒ(𝑉 ), and the
matrix of 𝑇  with respect to some basis of 𝑉  is (𝑎

𝑏
𝑐
𝑑).

(a) Show that 𝑇 2 − (𝑎 + 𝑑)𝑇 + (𝑎𝑑 − 𝑏𝑐)𝐼 = 0.

(b) Show that the minimal polynomial of 𝑇  equals

{
𝑧 − 𝑎 if 𝑏 = 𝑐 = 0 and 𝑎 = 𝑑,
𝑧2 − (𝑎 + 𝑑)𝑧 + (𝑎𝑑 − 𝑏𝑐) otherwise.

Solution.

(a) Letting 𝐴 = (𝑎
𝑏

𝑐
𝑑), a straightforward calculation shows that

𝐴2 − (𝑎 + 𝑑)𝐴 + (𝑎𝑑 − 𝑏𝑐)𝐼 = 0.

It follows that 𝑇 2 − (𝑎 + 𝑑)𝑇 + (𝑎𝑑 − 𝑏𝑐)𝐼 = 0.

(b) If 𝑏 = 𝑐 = 0 and 𝑎 = 𝑑 then 𝑇 = 𝑎𝐼 and it is then clear that the minimal polynomial of
𝑇  is 𝑧 − 𝑎. If 𝑏 ≠ 0, or 𝑐 ≠ 0, or 𝑎 ≠ 𝑑, then 𝑇  is not a scalar multiple of the identity.
It follows that the equation 𝑥𝐼 = −𝑇  has no solution for 𝑥 ∈ 𝐅 and thus the degree
of the minimal polynomial of 𝑇  must be at least 2. Since the degree of the minimal
polynomial of 𝑇  can be at most dim 𝑉 = 2, we see that the degree of the minimal
polynomial of 𝑇  must equal 2. Thus, because 𝑝(𝑧) = 𝑧2 − (𝑎 + 𝑑)𝑧 + (𝑎𝑑 − 𝑏𝑐) is monic,
satisfies 𝑝(𝑇 ) = 0, and has degree equal to the degree of the minimal polynomial of 𝑇 ,
it follows from the uniqueness of the minimal polynomial of an operator that 𝑝 is the
minimal polynomial of 𝑇 .
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Exercise 5.B.12. Define 𝑇 ∈ ℒ(𝐅𝑛) by 𝑇 (𝑥1, 𝑥2, 𝑥3, …, 𝑥𝑛) = (𝑥1, 2𝑥2, 3𝑥3, …, 𝑛𝑥𝑛).
Find the minimal polynomial of 𝑇 .

Solution. Let 𝑝 ∈ 𝒫(𝐅) be the minimal polynomial of 𝑇 . As we showed in Exercise 5.A.42
(a), each 𝑘 ∈ {1, …, 𝑛} is an eigenvalue of 𝑇 . It follows from 5.27 that each 𝑘 ∈ {1, …, 𝑛} is
a zero of 𝑝, which implies deg 𝑝 ≥ 𝑛. Since deg 𝑝 ≤ 𝑛 by 5.22, it must be the case that

𝑝(𝑧) = (𝑧 − 1)(𝑧 − 2)(𝑧 − 3) ⋯ (𝑧 − 𝑛).

Exercise 5.B.13. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝑝 ∈ 𝒫(𝐅). Prove that there exists a unique 
𝑟 ∈ 𝒫(𝐅) such that 𝑝(𝑇 ) = 𝑟(𝑇 ) and deg 𝑟 is less than the degree of the minimal poly-
nomial of 𝑇 .

Solution. Let 𝑞 ∈ 𝒫(𝐅) be the minimal polynomial of 𝑇 , which must be non-zero. The di-
vision algorithm for polynomials (4.9) shows that there exist unique polynomials 𝑠, 𝑟 ∈ 𝒫(𝐅)
such that 𝑝 = 𝑠𝑞 + 𝑟 and deg 𝑟 < deg 𝑞. Because 𝑞(𝑇 ) = 0, it follows that 𝑝(𝑇 ) = 𝑟(𝑇 ).

Exercise 5.B.14. Suppose 𝑉  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 ) has minimal polyno-
mial 4 + 5𝑧 − 6𝑧2 − 7𝑧3 + 2𝑧4 + 𝑧5. Find the minimal polynomial of 𝑇 −1.

Solution. We will use the following useful lemma.
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Lemma L.8. Suppose 𝑉  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 ) is invertible. If the mini-
mal polynomial of 𝑇  is 𝑝 ∈ 𝒫(𝐅) with 𝑝 = ∑𝑚

𝑘=0 𝑐𝑘𝑧𝑘, then the minimal polynomial of
𝑇 −1 is

1
𝑐0

∑
𝑚

𝑘=0
𝑐𝑚−𝑘𝑧𝑘.

(Note that 𝑐0 ≠ 0 since 𝑇  is invertible.)

Proof. Let 𝑞 = 1
𝑐0

∑𝑚
𝑘=0 𝑐𝑚−𝑘𝑧𝑘 and note that 𝑞 is monic and deg 𝑞 = 𝑚. Note further

that

0 = 𝑇 −𝑚𝑝(𝑇 ) = 𝑇 −𝑚 ∑
𝑚

𝑘=0
𝑐𝑘𝑇 𝑘 = ∑

𝑚

𝑘=0
𝑐𝑘𝑇 𝑘−𝑚

= ∑
𝑚

𝑘=0
𝑐𝑘(𝑇 −1)𝑚−𝑘 = ∑

𝑚

𝑘=0
𝑐𝑚−𝑘(𝑇 −1)𝑘 = 𝑞(𝑇 −1).

It follows that the degree of the minimal polynomial of 𝑇 −1 is at most deg 𝑞 = 𝑚. By
replacing 𝑇  with 𝑇 −1 in the previous argument and using that (𝑇 −1)−1 = 𝑇 , we see
that the minimal polynomials of 𝑇  and 𝑇 −1 must have the same degree. Because 𝑞 is
monic, satisfies 𝑞(𝑇 −1) = 0, and has the same degree as the minimal polynomial of 
𝑇 −1, it follows from the uniqueness of the minimal polynomial of an operator that 𝑞 is
the minimal polynomial of 𝑇 −1. □

It is now immediate from Lemma L.8 that the minimal polynomial of 𝑇 −1 is

1
4 + 1

2𝑧 − 7
4𝑧2 − 3

2𝑧3 + 5
4𝑧4 + 𝑧5.

Exercise 5.B.15. Suppose 𝑉  is a finite-dimensional complex vector space with
dim 𝑉 > 0 and 𝑇 ∈ ℒ(𝑉 ). Define 𝑓 : 𝐂 → 𝐑 by

𝑓(𝜆) = dim range(𝑇 − 𝜆𝐼).

Prove that 𝑓 is not a continuous function.

Solution. Let 𝑚 = dim 𝑉  and note that, by 5.19, there exists an eigenvalue 𝜆 ∈ 𝐂 of 𝑇 .
It follows from 5.7 that 𝑇 − 𝜆𝐼 is not surjective, so that 𝑓(𝜆) < 𝑚. Consider the sequence 
(𝜆𝑛)∞

𝑛=1 of distinct complex numbers given by 𝜆𝑛 = 𝜆 + 1
𝑛 , which satisfies lim𝑛→∞ 𝜆𝑛 = 𝜆.

Because 𝑇  can have at most 𝑚 distinct eigenvalues 5.13, we may choose a subsequence 
(𝜆𝑛𝑘)∞

𝑘=1 such that each 𝜆𝑛𝑘 is not an eigenvalue of 𝑇 . By 5.7 each operator 𝑇 − 𝜆𝑛𝑘𝐼 must
be surjective. It follows that 𝑓(𝜆𝑛𝑘) = 𝑚 for each positive integer 𝑘, which implies

lim
𝑘→∞

𝑓(𝜆𝑛𝑘) = 𝑚 > 𝑓(𝜆) = 𝑓( lim
𝑘→∞

𝜆𝑛𝑘).
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Thus 𝑓 is not continuous at 𝜆.

Exercise 5.B.16. Suppose 𝑎0, …, 𝑎𝑛−1 ∈ 𝐅. Let 𝑇  be the operator on 𝐅𝑛 whose matrix
(with respect to the standard basis) is

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛0

1 0
1 ⋱

⋱
0
1

−𝑎0
−𝑎1
−𝑎2

⋮
−𝑎𝑛−2
−𝑎𝑛−1⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

,

Here all entries of the matrix are 0 except for all 1’s on the line under the diagonal and
the entries in the last column (some of which might also be 0). Show that the minimal
polynomial of 𝑇  is the polynomial

𝑎0 + 𝑎1𝑧 + ⋯ + 𝑎𝑛−1𝑧𝑛−1 + 𝑧𝑛.

The matrix above is called the companion matrix of the polynomial above. This exer-
cise shows that every monic polynomial is the minimal polynomial of some operator.
Hence a formula or an algorithm that could produce exact eigenvalues for each op-
erator on each 𝐅𝑛 could then produce exact zeros for each polynomial [by 5.27(a)].
Thus there is no such formula or algorithm. However, efficient numeric methods exist
for obtaining very good approximations for the eigenvalues of an operator.

Solution. Let 𝑒0, …, 𝑒𝑛−1 be the standard basis of 𝐅𝑛 and observe that

𝑇𝑒0 = 𝑒1, 𝑇 2𝑒0 = 𝑒2, …, 𝑇 𝑛−1𝑒0 = 𝑒𝑛−1, 𝑇 𝑛𝑒0 = −(𝑎0𝑒0 + ⋯ + 𝑎𝑛−1𝑒𝑛−1).

It follows that the equation 𝑐0𝑒0 + 𝑐1𝑇𝑒0 + 𝑐2𝑇 2𝑒0 + ⋯ + 𝑐𝑛−1𝑇 𝑛−1𝑒0 = −𝑇 𝑛𝑒0 is equivalent
to

𝑐0𝑒0 + 𝑐1𝑒1 + 𝑐2𝑒2 + ⋯ + 𝑐𝑛−1𝑒𝑛−1 = 𝑎0𝑒0 + 𝑎1𝑒1 + 𝑎2𝑒2 + ⋯ + 𝑎𝑛−1𝑒𝑛−1.

By unique representation, this equation has the unique solution (𝑐0, …, 𝑐𝑛−1) = (𝑎0, …, 𝑎𝑛−1).
It follows (see the discussion in the textbook after 5.24) that the minimal polynomial of 𝑇
is 𝑎0 + 𝑎1𝑧 + ⋯ + 𝑎𝑛−1𝑧𝑛−1 + 𝑧𝑛.

Exercise 5.B.17. Suppose 𝑉  is finite-dimensional, 𝑇 ∈ ℒ(𝑉 ), and 𝑝 is the minimal
polynomial of 𝑇 . Suppose 𝜆 ∈ 𝐅. Show that the minimal polynomial of 𝑇 − 𝜆𝐼 is the
polynomial 𝑞 defined by 𝑞(𝑧) = 𝑝(𝑧 + 𝜆).

Solution. Let 𝑠 be the minimal polynomial of 𝑇 − 𝜆𝐼 . Notice that 𝑞 is monic and satisfies 
deg 𝑞 = deg 𝑝. Notice further that

𝑞(𝑇 − 𝜆𝐼) = 𝑝(𝑇 − 𝜆𝐼 + 𝜆𝐼) = 𝑝(𝑇 ) = 0.
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It follows that deg 𝑠 ≤ deg 𝑞 = deg 𝑝. Now define a polynomial 𝑟 by 𝑟(𝑧) = 𝑠(𝑧 − 𝜆) and ob-
serve that deg 𝑟 = deg 𝑠 and that

𝑟(𝑇 ) = 𝑠(𝑇 − 𝜆𝐼) = 0.

It follows that deg 𝑝 ≤ deg 𝑟 = deg 𝑠. Thus deg 𝑠 = deg 𝑝. Because 𝑞 is a monic polynomial
satisfying 𝑞(𝑇 − 𝜆𝐼) = 0, and the degree of 𝑞 equals the degree of the minimal polynomial
of 𝑇 − 𝜆𝐼 , it follows from the uniqueness of the minimal polynomial of an operator that 𝑞 is
the minimal polynomial of 𝑇 − 𝜆𝐼 .

Exercise 5.B.18. Suppose 𝑉  is finite-dimensional, 𝑇 ∈ ℒ(𝑉 ), and 𝑝 is the minimal
polynomial of 𝑇 . Suppose 𝜆 ∈ 𝐅 ∖ {0}. Show that the minimal polynomial of 𝜆𝑇  is the
polynomial 𝑞 defined by 𝑞(𝑧) = 𝜆deg 𝑝𝑝( 𝑧

𝜆).

Solution. Let 𝑠 be the minimal polynomial of 𝜆𝑇 . Observe that deg 𝑞 = deg 𝑝 and that

𝑞(𝜆𝑇 ) = 𝜆deg 𝑝𝑝(𝑇 ) = 0.

Thus deg 𝑠 ≤ deg 𝑞. Let 𝑟 be given by 𝑟(𝑧) = 𝑠(𝜆𝑧) and notice that deg 𝑟 = deg 𝑠 since
𝜆 ≠ 0. Furthermore, 𝑟(𝑇 ) = 𝑠(𝜆𝑇 ) = 0, which implies deg 𝑝 ≤ deg 𝑟, i.e. deg 𝑞 ≤ deg 𝑠. Thus
deg 𝑠 = deg 𝑞. Because 𝑝 is monic, the highest degree term of 𝑝( 𝑧

𝜆) is 𝜆− deg 𝑝𝑧deg 𝑝 and it fol-
lows that 𝑞 is monic. Thus 𝑞 is a monic polynomial satisfying 𝑞(𝜆𝑇 ) = 0 whose degree equals
the degree of the minimal polynomial of 𝜆𝑇 . The uniqueness of the minimal polynomial of
an operator then implies that 𝑞 is the minimal polynomial of 𝜆𝑇 .

Exercise 5.B.19. Suppose 𝑉  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 ). Let ℰ be the subspace
of ℒ(𝑉 ) defined by

ℰ = {𝑞(𝑇 ) : 𝑞 ∈ 𝒫(𝐅)}.

Prove that dim ℰ equals the degree of the minimal polynomial of 𝑇 .

Solution. Let 𝑝 be the minimal polynomial of 𝑇 . Define Φ ∈ ℒ(𝒫(𝐅), ℒ(𝑉 )) by Φ𝑞 = 𝑞(𝑇 )
and notice that range Φ = ℰ. Notice further that, by 5.29, null Φ = {𝑝𝑞 : 𝑞 ∈ 𝒫(𝐅)}. Exercise
4.13 shows that dim 𝒫(𝐅)/(null Φ) = deg 𝑝 and 3.107 shows that Φ is an isomorphism from
𝒫(𝐅)/(null Φ) onto ℰ. Thus dim ℰ = deg 𝑝.

Exercise 5.B.20. Suppose 𝑇 ∈ ℒ(𝐅4) is such that the eigenvalues of 𝑇  are 3, 5, 8. Prove
that (𝑇 − 3𝐼)2(𝑇 − 5𝐼)2(𝑇 − 8𝐼)2 = 0.

Solution. Let 𝑝 be the minimal polynomial of 𝑇  and let 𝑞(𝑧) = (𝑧 − 3)2(𝑧 − 5)2(𝑧 − 8)2.
5.27 shows that 3, 5, 8 are zeros of 𝑝, so that 𝑝 is of the form

𝑝(𝑧) = 𝑠(𝑧)(𝑧 − 3)(𝑧 − 5)(𝑧 − 8)
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for some polynomial 𝑠. Because deg 𝑝 ≤ dim 𝐅4 = 4 and 3, 5, 8 are the only zeros of 𝑝, we
must have 𝑠 ∈ {1, 𝑧 − 3, 𝑧 − 5, 𝑧 − 8}. It follows that 𝑞 is a polynomial multiple of 𝑝 and thus,
by 5.29, 𝑞(𝑇 ) = 0.

Exercise 5.B.21. Suppose 𝑉  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 ). Prove that the min-
imal polynomial of 𝑇  has degree at most 1 + dim range 𝑇 .

If dim range 𝑇 < dim 𝑉 − 1, then this exercise gives a better upper bound than 5.22
for the degree of the minimal polynomial of 𝑇 .

Solution. Let 𝑝 ∈ 𝒫(𝐅) be the minimal polynomial of 𝑇  and let 𝑞 ∈ 𝒫(𝐅) be the minimal
polynomial of 𝑇 |range 𝑇 . For any 𝑣 ∈ 𝑉  observe that

𝑞(𝑇 )𝑇𝑣 = 𝑞(𝑇 |range 𝑇 )𝑇𝑣 = 0.

Thus 𝑞(𝑇 )𝑇 = 0. It follows from the minimality of deg 𝑝 that

deg 𝑝 ≤ deg(𝑥𝑞(𝑥)) = 1 + deg 𝑞 ≤ 1 + dim range 𝑇 .

Exercise 5.B.22. Suppose 𝑉  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 ). Prove that 𝑇  is in-
vertible if and only if 𝐼 ∈ span(𝑇 , 𝑇 2, …, 𝑇 dim 𝑉 ).

Solution. Let 𝑝(𝑧) = 𝑐0 + 𝑐1𝑧 + ⋯ + 𝑐𝑚−1𝑧𝑚−1 + 𝑧𝑚 be the minimal polynomial of 𝑇 . If 𝑇
is invertible then 5.32 shows that 𝑐0 ≠ 0 and thus

𝑐0𝐼 + 𝑐1𝑇 + ⋯ + 𝑐𝑚−1𝑇 𝑚−1 + 𝑇 𝑚 = 0

⇒ 𝐼 = −𝑐−1
0 (𝑐1𝑇 + ⋯ + 𝑐𝑚−1𝑇 𝑚−1 + 𝑇 𝑚) ∈ span(𝑇 , …, 𝑇 dim 𝑉 ).

Now suppose that 𝐼 ∈ span(𝑇 , 𝑇 2, …, 𝑇 𝑛), where 𝑛 = dim 𝑉 , so that

𝐼 = 𝑎1𝑇 + 𝑎2𝑇 2 + ⋯ + 𝑎𝑛𝑇 𝑛

for some 𝑎1, 𝑎2, …, 𝑎𝑛 ∈ 𝐅. Let 𝑞 ∈ 𝒫(𝐅) be given by 𝑞(𝑧) = −1 + 𝑎1𝑧 + 𝑎2𝑧2 + ⋯ + 𝑎𝑛𝑧𝑛 and
note that 𝑞(𝑇 ) = 0. It follows from 5.29 that 𝑞 is a polynomial multiple of 𝑝. Because 0 is
not a root of 𝑞, it must be that 0 is not a root of 𝑝 either, i.e. the constant term of 𝑝 is not
zero. 5.32 allows us to conclude that 𝑇  is invertible.

Exercise 5.B.23. Suppose 𝑉  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 ). Let 𝑛 = dim 𝑉 . Prove
that if 𝑣 ∈ 𝑉 , then span(𝑣, 𝑇 𝑣, …, 𝑇 𝑛−1𝑣) is invariant under 𝑇 .

Solution. It will suffice to show that 𝑇 𝑛𝑣 ∈ span(𝑣, 𝑇 𝑣, …, 𝑇 𝑛−1𝑣). This is immediate from
Exercise 5.B.10.
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Exercise 5.B.24. Suppose 𝑉  is a finite-dimensional complex vector space. Suppose 
𝑇 ∈ ℒ(𝑉 ) is such that 5 and 6 are eigenvalues of 𝑇  and that 𝑇  has no other eigenvalues.
Prove that (𝑇 − 5𝐼)dim 𝑉 −1(𝑇 − 6𝐼)dim 𝑉 −1 = 0.

Solution. Let 𝑛 = dim 𝑉  and note that because 𝑇  has 2 distinct eigenvalues, 5.11 implies 
𝑛 ≥ 2. Let 𝑞(𝑧) = (𝑧 − 5)𝑛−1(𝑧 − 6)𝑛−1, and let 𝑝 be the minimal polynomial of 𝑇 . Since 5
and 6 are the only eigenvalues of 𝑇 , 5.27(b) shows that 𝑝 is of the form 𝑝(𝑧) = (𝑧 − 5)𝑘(𝑧 − 6)ℓ

for some positive integers 𝑘, ℓ. Thus 𝑞 is a polynomial multiple of 𝑝 and it then follows from
5.29 that 𝑞(𝑇 ) = 0.

Exercise 5.B.25. Suppose 𝑉  is finite-dimensional, 𝑇 ∈ ℒ(𝑉 ), and 𝑈  is a subspace of 
𝑉  that is invariant under 𝑇 .

(a) Prove that the minimal polynomial of 𝑇  is a polynomial multiple of the minimal
polynomial of the quotient operator 𝑇/𝑈 .

(b) Prove that

(minimal polynomial of 𝑇 |𝑈) × (minimal polynomial of 𝑇/𝑈)

is a polynomial multiple of the minimal polynomial of 𝑇 .

The quotient operator 𝑇/𝑈  was defined in Exercise 38 in Section 5A.

Solution.

(a) We will use the following lemma.

Lemma L.9. Suppose 𝑇 ∈ ℒ(𝑉 ), 𝑈  is a subspace of 𝑉  invariant under 𝑇 , and 
𝜋 : 𝑉 → 𝑉/𝑈  is the quotient map. If 𝑝 ∈ 𝒫(𝐅) then 𝜋𝑝(𝑇 ) = 𝑝(𝑇/𝑈)𝜋.

Proof. Suppose 𝑝 = ∑𝑚
𝑘=0 𝑐𝑘𝑧𝑘 and let 𝜋 : 𝑉 → 𝑉/𝑈  be the quotient map. For

any non-negative integer 𝑘 and any 𝑣 ∈ 𝑉 , the definition of the quotient operator
implies that (𝑇/𝑈)𝑘(𝑣 + 𝑈) = 𝑇 𝑘𝑣 + 𝑈 . Thus, for any 𝑣 ∈ 𝑉 ,

𝜋𝑝(𝑇 )𝑣 = ∑
𝑚

𝑘=0
𝑐𝑘𝜋(𝑇 𝑘𝑣) = ∑

𝑚

𝑘=0
𝑐𝑘(𝑇 𝑘𝑣 + 𝑈)

= ∑
𝑚

𝑘=0
𝑐𝑘(𝑇/𝑈)𝑘(𝑣 + 𝑈) = 𝑝(𝑇/𝑈)(𝜋(𝑣)).

It follows that 𝜋𝑝(𝑇 ) = 𝑝(𝑇/𝑈)𝜋. □

Let 𝑝 = ∑𝑚
𝑘=0 𝑐𝑘𝑧𝑘 be the minimal polynomial of 𝑇  and let 𝜋 : 𝑉 → 𝑉/𝑈  be the quo-

tient map. For any 𝑣 + 𝑈 ∈ 𝑉/𝑈 , it follows from Lemma L.9 that

𝑝(𝑇/𝑈)(𝑣 + 𝑈) = 𝑝(𝑇/𝑈)(𝜋(𝑣)) = 𝜋𝑝(𝑇 )𝑣 = 𝜋(0) = 0.
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Thus 𝑝(𝑇/𝑈) = 0. It then follows from 5.29 that 𝑝 is a multiple of the minimal polyno-
mial of 𝑇/𝑈 .

(b) Let 𝑟 and 𝑠 be the minimal polynomials of 𝑇 |𝑈  and 𝑇/𝑈 , and let 𝜋 : 𝑉 → 𝑉/𝑈  be the
quotient map. By 2.33 there is a subspace 𝑊  of 𝑉  such that 𝑉 = 𝑈 ⊕ 𝑊 . For any 
𝑢 ∈ 𝑈 , notice that 𝑟(𝑇 )𝑢 = 𝑟(𝑇 |𝑈)𝑢 = 0. It then follows from Lemma L.9 that, for any
𝑤 ∈ 𝑊 ,

𝜋(𝑠(𝑇 )𝑤) = 𝑠(𝑇/𝑈)(𝑤 + 𝑈) = 0 ⇒ 𝑠(𝑇 )𝑤 ∈ 𝑈 ⇒ 𝑟(𝑇 )𝑠(𝑇 )𝑤 = 0.

Let 𝑣 = 𝑢 + 𝑤 ∈ 𝑉  be given and observe that

𝑟(𝑇 )𝑠(𝑇 )𝑣 = 𝑟(𝑇 )𝑠(𝑇 )𝑢 + 𝑟(𝑇 )𝑠(𝑇 )𝑤 = 𝑠(𝑇 )𝑟(𝑇 )𝑢 = 0.

Thus 𝑟(𝑇 )𝑠(𝑇 ) = 0 and it then follows from 5.29 that 𝑟𝑠 is a polynomial multiple of
the minimal polynomial of 𝑇 .

Exercise 5.B.26. Suppose 𝑉  is finite-dimensional, 𝑇 ∈ ℒ(𝑉 ), and 𝑈  is a subspace of 
𝑉  that is invariant under 𝑇 . Prove that the set of eigenvalues of 𝑇  equals the union of
the set of eigenvalues of 𝑇 |𝑈  and the set of eigenvalues of 𝑇/𝑈 .

Solution. Let 𝑝, 𝑟, and 𝑠 be the minimal polynomials of 𝑇 , 𝑇 |𝑈 , and 𝑇/𝑈 , and let 𝑍𝑝, 𝑍𝑟,
and 𝑍𝑠 be the collection of zeros of 𝑝, 𝑟, and 𝑠. By 5.27(a), it will suffice to show that
𝑍𝑝 = 𝑍𝑟 ∪ 𝑍𝑠. It follows from Exercise 5.B.25 and 5.31 that there exist polynomials 𝑞, 𝑎, 𝑏
such that:

(1) 𝑟(𝑥)𝑠(𝑥) = 𝑝(𝑥)𝑞(𝑥);

(2) 𝑝(𝑥) = 𝑎(𝑥)𝑟(𝑥);

(3) 𝑝(𝑥) = 𝑏(𝑥)𝑠(𝑥).

Equation (1) shows that if 𝜆 ∈ 𝐅 is such that 𝑝(𝜆) = 0 then 𝑟(𝜆) = 0 or 𝑠(𝜆) = 0. That is, 
𝑍𝑝 ⊆ 𝑍𝑟 ∪ 𝑍𝑠. Equations (2) and (3) show that if 𝜆 ∈ 𝐅 is such that 𝑟(𝜆) = 0 or 𝑠(𝜆) = 0
then 𝑝(𝜆) = 0. That is, 𝑍𝑟 ∪ 𝑍𝑠 ⊆ 𝑍𝑝. Thus 𝑍𝑝 = 𝑍𝑟 ∪ 𝑍𝑠.

Exercise 5.B.27. Suppose 𝐅 = 𝐑, 𝑉  is finite-dimensional, and 𝑇 ∈ ℒ(𝑉 ). Prove that
the minimal polynomial of 𝑇𝐂 equals the minimal polynomial of 𝑇 .

The complexification 𝑇𝐂 was defined in Exercise 33 of Section 3B.

Solution. Let 𝑝 ∈ 𝒫(𝐑) be the minimal polynomial of 𝑇  and let 𝑞 ∈ 𝒫(𝐂) be the minimal
polynomial of 𝑇𝐂. Because we can identify 𝑎 ∈ 𝐑 with 𝑎 + 0𝑖 ∈ 𝐂, we can think of 𝑝 as
a polynomial with complex coefficients. Thus it makes sense to consider 𝑝(𝑇𝐂). From the
definitions of 𝑇𝐂 and of scalar multiplication in 𝑉𝐂, note that, for any non-negative integer
𝑘, any 𝑎 ∈ 𝐑, and any 𝑢 + 𝑖𝑣 ∈ 𝑉𝐂,

𝑇 𝑘
𝐂(𝑢 + 𝑖𝑣) = (𝑇 𝑘𝑢) + 𝑖(𝑇 𝑘𝑣) and 𝑎𝑇𝐂(𝑢 + 𝑖𝑣) = (𝑎𝑇𝑢) + 𝑖(𝑎𝑇𝑣).
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Combining this with the definition of vector addition in 𝑉𝐂, for all 𝑢 + 𝑖𝑣 ∈ 𝑉𝐂 it follows that

𝑝(𝑇𝐂)(𝑢 + 𝑖𝑣) = (𝑝(𝑇 )𝑢) + 𝑖(𝑝(𝑇 )𝑣) = 0 + 0𝑖.

Thus 𝑝(𝑇𝐂) = 0 and hence, by 5.29, 𝑝 is a polynomial multiple of 𝑞, where we think of 𝑝 as
an element of 𝒫(𝐂).

Let ℬ ≔ 𝑣1, …, 𝑣𝑛 be a basis of 𝑉  and let ℬ𝐂 ≔ 𝑣1 + 0𝑖, …, 𝑣𝑛 + 0𝑖; it follows from Exercise
2.B.11 that ℬ𝐂 is a basis of 𝑉𝐂. Because 𝑇𝐂(𝑣𝑘 + 0𝑖) = 𝑇𝑣𝑘 + 0𝑖, the matrix of 𝑇𝐂 with
respect to ℬ𝐂 must be equal to the matrix of 𝑇  with respect to ℬ, where we think of 
ℳ(𝑇 , ℬ) as a matrix with complex entries. Letting 𝐴 denote this matrix, it follows that each
entry of 𝐴 is a real number and hence that 𝐴 = 𝐴, where 𝐴 is the matrix obtained by taking
the complex conjugate of each entry of 𝐴. Note that, for any non-negative integer 𝑘, each
entry of 𝐴𝑘 must also be a real number and thus 𝐴𝑘 = 𝐴𝑘. Suppose that 𝑞 = ∑𝑚

𝑘=0 𝑎𝑘𝑧𝑘 and
observe that

0 = 𝑞(𝐴) ⇒ 0 = 𝑞(𝐴) = ∑
𝑚

𝑘=0
𝑎𝑘𝐴𝑘 = ∑

𝑚

𝑘=0
𝑎𝑘𝐴𝑘 = ∑

𝑚

𝑘=0
𝑎𝑘𝐴𝑘 = ∑

𝑚

𝑘=0
𝑎𝑘𝐴𝑘;

the algebraic properties of “matrix complex conjugation” used here follow quickly from 4.4.
Thus, letting 𝑞 = ∑𝑚

𝑘=0 𝑎𝑘𝑧𝑘, we have 𝑞(𝐴) = 0, which implies that (𝑞 − 𝑞)(𝐴) = 0 and hence
that (𝑞 − 𝑞)(𝑇𝐂) = 0. Note that, because 𝑞 and 𝑞 are monic, we have deg(𝑞 − 𝑞) < deg 𝑞. It
must then be the case that 𝑞 − 𝑞 is the zero polynomial, since 𝑞 is the minimal polynomial
of 𝑇𝐂. This gives us 𝑎𝑘 = 𝑎𝑘, i.e. 𝑎𝑘 ∈ 𝐑, for each 𝑘 and thus 𝑞 can be thought of as a
polynomial with real coefficients, so that 𝑞(𝑇 ) makes sense. Because 𝐴 is also the matrix of
𝑇  with respect to ℬ, the equation 0 = 𝑞(𝐴) shows that 0 = 𝑞(𝑇 ) and thus, by 5.29, 𝑞 must
be a polynomial multiple of 𝑝. We may now appeal to Lemma L.7 and the fact that 𝑝 and 
𝑞 are both monic to conclude that 𝑝 = 𝑞.

Exercise 5.B.28. Suppose 𝑉  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 ). Prove that the min-
imal polynomial of 𝑇 ′ ∈ ℒ(𝑉 ′) equals the minimal polynomial of 𝑇 .

The dual map 𝑉 ′ was defined in Section 3F.

Solution. Let 𝑝 be the minimal polynomial of 𝑇  and let 𝑞 be the minimal polynomial of 𝑇 ′.
For any 𝑠 ∈ 𝒫(𝐅), 3.120 shows that 𝑠(𝑇 )′ = 𝑠(𝑇 ′), and Exercise 3.F.16 shows that 0′ = 0.
Thus

𝑝(𝑇 ) = 0 ⇒ 𝑝(𝑇 )′ = 0′ ⇔ 𝑝(𝑇 ′) = 0.

It follows from 5.29 that 𝑝 is a polynomial multiple of 𝑞. Let Λ : 𝑉 → 𝑉 ″ be the isomorphism
defined in Exercise 3.F.32 and observe that

0 = 𝑞(𝑇 ′) = 𝑞(𝑇 )′ ⇒ 𝑞(𝑇 )″ = 0 ⇒ 𝑞(𝑇 )″ ∘ Λ = 0 ⇒ Λ ∘ 𝑞(𝑇 ) = 0 ⇒ 𝑞(𝑇 ) = 0,
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where we have used Exercise 3.F.32 (b) for the third implication and the injectivity of Λ
for the last implication. Thus, by 5.29, 𝑞 must be a polynomial multiple of 𝑝. We may now
appeal to Lemma L.7 and the fact that 𝑝 and 𝑞 are both monic to conclude that 𝑝 = 𝑞.

Exercise 5.B.29. Show that every operator on a finite-dimensional vector space of
dimension at least two has an invariant subspace of dimension two.

Exercise 6 in Section 5C will give an improvement of this result when 𝐅 = 𝐂.

Solution. For an integer 𝑘 ≥ 2, let 𝑃(𝑘) be the statement that any operator on a vector
space of dimension 𝑘 has an invariant subspace of dimension two. We will proceed by induc-
tion on 𝑘. For the base case 𝑃(2), we can take the invariant subspace to be the vector space
itself.

Now suppose that 𝑃(𝑘) holds for some 𝑘 ≥ 2, let 𝑇  be an operator on some vector space 
𝑉  satisfying dim 𝑉 = 𝑘 + 1, and let 𝑝 ∈ 𝒫(𝐅) be the minimal polynomial of 𝑇 ; note that 
deg 𝑝 ≥ 1 since 𝑉 ≠ {0}.

If 𝑝 has a linear factor, i.e. if 𝑝 has a zero, then 5.27 shows that 𝑇  has an eigenvalue. It then
follows from Exercise 5.A.39 that there exists a subspace 𝑈  of 𝑉  which is invariant under 
𝑇  and satisfies dim 𝑈 = 𝑘. Our induction hypothesis guarantees that there is a subspace 
𝑊  of 𝑈  which is invariant under 𝑇 |𝑈  and such that dim 𝑊 = 2. It follows that 𝑊  is a two-
dimensional subspace of 𝑉  which is invariant under 𝑇 .

If 𝑝 has no linear factor then note that 𝑇  has no eigenvalues by 5.27(a). Note further that,
by the fundamental theorem of algebra (4.12/4.13), we must have 𝐅 = 𝐑. It then follows
from 4.16 that 𝑝 has a factorization 𝑝 = 𝑓1 ⋯ 𝑓𝑚 where each 𝑓𝑗 ∈ 𝒫(𝐑) is quadratic. Because
0 = 𝑝(𝑇 ) = 𝑓1(𝑇 ) ⋯ 𝑓𝑚(𝑇 ), there must exist some 𝑗 ∈ {1, …, 𝑚} such that 𝑓𝑗(𝑇 ) is not injec-
tive, i.e. there exists some non-zero 𝑣 ∈ 𝑉  such that 𝑓𝑗(𝑇 )𝑣 = 0. Since 𝑓𝑗 is quadratic we
have 𝑓𝑗(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 for some 𝑎, 𝑏, 𝑐 ∈ 𝐑 such that 𝑎 ≠ 0. Thus

0 = 𝑓𝑗(𝑇 )𝑣 = 𝑎𝑇 2𝑣 + 𝑏𝑇𝑣 + 𝑐𝑣 ⇒ 𝑇 2𝑣 ∈ span(𝑣, 𝑇 𝑣).

It follows that span(𝑣, 𝑇 𝑣) is invariant under 𝑇 . Furthermore, because 𝑣 ≠ 0 and 𝑇  has
no eigenvalues, we must have dim span(𝑣, 𝑇 𝑣) = 2. Thus 𝑉  has a two-dimensional subspace
which is invariant under 𝑇 .

In either case, 𝑃(𝑘 + 1) holds. This completes the induction step and the proof.
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5.C. Upper-Triangular Matrices

Exercise 5.C.1. Prove or give a counterexample: If 𝑇 ∈ ℒ(𝑉 ) and 𝑇 2 has an upper-
triangular matrix with respect to some basis of 𝑉 , then 𝑇  has an upper triangular matrix
with respect to some basis of 𝑉 .

Solution. This is false. For a counterexample, take 𝑇 ∈ ℒ(𝐑2) to be a counterclockwise
rotation about the origin by 90°, i.e. 𝑇 (𝑥, 𝑦) = (−𝑦, 𝑥). Then 𝑇 2 = −𝐼 , so that the matrix
of 𝑇 2 with respect to the standard basis of 𝐑2 is the upper-triangular matrix

−(1
0

0
1).

However, note that if 𝑇  had an upper-triangular matrix with respect to some basis of 𝐑2

then 𝑇  would have an eigenvalue—but 𝑇  has no eigenvalues, as shown in 5.9(a).

Exercise 5.C.2. Suppose 𝐴 and 𝐵 are upper-triangular matrices of the same size, with
𝛼1, …, 𝛼𝑛 on the diagonal of 𝐴 and 𝛽1, …, 𝛽𝑛 on the diagonal of 𝐵.

(a) Show that 𝐴 + 𝐵 is an upper-triangular matrix with 𝛼1 + 𝛽1, …, 𝛼𝑛 + 𝛽𝑛 on the
diagonal.

(b) Show that 𝐴𝐵 is an upper-triangular matrix with 𝛼1𝛽1, …, 𝛼𝑛𝛽𝑛 on the diagonal.

The results in this exercise are used in the proof of 5.81.

Solution. Note that 𝐴 and 𝐵 satisfy

𝐴𝑗,𝑘 = {
𝛼𝑗 if 𝑗 = 𝑘,
0 if 𝑗 > 𝑘,

𝐵𝑗,𝑘 = {
𝛽𝑗 if 𝑗 = 𝑘,
0 if 𝑗 > 𝑘.

(a) From the definition of matrix addition, we have

(𝐴 + 𝐵)𝑗,𝑘 = 𝐴𝑗,𝑘 + 𝐵𝑗,𝑘 = {
𝛼𝑗 + 𝛽𝑗 if 𝑗 = 𝑘,
0 if 𝑗 > 𝑘.

Thus 𝐴 + 𝐵 is upper-triangular with 𝛼1 + 𝛽1, …, 𝛼𝑛 + 𝛽𝑛 on the diagonal.

(b) By the definition of matrix multiplication, we have

(𝐴𝐵)𝑗,𝑗 = ∑
𝑛

𝑟=1
𝐴𝑗,𝑟𝐵𝑟,𝑗 = 𝐴𝑗,𝑗𝐵𝑗,𝑗 + ∑

𝑟≠𝑗
𝐴𝑗,𝑟𝐵𝑟,𝑗 = 𝛼𝑗𝛽𝑗 + ∑

𝑟≠𝑗
𝐴𝑗,𝑟𝐵𝑟,𝑗.

For 𝑟 ≠ 𝑗 we either have 𝑗 > 𝑟, in which case 𝐴𝑗,𝑟 = 0, or we have 𝑟 > 𝑗, in which case
𝐵𝑟,𝑗 = 0. Thus ∑𝑟≠𝑗 𝐴𝑗,𝑟𝐵𝑟,𝑗 = 0 and it follows that (𝐴𝐵)𝑗,𝑗 = 𝛼𝑗𝛽𝑗.

For 𝑗 > 𝑘, observe that
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(𝐴𝐵)𝑗,𝑘 = ∑
𝑛

𝑟=1
𝐴𝑗,𝑟𝐵𝑟,𝑘 = ∑

𝑗−1

𝑟=1
𝐴𝑗,𝑟𝐵𝑟,𝑘 + ∑

𝑛

𝑟=𝑗
𝐴𝑗,𝑟𝐵𝑟,𝑘.

For 1 ≤ 𝑟 ≤ 𝑗 − 1 we have 𝑗 > 𝑟 and thus 𝐴𝑗,𝑟 = 0; it follows that ∑𝑗−1
𝑟=1 𝐴𝑗,𝑟𝐵𝑟,𝑘 = 0.

For 𝑗 ≤ 𝑟 ≤ 𝑛 we have 𝑟 ≥ 𝑗 > 𝑘 and thus 𝐵𝑟,𝑘 = 0; it follows that ∑𝑛
𝑟=𝑗 𝐴𝑗,𝑟𝐵𝑟,𝑘 = 0.

Hence (𝐴𝐵)𝑗,𝑘 = 0 and we may conclude that 𝐴𝐵 is upper-triangular with 
𝛼1𝛽1, …, 𝛼𝑛𝛽𝑛 on the diagonal.

Exercise 5.C.3. Suppose 𝑇 ∈ ℒ(𝑉 ) is invertible and 𝑣1, …, 𝑣𝑛 is a basis of 𝑉  with re-
spect to which the matrix of 𝑇  is upper triangular, with 𝜆1, …, 𝜆𝑛 on the diagonal. Show
that the matrix of 𝑇 −1 is also upper triangular with respect to the basis 𝑣1, …, 𝑣𝑛, with

1
𝜆1

, …,
1
𝜆𝑛

on the diagonal.

Solution. Because the matrix of 𝑇  with respect to 𝑣1, …, 𝑣𝑛 is upper-triangular with 
𝜆1, …, 𝜆𝑛 on the diagonal, we have 𝑇𝑣1 = 𝜆1𝑣1 and, for each 𝑘 ≥ 2, 𝑇𝑣𝑘 = 𝑢𝑘 + 𝜆𝑘𝑣𝑘 for some
𝑢𝑘 ∈ span(𝑣1, …, 𝑣𝑘−1). Observe that

𝑇𝑣1 = 𝜆1𝑣1 ⇒ 𝑇 −1𝑣1 = 𝜆−1
1 𝑣1.

This shows that span(𝑣1) is invariant under 𝑇 −1 and that the first diagonal entry of ℳ(𝑇 −1)
is 𝜆−1

1 . Now observe that

𝑇𝑣2 = 𝑢2 + 𝜆2𝑣2 ⇒ 𝑇 −1𝑣2 = 𝜆−1
2 𝑇 −1𝑢2 + 𝜆−1

2 𝑣2;

note that 𝜆−1
2 𝑇 −1𝑢2 ∈ span(𝑣1) because 𝑢2 ∈ span(𝑣1) and span(𝑣1) is invariant under 𝑇 −1.

Thus 𝑇 −1𝑣2 ∈ span(𝑣1, 𝑣2), so that span(𝑣1, 𝑣2) is invariant under 𝑇 −1, and the second di-
agonal entry of ℳ(𝑇 −1) is 𝜆−1

2 . Continuing in this manner, we see that each span(𝑣1, …, 𝑣𝑘)
is invariant under 𝑇 −1, whence ℳ(𝑇 −1) is upper-triangular, and that the diagonal entries
of ℳ(𝑇 −1) are 𝜆−1

1 , …, 𝜆−1
𝑛 .

Exercise 5.C.4. Give an example of an operator whose matrix with respect to some
basis contains only 0’s on the diagonal, but the operator is invertible.

This exercise and the exercise below show that 5.41 fails without the hypothesis that
an upper-triangular matrix is under consideration.

Solution. Let 𝑇 ∈ ℒ(𝐑2) be given by 𝑇 (𝑥, 𝑦) = (𝑦, 𝑥). The matrix of 𝑇  with respect to the
standard basis of 𝐑2 is

(0
1

1
0).

Furthermore, 𝑇  is invertible since 𝑇 2 = 𝐼 .
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Exercise 5.C.5. Give an example of an operator whose matrix with respect to some
basis contains only nonzero numbers on the diagonal, but the operator is not invertible.

Solution. Let 𝑇 ∈ ℒ(𝐑2) be given by 𝑇 (𝑥, 𝑦) = (𝑥 + 𝑦, 𝑥 + 𝑦). The matrix of 𝑇  with respect
to the standard basis of 𝐑2 is

(1
1

1
1).

Furthermore, 𝑇  is not invertible because 𝑇  is not injective: 𝑇 (1, −1) = (0, 0).

Exercise 5.C.6. Suppose 𝐅 = 𝐂, 𝑉  is finite-dimensional, and 𝑇 ∈ ℒ(𝑉 ). Prove that if
𝑘 ∈ {1, …, dim 𝑉 }, then 𝑉  has a 𝑘-dimensional subspace invariant under 𝑇 .

Solution. By 5.47 there is a basis 𝑣1, …, 𝑣𝑛 of 𝑉  such that the matrix of 𝑇  with respect to
𝑣1, …, 𝑣𝑛 is upper-triangular. It follows from 5.39 that for each 𝑘 ∈ {1, …, 𝑛}, the subspace 
span(𝑣1, …, 𝑣𝑘) is 𝑘-dimensional and invariant under 𝑇 .

Exercise 5.C.7. Suppose 𝑉  is finite-dimensional, 𝑇 ∈ ℒ(𝑉 ), and 𝑣 ∈ 𝑉 .

(a) Prove that there exists a unique monic polynomial 𝑝𝑣 of smallest degree such that
𝑝𝑣(𝑇 )𝑣 = 0.

(b) Prove that the minimal polynomial of 𝑇  is a polynomial multiple of 𝑝𝑣.

Solution.

(a) If 𝑣 = 0 then we can take 𝑝𝑣 = 1, so suppose that 𝑣 ≠ 0. The list 𝑣, 𝑇 𝑣, …, 𝑇 dim 𝑉 𝑣
has length 1 + dim 𝑉  and hence must be linearly dependent. By the linear de-
pendence lemma (2.19), there exists a least integer 𝑘 ∈ {1, …, dim 𝑉 } such that
𝑇 𝑘𝑣 ∈ 𝑈 ≔ span(𝑣, 𝑇 𝑣, …, 𝑇 𝑘−1𝑣) and such that 𝑣, 𝑇 𝑣, …, 𝑇 𝑘−1𝑣 is linearly independent,
so that dim 𝑈 = 𝑘. Note that 𝑈  is invariant under 𝑇  because 𝑇 𝑘𝑣 ∈ 𝑈 . Let 𝑝𝑣 be the
minimal polynomial of 𝑇 |𝑈  and observe that, since 𝑣 ∈ 𝑈 ,

𝑝𝑣(𝑇 )𝑣 = 𝑝𝑣(𝑇 |𝑈)𝑣 = 0.

If 𝑞 is a polynomial of degree ℓ < deg 𝑝𝑣 ≤ dim 𝑈 = 𝑘 such that 𝑞(𝑇 )𝑣 = 0 then
𝑇 ℓ𝑣 ∈ span(𝑣, 𝑇 𝑣, …, 𝑇 ℓ−1𝑣), contradicting the minimality of 𝑘. Thus the degree of 
𝑝𝑣 is minimal. If 𝑟 is a monic polynomial of degree deg 𝑝𝑣 satisfying 𝑟(𝑇 )𝑣 = 0 then 
𝑝𝑣 − 𝑟 satisfies (𝑝𝑣 − 𝑟)(𝑇 )𝑣 = 0 and deg(𝑝𝑣 − 𝑟) < deg 𝑝𝑣. If 𝑝𝑣 − 𝑟 were not zero then
we could divide by the leading coefficient to obtain a monic polynomial 𝑠 satisfying 
𝑠(𝑇 )𝑣 = 0 and deg 𝑠 < deg 𝑝𝑣, which contradicts the minimality of deg 𝑝𝑣. Thus 𝑝𝑣 is
unique.

(b) This is immediate from part (a) and 5.31.
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Exercise 5.C.8. Suppose 𝑉  is finite-dimensional, 𝑇 ∈ ℒ(𝑉 ), and there exists a nonzero
vector 𝑣 ∈ 𝑉  such that 𝑇 2𝑣 + 2𝑇𝑣 = −2𝑣.

(a) Prove that if 𝐅 = 𝐑, then there does not exist a basis of 𝑉  with respect to which
𝑇  has an upper triangular matrix.

(b) Prove that if 𝐅 = 𝐂 and 𝐴 is an upper-triangular matrix that equals the matrix of
𝑇  with respect to some basis of 𝑉 , then −1 + 𝑖 or −1 − 𝑖 appears on the diagonal
of 𝐴.

Solution.

(a) Let 𝑞(𝑥) = 𝑥2 + 2𝑥 + 2, so that 𝑞(𝑇 )𝑣 = 0, and let 𝑝𝑣 be defined as in Exercise 5.C.7.
Note that deg 𝑝𝑣 ≥ 1 since 𝑣 ≠ 0. A straightforward modification of 5.29 shows that 
𝑞 must be a polynomial multiple of 𝑝𝑣. It follows that deg 𝑝𝑣 ≥ 2 since 𝑞 has no real
roots. The minimality of deg 𝑝𝑣 then implies that 𝑝𝑣 = 𝑞 and thus, by Exercise 5.C.7
(b), the minimal polynomial of 𝑇  must be a polynomial multiple of 𝑞. Thus the minimal
polynomial of 𝑇  does not split into linear factors and it then follows from 5.44 that
there is no basis of 𝑉  with respect to which 𝑇  has an upper-triangular matrix.

(b) Let 𝑞(𝑧) = 𝑧2 + 2𝑧 + 2 = (𝑧 + 1 − 𝑖)(𝑧 + 1 + 𝑖), so that 𝑞(𝑇 )𝑣 = 0, and let 𝑝𝑣 be defined
as in Exercise 5.C.7. Note that deg 𝑝𝑣 ≥ 1 since 𝑣 ≠ 0. A straightforward modification
of 5.29 shows that 𝑞 must be a polynomial multiple of 𝑝𝑣. There are then three possi-
bilities:

𝑝𝑣 = 𝑧 + 1 − 𝑖, 𝑝𝑣 = 𝑧 + 1 + 𝑖, or 𝑝𝑣 = 𝑞.

In any case, at least one of −1 + 𝑖, −1 − 𝑖 is a root of 𝑝𝑣. It follows from Exercise 5.C.7
(b) that at least one of −1 + 𝑖, −1 − 𝑖 is a root of the minimal polynomial of 𝑇  and
hence, by 5.27, at least one of −1 + 𝑖, −1 − 𝑖 is an eigenvalue of 𝑇 . 5.41 allows us to
conclude that at least one of −1 + 𝑖, −1 − 𝑖 appears on the diagonal of 𝐴.

Exercise 5.C.9. Suppose 𝐵 is a square matrix with complex entries. Prove that there
exists an invertible square matrix 𝐴 with complex entries such that 𝐴−1𝐵𝐴 is an upper-
triangular matrix.

Solution. Suppose 𝐵 is an 𝑛-by-𝑛 matrix and let 𝑇 ∈ ℒ(𝐂𝑛) be given by 𝑇𝑥 = 𝐵𝑥, where
we think of elements of 𝐂𝑛 as column vectors. Evidently, the matrix of 𝑇  with respect to
the standard basis 𝑒1, …, 𝑒𝑛 of 𝐂𝑛 is 𝐵. By 5.47 there is a basis 𝑣1, …, 𝑣𝑛 of 𝐂𝑛 such that 
ℳ(𝑇 , (𝑣1, …, 𝑣𝑛)) is upper-triangular. Let 𝐴 = ℳ(𝐼, (𝑣1, …, 𝑣𝑛), (𝑒1, …, 𝑒𝑛)); as 3.84 shows,
it follows that 𝐴−1𝐵𝐴 equals the upper-triangular matrix ℳ(𝑇 , (𝑣1, …, 𝑣𝑛)).
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Exercise 5.C.10. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝑣1, …, 𝑣𝑛 is a basis of 𝐵. Show that the fol-
lowing are equivalent.

(a) The matrix of 𝑇  with respect to 𝑣1, …, 𝑣𝑛 is lower triangular.

(b) span(𝑣𝑘, …, 𝑣𝑛) is invariant under 𝑇  for each 𝑘 = 1, …, 𝑛.

(c) 𝑇𝑣𝑘 ∈ span(𝑣𝑘, …, 𝑣𝑛) for each 𝑘 = 1, …, 𝑛.

A square matrix is called lower triangular if all entries above the diagonal are 0.

Solution. Suppose that (a) holds and let 𝑘 ∈ {1, …, 𝑛} be given. For any 𝑗 ∈ {𝑘, …, 𝑛} we
have 𝑇𝑣𝑗 ∈ span(𝑣𝑗, …, 𝑣𝑛) since the matrix of 𝑇  with respect to 𝑣1, …, 𝑣𝑛 is lower-triangular.
Because span(𝑣𝑗, …, 𝑣𝑛) ⊆ span(𝑣𝑘, …, 𝑣𝑛) for 𝑗 ≥ 𝑘, it follows that 𝑇𝑣𝑗 ∈ span(𝑣𝑘, …, 𝑣𝑛) for
each 𝑗 ∈ {𝑘, …𝑛}. Thus span(𝑣𝑘, …, 𝑣𝑛) is invariant under 𝑇 , i.e. (b) holds.

Now suppose that (b) holds. For any 𝑘 ∈ {1, …, 𝑛} we have 𝑣𝑘 ∈ span(𝑣𝑘, …, 𝑣𝑛), which is
invariant under 𝑇  by assumption. Thus 𝑇𝑣𝑘 ∈ span(𝑣𝑘, …, 𝑣𝑛), i.e. (c) holds.

Suppose that (c) holds, so that each 𝑇𝑣𝑘 can be written as a linear combination of the basis
vectors 𝑣𝑘, …, 𝑣𝑛 only. It follows that each entry above the diagonal of ℳ(𝑇) is zero, i.e. 
ℳ(𝑇) is lower-triangular. Thus (a) holds.

Exercise 5.C.11. Suppose 𝐅 = 𝐂 and 𝑉  is finite-dimensional. Prove that if 𝑇 ∈ ℒ(𝑉 ),
then there exists a basis of 𝑉  with respect to which 𝑇  has a lower-triangular matrix.

Solution. By 5.47 there is a basis 𝑣1, …, 𝑣𝑛 of 𝑉  with respect to which the matrix of 𝑇  is
upper-triangular. For each 𝑘 ∈ {1, …, 𝑛} define 𝑢𝑘 = 𝑣𝑛−𝑘+1 and observe that, using 5.39,

𝑇𝑢𝑘 = 𝑇𝑣𝑛−𝑘+1 ∈ span(𝑣1, 𝑣2, …, 𝑣𝑛−𝑘, 𝑣𝑛−𝑘+1) = span(𝑢𝑛, 𝑢𝑛−1, …, 𝑢𝑘+1, 𝑢𝑘).

It follows from Exercise 5.C.10 that the matrix of 𝑇  with respect to 𝑢1, …, 𝑢𝑛 is lower-trian-
gular.

Exercise 5.C.12. Suppose 𝑉  is finite-dimensional, 𝑇 ∈ ℒ(𝑉 ) has an upper-triangular
matrix with respect to some basis of 𝑉 , and 𝑈  is a subspace of 𝑉  that is invariant under
𝑇 .

(a) Prove that 𝑇 |𝑈  has an upper-triangular matrix with respect to some basis of 𝑈 .

(b) Prove that the quotient operator 𝑇/𝑈  has an upper-triangular matrix with respect
to some basis of 𝑉/𝑈 .

The quotient operator 𝑇/𝑈  was defined in Exercise 38 in Section 5A.

Solution.

(a) Let 𝑝 be the minimal polynomial of 𝑇  and let 𝑞 be the minimal polynomial of 𝑇 |𝑈 .
By 5.31 and 5.44, 𝑝 is a product of linear factors and also a polynomial multiple of 
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𝑞. It follows that 𝑞 is a product of linear factors and thus, by 5.44, 𝑇 |𝑈  has an upper-
triangular matrix with respect to some basis of 𝑈 .

(b) Similarly to part (a), let 𝑝 be the minimal polynomial of 𝑇  and let 𝑞 be the minimal
polynomial of 𝑇/𝑈 . By Exercise 5.B.25 (a) and 5.44, 𝑝 is a product of linear factors
and also a polynomial multiple of 𝑞. It follows that 𝑞 is a product of linear factors and
thus, by 5.44, 𝑇/𝑈  has an upper-triangular matrix with respect to some basis of 𝑉/𝑈 .

Exercise 5.C.13. Suppose 𝑉  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 ). Suppose there exists
a subspace 𝑈  of 𝑉  that is invariant under 𝑇  such that 𝑇 |𝑈  has an upper-triangular
matrix with respect to some basis of 𝑈  and also 𝑇/𝑈  has an upper-triangular matrix
with respect to some basis of 𝑉/𝑈 . Prove that 𝑇  has an upper-triangular matrix with
respect to some basis of 𝑉 .

Solution. Let 𝑝, 𝑞, 𝑟 be the minimal polynomials of 𝑇 , 𝑇 |𝑈 , and 𝑇/𝑈 . By Exercise 5.B.25
(b) and 5.44, 𝑞 and 𝑟 are products of linear factors and 𝑞𝑟 is a polynomial multiple of 𝑝.
It follows that 𝑝 is a product of linear factors and thus, by 5.44, 𝑇  has an upper-triangular
matrix with respect to some basis of 𝑉 .

Exercise 5.C.14. Suppose 𝑉  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 ). Prove that 𝑇  has an
upper-triangular matrix with respect to some basis of 𝑉  if and only if the dual operator
𝑇 ′ has an upper-triangular matrix with respect to some basis of the dual space 𝑉 ′.

Solution. Exercise 5.B.28 shows that 𝑇  and 𝑇 ′ have the same minimal polynomial. The
desired equivalence now follows from 5.44.
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5.D. Diagonalizable Operators

Exercise 5.D.1. Suppose 𝑉  is a finite-dimensional complex vector space and 𝑇 ∈ ℒ(𝑉 ).

(a) Prove that if 𝑇 4 = 𝐼 , then 𝑇  is diagonalizable.

(b) Prove that if 𝑇 4 = 𝑇 , then 𝑇  is diagonalizable.

(c) Give an example of an operator 𝑇 ∈ ℒ(𝐂2) such that 𝑇 4 = 𝑇 2 and 𝑇  is not diag-
onalizable.

Solution.

(a) Let 𝑞(𝑧) = 𝑧4 − 1 = (𝑧 − 1)(𝑧 + 1)(𝑧 − 𝑖)(𝑧 + 𝑖), let 𝑝 be the minimal polynomial of 𝑇 ,
and note that 𝑞(𝑇 ) = 0. It follows from 5.29 that 𝑞 is a polynomial multiple of 𝑝 and
so 𝑝 must be a product of distinct linear factors. Thus, by 5.62, 𝑇  is diagonalizable.

(b) Let 𝑞(𝑧) = 𝑧4 − 𝑧 = 𝑧(𝑧 − 1)(𝑧 + 1
2 −

√
3

2 𝑖)(𝑧 + 1
2 +

√
3

2 𝑖), let 𝑝 be the minimal polyno-
mial of 𝑇 , and note that 𝑞(𝑇 ) = 0. It follows from 5.29 that 𝑞 is a polynomial multiple
of 𝑝 and so 𝑝 must be a product of distinct linear factors. Thus, by 5.62, 𝑇  is diagonal-
izable.

(c) Let 𝑇 ∈ ℒ(𝐂2) be given by 𝑇 (𝑤, 𝑧) = (𝑧, 0) and notice that 𝑇 2 = 𝑇 4 = 0. The matrix
of 𝑇  with respect to the standard basis of 𝐂2 is

(0
0

1
0).

Thus, by 5.41, the only eigenvalue of 𝑇  is 0. Letting 𝑝 be the minimal polynomial of 
𝑇 , 5.27 shows that 𝑝 is of the form 𝑧𝑘 for some 𝑘 ∈ {1, 2}. Since 𝑇 ≠ 0, it must be that
𝑝(𝑧) = 𝑧2. It follows from 5.62 that 𝑇  is not diagonalizable.

Exercise 5.D.2. Suppose 𝑇 ∈ ℒ(𝑉 ) has a diagonal matrix 𝐴 with respect to some basis
of 𝑉 . Prove that if 𝜆 ∈ 𝐅, then 𝜆 appears on the diagonal of 𝐴 precisely dim 𝐸(𝜆, 𝑇 )
times.

Solution. Suppose 𝑣1, …, 𝑣𝑛 is a basis of 𝑉  such that 𝐴 ≔ ℳ(𝑇 , (𝑣1, …, 𝑣𝑛)) is diagonal and
let 𝜆1, …, 𝜆𝑛 denote the diagonal entries of 𝐴. Note that the list of those 𝑇𝑣𝑘 = 𝜆𝑘𝑣𝑘 such
that 𝜆𝑘 ≠ 0 is linearly independent since 𝑣1, …, 𝑣𝑛 is linearly independent. Thus, letting 𝑑
be the number of indices 𝑘 ∈ {1, …, 𝑛} such that 𝜆𝑘 = 0, we have dim range 𝑇 ≥ 𝑛 − 𝑑. It
follows that

dim null 𝑇 ≤ 𝑑. (1)

For 𝜆 ∈ 𝐅, let 𝑑𝜆 be the number of times 𝜆 appears on the diagonal of 𝐴. By replacing 𝑇
with 𝑇 − 𝜆𝐼 in (1), we find that dim 𝐸(𝜆, 𝑇 ) ≤ 𝑑𝜆. Now observe that, by 5.55(d),
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∑
𝜆∈𝐅

dim 𝐸(𝜆, 𝑇 ) = 𝑛 = ∑
𝜆∈𝐅

𝑑𝜆. (2)

(Both of these are finite sums since dim 𝐸(𝜆, 𝑇 ) = 𝑑𝜆 = 0 for all but finitely many 𝜆 ∈ 𝐅.)
It follows that each inequality dim 𝐸(𝜆, 𝑇 ) ≤ 𝑑𝜆 must in fact be an equality, otherwise the
left-hand side of (2) would be strictly less than the right-hand side.

Exercise 5.D.3. Suppose 𝑉  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 ). Prove that if the op-
erator 𝑇  is diagonalizable, then 𝑉 = null 𝑇 ⊕ range 𝑇 .

Solution. Let 𝜆1, …, 𝜆𝑚 be the distinct non-zero eigenvalues of 𝑇  (this list may be empty).
By 5.55, we have

𝑉 = 𝐸(0, 𝑇 ) ⊕ 𝐸(𝜆1, 𝑇 ) ⊕ ⋯ ⊕ 𝐸(𝜆𝑚, 𝑇 ) = null 𝑇 ⊕ 𝑊,

where 𝑊 = 𝐸(𝜆1, 𝑇 ) ⊕ ⋯ ⊕ 𝐸(𝜆𝑚, 𝑇 ); if the list 𝜆1, …, 𝜆𝑚 is empty then take 𝑊 = {0}. Let
𝑇𝑣 ∈ range 𝑇  be given. The direct sum expression above shows that 𝑣 is of the form

𝑣 = 𝑢 + 𝑤1 + ⋯ + 𝑤𝑚 ∈ null 𝑇 ⊕ 𝑊 ⇒ 𝑇𝑣 = 𝜆1𝑤1 + ⋯ + 𝜆𝑚𝑤𝑚 ∈ 𝑊.

Thus range 𝑇 ⊆ 𝑊 . Now let 𝑤1 + ⋯ + 𝑤𝑚 ∈ 𝑊  be given. Because each 𝜆𝑘 ≠ 0, it follows that

𝑤1 + ⋯ + 𝑤𝑚 = 𝑇(𝜆−1
1 𝑤1 + ⋯ + 𝜆−1

𝑚 𝑤𝑚) ∈ range 𝑇 .

Thus 𝑊 = range 𝑇  and we may conclude that 𝑉 = null 𝑇 ⊕ range 𝑇 .

Exercise 5.D.4. Suppose 𝑉  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 ). Prove that the follow-
ing are equivalent.

(a) 𝑉 = null 𝑇 ⊕ range 𝑇 .

(b) 𝑉 = null 𝑇 + range 𝑇 .

(c) null 𝑇 ∩ range 𝑇 = {0}.

Solution. Certainly (a) implies (b). Suppose that (b) holds. By 2.43, we have

dim(null 𝑇 ∩ range 𝑇 ) = dim null 𝑇 + dim range 𝑇 − dim(null 𝑇 + range 𝑇 ).

By assumption dim(null 𝑇 + range 𝑇 ) = dim 𝑉  and the fundamental theorem of linear maps
(3.21) shows that dim null 𝑇 + dim range 𝑇 = dim 𝑉  also. Thus dim(null 𝑇 ∩ range 𝑇 ) = 0, so
that null 𝑇 ∩ range 𝑇 = {0}, i.e. (c) holds.

Suppose that (c) holds. It follows from 1.46 that the sum null 𝑇 ⊕ range 𝑇  is direct. Fur-
thermore,

dim(null 𝑇 ⊕ range 𝑇 ) = dim null 𝑇 + dim range 𝑇 = dim 𝑉

by 1.46 and 2.43. Thus, by 2.39, 𝑉 = null 𝑇 ⊕ range 𝑇 , i.e. (a) holds.
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Exercise 5.D.5. Suppose 𝑉  is a finite-dimensional complex vector space and 𝑇 ∈ ℒ(𝑉 ).
Prove that 𝑇  is diagonalizable if and only if

𝑉 = null(𝑇 − 𝜆𝐼) ⊕ range(𝑇 − 𝜆𝐼)

for every 𝜆 ∈ 𝐂.

Solution. Suppose that 𝑇  is diagonalizable, so that there is some basis of 𝑉  with respect
to which the matrix of 𝑇  is diagonal:

⎝
⎜⎜
⎛𝜆1

0
⋱

0

𝜆𝑛⎠
⎟⎟
⎞.

For any 𝜆 ∈ 𝐂, the matrix of the operator 𝑇 − 𝜆𝐼 with respect to this same basis is also
diagonal:

⎝
⎜⎜
⎛𝜆1 − 𝜆

0
⋱

0

𝜆𝑛 − 𝜆⎠
⎟⎟
⎞.

So 𝑇 − 𝜆𝐼 is also diagonalizable and thus by Exercise 5.D.3 we have

𝑉 = null(𝑇 − 𝜆𝐼) ⊕ range(𝑇 − 𝜆𝐼).

Here are two proofs of the converse.

(1) By contrapositive: suppose that 𝑇  is not diagonalizable. Let 𝜆1, …, 𝜆𝑚 be the distinct
eigenvalues of 𝑇  and let 𝑝 be the minimal polynomial of 𝑇 ; by 5.27(b) we have

𝑝(𝑧) = (𝑧 − 𝜆1)
𝑛1 ⋯ (𝑧 − 𝜆𝑚)𝑛𝑚

for some positive integers 𝑛1, …, 𝑛𝑚. Because 𝑇  is not diagonalizable, 5.62 shows that
there must be some 𝑘 ∈ {1, …, 𝑚} such that 𝑛𝑘 ≥ 2. Let 𝑞 be the polynomial given by

𝑞(𝑧) = (𝑧 − 𝜆𝑘)𝑛𝑘−1 ∏
𝑗≠𝑘

(𝑧 − 𝜆𝑗)
𝑛𝑗 .

Notice that 𝑝(𝑧) = (𝑧 − 𝜆𝑘)𝑞(𝑧), so that deg 𝑞 < deg 𝑝, and, for any 𝑣 ∈ 𝑉 ,

0 = 𝑝(𝑇 )𝑣 = (𝑇 − 𝜆𝑘𝐼)𝑞(𝑇 )𝑣 ⇒ 𝑞(𝑇 )𝑣 ∈ null(𝑇 − 𝜆𝑘𝐼),

𝑛𝑘 − 1 ≥ 1 ⇒ 𝑞(𝑇 )𝑣 ∈ range(𝑇 − 𝜆𝑘𝐼).

Thus 𝑞(𝑇 )𝑣 ∈ null(𝑇 − 𝜆𝑘𝐼) ∩ range(𝑇 − 𝜆𝑘𝐼) for all 𝑣 ∈ 𝑉 . Since deg 𝑞 < deg 𝑝 it must
be the case that 𝑞(𝑇 ) ≠ 0, i.e. there exists some 𝑣 ∈ 𝑉  such that 𝑞(𝑇 )𝑣 ≠ 0. It follows
that

null(𝑇 − 𝜆𝑘𝐼) ∩ range(𝑇 − 𝜆𝑘𝐼) ≠ {0}

and hence, by Exercise 5.D.4, 𝑉 ≠ null(𝑇 − 𝜆𝑘𝐼) ⊕ range(𝑇 − 𝜆𝑘𝐼).

166 / 366



(2) By strong induction on dim 𝑉 . Let 𝑃(𝑛) be the following statement: if 𝑉  is an 𝑛-di-
mensional complex vector space, 𝑇 ∈ ℒ(𝑉 ), and

𝑉 = null(𝑇 − 𝜆𝐼) ⊕ range(𝑇 − 𝜆𝐼)

for all 𝜆 ∈ 𝐂, then 𝑇  is diagonalizable. The truth of 𝑃(0) is clear, so suppose that 
𝑃(0), …, 𝑃 (𝑛) all hold for some 𝑛 ≥ 1. Let 𝑉  be an (𝑛 + 1)-dimensional vector space
and suppose that 𝑇 ∈ ℒ(𝑉 ) satisfies

𝑉 = null(𝑇 − 𝜆𝐼) ⊕ range(𝑇 − 𝜆𝐼)

for all 𝜆 ∈ 𝐂. By 5.19 there exists an eigenvalue 𝜆0 ∈ 𝐂 of 𝑇 ; let 𝑈 = range(𝑇 − 𝜆0𝐼)
and note that 𝑈  is invariant under 𝑇  by (5.18). Note further that, for any 𝜆 ∈ 𝐂,

null(𝑇 |𝑈 − 𝜆𝐼|𝑈) ∩ range(𝑇 |𝑈 − 𝜆𝐼|𝑈) ⊆ null(𝑇 − 𝜆𝐼) ∩ range(𝑇 − 𝜆𝐼) = {0}.

It follows that 𝑈 = null(𝑇 |𝑈 − 𝜆𝐼|𝑈) ⊕ range(𝑇 |𝑈 − 𝜆𝐼|𝑈) for every 𝜆 ∈ 𝐂, where
we have used the equivalence of (a) and (c) in Exercise 5.D.4. By assumption
𝑉 = 𝐸(𝜆0, 𝑇 ) ⊕ 𝑈 ; since 𝜆0 is an eigenvalue of 𝑇  we have dim 𝐸(𝜆0, 𝑇 ) ≥ 1 and thus 
dim 𝑈 < dim 𝑉 . Our induction hypothesis now guarantees that there is a basis of 𝑈
consisting of eigenvectors of 𝑇 |𝑈 , which must also be eigenvectors of 𝑇 . Combining this
basis with a basis of 𝐸(𝜆0, 𝑇 ), we obtain a basis of 𝑉  consisting of eigenvectors of 𝑇 .
It follows from 5.55 that 𝑇  is diagonalizable. This completes the induction step and
the proof.

Exercise 5.D.6. Suppose 𝑇 ∈ ℒ(𝐅5) and dim 𝐸(8, 𝑇 ) = 4. Prove that 𝑇 − 2𝐼 or 𝑇 − 6𝐼
is invertible.

Solution. We will prove the contrapositive statement. Suppose that neither 𝑇 − 2𝐼 nor
𝑇 − 6𝐼 is invertible, so that dim 𝐸(2, 𝑇 ) ≥ 1 and dim 𝐸(6, 𝑇 ) ≥ 1. If 8 is an eigenvalue of 
𝑇  then 5.54 shows that dim 𝐸(8, 𝑇 ) + dim 𝐸(2, 𝑇 ) + dim 𝐸(6, 𝑇 ) ≤ dim 𝐅5, and if 8 is not
an eigenvalue of 𝑇  then 5.54 together with dim 𝐸(8, 𝑇 ) = 0 gives us the same inequality. In
either case,

dim 𝐸(8, 𝑇 ) + dim 𝐸(2, 𝑇 ) + dim 𝐸(6, 𝑇 ) ≤ dim 𝐅5 = 5

⇒ dim 𝐸(8, 𝑇 ) ≤ 5 − dim 𝐸(2, 𝑇 ) − dim 𝐸(6, 𝑇 ) ≤ 3 < 4.

Thus dim 𝐸(8, 𝑇 ) ≠ 4.

Exercise 5.D.7. Suppose 𝑇 ∈ ℒ(𝑉 ) is invertible. Prove that

𝐸(𝜆, 𝑇 ) = 𝐸( 1
𝜆 , 𝑇 −1)

for every 𝜆 ∈ 𝐅 with 𝜆 ≠ 0.

Solution. This follows from the equivalence, for 𝜆 ≠ 0 and any 𝑣 ∈ 𝑉 ,
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𝑇𝑣 = 𝜆𝑣 ⇔ 𝑇 −1𝑣 = 𝜆−1𝑣.

Exercise 5.D.8. Suppose 𝑉  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 ). Let 𝜆1, …, 𝜆𝑚 denote
the distinct nonzero eigenvalues of 𝑇 . Prove that

dim 𝐸(𝜆1, 𝑇 ) + ⋯ + dim 𝐸(𝜆𝑚, 𝑇 ) ≤ dim range 𝑇 .

Solution. Note that

dim 𝐸(0, 𝑇 ) + dim 𝐸(𝜆1, 𝑇 ) + ⋯ + dim 𝐸(𝜆𝑚, 𝑇 ) ≤ dim 𝑉 (1)

follows from 5.54: if 0 is an eigenvalue of 𝑇  then the inequality is immediate from 5.54, and
if 0 is not an eigenvalue of 𝑇  then dim 𝐸(0, 𝑇 ) = 0 and thus we can add dim 𝐸(0, 𝑇 ) to
the left-hand side of the inequality in 5.54. The fundamental theorem of linear maps (3.21)
shows that

dim 𝑉 = dim null 𝑇 + dim range 𝑇 = dim 𝐸(0, 𝑇 ) + dim range 𝑇 .

Combining this with inequality (1) gives us the desired inequality.

Exercise 5.D.9. Suppose 𝑅, 𝑇 ∈ ℒ(𝐅3) each have 2, 6, 7 as eigenvalues. Prove that
there exists invertible operator 𝑆 ∈ ℒ(𝐅3) such that 𝑅 = 𝑆−1𝑇𝑆.

Solution. Since 𝑅 and 𝑇  both have 3 = dim 𝐅3 distinct eigenvalues, 5.58 shows that they
are both diagonalizable, i.e. there exists a basis 𝑢1, 𝑢2, 𝑢3 and a basis 𝑣1, 𝑣2, 𝑣3 of 𝑉  such that

𝑅𝑢1 = 2𝑢1, 𝑅𝑢2 = 6𝑢2, 𝑅𝑢3 = 7𝑢3, 𝑇 𝑣1 = 2𝑣1, 𝑇 𝑣2 = 6𝑣2, 𝑇 𝑣3 = 7𝑣3.

Define 𝑆 ∈ ℒ(𝐅3) by 𝑆𝑢𝑘 = 𝑣𝑘 and note that 𝑆 is invertible since it maps a basis to a basis.
Furthermore,

𝑆−1𝑇𝑆𝑢1 = 𝑆−1𝑇𝑣1 = 2𝑆−1𝑣1 = 2𝑢1 = 𝑅𝑢1.

Similarly, 𝑆−1𝑇𝑆𝑢𝑘 = 𝑅𝑢𝑘 for 𝑘 ∈ {2, 3}. Thus 𝑆−1𝑇𝑆 = 𝑅.

Exercise 5.D.10. Find 𝑅, 𝑇 ∈ ℒ(𝐅4) such that 𝑅 and 𝑇  each have 2, 6, 7 as eigenval-
ues, 𝑅 and 𝑇  have no other eigenvalues, and there does not exist an invertible operator
𝑆 ∈ ℒ(𝐅4) such that 𝑅 = 𝑆−1𝑇𝑆.

Solution. Let 𝑅 and 𝑇  be the operators which have the matrices

ℳ(𝑅) =

⎝
⎜⎜
⎜⎜
⎛2

0
0
0

0
2
0
0

0
0
6
0

0
0
0
7⎠
⎟⎟
⎟⎟
⎞

and ℳ(𝑇) =

⎝
⎜⎜
⎜⎜
⎛2

0
0
0

0
6
0
0

0
0
6
0

0
0
0
7⎠
⎟⎟
⎟⎟
⎞

with respect to the standard basis 𝑒1, 𝑒2, 𝑒3, 𝑒4 of 𝐅4. Since these matrices are upper-tri-
angular, 5.41 shows that the eigenvalues of 𝑅 and 𝑇  are precisely 2, 6, 7. To disprove the
existence of an invertible operator 𝑆 ∈ ℒ(𝐅4) such that 𝑅 = 𝑆−1𝑇𝑆, let 𝑆 ∈ ℒ(𝐅4) be any
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invertible operator. By Exercise 5.A.13, 𝑆−1𝑇𝑆 also has 2 as an eigenvalue. Furthermore,
the eigenspace 𝐸(2, 𝑇 ) is the image under 𝑆 of the eigenspace 𝐸(2, 𝑆−1𝑇𝑆). A restriction of
𝑆 thus provides us with an isomorphism between 𝐸(2, 𝑇 ) and 𝐸(2, 𝑆−1𝑇𝑆); in particular,
these eigenspaces must have the same dimension. However, note that

dim 𝐸(2, 𝑇 ) = dim span(𝑒1) = 1 ≠ 2 = dim span(𝑒1, 𝑒2) = dim 𝐸(2, 𝑅).

Thus there cannot exist an invertible 𝑆 ∈ ℒ(𝐅4) such that 𝑅 = 𝑆−1𝑇𝑆.

Exercise 5.D.11. Find 𝑇 ∈ ℒ(𝐂3) such that 6 and 7 are eigenvalues of 𝑇  and such
that 𝑇  does not have a diagonal matrix with respect to any basis of 𝐂3.

Solution. Let 𝑇  be the operator which has the matrix

ℳ(𝑇) =
⎝
⎜⎛

6
0
0

1
6
0

0
0
7⎠
⎟⎞

with respect to the standard basis 𝑒1, 𝑒2, 𝑒3 of 𝐂3. Since this matrix is upper-triangular, 5.41
shows that the eigenvalues of 𝑇  are precisely 6 and 7. Some routine calculations reveal that
𝐸(6, 𝑇 ) = span(𝑒1) and 𝐸(7, 𝑇 ) = span(𝑒3). It follows that

dim 𝐸(6, 𝑇 ) + dim 𝐸(7, 𝑇 ) = 2 ≠ 3 = dim 𝐂3.

Thus, by 5.55, 𝑇  is not diagonalizable.

Exercise 5.D.12. Suppose 𝑇 ∈ ℒ(𝐂3) is such that 6 and 7 are eigenvalues of 𝑇 . Fur-
thermore, suppose 𝑇  does not have a diagonal matrix with respect to any basis of 𝐂3.
Prove that there exists (𝑧1, 𝑧2, 𝑧3) ∈ 𝐂3 such that

𝑇 (𝑧1, 𝑧2, 𝑧3) = (6 + 8𝑧1, 7 + 8𝑧2, 13 + 8𝑧3).

Solution. Since dim 𝐂3 = 3, it must be the case that 6 and 7 are the only eigenvalues of 
𝑇 ; if 𝑇  had another distinct eigenvalue then, by 5.58, 𝑇  would be diagonalizable. It follows
from 5.7 that 𝑇 − 8𝐼 is surjective and thus there exists (𝑧1, 𝑧2, 𝑧3) ∈ 𝐂3 such that

(𝑇 − 8𝐼)(𝑧1, 𝑧2, 𝑧3) = (6, 7, 13) ⇔ 𝑇(𝑧1, 𝑧2, 𝑧3) = (6 + 8𝑧1, 7 + 8𝑧2, 13 + 8𝑧3).

Exercise 5.D.13. Suppose 𝐴 is a diagonal matrix with distinct entries on the diagonal
and 𝐵 is a matrix of the same size as 𝐴. Show that 𝐴𝐵 = 𝐵𝐴 if and only if 𝐵 is a
diagonal matrix.

Solution. Suppose 𝐴 has diagonal entries 𝑎1, …, 𝑎𝑛. If 𝐵 is also diagonal with diagonal en-
tries 𝑏1, …, 𝑏𝑛, then
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𝐴𝐵 =
⎝
⎜⎜
⎛𝑎1

0
⋱

0

𝑎𝑛⎠
⎟⎟
⎞

⎝
⎜⎜
⎛𝑏1

0
⋱

0

𝑏𝑛⎠
⎟⎟
⎞ =

⎝
⎜⎜
⎛𝑎1𝑏1

0
⋱

0

𝑎𝑛𝑏𝑛⎠
⎟⎟
⎞ =

⎝
⎜⎜
⎛𝑏1

0
⋱

0

𝑏𝑛⎠
⎟⎟
⎞

⎝
⎜⎜
⎛𝑎1

0
⋱

0

𝑎𝑛⎠
⎟⎟
⎞ = 𝐵𝐴.

Now suppose that 𝐵 is not diagonal, i.e. there exist 𝑗, 𝑘 ∈ {1, …, 𝑛} such that 𝑗 ≠ 𝑘 and 
𝐵𝑗,𝑘 ≠ 0. Observe that

(𝐴𝐵)𝑗,𝑘 = ∑
𝑛

𝑟=1
𝐴𝑗,𝑟𝐵𝑟,𝑘 = 𝑎𝑗𝐵𝑗,𝑘 ≠ 𝐵𝑗,𝑘𝑎𝑘 = ∑

𝑛

𝑟=1
𝐵𝑗,𝑟𝐴𝑟,𝑘 = (𝐵𝐴)𝑗,𝑘,

where 𝑎𝑗𝐵𝑗,𝑘 ≠ 𝐵𝑗,𝑘𝑎𝑘 follows since 𝐵𝑗,𝑘 ≠ 0 and 𝑎𝑗 ≠ 𝑎𝑘. Thus 𝐴𝐵 ≠ 𝐵𝐴.

Exercise 5.D.14.

(a) Give an example of a finite-dimensional complex vector space and an operator 𝑇
on that vector space such that 𝑇 2 is diagonalizable but 𝑇  is not diagonalizable.

(b) Suppose 𝐅 = 𝐂, 𝑘 is a positive integer, and 𝑇 ∈ ℒ(𝑉 ) is invertible. Prove that 𝑇
is diagonalizable if and only if 𝑇 𝑘 is diagonalizable.

Solution.

(a) Define 𝑇  as in Exercise 5.D.1 (c). As we showed there, 𝑇  is not diagonalizable. However,
𝑇 2 = 0 is certainly diagonalizable.

(b) Suppose that 𝑇  is diagonalizable, so that there exists a basis 𝑣1, …, 𝑣𝑛 of 𝑉  with respect
to which the matrix of 𝑇  is diagonal, say

ℳ(𝑇) =
⎝
⎜⎜
⎛𝜆1

0
⋱

0

𝜆𝑛⎠
⎟⎟
⎞

for some 𝜆1, …, 𝜆𝑛 ∈ 𝐂. It follows from 3.43 and direct calculation that

ℳ(𝑇 𝑘) = [ℳ(𝑇 )]𝑘 =

⎝
⎜⎜
⎜⎛

𝜆𝑘
1

0
⋱

0

𝜆𝑘
𝑛⎠
⎟⎟
⎟⎞.

Thus 𝑇 𝑘 is diagonalizable.

Now suppose that 𝑇 𝑘 is diagonalizable and let 𝑝 be the minimal polynomial of 𝑇 𝑘.
By 5.27 and 5.62 we have 𝑝(𝑧) = (𝑧 − 𝜆1) ⋯ (𝑧 − 𝜆𝑚), where 𝜆1, …, 𝜆𝑚 are the distinct
eigenvalues of 𝑇 𝑘. Note that 𝑇 𝑘 is invertible since 𝑇  is invertible; it follows that each 𝜆𝑗

is non-zero. It can be shown that any non-zero complex number has exactly 𝑘 distinct
𝑘th roots. For each 𝑗 ∈ {1, …, 𝑚}, let 𝜇1,𝑗, …, 𝜇𝑘,𝑗 be the 𝑘 distinct solutions to 𝑧𝑘 = 𝜆𝑗.
Observe that, for any 𝑎, 𝑖 ∈ {1, …, 𝑘},

𝑏 ≠ 𝑗 ⇒ 𝜆𝑏 ≠ 𝜆𝑗 ⇔ 𝜇𝑘
𝑎,𝑏 ≠ 𝜇𝑘

𝑖,𝑗 ⇒ 𝜇𝑎,𝑏 ≠ 𝜇𝑖,𝑗.

Thus, if we let 𝑞 be the polynomial given by
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𝑞(𝑧) = (𝑧𝑘 − 𝜆1) ⋯ (𝑧𝑘 − 𝜆𝑚) = ∏
𝑚

𝑗=1
∏
𝑘

𝑖=1
(𝑧 − 𝜇𝑖,𝑗),

then 𝑞 is a product of distinct linear factors. Notice that 𝑞(𝑇 ) = 𝑝(𝑇 𝑘) = 0; it follows
from 5.29 that 𝑞 is a polynomial multiple of the minimal polynomial of 𝑇 . Thus the
minimal polynomial of 𝑇  is a product of distinct linear factors. 5.62 allows us to con-
clude that 𝑇  is diagonalizable.

Exercise 5.D.15. Suppose 𝑉  is a finite-dimensional complex vector space, 𝑇 ∈ ℒ(𝑉 ),
and 𝑝 is the minimal polynomial of 𝑇 . Prove that the following are equivalent.

(a) 𝑇  is diagonalizable.

(b) There does not exist 𝜆 ∈ 𝐂 such that 𝑝 is a polynomial multiple of (𝑧 − 𝜆)2.

(c) 𝑝 and its derivative 𝑝′ have no zeros in common.

(d) The greatest common divisor of 𝑝 and 𝑝′ is the constant polynomial 1.

The greatest common divisor of 𝑝 and 𝑝′ is the monic polynomial 𝑞 of largest degree
such that 𝑝 and 𝑝′ are both polynomial multiples of 𝑞. The Euclidean algorithm for
polynomials (look it up) can quickly determine the greatest common divisor of two
polynomials, without requiring any information about the zeros of the polynomials.
Thus the equivalence of (a) and (d) above shows that we can determine whether 𝑇  is
diagonalizable without knowing anything about the zeros of 𝑝.

Solution. By 5.27(b), 𝑝 is of the form 𝑝(𝑧) = (𝑧 − 𝜆1)
𝑛1 ⋯ (𝑧 − 𝜆𝑚)𝑛𝑚 , where 𝜆1, …, 𝜆𝑚 is

a list of the distinct eigenvalues of 𝑇  and each 𝑛𝑘 is a positive integer.

Note that (b) is equivalent to 𝑛1 = ⋯ = 𝑛𝑚 = 1, which by 5.62 is equivalent to (a). Thus (a)
and (b) are equivalent.

Certainly 𝑝 has 𝑚 distinct zeros, and observe that 𝑛1 = ⋯ = 𝑛𝑚 = 1 if and only if deg 𝑝 = 𝑚.
Exercise 4.8 now shows that (b) and (c) are equivalent.

Suppose the negation of (b) holds, so that 𝑝(𝑧) = (𝑧 − 𝜆)2𝑠(𝑧) for some polynomial 𝑠; the
product rule gives us 𝑝′(𝑧) = (𝑧 − 𝜆)(2𝑠(𝑧) + (𝑧 − 𝜆)𝑠′(𝑧)). Thus the greatest common divi-
sor of 𝑝 and 𝑝′ must have degree at least 1, so that (d) does not hold. The contrapositive of
this and the equivalence of (b) and (c) shows that (d) implies (c).

Let 𝑞 be the greatest common divisor of 𝑝 and 𝑝′ and suppose the negation of (d) holds, so
that deg 𝑞 ≥ 1. The fundamental theorem of algebra shows that 𝑞 has some zero, which must
also be a zero of 𝑝 and 𝑝′, i.e. the negation of (c) holds. Thus (c) and (d) are equivalent.
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Exercise 5.D.16. Suppose that 𝑇 ∈ ℒ(𝑉 ) is diagonalizable. Let 𝜆1, …, 𝜆𝑚 denote the
distinct eigenvalues of 𝑇 . Prove that a subspace 𝑈  of 𝑉  is invariant under 𝑇  if and
only if there exist subspaces 𝑈1, …, 𝑈𝑚 of 𝑉  such that 𝑈𝑘 ⊆ 𝐸(𝜆𝑘, 𝑇 ) for each 𝑘 and
𝑈 = 𝑈1 ⊕ ⋯ ⊕ 𝑈𝑚.

Solution. Suppose there exist such subspaces and let 𝑢 = 𝑢1 + ⋯ + 𝑢𝑚 ∈ 𝑈  be given. Ob-
serve that

𝑇𝑢 = 𝑇𝑢1 + ⋯ + 𝑇𝑢𝑚 = 𝜆1𝑢1 + ⋯ + 𝜆𝑚𝑢𝑚 ∈ 𝑈1 ⊕ ⋯ ⊕ 𝑈𝑚 = 𝑈.

Thus 𝑈  is invariant under 𝑇 .

Now suppose that 𝑈  is invariant under 𝑇 . Because 𝑇  is diagonalizable, (5.55) shows that

𝑉 = 𝐸(𝜆1, 𝑇 ) ⊕ ⋯ ⊕ 𝐸(𝜆𝑚, 𝑇 ).

For each 𝑘 ∈ {1, …, 𝑚}, let 𝑈𝑘 = 𝑈 ∩ 𝐸(𝜆𝑘, 𝑇 ) ⊆ 𝐸(𝜆𝑘, 𝑇 ). The directness of the sum
𝑈1 ⊕ ⋯ ⊕ 𝑈𝑚 is immediate from the directness of the sum 𝐸(𝜆1, 𝑇 ) ⊕ ⋯ ⊕ 𝐸(𝜆𝑚, 𝑇 ), and
since each 𝑈𝑘 ⊆ 𝑈  we have 𝑈1 ⊕ ⋯ ⊕ 𝑈𝑚 ⊆ 𝑈 . For any 𝑢 ∈ 𝑈  we have 𝑢 = 𝑣1 + ⋯ + 𝑣𝑚,
where each 𝑣𝑘 ∈ 𝐸(𝜆𝑘, 𝑇 ). Lemma L.4 shows that each 𝑣𝑘 ∈ 𝑈  and thus 𝑢 belongs to
𝑈1 ⊕ ⋯ ⊕ 𝑈𝑚, so that 𝑈 ⊆ 𝑈1 ⊕ ⋯ ⊕ 𝑈𝑚. We may conclude that 𝑈 = 𝑈1 ⊕ ⋯ ⊕ 𝑈𝑚.

Exercise 5.D.17. Suppose 𝑉  is finite-dimensional. Prove that ℒ(𝑉 ) has a basis con-
sisting of diagonalizable operators.

Solution. Let 𝑣1, …, 𝑣𝑛 be a basis of 𝑉 ; in what follows, all matrices of operators are with
respect to this basis. For 𝑖, 𝑗 ∈ {1, …, 𝑛} such that 𝑖 ≠ 𝑗, define 𝑇𝑖,𝑗 ∈ ℒ(𝑉 ) by

𝑇𝑖,𝑗𝑣𝑘 = {
𝑘𝑣𝑘 if 𝑘 ≠ 𝑗,
𝑘𝑣𝑘 + 𝑣𝑖 if 𝑘 = 𝑗.

Thus the matrix of 𝑇𝑖,𝑗 has diagonal entries 1, …, 𝑛, a 1 in the 𝑖th row and 𝑗th column, and 
0’s elsewhere. Notice that this matrix is either upper- or lower-triangular. It follows that
the eigenvalues of 𝑇𝑖,𝑗 are precisely 1, …, 𝑛 and hence 𝑇𝑖,𝑗 is diagonalizable by 5.58. For each
𝑗 ∈ {1, …, 𝑛}, define 𝑆𝑗 ∈ ℒ(𝑉 ) by

𝑆𝑗𝑣𝑘 = {
𝑣𝑘 if 𝑘 = 𝑗,
0 if 𝑘 ≠ 𝑗.

Notice that the matrix of 𝑆𝑗 has a 1 in the 𝑗th row and 𝑗th column, and 0’s elsewhere. Thus
each 𝑆𝑗 is diagonalizable.

Suppose we have a linear combination of the list

ℬ ≔ 𝑇1,2, …, 𝑇1,𝑛, …, 𝑇𝑛,1, …, 𝑇𝑛,𝑛−1, 𝑆1, …, 𝑆𝑛
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which equals zero. For 𝑖 ≠ 𝑗, only the operator 𝑇𝑖,𝑗 has a non-zero entry in the 𝑖th row and
𝑗th column of its matrix. It follows that the coefficient of 𝑇𝑖,𝑗 in the linear combination must
be zero and we are left with a linear combination 𝑎1𝑆1 + ⋯ + 𝑎𝑛𝑆𝑛 = 0, which clearly im-
plies 𝑎1 = ⋯ = 𝑎𝑛 = 0. Thus ℬ is linearly independent. A straightforward counting argument
shows that ℬ has length 𝑛2 and so we may conclude that ℬ is a basis of ℒ(𝑉 ) consisting of
diagonalizable operators.

Exercise 5.D.18. Suppose that 𝑇 ∈ ℒ(𝑉 ) is diagonalizable and 𝑈  is a subspace of 
𝑉  that is invariant under 𝑇 . Prove that the quotient operator 𝑇/𝑈  is a diagonalizable
operator on 𝑉/𝑈 .

The quotient operator 𝑇/𝑈  was defined in Exercise 38 in Section 5A.

Solution. By 5.62 and Exercise 5.B.25 (a), the minimal polynomial of 𝑇  is a product of
distinct linear factors and also a polynomial multiple of the minimal polynomial of 𝑇/𝑈 ; it
follows that the minimal polynomial of 𝑇/𝑈  is a product of distinct linear factors and 5.62
allows us to conclude that 𝑇/𝑈  is diagonalizable.

Exercise 5.D.19. Prove or give a counterexample: If 𝑇 ∈ ℒ(𝑉 ) and there exists a sub-
space 𝑈  of 𝑉  that is invariant under 𝑇  such that 𝑇 |𝑈  and 𝑇/𝑈  are both diagonalizable,
then 𝑇  is diagonalizable.

See Exercise 13 in Section 5C for an analogous statement about upper-triangular ma-
trices.

Solution. This is false. For a counterexample, consider the operator 𝑇 ∈ ℒ(𝐅2) given by 
𝑇𝑒1 = 0 and 𝑇𝑒2 = 𝑒1, where 𝑒1, 𝑒2 is the standard basis of 𝐅2. It is straightforward to verify
that the only eigenvalue of 𝑇  is 0 and that 𝐸(0, 𝑇 ) = span(𝑒1). It then follows from 5.55 that
𝑇  is not diagonalizable. However, if we let 𝑈  be the 𝑇 -invariant subspace 𝐸(0, 𝑇 ), then 𝑇 |𝑈
and 𝑇/𝑈  are both operators on 1-dimensional vector spaces and hence are diagonalizable.

Exercise 5.D.20. Suppose 𝑉  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 ). Prove that 𝑇  is di-
agonalizable if and only if the dual operator 𝑇 ′ is diagonalizable.

Solution. By Exercise 5.B.28, 𝑇  and 𝑇 ′ have the same minimal polynomial. The desired
equivalence is then immediate from 5.62.
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Exercise 5.D.21. The Fibonacci sequence 𝐹0, 𝐹1, 𝐹2, … is defined by

𝐹0 = 0, 𝐹1 = 1, and 𝐹𝑛 = 𝐹𝑛−2 + 𝐹𝑛−1 for 𝑛 ≥ 2.

Define 𝑇 ∈ ℒ(𝐑2) by 𝑇 (𝑥, 𝑦) = (𝑦, 𝑥 + 𝑦).

(a) Show that 𝑇 𝑛(0, 1) = (𝐹𝑛, 𝐹𝑛+1) for each nonnegative integer 𝑛.

(b) Find the eigenvalues of 𝑇 .

(c) Find a basis of 𝐑2 consisting of eigenvectors of 𝑇 .

(d) Use the solution to (c) to compute 𝑇 𝑛(0, 1). Conclude that

𝐹𝑛 =
1

√
5⎣
⎢⎡(

1 +
√

5
2

)
𝑛

− (
1 −

√
5

2
)

𝑛

⎦
⎥⎤

for each nonnegative integer 𝑛.

(e) Use (d) to conclude that if 𝑛 is a nonnegative integer, then the Fibonacci number
𝐹𝑛 is the integer that is closest to

1
√

5
(

1 +
√

5
2

)
𝑛

.

Each 𝐹𝑛 is a nonnegative integer, even though the right side of the formula in (d) does
not look like an integer. The number

1 +
√

5
2

is called the golden ratio.

Solution.

(a) We will proceed by induction. The base case 𝑛 = 0 is clear, so suppose that
𝑇 𝑛(0, 1) = (𝐹𝑛, 𝐹𝑛+1) holds for some non-negative integer 𝑛 and observe that

𝑇 𝑛+1(0, 1) = 𝑇 (𝑇 𝑛(0, 1)) = 𝑇(𝐹𝑛, 𝐹𝑛+1) = (𝐹𝑛+1, 𝐹𝑛 + 𝐹𝑛+1) = (𝐹𝑛+1, 𝐹𝑛+2).

This completes the induction step and the proof.

(b) We are looking for solutions (𝑥, 𝑦) ≠ (0, 0) and 𝜆 ∈ 𝐑 of the equation

𝑇 (𝑥, 𝑦) = (𝑦, 𝑥 + 𝑦) = (𝜆𝑥, 𝜆𝑦).

From the equation 𝑦 = 𝜆𝑥 we see that 𝑥 = 0 implies 𝑦 = 0, so we may assume that 𝑥 is
non-zero. Substituting 𝑦 = 𝜆𝑥 into the equation 𝑥 + 𝑦 = 𝜆𝑦 and cancelling 𝑥 gives us
the equation 𝜆2 − 𝜆 − 1 = 0, which has two distinct real solutions:

𝜆1 =
1 +

√
5

2
and 𝜆2 =

1 −
√

5
2

.
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These are indeed eigenvalues, since

𝑇 (1, 𝜆1) = (𝜆1, 𝜆1 + 1) = (𝜆1, 𝜆2
1) = 𝜆1(1, 𝜆1),

where we have used that 𝜆1 satisfies the equation 𝜆2
1 − 𝜆1 − 1 = 0 for the second equal-

ity. Similarly, 𝑇 (1, 𝜆2) = 𝜆2(1, 𝜆2). Since dim 𝐑2 = 2, 5.12 allows us to conclude that
the eigenvalues of 𝑇  are precisely 𝜆1 and 𝜆2.

(c) Since 𝜆1 ≠ 𝜆2, the eigenvectors 𝑣1 = (1, 𝜆1) and 𝑣2 = (1, 𝜆2) found in part (b) are lin-
early independent by 5.11 and thus form a basis of 𝐑2.

(d) Observe that

𝑣1 − 𝑣2 = (0, 𝜆1 − 𝜆2) = (0,
√

5).

Thus (0, 1) = 1√
5
(𝑣1 − 𝑣2). For any positive integer 𝑛, it follows that

𝑇 𝑛(0, 1) = 1√
5
(𝑇 𝑛𝑣1 − 𝑇 𝑛𝑣2) = 1√

5
(𝜆𝑛

1 𝑣1 − 𝜆𝑛
2 𝑣2) = 1√

5
(𝜆𝑛

1 − 𝜆𝑛
2 , 𝜆𝑛+1

1 − 𝜆𝑛+1
2 ).

Given the result of part (a), we may conclude that

𝐹𝑛 = 1√
5
(𝜆𝑛

1 − 𝜆𝑛
2 ) =

1
√

5⎣
⎢⎡(

1 +
√

5
2

)
𝑛

− (
1 −

√
5

2
)

𝑛

⎦
⎥⎤.

(e) Certainly 𝐹0 = 0 is the closest integer to 1√
5
. For any positive integer 𝑛, observe that

2 <
√

5 < 3 ⇒ −1 <
1 −

√
5

2
< −

1
2

⇒ −1 < (
1 −

√
5

2
)

𝑛

< 1

⇒ −
1

√
5

< −
1

√
5
(

1 −
√

5
2

)
𝑛

<
1

√
5

⇒ −
1
2

< −
1

√
5
(

1 −
√

5
2

)
𝑛

<
1
2
.

It then follows from part (d) that

1√
5
𝜆𝑛

1 − 1
2 < 𝐹𝑛 < 1√

5
𝜆𝑛

1 + 1
2 ,

i.e. 𝐹𝑛 is an integer belonging to the open interval ( 1√
5
𝜆𝑛

1 − 1
2 , 1√

5
𝜆𝑛

1 + 1
2), which has

length 1. We may conclude that 𝐹𝑛 is the integer closest to 1√
5
𝜆𝑛

1 .
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Exercise 5.D.22. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝐴 is an 𝑛-by-𝑛 matrix that is the matrix of
𝑇  with respect to some basis of 𝑉 . Prove that if

|𝐴𝑗,𝑗| > ∑
𝑛

𝑘=1
𝑘≠𝑗

|𝐴𝑗,𝑘|

for each 𝑗 ∈ {1, …, 𝑛}, then 𝑇  is invertible.

This exercise states that if the diagonal entries of the matrix of 𝑇  are large compared
to the nondiagonal entries, then 𝑇  is invertible.

Solution. If 𝑇  has no eigenvalues then certainly 0 is not an eigenvalue of 𝑇  and thus 
𝑇  is invertible. Otherwise, let 𝜆 ∈ 𝐅 be an eigenvalue of 𝑇 . 5.67 shows that there exists a
𝑗 ∈ {1, …, 𝑛} such that

|𝜆 − 𝐴𝑗,𝑗| ≤ ∑
𝑛

𝑘=1
𝑘≠𝑗

|𝐴𝑗,𝑘| < |𝐴𝑗,𝑗| ⇒ |𝜆| > 0 ⇒ 𝜆 ≠ 0.

Thus 0 is not an eigenvalue of 𝑇  and it follows that 𝑇  is invertible.

Exercise 5.D.23. Suppose the definition of the Gershgorin disks is changed so that the
radius of the 𝑘th disk is the sum of the absolute values of the entries in column (instead
of row) 𝑘 of 𝐴, excluding the diagonal entry. Show that the Gershgorin disk theorem
(5.67) still holds with this changed definition.

Solution. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝑣1, …, 𝑣𝑛 is a basis of 𝑉 . Let 𝐴 be the matrix of 𝑇  with
respect to 𝑣1, …, 𝑣𝑛; it follows from 3.132 that 𝐴t is the matrix of 𝑇 ′ with respect to the dual
basis 𝜑1, …, 𝜑𝑛 of 𝑉 ′. Let 𝜆 ∈ 𝐅 be an eigenvalue of 𝑇 . Exercise 5.A.15 shows that 𝜆 is also
an eigenvalue of 𝑇 ′ and thus, by 5.67, there exists a 𝑘 ∈ {1, …, 𝑛} such that

|𝜆 − 𝐴𝑘,𝑘| ≤ ∑
𝑛

𝑗=1
𝑗≠𝑘

|𝐴t
𝑘,𝑗| = ∑

𝑛

𝑗=1
𝑗≠𝑘

|𝐴𝑗,𝑘|.

Thus 𝜆 is contained in the 𝑘th Gershgorin “column-disk” of 𝑇  with respect to 𝑣1, …, 𝑣𝑛.
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5.E. Commuting Operators

Exercise 5.E.1. Give an example of two commuting operators 𝑆, 𝑇  on 𝐅4 such that
there is a subspace of 𝐅4 that is invariant under 𝑆 but not under 𝑇  and there is a
subspace of 𝐅4 that is invariant under 𝑇  but not under 𝑆.

Solution. Let 𝑆, 𝑇 ∈ ℒ(𝐅4) be given by

𝑆(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥2, 𝑥1, 0, 0) and 𝑇 (𝑥1, 𝑥2, 𝑥3, 𝑥4) = (0, 0, 𝑥4, 𝑥3).

Notice that 𝑆 and 𝑇  commute, since for any 𝑥 ∈ 𝐅4 we have 𝑆𝑇𝑥 = 𝑇𝑆𝑥 = 0. Notice further
that, for any 𝜆 ∈ 𝐅,

𝑆(𝜆, 0, 0, 0) = (0, 𝜆, 0, 0), 𝑇 (𝜆, 0, 0, 0) = 0, 𝑆(0, 0, 𝜆, 0) = 0, 𝑇 (0, 0, 𝜆, 0) = (0, 0, 0, 𝜆).

It follows that span((1, 0, 0, 0)) is invariant under 𝑇  but not under 𝑆, and span((0, 0, 1, 0))
is invariant under 𝑆 but not under 𝑇 .

Exercise 5.E.2. Suppose ℰ is a subset of ℒ(𝑉 ) and every element of ℰ is diagonalizable.
Prove that there exists a basis of 𝑉  with respect to which every element of ℰ has a
diagonal matrix if and only if every pair of elements of ℰ commutes.

This exercise extends 5.76, which considers the case in which ℰ contains only two el-
ements. For this exercise, ℰ may contain any number of elements, and ℰ may even be
an infinite set.

Solution. Suppose there exists such a basis 𝑣1, …, 𝑣𝑛 and let 𝑆, 𝑇 ∈ ℰ be given. The matrices
of 𝑆 and 𝑇  with respect to 𝑣1, …, 𝑣𝑛 are diagonal and hence commute. It follows from 5.74
that 𝑆 and 𝑇  commute.

Suppose that every pair of elements of ℰ commutes and suppose that dim 𝑉 = 𝑛. Because 
dim ℒ(𝑉 ) = 𝑛2, there must exist a subset ℱ ⊆ ℰ of cardinality at most 𝑛2 such that every
operator in ℰ is a linear combination of operators in ℱ. Suppose that ℱ = {𝑇1, …, 𝑇𝑚} for
some 𝑚 ≤ 𝑛2. Since 𝑇1 is diagonalizable, 5.55 shows that

𝑉 = ⨁
𝜆1∈𝐅

𝐸(𝜆1, 𝑇1);

note that, since 𝑇1 has at most 𝑛 distinct eigenvalues, all but finitely many of the summands
𝐸(𝜆1, 𝑇1) are equal to {0}, so that this direct sum is finite. Let 𝜆1 ∈ 𝐅 be given. Because 𝑇1

and 𝑇2 commute, 5.75 shows that 𝐸(𝜆1, 𝑇1) is invariant under 𝑇2. It then follows from 5.65
that 𝑇2|𝐸(𝜆1,𝑇1) is diagonalizable and thus, by 5.55,

𝐸(𝜆1, 𝑇1) = ⨁
𝜆2∈𝐅

𝐸(𝜆2, 𝑇2|𝐸(𝜆1,𝑇1));

again, this direct sum is finite since 𝑇2 has at most 𝑛 distinct eigenvalues. Notice that
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𝐸(𝜆2, 𝑇2|𝐸(𝜆1,𝑇1)) = {𝑣 ∈ 𝐸(𝜆1, 𝑇1) : 𝑇2𝑣 = 𝜆2𝑣}

= {𝑣 ∈ 𝑉 : 𝑇1𝑣 = 𝜆1𝑣 and 𝑇2𝑣 = 𝜆2𝑣} = 𝐸(𝜆1, 𝑇1) ∩ 𝐸(𝜆2, 𝑇2).

Combining this with 𝑉 = ⨁𝜆1∈𝐅 𝐸(𝜆1, 𝑇1) and 𝐸(𝜆1, 𝑇1) = ⨁𝜆2∈𝐅 𝐸(𝜆2, 𝑇2|𝐸(𝜆1,𝑇1)), we
see that

𝑉 = ⨁
𝜆1,𝜆2∈𝐅

(𝐸(𝜆1, 𝑇1) ∩ 𝐸(𝜆2, 𝑇2)).

If we continue this process, we find that

𝑉 = ⨁
𝜆1,…,𝜆𝑚∈𝐅

(𝐸(𝜆1, 𝑇1) ∩ ⋯ ∩ 𝐸(𝜆𝑚, 𝑇𝑚)),

where this direct sum is finite because each 𝑇𝑘 has at most 𝑛 distinct eigenvalues. If we take
a basis for each non-zero summand 𝐸(𝜆1, 𝑇1) ∩ ⋯ ∩ 𝐸(𝜆𝑚, 𝑇𝑚) and combine these bases, we
obtain a basis 𝑣1, …, 𝑣𝑛 of 𝑉  such that each basis vector is an eigenvector of each 𝑇𝑘. Thus
the matrix of each 𝑇𝑘 with respect to 𝑣1, …, 𝑣𝑛 is diagonal. Because each 𝑇 ∈ ℰ is a linear
combination of 𝑇1, …, 𝑇𝑚, and a linear combination of diagonal matrices is a diagonal matrix,
we see that the matrix of each 𝑇 ∈ ℰ is diagonal with respect to 𝑣1, .., 𝑣𝑛.

Exercise 5.E.3. Suppose 𝑆, 𝑇 ∈ ℒ(𝑉 ) are such that 𝑆𝑇 = 𝑇𝑆. Suppose 𝑝 ∈ 𝒫(𝐅).

(a) Prove that null 𝑝(𝑆) is invariant under 𝑇 .

(b) Prove that range 𝑝(𝑆) is invariant under 𝑇 .

See 5.18 for the special case 𝑆 = 𝑇 .

Solution. Suppose 𝑝 = ∑𝑚
𝑘=0 𝑐𝑘𝑧𝑘.

(a) Let 𝑣 ∈ null 𝑝(𝑆) be given and observe that

𝑝(𝑆)(𝑇𝑣) = ∑
𝑚

𝑘=0
𝑐𝑘𝑆𝑘(𝑇 𝑣) = 𝑇(∑

𝑚

𝑘=0
𝑐𝑘𝑆𝑘𝑣) = 𝑇(𝑝(𝑆)𝑣) = 𝑇 (0) = 0,

where we have used that 𝑇  is linear and that 𝑇  commutes with 𝑆 for the second equal-
ity. Thus null 𝑝(𝑆) is invariant under 𝑇 .

(b) Let 𝑣 ∈ range 𝑝(𝑆) be given, so that 𝑣 = 𝑝(𝑆)𝑤 for some 𝑤 ∈ 𝑉 , and observe that

𝑇𝑣 = 𝑇(∑
𝑚

𝑘=0
𝑐𝑘𝑆𝑘𝑤) = ∑

𝑚

𝑘=0
𝑐𝑘𝑆𝑘(𝑇𝑤) = 𝑝(𝑆)(𝑇𝑤) ∈ range 𝑝(𝑆),

where we have used that 𝑇  is linear and that 𝑇  commutes with 𝑆 for the second equal-
ity. Thus range 𝑝(𝑆) is invariant under 𝑇 .

Exercise 5.E.4. Prove or give a counterexample: If 𝐴 is a diagonal matrix and 𝐵 is an
upper-triangular matrix of the same size as 𝐴, then 𝐴 and 𝐵 commute.
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Solution. This is false:

(1
0

0
0)(0

0
1
0) = (0

0
1
0) ≠ (0

0
0
0) = (0

0
1
0)(1

0
0
0).

Exercise 5.E.5. Prove that a pair of operators on a finite-dimensional vector space
commute if and only if their dual operators commute.

See 3.118 for the definition of the dual of an operator.

Solution. Suppose 𝑉  is a finite-dimensional vector space and 𝑆, 𝑇 ∈ ℒ(𝑉 ). Let 𝑣1, …, 𝑣𝑛 be
a basis of 𝑉 , let 𝜑1, …, 𝜑𝑛 be the corresponding dual basis of 𝑉 ′, and let

𝐴 = ℳ(𝑆, (𝑣1, …, 𝑣𝑛)) and 𝐵 = ℳ(𝑇 , (𝑣1, …, 𝑣𝑛)).

It follows from 3.132 that the matrices of 𝑆′ and 𝑇 ′ with respect to 𝜑1, …, 𝜑𝑛 are 𝐴t and 
𝐵t. To show that 𝑆 and 𝑇  commute if and only if 𝑆′ and 𝑇 ′ commute, it will suffice, by
5.74, to show that 𝐴 and 𝐵 commute if and only if 𝐴t and 𝐵t commute. Indeed, using
Exercise 3.C.15,

𝐴𝐵 = 𝐵𝐴 ⇔ (𝐴𝐵)t = (𝐵𝐴)t ⇔ 𝐵t𝐴t = 𝐴t𝐵t.

Exercise 5.E.6. Suppose 𝑉  is a finite-dimensional complex vector space and
𝑆, 𝑇 ∈ ℒ(𝑉 ) commute. Prove that there exist 𝛼, 𝜆 ∈ 𝐂 such that

range(𝑆 − 𝛼𝐼) + range(𝑇 − 𝜆𝐼) ≠ 𝑉 .

Solution. By 5.80 there is a basis 𝑣1, …, 𝑣𝑛 such that the matrices ℳ(𝑆) and ℳ(𝑇) are
both upper-triangular, say

ℳ(𝑆) =
⎝
⎜⎛

∗
⋮
0

⋯
⋱
⋯

∗
⋮
𝛼⎠
⎟⎞ and ℳ(𝑇) =

⎝
⎜⎛

∗
⋮
0

⋯
⋱
⋯

∗
⋮
𝜆⎠
⎟⎞

for some 𝛼, 𝜆 ∈ 𝐂. It follows that

ℳ(𝑆 − 𝛼𝐼) =
⎝
⎜⎛

∗
⋮
0

⋯
⋱
⋯

∗
⋮
0⎠
⎟⎞ and ℳ(𝑇 − 𝜆𝐼) =

⎝
⎜⎛

∗
⋮
0

⋯
⋱
⋯

∗
⋮
0⎠
⎟⎞

and hence that range(𝑆 − 𝛼𝐼) and range(𝑇 − 𝜆𝐼) are both contained in span(𝑣1, …, 𝑣𝑛−1).
Thus range(𝑆 − 𝛼𝐼) + range(𝑇 − 𝜆𝐼) ⊆ span(𝑣1, …, 𝑣𝑛−1) ≠ 𝑉 .

Exercise 5.E.7. Suppose 𝑉  is a complex vector space, 𝑆 ∈ ℒ(𝑉 ) is diagonalizable, and
𝑇 ∈ ℒ(𝑉 ) commutes with 𝑆. Prove that there is a basis of 𝑉  such that 𝑆 has a diagonal
matrix with respect to this basis and 𝑇  has an upper-triangular matrix with respect to
this basis.
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Solution. We will proceed by induction on dim 𝑉 . Certainly the result is true for dim 𝑉 = 1,
since all 1-by-1 matrices are diagonal. Let 𝑉  be a complex vector space of dimension 𝑛 > 1,
suppose the result holds for all complex vector spaces of smaller dimension, let 𝑆 ∈ ℒ(𝑉 ) be
diagonalizable, and suppose 𝑇 ∈ ℒ(𝑉 ) commutes with 𝑆. By 5.19 there exists an eigenvalue
𝜆 ∈ 𝐂 of 𝑆 and it then follows from Exercise 5.D.5 that 𝑉 = 𝑈 ⊕ 𝑊 , where

𝑈 = null(𝑆 − 𝜆𝐼) and 𝑊 = range(𝑆 − 𝜆𝐼).

If 𝑆 = 𝜆𝐼 then the matrix of 𝑆 with respect to any basis of 𝑉  is diagonal and thus the desired
basis of 𝑉  is given by 5.47. If 𝑆 ≠ 𝜆𝐼 then 1 ≤ dim 𝑈 < 𝑛 and 1 ≤ dim 𝑊 < 𝑛. Furthermore,
Exercise 5.E.3 shows that 𝑈  and 𝑊  are invariant under both 𝑆 and 𝑇 . Because 𝑆 and 𝑇
commute, their restrictions to any subspace of 𝑉  will also commute and thus we can apply
our induction hypothesis to both 𝑈  and 𝑊  to obtain a basis 𝑣1, …, 𝑣𝑚 of 𝑈  and a basis 
𝑣𝑚+1, …, 𝑣𝑛 of 𝑊  such that each 𝑣𝑘 is an eigenvector of 𝑆 and such that

𝑇𝑣𝑘 ∈ span(𝑣1, …, 𝑣𝑘) for 𝑘 ∈ {1, …, 𝑚},

and 𝑇𝑣𝑘 ∈ span(𝑣𝑚+1, …, 𝑣𝑘) ⊆ span(𝑣1, …, 𝑣𝑘) for 𝑘 ∈ {𝑚 + 1, …, 𝑛}.

Thus 𝑣1, …, 𝑣𝑛 is a basis of 𝑉  such that ℳ(𝑆, (𝑣1, …, 𝑣𝑛)) is diagonal and such that 
ℳ(𝑇 , (𝑣1, …, 𝑣𝑛)) is upper-triangular. This completes the induction step and the proof.

Exercise 5.E.8. Suppose 𝑚 = 3 in Example 5.72 and 𝐷𝑥, 𝐷𝑦 are the commuting partial
differentiation operators on 𝒫3(𝐑2) from that example. Find a basis of 𝒫3(𝐑2) with
respect to which 𝐷𝑥 and 𝐷𝑦 each have an upper-triangular matrix.

Solution. Consider the list

𝐵 ≔ 1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2, 𝑥3, 𝑥2𝑦, 𝑥𝑦2, 𝑦3.

From the definition of 𝒫3(𝐑2), it is clear that 𝐵 spans 𝒫3(𝐑2). Suppose we have a linear
combination

𝑎0,0 + 𝑎1,0𝑥 + 𝑎0,1𝑦 + 𝑎2,0𝑥2 + 𝑎1,1𝑥𝑦 + 𝑎0,2𝑦2 + 𝑎3,0𝑥3 + 𝑎2,1𝑥2𝑦 + 𝑎1,2𝑥𝑦2 + 𝑎0,3𝑦3 = 0.

Taking 𝑦 = 0 shows that 𝑎0,0 = 𝑎1,0 = 𝑎2,0 = 𝑎3,0 = 0, given the linear independence of 
1, 𝑥, 𝑥2, 𝑥3 in 𝒫(𝐑), and similarly taking 𝑥 = 0 gives us 𝑎0,1 = 𝑎0,2 = 𝑎0,3 = 0. Thus we are
left with the linear combination

𝑎1,1𝑥𝑦 + 𝑎2,1𝑥2𝑦 + 𝑎1,2𝑥𝑦2 = 0.

Taking (𝑥, 𝑦) ∈ {(1, 1), (2, 1), (1, 2)} gives us the system of linear equations

⎝
⎜⎜
⎛1

2
2

1
4
2

1
2
4⎠
⎟⎟
⎞

⎝
⎜⎜
⎛

𝑎1,1
𝑎2,1
𝑎1,2⎠

⎟⎟
⎞ =

⎝
⎜⎜
⎛0

0
0⎠
⎟⎟
⎞,
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which has the unique solution 𝑎1,1 = 𝑎2,1 = 𝑎1,2 = 0. Thus 𝐵 is linearly independent and
hence forms a basis of 𝒫3(𝐑2). Now observe that applying 𝐷𝑥 to each vector in 𝐵 gives us
the list

0, 1, 0, 2𝑥, 𝑦, 0, 3𝑥2, 2𝑥𝑦, 𝑦2, 0.

It follows that the matrix of 𝐷𝑥 with respect to 𝐵 is upper-triangular:

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛0

0
0
0
0
0
0
0
0
0

1
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
2
0
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

0
0
0
3
0
0
0
0
0
0

0
0
0
0
2
0
0
0
0
0

0
0
0
0
0
1
0
0
0
0

0
0
0
0
0
0
0
0
0
0⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

Similarly, we find that the matrix of 𝐷𝑦 with respect to 𝐵 is upper-triangular.

Exercise 5.E.9. Suppose 𝑉  is a finite-dimensional nonzero complex vector space. Sup-
pose that ℰ ⊆ ℒ(𝑉 ) is such that 𝑆 and 𝑇  commute for all 𝑆, 𝑇 ∈ ℰ.

(a) Prove that there is a vector in 𝑉  that is an eigenvector for every element of ℰ.

(b) Prove that there is a basis of 𝑉  with respect to which every element of ℰ has an
upper-triangular matrix.

This exercise extends 5.78 and 5.80, which consider the case in which ℰ contains only
two elements. For this exercise, ℰ may contain any number of elements, and ℰ may
even be an infinite set.

Solution.

(a) Suppose that dim 𝑉 = 𝑛. Because dim ℒ(𝑉 ) = 𝑛2, there must exist a subset ℱ ⊆ ℰ of
cardinality at most 𝑛2 such that every operator in ℰ is a linear combination of operators
in ℱ. Suppose that ℱ = {𝑇1, …, 𝑇𝑚} for some 𝑚 ≤ 𝑛2. By 5.19 𝑇1 has an eigenvalue 
𝜆1, and because 𝑇1 and 𝑇2 commute, 5.75 shows that 𝐸(𝜆1, 𝑇1) is invariant under 𝑇2.
Another application of 5.19 shows that 𝑇2|𝐸(𝜆1,𝑇1) has an eigenvector, which must also
be an eigenvector of 𝑇1. Thus 𝐸(𝜆1, 𝑇1) ∩ 𝐸(𝜆2, 𝑇2) ≠ {0}. Since 𝑇3 commutes with
both 𝑇1 and 𝑇2, 5.75 shows that 𝐸(𝜆1, 𝑇1) and 𝐸(𝜆2, 𝑇2) are both invariant under 
𝑇3 and thus, by Exercise 5.A.3, the intersection 𝐸(𝜆1, 𝑇1) ∩ 𝐸(𝜆2, 𝑇2) is also invariant
under 𝑇3. It then follows from 5.19 that 𝑇3 restricted to 𝐸(𝜆1, 𝑇1) ∩ 𝐸(𝜆2, 𝑇2) has an
eigenvector, which must also be an eigenvector of 𝑇1 and 𝑇2. By continuing in this
manner, we obtain a 𝑣 ∈ 𝑉  that is an eigenvector of each 𝑇𝑘, say 𝑇𝑘𝑣 = 𝜆𝑘𝑣 for some 
𝜆𝑘 ∈ 𝐂.
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Let 𝑇 ∈ ℰ be given. As noted above, 𝑇  must be a linear combination of operators in 
ℱ, say 𝑇 = ∑𝑚

𝑘=1 𝑐𝑘𝑇𝑘. It follows that

𝑇𝑣 = (∑
𝑚

𝑘=1
𝑐𝑘𝑇𝑘)𝑣 = ∑

𝑚

𝑘=1
𝑐𝑘𝜆𝑘𝑣 = (∑

𝑚

𝑘=1
𝑐𝑘𝜆𝑘)𝑣.

Thus 𝑣 is an eigenvector of 𝑇 .

(b) Let us first consider the special case where ℰ is finite. Our proof here is a generaliza-
tion of the proof of 5.80. For a positive integer 𝑛, let 𝑃(𝑛) be the statement that if 
𝑉  is an 𝑛-dimensional complex vector space and {𝑇1, …, 𝑇𝑚} is a collection of pairwise
commuting operators on 𝑉  for some 𝑚 ≥ 2, then there is a basis of 𝑉  with respect to
which each 𝑇𝑘 has an upper-triangular matrix.

The truth of 𝑃(1) is clear. For some 𝑛 > 1, suppose that 𝑃(𝑛 − 1) holds, let 𝑉  be
an 𝑛-dimensional complex vector space, and let {𝑇1, …, 𝑇𝑚} be a collection of pair-
wise commuting operators on 𝑉  for some 𝑚 ≥ 2. By part (a) there exists a 𝑣1 ∈ 𝑉
which is an eigenvector of each 𝑇𝑘, so that 𝑇𝑘𝑣1 ∈ span(𝑣1). Using 2.33, let 𝑊  be
such that 𝑉 = span(𝑣1) ⊕ 𝑊  and define 𝑃 ∈ ℒ(𝑉 , 𝑊) by 𝑃(𝑎𝑣1 + 𝑤) = 𝑤. For each
𝑘 ∈ {1, …, 𝑚}, define ̂𝑇𝑘 ∈ ℒ(𝑊) by ̂𝑇𝑘𝑤 = 𝑃(𝑇𝑘𝑤). Because each pair of operators
in {𝑇1, …, 𝑇𝑚} commutes, the proof of 5.80 shows that each pair of operators in 
{ ̂𝑇1, …, ̂𝑇𝑚} also commutes. We can now apply our induction hypothesis to obtain a
basis 𝑣2, …, 𝑣𝑛 of 𝑊  with respect to which the matrix of each ̂𝑇𝑘 is upper-triangular.
The list 𝑣1, …, 𝑣𝑛 is a basis of 𝑉 . For each 𝑗 ∈ {2, …, 𝑛} and each 𝑘 ∈ {1, …, 𝑚}, there
exists 𝑎𝑗,𝑘 ∈ 𝐂 such that

𝑇𝑘𝑣𝑗 = 𝑎𝑗,𝑘𝑣1 + ̂𝑇𝑘𝑣𝑗.

Because ̂𝑇𝑘𝑣𝑗 ∈ span(𝑣2, …, 𝑣𝑗), this equation implies that 𝑇𝑘𝑣𝑗 ∈ span(𝑣1, …, 𝑣𝑗). Thus
the matrix of each 𝑇𝑘 with respect to the basis 𝑣1, …, 𝑣𝑛 is upper triangular. This com-
pletes the induction step and the proof.

Now let us consider the general case where ℰ may be infinite. Because dim ℒ(𝑉 ) = 𝑛2,
there must exist a subset ℱ ⊆ ℰ of cardinality at most 𝑛2 such that every operator in
ℰ is a linear combination of operators in ℱ. Suppose that ℱ = {𝑇1, …, 𝑇𝑚} for some 
𝑚 ≤ 𝑛2. The special case we just proved implies that there is a basis 𝑣1, …, 𝑣𝑛 of 𝑉  with
respect to which each 𝑇𝑘 has an upper-triangular matrix. Because a linear combination
of upper-triangular matrices is again an upper-triangular matrix and each 𝑇 ∈ ℰ is a
linear combination of the operators {𝑇1, …, 𝑇𝑚}, we see that the matrix of each 𝑇 ∈ ℰ
with respect to 𝑣1, …, 𝑣𝑛 is upper-triangular.
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Exercise 5.E.10. Give an example of two commuting operators 𝑆, 𝑇  on a finite-di-
mensional real vector space such that 𝑆 + 𝑇  has an eigenvalue that does not equal an
eigenvalue of 𝑆 plus an eigenvalue of 𝑇  and 𝑆𝑇  has an eigenvalue that does not equal
an eigenvalue of 𝑆 times an eigenvalue of 𝑇 .

This exercise shows that 5.81 does not hold on real vector spaces.

Solution. Let 𝑆, 𝑇 ∈ ℒ(𝐑2) be given by 𝑆(𝑥, 𝑦) = (−𝑦, 𝑥) and 𝑇 = −𝑆, i.e. 𝑆 is a counter-
clockwise rotation about the origin by 90° and 𝑇  is a clockwise rotation about the origin
by 90°. It follows that 𝑆 + 𝑇 = 0 and 𝑆𝑇 = 𝐼 , so that 0 is an eigenvalue of 𝑆 + 𝑇  and 1 is
an eigenvalue of 𝑆𝑇 . However, we may not express either of these eigenvalues as a sum or
product of eigenvalues of 𝑆 and 𝑇 , because 𝑆 and 𝑇  do not have eigenvalues (see 5.9(a)).
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Chapter 6. Inner Product Spaces

6.A. Inner Products and Norms

Exercise 6.A.1. Prove or give a counterexample: If 𝑣1, …, 𝑣𝑚 ∈ 𝑉 , then

∑
𝑚

𝑗=1
∑
𝑚

𝑘=1
⟨𝑣𝑗, 𝑣𝑘⟩ ≥ 0.

Solution. Suppose we have a sequence of vectors 𝑣1, 𝑣2, 𝑣3, … in 𝑉 . We will use induction
on 𝑚 to prove that

‖𝑣1 + ⋯ + 𝑣𝑚‖2 = ∑
𝑚

𝑗=1
∑
𝑚

𝑘=1
⟨𝑣𝑗, 𝑣𝑘⟩

for each positive integer 𝑚. The base case is clear, so suppose that the result holds for some
positive integer 𝑚 and observe that

‖𝑣1 + ⋯ + 𝑣𝑚 + 𝑣𝑚+1‖
2 = ⟨𝑣1 + ⋯ + 𝑣𝑚 + 𝑣𝑚+1, 𝑣1 + ⋯ + 𝑣𝑚 + 𝑣𝑚+1⟩

= ⟨𝑣1 + ⋯ + 𝑣𝑚, 𝑣1 + ⋯ + 𝑣𝑚⟩ + ⟨𝑣1 + ⋯ + 𝑣𝑚, 𝑣𝑚+1⟩

+ ⟨𝑣𝑚+1, 𝑣1 + ⋯ + 𝑣𝑚⟩ + ⟨𝑣𝑚+1, 𝑣𝑚+1⟩

= ∑
𝑚

𝑗=1
∑
𝑚

𝑘=1
⟨𝑣𝑗, 𝑣𝑘⟩ + ∑

𝑚

𝑗=1
⟨𝑣𝑗, 𝑣𝑚+1⟩ + ∑

𝑚

𝑘=1
⟨𝑣𝑚+1, 𝑣𝑘⟩ + ⟨𝑣𝑚+1, 𝑣𝑚+1⟩

= ∑
𝑚+1

𝑗=1
∑
𝑚+1

𝑘=1
⟨𝑣𝑗, 𝑣𝑘⟩.

This completes the induction step. The desired inequality is now immediate:

∑
𝑚

𝑗=1
∑
𝑚

𝑘=1
⟨𝑣𝑗, 𝑣𝑘⟩ = ‖𝑣1 + ⋯ + 𝑣𝑚‖2 ≥ 0.

Exercise 6.A.2. Suppose 𝑆 ∈ ℒ(𝑉 ). Define ⟨⋅, ⋅⟩1 by

⟨𝑢, 𝑣⟩1 = ⟨𝑆𝑢, 𝑆𝑣⟩

for all 𝑢, 𝑣 ∈ 𝑉 . Show that ⟨⋅, ⋅⟩1 is an inner product on 𝑉  if and only if 𝑆 is injective.

Solution. If 𝑆 is not injective then there exists some non-zero 𝑣 ∈ 𝑉  such that 𝑆𝑣 = 0. It
follows that
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⟨𝑣, 𝑣⟩1 = ⟨𝑆𝑣, 𝑆𝑣⟩ = ⟨0, 0⟩ = 0.

Thus ⟨⋅, ⋅⟩1 fails to have the definiteness property required by 6.2 and hence is not an inner
product on 𝑉 .

Now suppose that 𝑆 is injective. We verify each property required by 6.2.

Positivity. We have ⟨𝑣, 𝑣⟩1 = ⟨𝑆𝑣, 𝑆𝑣⟩ ≥ 0 for all 𝑣 ∈ 𝑉  by the positivity of ⟨⋅, ⋅⟩.

Definiteness. We have ⟨𝑣, 𝑣⟩1 = ⟨𝑆𝑣, 𝑆𝑣⟩ = 0 if and only if 𝑆𝑣 = 0 by the definiteness of
⟨⋅, ⋅⟩, and 𝑆𝑣 = 0 if and only if 𝑣 = 0 by the injectivity of 𝑆. Thus ⟨𝑣, 𝑣⟩1 = 0 if and only if 
𝑣 = 0.

Additivity in the first slot. Let 𝑢, 𝑣, 𝑤 ∈ 𝑉  be given and observe that

⟨𝑢 + 𝑣, 𝑤⟩1 = ⟨𝑆(𝑢 + 𝑣), 𝑆𝑤⟩ = ⟨𝑆𝑢 + 𝑆𝑣, 𝑆𝑤⟩ = ⟨𝑆𝑢, 𝑆𝑤⟩ + ⟨𝑆𝑣, 𝑆𝑤⟩ = ⟨𝑢, 𝑤⟩1 + ⟨𝑣, 𝑤⟩1,

where we have used the linearity of 𝑆 and the additivity in the first slot of ⟨⋅, ⋅⟩.

Homogeneity in the first slot. Let 𝜆 ∈ 𝐅 and 𝑢, 𝑣 ∈ 𝑉  be given and observe that

⟨𝜆𝑢, 𝑣⟩1 = ⟨𝑆(𝜆𝑢), 𝑆𝑣⟩ = ⟨𝜆𝑆𝑢, 𝑆𝑣⟩ = 𝜆⟨𝑆𝑢, 𝑆𝑣⟩ = 𝜆⟨𝑢, 𝑣⟩1,

where we have used the linearity of 𝑆 and the homogeneity in the first slot of ⟨⋅, ⋅⟩.

Conjugate symmetry. Let 𝑢, 𝑣 ∈ 𝑉  be given and observe that

⟨𝑣, 𝑢⟩1 = ⟨𝑆𝑣, 𝑆𝑢⟩ = ⟨𝑆𝑢, 𝑆𝑣⟩ = ⟨𝑢, 𝑣⟩1,

where we have used the conjugate symmetry of ⟨⋅, ⋅⟩.

Exercise 6.A.3.

(a) Show that the function taking an ordered pair ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) of elements of 
𝐑2 to |𝑥1𝑦1| + |𝑥2𝑦2| is not an inner product on 𝐑2.

(b) Show that the function taking an ordered pair ((𝑥1, 𝑥2, 𝑥3), (𝑦1, 𝑦2, 𝑦3)) of elements
of 𝐑3 to 𝑥1𝑦1 + 𝑥3𝑦3 is not an inner product on 𝐑3.

Solution.

(a) Let 𝑓 be the function in question, i.e. 𝑓 : 𝐑2 × 𝐑2 → 𝐑 is given by

𝑓((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = |𝑥1𝑦1| + |𝑥2𝑦2|,

and notice that

𝑓((−1, 0), (1, 0)) = 1 ≠ −1 = −𝑓((1, 0), (1, 0)).

Thus 𝑓 is not homogeneous in the first slot and hence is not an inner product on 𝐑2.

(b) Let 𝑓 be the function in question, i.e. 𝑓 : 𝐑3 × 𝐑3 → 𝐑 is given by

𝑓((𝑥1, 𝑥2, 𝑥3), (𝑦1, 𝑦2, 𝑦3)) = 𝑥1𝑦1 + 𝑥3𝑦3,

and notice that
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𝑓((0, 1, 0), (0, 1, 0)) = 0.

Thus 𝑓 fails to have the definiteness property required by 6.2 and hence is not an inner
product on 𝐑3.

Exercise 6.A.4. Suppose 𝑇 ∈ ℒ(𝑉 ) is such that ‖𝑇 𝑣‖ ≤ ‖𝑣‖ for every 𝑣 ∈ 𝑉 . Prove that
𝑇 −

√
2𝐼 is injective.

Solution. We will prove the contrapositive statement. If 𝑇 −
√

2𝐼 is not injective then there
is some non-zero 𝑣 ∈ 𝑉  such that 𝑇𝑣 =

√
2𝑣. Because 𝑣 ≠ 0 we have ‖𝑣‖ ≠ 0 and thus

‖𝑇 𝑣‖ = ‖
√

2𝑣‖ =
√

2‖𝑣‖ > ‖𝑣‖.

Exercise 6.A.5. Suppose 𝑉  is a real inner product space.

(a) Show that ⟨𝑢 + 𝑣, 𝑢 − 𝑣⟩ = ‖𝑢‖2 − ‖𝑣‖2 for every 𝑢, 𝑣 ∈ 𝑉 .

(b) Show that if 𝑢, 𝑣 ∈ 𝑉  have the same norm, then 𝑢 + 𝑣 is orthogonal to 𝑢 − 𝑣.

(c) Use (b) to show that the diagonals of a rhombus are perpendicular to each other.

Solution.

(a) For any 𝑢, 𝑣 ∈ 𝑉  we have

⟨𝑢 + 𝑣, 𝑢 − 𝑣⟩ = ⟨𝑢, 𝑢⟩ − ⟨𝑢, 𝑣⟩ + ⟨𝑣, 𝑢⟩ − ⟨𝑣, 𝑣⟩ = ‖𝑢‖2 − ‖𝑣‖2.

(b) This is immediate from part (a).

(c) In plane geometry, a rhombus is a quadrilateral whose four sides have the same length.
Letting 𝑢 and 𝑣 denote the two non-parallel sides, the diagonals are given by 𝑢 + 𝑣
and 𝑢 − 𝑣. Since ‖𝑢‖ = ‖𝑣‖, part (b) shows that 𝑢 + 𝑣 and 𝑢 − 𝑣 are perpendicular to
each other.

𝑢 𝑣

𝑣 𝑢

𝑢 + 𝑣

𝑢 − 𝑣
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Exercise 6.A.6. Suppose 𝑢, 𝑣 ∈ 𝑉 . Prove that ⟨𝑢, 𝑣⟩ = 0 ⇔ ‖𝑢‖ ≤ ‖𝑢 + 𝑎𝑣‖ for all
𝑎 ∈ 𝐅.

Solution. Suppose that ⟨𝑢, 𝑣⟩ = 0 and let 𝑎 ∈ 𝐅 be given. Observe that

⟨𝑢, 𝑎𝑣⟩ = 𝑎⟨𝑢, 𝑣⟩ = 0.

Thus 𝑢 and 𝑎𝑣 are orthogonal. It follows from the Pythagorean Theorem (6.12) that

‖𝑢 + 𝑎𝑣‖2 = ‖𝑢‖2 + ‖𝑎𝑣‖2 ≥ ‖𝑢‖2.

Taking square roots gives the desired inequality.

Now suppose that ⟨𝑢, 𝑣⟩ ≠ 0. By 6.11 it must be the case that 𝑣 ≠ 0. Thus we can define 
𝑐 and 𝑤 as in 6.13, so that ⟨𝑤, 𝑣⟩ = 0 and 𝑢 = 𝑐𝑣 + 𝑤. Since 𝑤 and 𝑣 are orthogonal, the
Pythagorean Theorem (6.12) shows that

‖𝑢‖2 = ‖𝑐𝑣 + 𝑤‖2 = |𝑐|2‖𝑣‖2 + ‖𝑤‖2 > ‖𝑤‖2 = ‖𝑢 − 𝑐𝑣‖2;

the inequality is strict here because 𝑐 ≠ 0 and 𝑣 ≠ 0. Taking square roots gives us
‖𝑢‖ > ‖𝑢 − 𝑐𝑣‖ and thus a choice of 𝑎 = −𝑐 gives us the desired result.

Exercise 6.A.7. Suppose 𝑢, 𝑣 ∈ 𝑉 . Prove that ‖𝑎𝑢 + 𝑏𝑣‖ = ‖𝑏𝑢 + 𝑎𝑣‖ for all 𝑎, 𝑏 ∈ 𝐑 if
and only if ‖𝑢‖ = ‖𝑣‖.

Solution. For any 𝑎, 𝑏 ∈ 𝐑, note that

‖𝑎𝑢 + 𝑏𝑣‖ = ‖𝑏𝑢 + 𝑎𝑣‖ ⇔ ‖𝑎𝑢 + 𝑏𝑣‖2 = ‖𝑏𝑢 + 𝑎𝑣‖2.

Note further that

‖𝑎𝑢 + 𝑏𝑣‖2 = 𝑎2‖𝑢‖2 + 2𝑎𝑏⟨𝑢, 𝑣⟩ + 𝑏2‖𝑣‖2

and ‖𝑏𝑢 + 𝑎𝑣‖2 = 𝑏2‖𝑢‖2 + 2𝑎𝑏⟨𝑢, 𝑣⟩ + 𝑎2‖𝑣‖2.

Thus ‖𝑎𝑢 + 𝑏𝑣‖2 = ‖𝑏𝑢 + 𝑎𝑣‖2 holds if and only if

(𝑎2 − 𝑏2)(‖𝑢‖2 − ‖𝑣‖2) = 0.

Given this, it will suffice to show that (𝑎2 − 𝑏2)(‖𝑢‖2 − ‖𝑣‖2) = 0 for all 𝑎, 𝑏 ∈ 𝐑 if and only
if ‖𝑢‖ = ‖𝑣‖. The reverse implication is clear; for the forward implication, simply take 𝑎 = 1
and 𝑏 = 0.

Exercise 6.A.8. Suppose 𝑎, 𝑏, 𝑐, 𝑥, 𝑦 ∈ 𝐑 and 𝑎2 + 𝑏2 + 𝑐2 + 𝑥2 + 𝑦2 ≤ 1. Prove that 
𝑎 + 𝑏 + 𝑐 + 4𝑥 + 9𝑦 ≤ 10.

Solution. Let 𝑢, 𝑣 ∈ 𝐑5 be given by 𝑢 = (𝑎, 𝑏, 𝑐, 𝑥, 𝑦) and 𝑣 = (1, 1, 1, 4, 9). The Cauchy-
Schwarz inequality (6.14) shows that
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𝑎 + 𝑏 + 𝑐 + 4𝑥 + 9𝑦 ≤ |𝑎 + 𝑏 + 𝑐 + 4𝑥 + 9𝑦| = |⟨𝑢, 𝑣⟩|

≤ ‖𝑢‖‖𝑣‖ = √𝑎2 + 𝑏2 + 𝑐2 + 𝑥2 + 𝑦2
√

1 + 1 + 1 + 16 + 81 ≤ 10.

Exercise 6.A.9. Suppose 𝑢, 𝑣 ∈ 𝑉  and ‖𝑢‖ = ‖𝑣‖ = 1 and ⟨𝑢, 𝑣⟩ = 1. Prove that 𝑢 = 𝑣.

Solution. Observe that

⟨𝑢 − 𝑣, 𝑢 − 𝑣⟩ = ⟨𝑢, 𝑢⟩ − ⟨𝑢, 𝑣⟩ − ⟨𝑣, 𝑢⟩ + ⟨𝑣, 𝑣⟩ = ‖𝑢‖2 − 2 Re⟨𝑢, 𝑣⟩ + ‖𝑣‖2 = 0.

It follows from definiteness that 𝑢 − 𝑣 = 0.

Exercise 6.A.10. Suppose 𝑢, 𝑣 ∈ 𝑉  and ‖𝑢‖ ≤ 1 and ‖𝑣‖ ≤ 1. Prove that

√1 − ‖𝑢‖2√1 − ‖𝑣‖2 ≤ 1 − |⟨𝑢, 𝑣⟩|.

Solution. Observe that

0 ≤ (‖𝑢‖ − ‖𝑣‖)2 ⇔ 0 ≤ ‖𝑢‖2 − 2‖𝑢‖‖𝑣‖ + ‖𝑣‖2

⇔ −‖𝑢‖2 − ‖𝑣‖2 ≤ −2‖𝑢‖‖𝑣‖

⇔ 1 − ‖𝑢‖2 − ‖𝑣‖2 + ‖𝑢‖2‖𝑣‖2 ≤ 1 − 2‖𝑢‖‖𝑣‖ + ‖𝑢‖2‖𝑣‖2

⇔ (1 − ‖𝑢‖2)(1 − ‖𝑣‖2) ≤ (1 − ‖𝑢‖‖𝑣‖)2.

Since ‖𝑢‖ ≤ 1 and ‖𝑣‖ ≤ 1, the quantities 1 − ‖𝑢‖2, 1 − ‖𝑣‖2, and 1 − ‖𝑢‖‖𝑣‖ are non-negative.
Thus we may take square roots to obtain the inequality

√1 − ‖𝑢‖2√1 − ‖𝑣‖2 ≤ 1 − ‖𝑢‖‖𝑣‖.

The Cauchy-Schwarz inequality (6.14) shows that 1 − ‖𝑢‖‖𝑣‖ ≤ 1 − |⟨𝑢, 𝑣⟩| and thus

√1 − ‖𝑢‖2√1 − ‖𝑣‖2 ≤ 1 − |⟨𝑢, 𝑣⟩|.

Exercise 6.A.11. Find vectors 𝑢, 𝑣 ∈ 𝐑2 such that 𝑢 is a scalar multiple of (1, 3), 𝑣 is
orthogonal to (1, 3), and (1, 2) = 𝑢 + 𝑣.

Solution. Let 𝑥 = (1, 2), 𝑦 = (1, 3), and let

𝑐 =
⟨𝑥, 𝑦⟩
‖𝑦‖2 =

7
10

, 𝑢 = 𝑐𝑦, and 𝑣 = 𝑥 − 𝑐𝑦.

Then 𝑢 is a scalar multiple of 𝑦 and, as 6.13 shows, ⟨𝑣, 𝑦⟩ = 0 and 𝑥 = 𝑢 + 𝑣.
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Exercise 6.A.12. Suppose 𝑎, 𝑏, 𝑐, 𝑑 are positive numbers.

(a) Prove that (𝑎 + 𝑏 + 𝑐 + 𝑑)(1
𝑎 + 1

𝑏 + 1
𝑐 + 1

𝑑) ≥ 16.

(b) For which positive numbers 𝑎, 𝑏, 𝑐, 𝑑 is the inequality above an equality?

Solution.

(a) If we let

𝑢 = (
√

𝑎,
√

𝑏,
√

𝑐,
√

𝑑) and 𝑣 = (
1

√
𝑎
,

1
√

𝑏
,

1
√

𝑐
,

1
√

𝑑
),

then

⟨𝑢, 𝑣⟩ = 4, ‖𝑢‖ =
√

𝑎 + 𝑏 + 𝑐 + 𝑑, and ‖𝑣‖ = √1
𝑎

+
1
𝑏

+
1
𝑐

+
1
𝑑
.

Squaring both sides of the Cauchy-Schwarz inequality (6.14) gives the desired inequal-
ity.

(b) For positive numbers 𝑎, 𝑏, 𝑐, 𝑑, we claim that

(𝑎 + 𝑏 + 𝑐 + 𝑑)(
1
𝑎

+
1
𝑏

+
1
𝑐

+
1
𝑑
) = 16 ⇔ 𝑎 = 𝑏 = 𝑐 = 𝑑.

The reverse implication is straightforward to check. For the forward implication, define
𝑢 and 𝑣 as in part (a) and note that the Cauchy-Schwarz inequality is an equality if
and only if one of 𝑢, 𝑣 is a scalar multiple of the other. If 𝑢 = 𝜆𝑣 for some 𝜆 ∈ 𝐑, then
necessarily 𝜆 > 0 since 𝑎 > 0 and

√
𝑎 =

𝜆
√

𝑎
⇒ 𝑎 = 𝜆.

Similarly we find that 𝑏 = 𝑐 = 𝑑 = 𝜆. If 𝑣 = 𝜆𝑢 for some 𝜆 ∈ 𝐑 then again 𝜆 must be
positive and

1
√

𝑎
= 𝜆

√
𝑎 ⇒ 𝑎 =

1
𝜆

.

Similarly we find that 𝑏 = 𝑐 = 𝑑 = 1
𝜆 . In either case we have 𝑎 = 𝑏 = 𝑐 = 𝑑.

Exercise 6.A.13. Show that the square of an average is less than or equal to the av-
erage of the squares. More precisely, show that if 𝑎1, …, 𝑎𝑛 ∈ 𝐑, then the square of the
average of 𝑎1, …, 𝑎𝑛 is less than or equal to the average of 𝑎2

1, …, 𝑎2
𝑛.

Solution. For a positive integer 𝑛 and real numbers 𝑎1, …, 𝑎𝑛, let

𝑢 = (𝑎1, …, 𝑎𝑛) ∈ 𝐑𝑛 and 𝑣 = ( 1
𝑛 , …, 1

𝑛) ∈ 𝐑𝑛.

Observe that
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⟨𝑢, 𝑣⟩2 = (
𝑎1 + ⋯ + 𝑎𝑛

𝑛
)

2
, ‖𝑢‖2 = 𝑎2

1 + ⋯ + 𝑎2
𝑛, and ‖𝑣‖2 = 1

𝑛 .

Squaring both sides of the Cauchy-Schwarz inequality (6.14) gives us the desired inequality.

Exercise 6.A.14. Suppose 𝑣 ∈ 𝑉  and 𝑣 ≠ 0. Prove that 𝑣/‖𝑣‖ is the unique closest ele-
ment on the unit sphere of 𝑉  to 𝑣. More precisely, prove that if 𝑢 ∈ 𝑉  and ‖𝑢‖ = 1, then

‖𝑣 −
𝑣

‖𝑣‖
‖ ≤ ‖𝑣 − 𝑢‖,

with equality only if 𝑢 = 𝑣/‖𝑣‖.

Solution. Some routine calculations show that

‖𝑣 −
𝑣

‖𝑣‖
‖

2

= ‖𝑣‖2 + 1 − 2‖𝑣‖ and ‖𝑣 − 𝑢‖2 = ‖𝑣‖2 + 1 − 2 Re⟨𝑣, 𝑢⟩.

Thus

‖𝑣 −
𝑣

‖𝑣‖
‖ ≤ ‖𝑣 − 𝑢‖ ⇔ ‖𝑣 −

𝑣
‖𝑣‖

‖
2

≤ ‖𝑣 − 𝑢‖2 ⇔ Re⟨𝑣, 𝑢⟩ ≤ ‖𝑣‖.

Indeed, using the Cauchy-Schwarz inequality,

Re⟨𝑣, 𝑢⟩ ≤ |⟨𝑣, 𝑢⟩| ≤ ‖𝑣‖‖𝑢‖ = ‖𝑣‖.

As the proof of 6.17 shows, we have equality here if and only if one of 𝑢, 𝑣 is a non-negative
real multiple of the other. If 𝑢 = 𝜆𝑣 for some 𝜆 ≥ 0, then

1 = ‖𝑢‖ = |𝜆|‖𝑣‖ = 𝜆‖𝑣‖ ⇒ 𝜆 =
1

‖𝑣‖
⇒ 𝑢 =

𝑣
‖𝑣‖

,

and if 𝑣 = 𝜆𝑢 for some 𝜆 ≥ 0 then

‖𝑣‖ = |𝜆|‖𝑢‖ = 𝜆 ⇒ 𝑢 =
𝑣

‖𝑣‖
.

Exercise 6.A.15. Suppose 𝑢, 𝑣 are nonzero vectors in 𝐑2. Prove that

⟨𝑢, 𝑣⟩ = ‖𝑢‖‖𝑣‖ cos 𝜃,

where 𝜃 is the angle between 𝑢 and 𝑣 (thinking of 𝑢 and 𝑣 as arrows with initial point
at the origin).

Hint: Use the law of cosines on the triangle formed by 𝑢, 𝑣, and 𝑢 − 𝑣.

Solution. The law of cosines applied to the triangle formed by 𝑢, 𝑣, and 𝑢 − 𝑣 states that

‖𝑢 − 𝑣‖2 = ‖𝑢‖2 + ‖𝑣‖2 − 2‖𝑢‖‖𝑣‖ cos 𝜃.
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This expression together with the identity ‖𝑢 − 𝑣‖2 = ‖𝑢‖2 + ‖𝑣‖2 − 2⟨𝑢, 𝑣⟩ gives us the de-
sired equality.

𝜃

𝑢

𝑣

𝑢 − 𝑣

Exercise 6.A.16. The angle between two vectors (thought of as arrows with initial
point at the origin) in 𝐑2 or 𝐑3 can be defined geometrically. However, geometry is
not as clear in 𝐑𝑛 for 𝑛 > 3. Thus the angle between two nonzero vectors 𝑥, 𝑦 ∈ 𝐑𝑛 is
defined to be

arccos
⟨𝑥, 𝑦⟩
‖𝑥‖‖𝑦‖

,

where the motivation for this definition comes from Exercise 15. Explain why the
Cauchy-Schwarz inequality is needed to show that this definition makes sense.

Solution. The arccos function is only defined on the interval [−1, 1]; for the definition in
question to make sense, we must have

⟨𝑥, 𝑦⟩
‖𝑥‖‖𝑦‖

∈ [−1, 1] ⇔
|⟨𝑥, 𝑦⟩|
‖𝑥‖‖𝑦‖

∈ [0, 1]

for any non-zero 𝑥, 𝑦 ∈ 𝐑𝑛. The Cauchy-Schwarz inequality ensures this.

Exercise 6.A.17. Prove that

(∑
𝑛

𝑘=1
𝑎𝑘𝑏𝑘)

2

≤ (∑
𝑛

𝑘=1
𝑘𝑎2

𝑘)(∑
𝑛

𝑘=1

𝑏2
𝑘
𝑘

)

for all real numbers 𝑎1, …, 𝑎𝑛 and 𝑏1, …, 𝑏𝑛.

Solution. Let 𝑛 be a positive integer and let 𝑎1, …, 𝑎𝑛, 𝑏1, …, 𝑏𝑛 be real numbers. Define

𝑢 = (𝑎1,
√

2𝑎2,
√

3𝑎3, …,
√

𝑛𝑎𝑛) and 𝑣 = (𝑏1,
𝑏2√
2
,

𝑏3√
3
, …,

𝑏𝑛√
𝑛

).

Then

⟨𝑢, 𝑣⟩ = ∑
𝑛

𝑘=1
𝑎𝑘𝑏𝑘, ‖𝑢‖ = (∑

𝑛

𝑘=1
𝑘𝑎2

𝑘)
1/2

, and ‖𝑣‖ = (∑
𝑛

𝑘=1

𝑏2
𝑘
𝑘

)
1/2

.
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Squaring both sides of the Cauchy-Schwarz inequality gives us the desired inequality.

Exercise 6.A.18.

(a) Suppose 𝑓 : [1, ∞) → [0, ∞) is continuous. Show that

(∫
∞

1
𝑓)

2

≤ ∫
∞

1
𝑥2(𝑓(𝑥))2 𝑑𝑥.

(b) For which continuous functions 𝑓 : [1, ∞) → [0, ∞) is the inequality in (a) an equal-
ity with both sides finite?

Solution.

(a) For 𝑡 ≥ 1 consider the vector space of continuous real-valued functions on the interval
[1, 𝑡] equipped with the inner product

⟨𝑔, ℎ⟩ = ∫
𝑡

1
𝑔(𝑥)ℎ(𝑥) d𝑥.

The Cauchy-Schwarz inequality shows that

(∫
𝑡

1
𝑓(𝑥) d𝑥)

2

= (∫
𝑡

1

𝑥
𝑥

𝑓(𝑥) d𝑥)
2

≤ (∫
𝑡

1
𝑥2(𝑓(𝑥))2 d𝑥)(∫

𝑡

1

1
𝑥2 d𝑥)

= (∫
𝑡

1
𝑥2(𝑓(𝑥))2 d𝑥)(1 −

1
𝑡
).

Because 𝑓 is non-negative, both integrals ∫∞
1

𝑓(𝑥) d𝑥 and ∫∞
1

𝑥2(𝑓(𝑥))2 d𝑥 either con-
verge or diverge to infinity. If ∫∞

1
𝑥2(𝑓(𝑥))2 d𝑥 = ∞ then the desired inequality cer-

tainly holds, and if ∫∞
1

𝑥2(𝑓(𝑥))2 d𝑥 converges then the inequality

(∫
𝑡

1
𝑓(𝑥) d𝑥)

2

≤ (∫
𝑡

1
𝑥2(𝑓(𝑥))2 d𝑥)(1 −

1
𝑡
)

shows that ∫∞
1

𝑓(𝑥) d𝑥 also converges and furthermore that

(∫
∞

1
𝑓(𝑥) d𝑥)

2

≤ ∫
∞

1
𝑥2(𝑓(𝑥))2 d𝑥.

(b) The Cauchy-Schwarz inequality used in part (a) is an equality if and only if 𝑥𝑓(𝑥) and
𝑥−1 are linearly dependent as functions on [1, ∞), i.e. if and only if 𝑓(𝑥) = 𝜆𝑥−2 for all
𝑥 ≥ 1 and some 𝜆 ≥ 0. In this case we obtain

(∫
∞

1
𝑓(𝑥) d𝑥)

2

= ∫
∞

1
𝑥2(𝑓(𝑥))2 d𝑥 = 𝜆2.
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Exercise 6.A.19. Suppose 𝑣1, …, 𝑣𝑛 is a basis of 𝑉  and 𝑇 ∈ ℒ(𝑉 ). Prove that if 𝜆 is
an eigenvalue of 𝑇 , then

|𝜆|2 ≤ ∑
𝑛

𝑗=1
∑

𝑛

𝑘=1
|ℳ(𝑇 )𝑗,𝑘|2,

where ℳ(𝑇)𝑗,𝑘 denotes the entry in row 𝑗, column 𝑘 of the matrix of 𝑇  with respect to
the basis 𝑣1, …, 𝑣𝑛.

Solution. It is straightforward to verify that

⟨𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛, 𝑏1𝑣1 + ⋯ + 𝑏𝑛𝑣𝑛⟩ = 𝑎1𝑏1 + ⋯ + 𝑎𝑛𝑏𝑛

is an inner product on 𝑉  (this is essentially the Euclidean inner product after identify-
ing 𝑉  with 𝐅𝑛). Because 𝜆 is an eigenvalue of 𝑇 , there is a non-zero 𝑣 ∈ 𝑉  such that
𝑇𝑣 = 𝜆𝑣; by replacing 𝑣 with 𝑣/‖𝑣‖ if necessary, we may assume that ‖𝑣‖ = 1. Suppose that
𝑣 = 𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛 and observe that

𝑇𝑣 = ∑
𝑛

𝑘=1
𝑎𝑘𝑇𝑣𝑘 = ∑

𝑛

𝑘=1
𝑎𝑘 ∑

𝑛

𝑗=1
ℳ(𝑇)𝑗,𝑘𝑣𝑗 = ∑

𝑛

𝑗=1
(∑

𝑛

𝑘=1
𝑎𝑘ℳ(𝑇)𝑗,𝑘)𝑣𝑗

⇒ ‖𝑇𝑣‖2 = ∑
𝑛

𝑗=1
|∑

𝑛

𝑘=1
𝑎𝑘ℳ(𝑇)𝑗,𝑘|

2

.

For each 𝑗 ∈ {1, …, 𝑛}, applying the Cauchy-Schwarz inequality to the vectors

(𝑎1, …, 𝑎𝑛) and (ℳ(𝑇)𝑗,1, …, ℳ(𝑇 )𝑗,𝑛)

in 𝐅𝑛 with the Euclidean inner product shows that

|∑
𝑛

𝑘=1
𝑎𝑘ℳ(𝑇)𝑗,𝑘|

2

≤ (∑
𝑛

𝑘=1
|𝑎𝑘|2)(∑

𝑛

𝑘=1
|ℳ(𝑇 )𝑗,𝑘|2)

= ‖𝑣‖2(∑
𝑛

𝑘=1
|ℳ(𝑇 )𝑗,𝑘|2) = ∑

𝑛

𝑘=1
|ℳ(𝑇 )𝑗,𝑘|2.

Thus

|𝜆|2 = ‖𝜆𝑣‖2 = ‖𝑇𝑣‖2 = ∑
𝑛

𝑗=1
|∑

𝑛

𝑘=1
𝑎𝑘ℳ(𝑇)𝑗,𝑘|

2

≤ ∑
𝑛

𝑗=1
∑

𝑛

𝑘=1
|ℳ(𝑇 )𝑗,𝑘|2.

Exercise 6.A.20. Prove that if 𝑢, 𝑣 ∈ 𝑉  then |‖𝑢‖ − ‖𝑣‖| ≤ ‖𝑢 − 𝑣‖.

The inequality above is called the reverse triangle inequality. For the reverse triangle
inequality when 𝑉 = 𝐂, see Exercise 2 in Chapter 4.

Solution. Notice that
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‖𝑢‖ = ‖𝑢 − 𝑣 + 𝑣‖ ≤ ‖𝑢 − 𝑣‖ + ‖𝑣‖ ⇒ ‖𝑢‖ − ‖𝑣‖ ≤ ‖𝑢 − 𝑣‖,

‖𝑣‖ = ‖𝑣 − 𝑢 + 𝑢‖ ≤ ‖𝑢 − 𝑣‖ + ‖𝑢‖ ⇒ ‖𝑣‖ − ‖𝑢‖ ≤ ‖𝑢 − 𝑣‖.

Thus |‖𝑢‖ − ‖𝑣‖| ≤ ‖𝑢 − 𝑣‖.

Exercise 6.A.21. Suppose 𝑢, 𝑣 ∈ 𝑉  are such that

‖𝑢‖ = 3, ‖𝑢 + 𝑣‖ = 4, ‖𝑢 − 𝑣‖ = 6.

What number does ‖𝑣‖ equal?

Solution. Rearranging the parallelogram equality (6.21) for ‖𝑣‖ gives

‖𝑣‖ = (
‖𝑢 + 𝑣‖2 + ‖𝑢 − 𝑣‖2

2
− ‖𝑢‖2)

1/2

.

Substituting the given values, we find ‖𝑣‖ =
√

17.

Exercise 6.A.22. Show that if 𝑢, 𝑣 ∈ 𝑉 , then

‖𝑢 + 𝑣‖‖𝑢 − 𝑣‖ ≤ ‖𝑢‖2 + ‖𝑣‖2.

Solution. Notice that

0 ≤ (‖𝑢 + 𝑣‖ − ‖𝑢 − 𝑣‖)2 ⇔ 4‖𝑢 + 𝑣‖‖𝑢 − 𝑣‖ ≤ (‖𝑢 + 𝑣‖ + ‖𝑢 − 𝑣‖)2

⇔ ‖𝑢 + 𝑣‖‖𝑢 − 𝑣‖ ≤ 1
2(‖𝑢 + 𝑣‖ + ‖𝑢 − 𝑣‖)2 − ‖𝑢 + 𝑣‖‖𝑢 − 𝑣‖ = ‖𝑢‖2 + ‖𝑣‖2,

where the last equality is the parallelogram equality (6.21).

Exercise 6.A.23. Suppose 𝑣1, …, 𝑣𝑚 ∈ 𝑉  are such that ‖𝑣𝑘‖ ≤ 1 for each 𝑘 = 1, …, 𝑚.
Show that there exist 𝑎1, …, 𝑎𝑚 ∈ {1, −1} such that

‖𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚‖ ≤
√

𝑚.

Solution. We will inductively define the integers 𝑎1, …, 𝑎𝑚. To begin, simply take 𝑎1 = 1.
For 𝑘 ∈ {1, …, 𝑚 − 1}, suppose we have chosen 𝑎1, …, 𝑎𝑘 ∈ {1, −1} such that

‖𝑢‖ ≤
√

𝑘, where 𝑢 = 𝑎1𝑣1 + ⋯ + 𝑎𝑘𝑣𝑘.

It follows from Exercise 6.A.22 that

‖𝑢 + 𝑣𝑘+1‖‖𝑢 − 𝑣𝑘+1‖ ≤ ‖𝑢‖2 + ‖𝑣𝑘+1‖
2 ≤ 𝑘 + 1.

Thus at least one of ‖𝑢 + 𝑣𝑘+1‖, ‖𝑢 − 𝑣𝑘+1‖ is less than or equal to 
√

𝑘 + 1. Let 𝑎𝑘+1 = 1
if ‖𝑢 + 𝑣𝑘+1‖ ≤

√
𝑘 + 1 and let 𝑎𝑘+1 = −1 otherwise. By repeating this process until

𝑘 = 𝑚 − 1, we obtain the desired integers 𝑎1, …, 𝑎𝑚.
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Exercise 6.A.24. Prove or give a counterexample: If ‖⋅‖ is the norm associated with
an inner product on 𝐑2, then there exists (𝑥, 𝑦) ∈ 𝐑2 such that ‖(𝑥, 𝑦)‖ ≠ max{|𝑥|, |𝑦|}.

Solution. Let 𝑓 : 𝐑2 → 𝐑 be given by 𝑓(𝑥, 𝑦) = max{|𝑥|, |𝑦|}, let 𝑢 = (1, 0) and 𝑣 = (1, 1),
and observe that

[𝑓(𝑢 + 𝑣)]2 + [𝑓(𝑢 − 𝑣)]2 = 5 ≠ 4 = 2([𝑓(𝑢)]2 + [𝑓(𝑣)]2).

Since a norm associated with an inner product must satisfy the parallelogram equality (6.21),
it follows that any norm ‖⋅‖ associated with an inner product on 𝐑2 cannot be given by 𝑓 .
That is, there must exist some (𝑥, 𝑦) ∈ 𝐑2 such that ‖(𝑥, 𝑦)‖ ≠ 𝑓(𝑥, 𝑦).

Exercise 6.A.25. Suppose 𝑝 > 0. Prove that there is an inner product on 𝐑2 such that
the associated norm is given by

‖(𝑥, 𝑦)‖ = (|𝑥|𝑝 + |𝑦|𝑝)1/𝑝

for all (𝑥, 𝑦) ∈ 𝐑2 if and only if 𝑝 = 2.

Solution. Let 𝑓 : 𝐑2 → 𝐑 be given by 𝑓(𝑥, 𝑦) = (|𝑥|𝑝 + |𝑦|𝑝)1/𝑝, let 𝑢 = (1, 0) and 𝑣 = (0, 1),
and observe that

[𝑓(𝑢 + 𝑣)]2 + [𝑓(𝑢 − 𝑣)]2 = 21+2/𝑝 and 2([𝑓(𝑢)]2 + [𝑓(𝑣)]2) = 4.

If 𝑓 was indeed a norm arising from an inner product then 𝑓 would satisfy the parallelogram
equality (6.21). Since the quantities above are equal if and only if 21+2/𝑝 = 4, i.e. if and only
if 𝑝 = 2, the only possible value for 𝑝 is 2, which indeed gives the norm associated with the
Euclidean inner product on 𝐑2, as 6.8(a) shows.

Exercise 6.A.26. Suppose 𝑉  is a real inner product space. Prove that

⟨𝑢, 𝑣⟩ =
‖𝑢 + 𝑣‖2 − ‖𝑢 − 𝑣‖2

4

for all 𝑢, 𝑣 ∈ 𝑉 .

Solution. For any 𝑢, 𝑣 ∈ 𝑉 , observe that

‖𝑢 + 𝑣‖2 − ‖𝑢 − 𝑣‖2 = ⟨𝑢 + 𝑣, 𝑢 + 𝑣⟩ − ⟨𝑢 − 𝑣, 𝑢 − 𝑣⟩

= ⟨𝑢, 𝑢⟩ + 2⟨𝑢, 𝑣⟩ + ⟨𝑣, 𝑣⟩ − ⟨𝑢, 𝑢⟩ + 2⟨𝑢, 𝑣⟩ − ⟨𝑣, 𝑣⟩

= 4⟨𝑢, 𝑣⟩.
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Exercise 6.A.27. Suppose 𝑉  is a complex inner product space. Prove that

⟨𝑢, 𝑣⟩ =
‖𝑢 + 𝑣‖2 − ‖𝑢 − 𝑣‖2 + ‖𝑢 + 𝑖𝑣‖2𝑖 − ‖𝑢 − 𝑖𝑣‖2𝑖

4

for all 𝑢, 𝑣 ∈ 𝑉 .

Solution. For any 𝑢, 𝑣 ∈ 𝑉 , observe that

‖𝑢 + 𝑣‖2 − ‖𝑢 − 𝑣‖2 = ⟨𝑢 + 𝑣, 𝑢 + 𝑣⟩ − ⟨𝑢 − 𝑣, 𝑢 − 𝑣⟩

= ⟨𝑢, 𝑢⟩ + ⟨𝑢, 𝑣⟩ + ⟨𝑢, 𝑣⟩ + ⟨𝑣, 𝑣⟩

− ⟨𝑢, 𝑢⟩ + ⟨𝑢, 𝑣⟩ + ⟨𝑢, 𝑣⟩ − ⟨𝑣, 𝑣⟩

= 2(⟨𝑢, 𝑣⟩ + ⟨𝑢, 𝑣⟩)

= 4 Re⟨𝑢, 𝑣⟩.

Furthermore,

𝑖‖𝑢 + 𝑖𝑣‖2 − 𝑖‖𝑢 − 𝑖𝑣‖2 = 𝑖⟨𝑢 + 𝑖𝑣, 𝑢 + 𝑖𝑣⟩ − 𝑖⟨𝑢 − 𝑖𝑣, 𝑢 − 𝑖𝑣⟩

= 𝑖⟨𝑢, 𝑢⟩ − 𝑖2⟨𝑢, 𝑣⟩ + 𝑖2⟨𝑢, 𝑣⟩ + 𝑖⟨𝑣, 𝑣⟩

− 𝑖⟨𝑢, 𝑢⟩ − 𝑖2⟨𝑢, 𝑣⟩ + 𝑖2⟨𝑢, 𝑣⟩ − 𝑖⟨𝑣, 𝑣⟩

= 2(⟨𝑢, 𝑣⟩ − ⟨𝑢, 𝑣⟩)

= 4 Im⟨𝑢, 𝑣⟩.

It follows that

‖𝑢 + 𝑣‖2 − ‖𝑢 − 𝑣‖2 + ‖𝑢 + 𝑖𝑣‖2𝑖 − ‖𝑢 − 𝑖𝑣‖2𝑖 = 4⟨𝑢, 𝑣⟩.

Exercise 6.A.28. A norm on a vector space 𝑈  is a function

‖⋅‖ : 𝑈 → [0, ∞)

such that ‖𝑢‖ = 0 if and only if 𝑢 = 0, ‖𝛼𝑢‖ = |𝛼|‖𝑢‖ for all 𝛼 ∈ 𝐅 and all 𝑢 ∈ 𝑈 , and
‖𝑢 + 𝑣‖ ≤ ‖𝑢‖ + ‖𝑣‖ for all 𝑢, 𝑣 ∈ 𝑈 . Prove that a norm satisfying the parallelogram
equality comes from an inner product (in other words, show that if ‖⋅‖ is a norm on 
𝑈  satisfying the parallelogram equality, then there is an inner product ⟨⋅, ⋅⟩ on 𝑈  such
that ‖𝑢‖ = ⟨𝑢, 𝑢⟩1/2 for all 𝑢 ∈ 𝑈).

Solution. Let us first consider the case where 𝑈  is a real vector space. Define
⟨⋅, ⋅⟩ : 𝑈 × 𝑈 → 𝐑 by

⟨𝑢, 𝑣⟩ =
‖𝑢 + 𝑣‖2 − ‖𝑢 − 𝑣‖2

4
.

196 / 366



For any 𝑢 ∈ 𝑈  we have

⟨𝑢, 𝑢⟩ =
‖2𝑢‖2

4
= ‖𝑢‖2.

Thus the norm is given by ‖𝑢‖ = ⟨𝑢, 𝑢⟩1/2. We now show that ⟨⋅, ⋅⟩ is an inner product on 𝑈 .

Positive-definiteness. Combining the identity ⟨𝑢, 𝑢⟩ = ‖𝑢‖2 with the properties of the norm
‖⋅‖ shows that ⟨⋅, ⋅⟩ is positive-definite.

Symmetry. For any 𝑢, 𝑣 ∈ 𝑉 , observe that ‖𝑣 − 𝑢‖ = |−1|‖𝑢 − 𝑣‖ = ‖𝑢 − 𝑣‖; it follows that

⟨𝑢, 𝑣⟩ =
‖𝑢 + 𝑣‖2 − ‖𝑢 − 𝑣‖2

4
=

‖𝑣 + 𝑢‖2 − ‖𝑣 − 𝑢‖2

4
= ⟨𝑣, 𝑢⟩.

Additivity in the first slot. Let 𝑢, 𝑣, 𝑤 ∈ 𝑈  be given. Since ‖⋅‖ satisfies the parallelogram
equality, we have

‖𝑣 + 2𝑤‖2 + ‖𝑣‖2 = 2‖𝑣 + 𝑤‖2 + 2‖𝑤‖2,

‖𝑣 − 2𝑤‖2 + ‖𝑣‖2 = 2‖𝑣 − 𝑤‖2 + 2‖𝑤‖2.

Subtracting the latter of these equations from the former gives us

‖𝑣 + 2𝑤‖2 − ‖𝑣 − 2𝑤‖2 = 2‖𝑣 + 𝑤‖2 − 2‖𝑣 − 𝑤‖2. (1)

Now we use the parallelogram equality two more times:

2‖𝑢 + 𝑣 + 𝑤‖2 + 2‖𝑢 − 𝑤‖2 = ‖𝑣 + 2𝑢‖2 + ‖𝑣 + 2𝑤‖2,

2‖𝑢 + 𝑣 − 𝑤‖2 + 2‖𝑢 + 𝑤‖2 = ‖𝑣 + 2𝑢‖2 + ‖𝑣 − 2𝑤‖2.

Subtracting the latter of these equations from the former gives us

2(‖𝑢 + 𝑣 + 𝑤‖2 + ‖𝑢 − 𝑤‖2) − 2(‖𝑢 + 𝑣 − 𝑤‖2 + ‖𝑢 + 𝑤‖2) = ‖𝑣 + 2𝑤‖2 − ‖𝑣 − 2𝑤‖2.

Combining this with equation (1), we see that

2(‖𝑢 + 𝑣 + 𝑤‖2 + ‖𝑢 − 𝑤‖2) − 2(‖𝑢 + 𝑣 − 𝑤‖2 + ‖𝑢 + 𝑤‖2) = 2‖𝑣 + 𝑤‖2 − 2‖𝑣 − 𝑤‖2.

Equivalently,

‖𝑢 + 𝑣 + 𝑤‖2 − ‖𝑢 + 𝑣 − 𝑤‖2

4
=

‖𝑢 + 𝑤‖2 − ‖𝑢 − 𝑤‖2 + ‖𝑣 + 𝑤‖2 − ‖𝑣 − 𝑤‖2

4
,

which is exactly the statement ⟨𝑢 + 𝑣, 𝑤⟩ = ⟨𝑢, 𝑤⟩ + ⟨𝑣, 𝑤⟩.

Homogeneity in the first slot. Suppose 𝑢, 𝑣 ∈ 𝑈 . First, we will use induction to show
that ⟨𝑛𝑢, 𝑣⟩ = 𝑛⟨𝑢, 𝑣⟩ for all positive integers 𝑛. The base case 𝑛 = 1 is clear, so suppose that
the result holds for some positive integer 𝑛 and observe that

⟨(𝑛 + 1)𝑢, 𝑣⟩ = ⟨𝑛𝑢 + 𝑢, 𝑣⟩ = ⟨𝑛𝑢, 𝑣⟩ + ⟨𝑢, 𝑣⟩ = 𝑛⟨𝑢, 𝑣⟩ + ⟨𝑢, 𝑣⟩ = (𝑛 + 1)⟨𝑢, 𝑣⟩,

where we have used additivity in the first slot and the induction hypothesis. This completes
the induction step and thus ⟨𝑛𝑢, 𝑣⟩ = 𝑛⟨𝑢, 𝑣⟩ for all positive integers 𝑛. Certainly ⟨0, 𝑣⟩ = 0
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and so we may extend this result to all non-negative integers. If 𝑛 is a positive integer then
observe that

⟨−𝑛𝑢, 𝑣⟩ + 𝑛⟨𝑢, 𝑣⟩ = ⟨−𝑛𝑢, 𝑣⟩ + ⟨𝑛𝑢, 𝑣⟩ = ⟨0, 𝑣⟩ = 0,

where we have used additivity in the first slot and homogeneity in the first slot for positive
integers. It follows that ⟨−𝑛𝑢, 𝑣⟩ = −𝑛⟨𝑢, 𝑣⟩ and thus we have homogeneity in the first slot
for all integers.

To extend homogeneity in the first slot to rational numbers, let 𝑛 be a positive integer. By
additivity in the first slot, we have

𝑛⟨𝑛−1𝑢, 𝑣⟩ = ∑𝑛
𝑗=1⟨𝑛−1𝑢, 𝑣⟩ = ⟨∑𝑛

𝑗=1 𝑛−1𝑢, 𝑣⟩ = ⟨𝑢, 𝑣⟩,

which implies that ⟨𝑛−1𝑢, 𝑣⟩ = 𝑛−1⟨𝑢, 𝑣⟩. Combining this with homogeneity in the first slot
for integers allows us to extend homogeneity in the first slot to rational numbers.

Finally, to obtain homogeneity in the first slot for all real numbers, let 𝜆 ∈ 𝐑 be given. There
exists a sequence (𝑟𝑛) of rational numbers satisfying lim𝑛→∞ 𝑟𝑛 = 𝜆. The reverse triangle
inequality (Exercise 6.A.20) shows that the function 𝑈 → 𝐑 given by 𝑢 ↦ ‖𝑢‖ is continuous.
Combining this with standard results on compositions and linear combinations of continuous
functions, we have

𝜆⟨𝑢, 𝑣⟩ = lim
𝑛→∞

𝑟𝑛⟨𝑢, 𝑣⟩

= lim
𝑛→∞

⟨𝑟𝑛𝑢, 𝑣⟩

= lim
𝑛→∞

‖𝑟𝑛𝑢 + 𝑣‖2 − ‖𝑟𝑛𝑢 − 𝑣‖2

4

=
‖𝜆𝑢 + 𝑣‖2 − ‖𝜆𝑢 − 𝑣‖2

4

= ⟨𝜆𝑢, 𝑣⟩.

Now let us consider the case where 𝑈  is a complex vector space. Define 𝐵 : 𝑈 × 𝑈 → 𝐑 by

𝐵(𝑢, 𝑣) =
‖𝑢 + 𝑣‖2 − ‖𝑢 − 𝑣‖2

4

and define ⟨⋅, ⋅⟩ : 𝑈 × 𝑈 → 𝐂 by

⟨𝑢, 𝑣⟩ = 𝐵(𝑢, 𝑣) + 𝑖𝐵(𝑢, 𝑖𝑣) =
‖𝑢 + 𝑣‖2 − ‖𝑢 − 𝑣‖2

4
+ 𝑖

‖𝑢 + 𝑖𝑣‖2 − ‖𝑢 − 𝑖𝑣‖2

4
.

Observe that for any 𝑢 ∈ 𝑈  we have 𝐵(𝑢, 𝑢) = ‖𝑢‖2 and

𝐵(𝑢, 𝑖𝑢) =
‖𝑢 + 𝑖𝑢‖2 − ‖𝑢 − 𝑖𝑢‖2

4
=

|1 + 𝑖|2‖𝑢‖2 − |1 − 𝑖|2‖𝑢‖2

4
= 0.

Thus ‖𝑢‖ = ⟨𝑢, 𝑢⟩1/2. We now show that ⟨⋅, ⋅⟩ is an inner product on 𝑈 .
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Positive-definiteness. Combining the identity ⟨𝑢, 𝑢⟩ = ‖𝑢‖2 with the properties of the norm
‖⋅‖ shows that ⟨⋅, ⋅⟩ is positive-definite.

Conjugate symmetry. For any 𝑢, 𝑣 ∈ 𝑈 , note that

⟨𝑣, 𝑢⟩ = 𝐵(𝑣, 𝑢) + 𝑖𝐵(𝑣, 𝑖𝑢) = 𝐵(𝑢, 𝑣) − 𝑖𝐵(𝑣, 𝑖𝑢),

where we have used that 𝐵 is real-valued and symmetric (we showed this in the case where
𝑈  is a real vector space.) Given the expression above, to verify conjugate symmetry of ⟨⋅, ⋅⟩
it will suffice to show that 𝐵(𝑢, 𝑖𝑣) = −𝐵(𝑣, 𝑖𝑢). Indeed,

−4𝐵(𝑣, 𝑖𝑢) = ‖𝑣 − 𝑖𝑢‖2 − ‖𝑣 + 𝑖𝑢‖2 = ‖−𝑖(𝑢 + 𝑖𝑣)‖2 − ‖𝑖(𝑢 − 𝑖𝑣)‖2

= |−𝑖|2‖𝑢 + 𝑖𝑣‖2 − ‖𝑖‖2‖𝑢 − 𝑖𝑣‖2 = ‖𝑢 + 𝑖𝑣‖2 − ‖𝑢 − 𝑖𝑣‖2 = 4𝐵(𝑢, 𝑖𝑣).

Additivity in the first slot. Let 𝑢, 𝑣, 𝑤 ∈ 𝑈  be given. The proof of additivity in the first
slot we gave for the case where 𝑈  is a real vector space equally shows that 𝐵 is additive in
the first slot. It follows that

⟨𝑢 + 𝑣, 𝑤⟩ = 𝐵(𝑢 + 𝑣, 𝑤) + 𝑖𝐵(𝑢 + 𝑣, 𝑖𝑤)

= 𝐵(𝑢, 𝑤) + 𝑖𝐵(𝑢, 𝑖𝑤) + 𝐵(𝑣, 𝑤) + 𝑖𝐵(𝑣, 𝑖𝑤) = ⟨𝑢, 𝑤⟩ + ⟨𝑣, 𝑤⟩.

Homogeneity in the first slot. Let 𝑢, 𝑣 ∈ 𝑈  be given. The proof of homogeneity in the
first slot we gave for the case where 𝑈  is a real vector space equally shows that 𝐵 is homo-
geneous in the first slot with respect to real numbers. It follows that for any 𝜆 ∈ 𝐑 we have
⟨𝜆𝑢, 𝑣⟩ = 𝜆⟨𝑢, 𝑣⟩. Now observe that

4⟨𝑖𝑢, 𝑣⟩ = ‖𝑖𝑢 + 𝑣‖2 − ‖𝑖𝑢 − 𝑣‖2 + 𝑖(‖𝑖𝑢 + 𝑖𝑣‖2 − ‖𝑖𝑢 − 𝑖𝑣‖2)

= ‖𝑖(𝑢 − 𝑖𝑣)‖2 − ‖𝑖(𝑢 + 𝑖𝑣)‖2 + 𝑖(‖𝑖(𝑢 + 𝑣)‖2 − ‖𝑖(𝑢 − 𝑣)‖2)

= ‖𝑢 − 𝑖𝑣‖2 − ‖𝑢 + 𝑖𝑣‖2 + 𝑖(‖𝑢 + 𝑣‖2 − ‖𝑢 − 𝑣‖2)

= 𝑖(‖𝑢 + 𝑣‖2 − ‖𝑢 − 𝑣‖2 + 𝑖(‖𝑢 + 𝑖𝑣‖2 − ‖𝑢 − 𝑖𝑣‖2))

= 4𝑖⟨𝑢, 𝑣⟩.

Thus ⟨𝑖𝑢, 𝑣⟩ = 𝑖⟨𝑢, 𝑣⟩. It follows that, for any 𝑥 + 𝑖𝑦 ∈ 𝐂,

⟨(𝑥 + 𝑖𝑦)𝑢, 𝑣⟩ = ⟨𝑥𝑢 + 𝑖𝑦𝑢, 𝑣⟩ = ⟨𝑥𝑢, 𝑣⟩ + ⟨𝑖𝑦𝑢, 𝑣⟩ = 𝑥⟨𝑢, 𝑣⟩ + 𝑖𝑦⟨𝑢, 𝑣⟩ = (𝑥 + 𝑖𝑦)⟨𝑢, 𝑣⟩.

Exercise 6.A.29. Suppose 𝑉1, …, 𝑉𝑚 are inner product spaces. Show that the equation

⟨(𝑢1, …, 𝑢𝑚), (𝑣1, …, 𝑣𝑚)⟩ = ⟨𝑢1, 𝑣1⟩ + ⋯ + ⟨𝑢𝑚, 𝑣𝑚⟩

defines an inner product on 𝑉1 × ⋯ × 𝑉𝑚.

In the expression above on the right, for each 𝑘 = 1, …, 𝑚, the inner product ⟨𝑢𝑘, 𝑣𝑘⟩
denotes the inner product on 𝑉𝑘. Each of the spaces 𝑉1, …, 𝑉𝑚 may have a different
inner product, even though the same notation is used here.
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Solution. For convenience, let 𝐕 = 𝑉1 × ⋯ × 𝑉𝑚. We verify each property in definition 6.2.

Positivity. Let (𝑣1, …, 𝑣𝑚) ∈ 𝐕 be given and observe that

⟨(𝑣1, …, 𝑣𝑚), (𝑣1, …, 𝑣𝑚)⟩ = ⟨𝑣1, 𝑣1⟩ + ⋯ + ⟨𝑣𝑚, 𝑣𝑚⟩.

Since each ⟨𝑣𝑘, 𝑣𝑘⟩ is non-negative, it follows that ⟨(𝑣1, …, 𝑣𝑚), (𝑣1, …, 𝑣𝑚)⟩ is non-negative.

Definiteness. For (𝑣1, …, 𝑣𝑚) ∈ 𝐕, note that (𝑣1, …, 𝑣𝑚) = 0 if and only if each 𝑣𝑘 = 0.
By the definiteness of the inner product on each 𝑉𝑘, this is the case if and only if each
⟨𝑣𝑘, 𝑣𝑘⟩ = 0. From the non-negativity of the expression

⟨(𝑣1, …, 𝑣𝑚), (𝑣1, …, 𝑣𝑚)⟩ = ⟨𝑣1, 𝑣1⟩ + ⋯ + ⟨𝑣𝑚, 𝑣𝑚⟩,

we see that each ⟨𝑣𝑘, 𝑣𝑘⟩ = 0 if and only if ⟨(𝑣1, …, 𝑣𝑚), (𝑣1, …, 𝑣𝑚)⟩ = 0.

Additivity in the first slot. Let (𝑢1, …, 𝑢𝑚), (𝑣1, …, 𝑣𝑚), (𝑤1, …, 𝑤𝑚) ∈ 𝐕 be given and
observe that

⟨(𝑢1, …, 𝑢𝑚) + (𝑣1, …, 𝑣𝑚), (𝑤1, …, 𝑤𝑚)⟩

= ⟨(𝑢1 + 𝑣1, …, 𝑢𝑚 + 𝑣𝑚), (𝑤1, …, 𝑤𝑚)⟩

= ⟨𝑢1 + 𝑣1, 𝑤1⟩ + ⋯ + ⟨𝑢𝑚 + 𝑣𝑚, 𝑤𝑚⟩

= ⟨𝑢1, 𝑤1⟩ + ⟨𝑣1, 𝑤1⟩ + ⋯ + ⟨𝑢𝑚, 𝑤𝑚⟩ + ⟨𝑣𝑚, 𝑤𝑚⟩

= ⟨𝑢1, 𝑤1⟩ + ⋯ + ⟨𝑢𝑚, 𝑤𝑚⟩ + ⟨𝑣1, 𝑤1⟩ + ⋯ + ⟨𝑣𝑚, 𝑤𝑚⟩

= ⟨(𝑢1, …, 𝑢𝑚), (𝑤1, …, 𝑤𝑚)⟩ + ⟨(𝑣1, …, 𝑣𝑚), (𝑤1, …, 𝑤𝑚)⟩,

where we have used the additivity in the first slot of the inner product on each 𝑉𝑘.

Homogeneity in the first slot. Let 𝜆 ∈ 𝐅 and (𝑢1, …, 𝑢𝑚), (𝑣1, …, 𝑣𝑚) ∈ 𝐕 be given, and
observe that

⟨𝜆(𝑢1, …, 𝑢𝑚), (𝑣1, …, 𝑣𝑚)⟩ = ⟨(𝜆𝑢1, …, 𝜆𝑢𝑚), (𝑣1, …, 𝑣𝑚)⟩

= ⟨𝜆𝑢1, 𝑣1⟩ + ⋯ + ⟨𝜆𝑢𝑚, 𝑣𝑚⟩

= 𝜆⟨𝑢1, 𝑣1⟩ + ⋯ + 𝜆⟨𝑢𝑚, 𝑣𝑚⟩

= 𝜆(⟨𝑢1, 𝑣1⟩ + ⋯ + ⟨𝑢𝑚, 𝑣𝑚⟩)

= 𝜆⟨(𝑢1, …, 𝑢𝑚), (𝑣1, …, 𝑣𝑚)⟩,

where we have used homogeneity in the first slot of the inner product on each 𝑉𝑘.

Conjugate symmetry. Let (𝑢1, …, 𝑢𝑚), (𝑣1, …, 𝑣𝑚) ∈ 𝐕 be given and observe that

⟨(𝑣1, …, 𝑣𝑚), (𝑢1, …, 𝑢𝑚)⟩ = ⟨𝑣1, 𝑢1⟩ + ⋯ + ⟨𝑣𝑚, 𝑢𝑚⟩

= ⟨𝑣1, 𝑢1⟩ + ⋯ + ⟨𝑣𝑚, 𝑢𝑚⟩ = ⟨𝑢1, 𝑣1⟩ + ⋯ + ⟨𝑢𝑚, 𝑣𝑚⟩ = ⟨(𝑢1, …, 𝑢𝑚), (𝑣1, …, 𝑣𝑚)⟩,

where we have used the conjugate symmetry of the inner product on each 𝑉𝑘.
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Exercise 6.A.30. Suppose 𝑉  is a real inner product space. For 𝑢, 𝑣, 𝑤, 𝑥 ∈ 𝑉 , define

⟨𝑢 + 𝑖𝑣, 𝑤 + 𝑖𝑥⟩𝐂 = ⟨𝑢, 𝑤⟩ + ⟨𝑣, 𝑥⟩ + (⟨𝑣, 𝑤⟩ − ⟨𝑢, 𝑥⟩)𝑖.

(a) Show that ⟨⋅, ⋅⟩𝐂 makes 𝑉𝐂 into a complex inner product space.

(b) Show that if 𝑢, 𝑣 ∈ 𝑉 , then

⟨𝑢, 𝑣⟩𝐂 = ⟨𝑢, 𝑣⟩ and ‖𝑢 + 𝑖𝑣‖2
𝐂 = ‖𝑢‖2 + ‖𝑣‖2.

See Exercise 8 in Section 1B for the definition of the complexification 𝑉𝐂.

Solution.

(a) We verify each property in definition 6.2.

Positive-definiteness. For any 𝑢 + 𝑖𝑣 ∈ 𝑉𝐂,

⟨𝑢 + 𝑖𝑣, 𝑢 + 𝑖𝑣⟩𝐂 = ⟨𝑢, 𝑢⟩ + ⟨𝑣, 𝑣⟩ + (⟨𝑣, 𝑢⟩ − ⟨𝑢, 𝑣⟩)𝑖 = ⟨𝑢, 𝑢⟩ + ⟨𝑣, 𝑣⟩,

where we have used the symmetry of ⟨⋅, ⋅⟩. The positivity of ⟨⋅, ⋅⟩ and the expression
above gives us the positivity of ⟨⋅, ⋅⟩𝐂. Moreover,

⟨𝑢 + 𝑖𝑣, 𝑢 + 𝑖𝑣⟩𝐂 = 0 ⇔ ⟨𝑢, 𝑢⟩ = 0 and ⟨𝑣, 𝑣⟩ = 0 ⇔ 𝑢 = 𝑣 = 0 ⇔ 𝑢 + 𝑖𝑣 = 0.

Conjugate symmetry. For any 𝑢 + 𝑖𝑣, 𝑤 + 𝑖𝑥 ∈ 𝑉𝐂, observe that

⟨𝑤 + 𝑖𝑥, 𝑢 + 𝑖𝑣⟩𝐂 = ⟨𝑤, 𝑢⟩ + ⟨𝑥, 𝑣⟩ + (⟨𝑥, 𝑢⟩ − ⟨𝑤, 𝑣⟩)𝑖

= ⟨𝑢, 𝑤⟩ + ⟨𝑣, 𝑥⟩ + (⟨𝑣, 𝑤⟩ − ⟨𝑢, 𝑥⟩)𝑖 = ⟨𝑢 + 𝑖𝑣, 𝑤 + 𝑖𝑥⟩𝐂,

where we have used the symmetry of ⟨⋅, ⋅⟩.

Additivity in the first slot. Let 𝑢 + 𝑖𝑣, 𝑤 + 𝑖𝑥, 𝑦 + 𝑖𝑧 ∈ 𝑉𝐂 be given and observe that

⟨(𝑢 + 𝑖𝑣) + (𝑤 + 𝑖𝑥), 𝑦 + 𝑖𝑧⟩𝐂 = ⟨(𝑢 + 𝑤) + 𝑖(𝑣 + 𝑥), 𝑦 + 𝑖𝑧⟩𝐂

= ⟨𝑢 + 𝑤, 𝑦⟩ + ⟨𝑣 + 𝑥, 𝑧⟩ + (⟨𝑣 + 𝑥, 𝑦⟩ − ⟨𝑢 + 𝑤, 𝑧⟩)𝑖

= ⟨𝑢, 𝑦⟩ + ⟨𝑤, 𝑦⟩ + ⟨𝑣, 𝑧⟩ + ⟨𝑥, 𝑧⟩

+ (⟨𝑣, 𝑦⟩ + ⟨𝑥, 𝑦⟩ − ⟨𝑢, 𝑧⟩ − ⟨𝑤, 𝑧⟩)𝑖

= ⟨𝑢, 𝑦⟩ + ⟨𝑣, 𝑧⟩ + (⟨𝑣, 𝑦⟩ − ⟨𝑢, 𝑧⟩)𝑖

+ ⟨𝑤, 𝑦⟩ + ⟨𝑥, 𝑧⟩ + (⟨𝑥, 𝑦⟩ − ⟨𝑤, 𝑧⟩)𝑖

= ⟨𝑢 + 𝑖𝑣, 𝑦 + 𝑖𝑧⟩𝐂 + ⟨𝑤 + 𝑖𝑥, 𝑦 + 𝑖𝑧⟩𝐂,

where we have used the additivity in the first slot of ⟨⋅, ⋅⟩.

Homogeneity in the first slot. Let 𝑢 + 𝑖𝑣, 𝑤 + 𝑖𝑥 ∈ 𝑉𝐂 and 𝑎 + 𝑏𝑖 ∈ 𝐂 be given and
observe that
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⟨(𝑎 + 𝑏𝑖)(𝑢 + 𝑖𝑣), 𝑤 + 𝑖𝑥⟩𝐂 = ⟨(𝑎𝑢 − 𝑏𝑣) + 𝑖(𝑎𝑣 + 𝑏𝑢), 𝑤 + 𝑖𝑥⟩𝐂

= ⟨𝑎𝑢 − 𝑏𝑣, 𝑤⟩ + ⟨𝑎𝑣 + 𝑏𝑢, 𝑥⟩

+ (⟨𝑎𝑣 + 𝑏𝑢, 𝑤⟩ − ⟨𝑎𝑢 − 𝑏𝑣, 𝑥⟩)𝑖

= 𝑎⟨𝑢, 𝑤⟩ − 𝑏⟨𝑣, 𝑤⟩ + 𝑎⟨𝑣, 𝑥⟩ + 𝑏⟨𝑢, 𝑥⟩

+ (𝑎⟨𝑣, 𝑤⟩ + 𝑏⟨𝑢, 𝑤⟩ − 𝑎⟨𝑢, 𝑥⟩ + 𝑏⟨𝑣, 𝑥⟩)𝑖

= [𝑎(⟨𝑢, 𝑤⟩ + ⟨𝑣, 𝑥⟩) − 𝑏(⟨𝑣, 𝑤⟩ − ⟨𝑢, 𝑥⟩)]

+ [𝑎(⟨𝑣, 𝑤⟩ − ⟨𝑢, 𝑥⟩) + 𝑏(⟨𝑢, 𝑤⟩ + ⟨𝑣, 𝑥⟩)]𝑖

= (𝑎 + 𝑏𝑖)[⟨𝑢, 𝑤⟩ + ⟨𝑣, 𝑥⟩ + (⟨𝑣, 𝑤⟩ − ⟨𝑢, 𝑥⟩)𝑖]

= (𝑎 + 𝑏𝑖)⟨𝑢 + 𝑖𝑣, 𝑤 + 𝑖𝑥⟩𝐂,

where we have used the homogeneity in the first slot of ⟨⋅, ⋅⟩.

(b) For 𝑢, 𝑣 ∈ 𝑉  we have

⟨𝑢, 𝑣⟩𝐂 = ⟨𝑢, 𝑣⟩ + ⟨0, 0⟩ + (⟨0, 𝑣⟩ − ⟨𝑢, 0⟩)𝑖 = ⟨𝑢, 𝑣⟩.

Furthermore, as we showed in part (a) when we verified the positive-definiteness of
⟨⋅, ⋅⟩𝐂,

‖𝑢 + 𝑖𝑣‖2
𝐂 = ⟨𝑢 + 𝑖𝑣, 𝑢 + 𝑖𝑣⟩𝐂 = ⟨𝑢, 𝑢⟩ + ⟨𝑣, 𝑣⟩ = ‖𝑢‖2 + ‖𝑣‖2.

Exercise 6.A.31. Suppose 𝑢, 𝑣, 𝑤 ∈ 𝑉 . Prove that

‖𝑤 − 1
2(𝑢 + 𝑣)‖2 =

‖𝑤 − 𝑢‖2 + ‖𝑤 − 𝑣‖2

2
−

‖𝑢 − 𝑣‖2

4
.

Solution. It will suffice to prove that

4‖𝑤 − 1
2(𝑢 + 𝑣)‖2 = 2(‖𝑤 − 𝑢‖2 + ‖𝑤 − 𝑣‖2) − ‖𝑢 − 𝑣‖2,

which is equivalent to

‖2𝑤 − 𝑢 − 𝑣‖2 + ‖𝑢 − 𝑣‖2 = 2(‖𝑤 − 𝑢‖2 + ‖𝑤 − 𝑣‖2),

which follows immediately from the parallelogram equality (6.21).

Exercise 6.A.32. Suppose that 𝐸 is a subset of 𝑉  with the property that 𝑢, 𝑣 ∈ 𝐸
implies 1

2(𝑢 + 𝑣) ∈ 𝐸. Let 𝑤 ∈ 𝑉 . Show that there is at most one point in 𝐸 that is
closest to 𝑤. In other words, show that there is at most one 𝑢 ∈ 𝐸 such that

‖𝑤 − 𝑢‖ ≤ ‖𝑤 − 𝑥‖

for all 𝑥 ∈ 𝐸.
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Solution. Suppose 𝑢, 𝑣 ∈ 𝐸 are both closest to 𝑤, so that ‖𝑤 − 𝑢‖ = ‖𝑤 − 𝑣‖. It follows from
Exercise 6.A.31 that

‖𝑢 − 𝑣‖2

4
= ‖𝑤 − 𝑢‖2 − ‖𝑤 − 1

2(𝑢 + 𝑣)‖2.

Since 𝑢 and 𝑣 belong to 𝐸 we must have 1
2(𝑢 + 𝑣) ∈ 𝐸, and then since 𝑢 is a point in 𝐸

closest to 𝑤 we must have ‖𝑤 − 𝑢‖ ≤ ‖𝑤 − 1
2(𝑢 + 𝑣)‖. It follows that ‖𝑢 − 𝑣‖2 ≤ 0, which is

the case if and only if 𝑢 = 𝑣.

Exercise 6.A.33. Suppose 𝑓, 𝑔 are differentiable functions from 𝐑 to 𝐑𝑛.

(a) Show that

⟨𝑓(𝑡), 𝑔(𝑡)⟩′ = ⟨𝑓 ′(𝑡), 𝑔(𝑡)⟩ + ⟨𝑓(𝑡), 𝑔′(𝑡)⟩.

(b) Suppose 𝑐 is a positive number and ‖𝑓(𝑡)‖ = 𝑐 for every 𝑡 ∈ 𝐑. Show that 
⟨𝑓 ′(𝑡), 𝑓(𝑡)⟩ = 0 for every 𝑡 ∈ 𝐑.

(c) Interpret the result in (b) geometrically in terms of the tangent vector to a curve
lying on a sphere in 𝐑𝑛 centered at the origin.

A function 𝑓 : 𝐑 → 𝐑𝑛 is called differentiable if there exist differentiable functions 
𝑓1, …, 𝑓𝑛 from 𝐑 to 𝐑 such that 𝑓(𝑡) = (𝑓1(𝑡), …, 𝑓𝑛(𝑡)) for each 𝑡 ∈ 𝐑. Furthermore,
for each 𝑡 ∈ 𝐑, the derivative 𝑓 ′(𝑡) ∈ 𝐑𝑛 is defined by 𝑓 ′(𝑡) = (𝑓 ′

1(𝑡), …, 𝑓 ′
𝑛(𝑡)).

Solution.

(a) Suppose that 𝑓(𝑡) = (𝑓1(𝑡), …, 𝑓𝑛(𝑡)) and 𝑔(𝑡) = (𝑔1(𝑡), …, 𝑔𝑛(𝑡)) for some differentiable
functions 𝑓1, …, 𝑓𝑛, 𝑔1, …, 𝑔𝑛 : 𝐑 → 𝐑. By the usual rules of differentiation we have

⟨𝑓(𝑡), 𝑔(𝑡)⟩′ = (𝑓1(𝑡)𝑔1(𝑡) + ⋯ + 𝑓𝑛(𝑡)𝑔𝑛(𝑡))′

= 𝑓 ′
1(𝑡)𝑔1(𝑡) + 𝑓1(𝑡)𝑔′

1(𝑡) + ⋯ + 𝑓 ′
𝑛(𝑡)𝑔𝑛(𝑡) + 𝑓𝑛(𝑡)𝑔′

𝑛(𝑡)

= 𝑓 ′
1(𝑡)𝑔1(𝑡) + ⋯ + 𝑓 ′

𝑛(𝑡)𝑔𝑛(𝑡) + 𝑓1(𝑡)𝑔′
1(𝑡) + ⋯ + 𝑓𝑛(𝑡)𝑔′

𝑛(𝑡)

= ⟨𝑓 ′(𝑡), 𝑔(𝑡)⟩ + ⟨𝑓(𝑡), 𝑔′(𝑡)⟩.

(b) By part (a) we have

0 = (𝑐2)′ = (‖𝑓(𝑡)‖2)
′
= ⟨𝑓(𝑡), 𝑓(𝑡)⟩′ = 2⟨𝑓 ′(𝑡), 𝑓(𝑡)⟩.

Thus ⟨𝑓 ′(𝑡), 𝑓(𝑡)⟩ = 0.

(c) Suppose 𝑐 > 0. A differentiable function 𝑓 : 𝐑 → 𝐑𝑛 satisfying ‖𝑓(𝑡)‖ = 𝑐 for every
𝑡 ∈ 𝐑 traces out a curve which lies on an (𝑛 − 1)-sphere of radius 𝑐 centered at the
origin in 𝐑𝑛. The tangent vector to this curve is given by 𝑓 ′; the result of part (b)
states that this tangent vector is always orthogonal to the curve 𝑓 .
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Exercise 6.A.34. Use inner products to prove Apollonius’s identity: In a triangle with
sides of length 𝑎, 𝑏, and 𝑐, let 𝑑 be the length of the line segment from the midpoint of
the side of length 𝑐 to the opposite vertex. Then

𝑎2 + 𝑏2 = 1
2𝑐2 + 2𝑑2.

Solution. Set up the triangle as follows.

𝑣 𝑣

𝑢
𝑢 − 𝑣

𝑢 − 2𝑣

Thus

‖𝑢‖ = 𝑎, ‖𝑣‖ = 1
2𝑐, ‖𝑢 − 𝑣‖ = 𝑑, ‖𝑢 − 2𝑣‖ = 𝑏.

Consider the parallelogram formed by the vectors 𝑢 − 𝑣 and 𝑣. The parallelogram equality
states that

‖𝑢‖2 = ‖𝑢 − 2𝑣‖2 = 2‖𝑣‖2 + 2‖𝑢 − 𝑣‖2.

Substituting the given side lengths, we obtain

𝑎2 + 𝑏2 = 1
2𝑐2 + 2𝑑2.
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Exercise 6.A.35. Fix a positive integer 𝑛. The Laplacian Δ𝑝 of a twice differentiable
real-valued function 𝑝 on 𝐑𝑛 is the function on 𝐑𝑛 defined by

Δ𝑝 =
𝜕2𝑝
𝜕𝑥2

1
+ ⋯ +

𝜕2𝑝
𝜕𝑥2

𝑛
.

The function 𝑝 is called harmonic if Δ𝑝 = 0.

A polynomial on 𝐑𝑛 is a linear combination (with coefficients in 𝐑) of functions of the
form 𝑥𝑚1

1 ⋯ 𝑥𝑚𝑛𝑛 , where 𝑚1, …, 𝑚𝑛 are nonnegative integers.

Suppose 𝑞 is a polynomial on 𝐑𝑛. Prove that there exists a harmonic polynomial 𝑝 on 
𝐑𝑛 such that 𝑝(𝑥) = 𝑞(𝑥) for every 𝑥 ∈ 𝐑𝑛 with ‖𝑥‖ = 1.

The only fact about harmonic functions that you need for this exercise is that if 𝑝 is a
harmonic function on 𝐑𝑛 and 𝑝(𝑥) = 0 for all 𝑥 ∈ 𝐑𝑛 with ‖𝑥‖ = 1, then 𝑝 = 0.

Hint: A reasonable guess is that the desired harmonic polynomial 𝑝 is of the form
𝑞 + (1 − ‖𝑥‖2)𝑟 for some polynomial 𝑟. Prove that there is a polynomial 𝑟 on 𝐑𝑛

such that 𝑞 + (1 − ‖𝑥‖2)𝑟 is harmonic by defining an operator 𝑇  on a suitable vector
space by

𝑇𝑟 = Δ((1 − ‖𝑥‖2)𝑟)

and then showing that 𝑇  is injective and hence surjective.

Solution. Let us first provide a few definitions. A monomial on 𝐑𝑛 is a polynomial on 
𝐑𝑛 of the form 𝑥𝑚1

1 ⋯ 𝑥𝑚𝑛𝑛 , where 𝑚1, …, 𝑚𝑛 are non-negative integers. The degree of such
a monomial is the sum 𝑚1 + ⋯ + 𝑚𝑛. The degree of a non-zero polynomial 𝑝 on 𝐑𝑛 is the
greatest degree amongst its monomial terms 𝑥𝑚1

1 ⋯ 𝑥𝑚𝑛𝑛  and the degree of the zero polynomial
is defined to be −∞.

Define 𝒫𝑛
𝑚(𝐑) to be the collection of all polynomials on 𝐑𝑛 of degree at most 𝑚 and note

that 𝒫𝑛
𝑚(𝐑) is a subset of the vector space 𝐑𝐑𝑛 ; in fact, size the zero polynomial is simply

the zero function, and addition and scalar multiplication of polynomials of degree at most 
𝑚 will not result in a polynomial of degree greater than 𝑚, 𝒫𝑛

𝑚(𝐑) is a vector subspace of
𝐑𝐑𝑛 .

It is straightforward to verify that the collection of all monomials of degree at most 𝑚 forms a
basis of 𝒫𝑛

𝑚(𝐑). This collection is finite and thus 𝒫𝑛
𝑚(𝐑) is a finite-dimensional vector space.

Clearly, the Laplacian Δ𝑝 of a polynomial 𝑝 on 𝐑𝑛 is itself a polynomial and furthermore
satisfies either deg Δ𝑝 = −∞ or deg Δ𝑝 = deg 𝑝 − 2. Thus the Laplacian defines an operator
Δ ∈ ℒ(𝒫𝑛

𝑚(𝐑)); the linearity of Δ follows from the linearity of partial differentiation.

The function

𝑥 = (𝑥1, …, 𝑥𝑛) ∈ 𝐑𝑛 ↦ ‖𝑥‖2 = 𝑥2
1 + ⋯ + 𝑥2

𝑛
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is a polynomial on 𝐑𝑛 of degree 2. Given this, if 𝑟 is a non-zero polynomial on 𝐑𝑛, then 
(1 − ‖𝑥‖2)𝑟 is also a polynomial on 𝐑𝑛 of degree 𝑟 + 2; if 𝑟 is the zero polynomial then so
is (1 − ‖𝑥‖2)𝑟. It follows that Δ(1 − ‖𝑥‖2)𝑟 is a polynomial on 𝐑𝑛 of degree at most deg 𝑟.

Let 𝑞 be a polynomial on 𝐑𝑛 and let 𝑚 = deg 𝑞. By our previous discussion, the operator 
𝑇 ∈ ℒ(𝒫𝑛

𝑚(𝐑)) given by

𝑇 (𝑟) = Δ((1 − ‖𝑥‖2)𝑟)

is well-defined; the linearity of 𝑇  follows from the linearity of Δ and distributivity on 𝐑.

We claim that 𝑇  is injective. If 𝑇 (𝑟) = 0 for some 𝑟 ∈ 𝒫𝑛
𝑚(𝐑) then (1 − ‖𝑥‖2)𝑟 is a harmonic

polynomial on 𝐑𝑛 which satisfies (1 − ‖𝑥‖2)𝑟 = 0 for all 𝑥 ∈ 𝐑𝑛 such that ‖𝑥‖ = 1; the fact
about harmonic functions given in the exercise then implies that (1 − ‖𝑥‖2)𝑟 = 0. It follows
that 𝑟 is identically zero on the open set {𝑥 ∈ 𝐑𝑛 : ‖𝑥‖ = 1}c and hence that 𝑟 is the zero
polynomial. Thus null 𝑇 = {0}, i.e. 𝑇  is injective.

By 3.65 𝑇  must be surjective. Hence there exists some 𝑟 ∈ 𝒫𝑛
𝑚(𝐑) such that 𝑇 (𝑟) = Δ(−𝑞),

which by linearity is equivalent to

Δ(𝑞 + (1 − ‖𝑥‖2)𝑟) = 0.

Thus 𝑝 = 𝑞 + (1 − ‖𝑥‖2)𝑟 is a harmonic polynomial on 𝐑𝑛 which satisfies 𝑝(𝑥) = 𝑞(𝑥) for all
𝑥 ∈ 𝐑𝑛 with ‖𝑥‖ = 1.
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6.B. Orthonormal Bases

Exercise 6.B.1. Suppose 𝑒1, …, 𝑒𝑚 is a list of vectors in 𝑉  such that

‖𝑎1𝑒1 + ⋯ + 𝑎𝑚𝑒𝑚‖2 = |𝑎1|
2 + ⋯ + |𝑎𝑚|2

for all 𝑎1, …, 𝑎𝑚 ∈ 𝐅. Show that 𝑒1, …, 𝑒𝑚 is an orthonormal list.

This exercise provides a converse to 6.24.

Solution. For each 𝑘 ∈ {1, …, 𝑚}, taking each of 𝑎1, …, 𝑎𝑚 to be 0 except 𝑎𝑘 = 1 shows that
‖𝑒𝑘‖ = 1. Suppose 𝑗, 𝑘 ∈ {1, …, 𝑚} are such that 𝑗 ≠ 𝑘 and let 𝑎 ∈ 𝐅 be given. Observe that

‖𝑒𝑗‖
2 = 1 ≤ 1 + |𝑎|2 = ‖𝑒𝑗 + 𝑎𝑒𝑘‖2 ⇒ ‖𝑒𝑗‖ ≤ ‖𝑒𝑗 + 𝑎𝑒𝑘‖.

It follows from Exercise 6.A.6 that ⟨𝑒𝑗, 𝑒𝑘⟩ = 0. Thus 𝑒1, …, 𝑒𝑚 is an orthonormal list.

Exercise 6.B.2.

(a) Suppose 𝜃 ∈ 𝐑. Show that both

(cos 𝜃, sin 𝜃), (− sin 𝜃, cos 𝜃) and (cos 𝜃, sin 𝜃), (sin 𝜃, − cos 𝜃)

are orthonormal bases of 𝐑2.

(b) Show that each orthonormal basis of 𝐑2 is of the form given by one of the two
possibilities in (a).

Solution.

(a) Observe that

⟨(cos 𝜃, sin 𝜃), (cos 𝜃, sin 𝜃)⟩ = ⟨(− sin 𝜃, cos 𝜃), (− sin 𝜃, cos 𝜃)⟩ = cos2 𝜃 + sin2 𝜃 = 1,

⟨(cos 𝜃, sin 𝜃), (− sin 𝜃, cos 𝜃)⟩ = cos 𝜃 sin 𝜃 − cos 𝜃 sin 𝜃 = 0.

Thus (cos 𝜃, sin 𝜃), (− sin 𝜃, cos 𝜃) is an orthonormal basis of 𝐑2. A similar calculation
shows that (cos 𝜃, sin 𝜃), (sin 𝜃, − cos 𝜃) is also an orthonormal basis of 𝐑2.

(b) Suppose 𝑢, 𝑣 is an orthonormal basis of 𝐑2. Let 𝜃 be the angle that 𝑢 makes with the
positive 𝑥-axis, as shown below.

𝜃

𝑢
𝑣

𝑣
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Note that ‖𝑢‖ = 1, so that 𝑢 lies on the circle of radius 1 centered at the origin in 𝐑2.
It follows that 𝑢 = (cos 𝜃, sin 𝜃).

Since 𝑢 and 𝑣 are orthogonal, plane geometry tells us that 𝑣 either makes an angle of 
𝜃 + 𝜋

2  or 𝜃 − 𝜋
2  with the positive 𝑥-axis, and since ‖𝑣‖ = 1 we know that 𝑣 also lies on

the circle of radius 1 centered at the origin. It follows that

𝑣 = (cos(𝜃 + 𝜋
2), sin(𝜃 + 𝜋

2)) = (− sin 𝜃, cos 𝜃)

or 𝑣 = (cos(𝜃 − 𝜋
2), sin(𝜃 − 𝜋

2)) = (sin 𝜃, − cos 𝜃).

Exercise 6.B.3. Suppose 𝑒1, …, 𝑒𝑚 is an orthonormal list in 𝑉  and 𝑣 ∈ 𝑉 . Prove that

‖𝑣‖2 = |⟨𝑣, 𝑒1⟩|
2 + ⋯ + |⟨𝑣, 𝑒𝑚⟩|2 ⇔ 𝑣 ∈ span(𝑒1, …, 𝑒𝑚).

Solution. Suppose 𝑣 ∈ span(𝑒1, …, 𝑒𝑚). Note that 𝑒1, …, 𝑒𝑚 is linearly independent by 6.25
and hence is a basis of span(𝑒1, …, 𝑒𝑚). It follows from 6.30 that

‖𝑣‖2 = |⟨𝑣, 𝑒1⟩|
2 + ⋯ + |⟨𝑣, 𝑒𝑚⟩|2.

Now suppose that ‖𝑣‖2 = |⟨𝑣, 𝑒1⟩|
2 + ⋯ + |⟨𝑣, 𝑒𝑚⟩|2, let 𝑢 = ⟨𝑣, 𝑒1⟩𝑒1 + ⋯ + ⟨𝑣, 𝑒𝑚⟩𝑒𝑚, and

note that ‖𝑢‖2 = ‖𝑣‖2 by 6.24. Observe that

⟨𝑢, 𝑣⟩ = ⟨∑𝑚
𝑘=1⟨𝑣, 𝑒𝑘⟩𝑒𝑘, 𝑣⟩ = ∑

𝑚

𝑘=1
⟨⟨𝑣, 𝑒𝑘⟩𝑒𝑘, 𝑣⟩ = ∑

𝑚

𝑘=1
|⟨𝑣, 𝑒𝑘⟩|2 = ‖𝑣‖2.

Thus

‖𝑢 − 𝑣‖2 = ‖𝑢‖2 + ‖𝑣‖2 − 2 Re⟨𝑢, 𝑣⟩ = 2‖𝑣‖2 − 2‖𝑣‖2 = 0,

from which it follows that 𝑣 = 𝑢 ∈ span(𝑒1, …, 𝑒𝑚).
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Exercise 6.B.4. Suppose 𝑛 is a positive integer. Prove that

1
√

2𝜋
,
cos 𝑥
√

𝜋
,
cos 2𝑥
√

𝜋
, …,

cos 𝑛𝑥
√

𝜋
,
sin 𝑥
√

𝜋
,
sin 2𝑥
√

𝜋
, …,

sin 𝑛𝑥
√

𝜋

is an orthonormal list of vectors in 𝐶[−𝜋, 𝜋], the vector space of continuous real-valued
functions on [−𝜋, 𝜋] with inner product

⟨𝑓, 𝑔⟩ = ∫
𝜋

−𝜋
𝑓𝑔.

Hint: The following formulas should help.

(sin 𝑥)(cos 𝑦) =
sin(𝑥 − 𝑦) + sin(𝑥 + 𝑦)

2

(sin 𝑥)(sin 𝑦) =
cos(𝑥 − 𝑦) − cos(𝑥 + 𝑦)

2

(cos 𝑥)(cos 𝑦) =
cos(𝑥 − 𝑦) + cos(𝑥 + 𝑦)

2

Solution. We calculate, for 𝑘 ∈ {1, …, 𝑛},

⟨
1

√
2𝜋

,
1

√
2𝜋

⟩ = ∫
𝜋

−𝜋
(

1
√

2𝜋
)

2

d𝑥 =
1
2𝜋

∫
𝜋

−𝜋
d𝑥 = 1;

⟨
cos 𝑘𝑥
√

𝜋
,
cos 𝑘𝑥
√

𝜋
⟩ = ∫

𝜋

−𝜋
(

cos 𝑘𝑥
√

𝜋
)

2

d𝑥 =
2
𝑘𝜋

∫
𝑘𝜋

0
cos2 𝑦 d𝑦 =

1
𝑘𝜋

[𝑦 + sin 𝑦 cos 𝑦]𝑦=𝑘𝜋
𝑦=0 = 1;

⟨
sin 𝑘𝑥
√

𝜋
,
sin 𝑘𝑥
√

𝜋
⟩ = ∫

𝜋

−𝜋
(

sin 𝑘𝑥
√

𝜋
)

2

d𝑥 =
2
𝑘𝜋

∫
𝑘𝜋

0
sin2 𝑦 d𝑦 =

1
𝑘𝜋

[𝑦 − sin 𝑦 cos 𝑦]𝑦=𝑘𝜋
𝑦=0 = 1;

⟨
1

√
2𝜋

,
cos 𝑘𝑥
√

𝜋
⟩ = ∫

𝜋

−𝜋

1
√

2𝜋
cos 𝑘𝑥
√

𝜋
d𝑥 =

√
2

𝑘𝜋
∫

𝑘𝜋

0
cos 𝑦 d𝑦 =

√
2

𝑘𝜋
[sin 𝑦]𝑦=𝑘𝜋

𝑦=0 = 0;

⟨
1

√
2𝜋

,
sin 𝑘𝑥
√

𝜋
⟩ = ∫

𝜋

−𝜋

1
√

2𝜋
sin 𝑘𝑥
√

𝜋
d𝑥 = 0,

where we have used that sin 𝑘𝑥 is an odd function for the last equality. For 𝑗, 𝑘 ∈ {1, …, 𝑛}
such that 𝑗 ≠ 𝑘, we have

⟨
cos 𝑗𝑥
√

𝜋
,
cos 𝑘𝑥
√

𝜋
⟩ = ∫

𝜋

−𝜋

cos 𝑗𝑥
√

𝜋
cos 𝑘𝑥
√

𝜋
d𝑥 =

1
𝜋

∫
𝜋

0
cos((𝑗 − 𝑘)𝑥) + cos((𝑗 + 𝑘)𝑥) d𝑥

=
1
𝜋

[
sin((𝑗 − 𝑘)𝑥)

𝑗 − 𝑘
]

𝑥=𝜋

𝑥=0
+

1
𝜋

[
sin((𝑗 + 𝑘)𝑥)

𝑗 + 𝑘
]

𝑥=𝜋

𝑥=0
= 0;
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⟨
sin 𝑗𝑥
√

𝜋
,
sin 𝑘𝑥
√

𝜋
⟩ = ∫

𝜋

−𝜋

sin 𝑗𝑥
√

𝜋
sin 𝑘𝑥
√

𝜋
d𝑥 =

1
𝜋

∫
𝜋

0
cos((𝑗 − 𝑘)𝑥) − cos((𝑗 + 𝑘)𝑥) d𝑥

=
1
𝜋

[
sin((𝑗 − 𝑘)𝑥)

𝑗 − 𝑘
]

𝑥=𝜋

𝑥=0
−

1
𝜋

[
sin((𝑗 + 𝑘)𝑥)

𝑗 + 𝑘
]

𝑥=𝜋

𝑥=0
= 0.

Finally, for any 𝑗, 𝑘 ∈ {1, …, 𝑛} we have

⟨
cos 𝑗𝑥
√

𝜋
,
sin 𝑘𝑥
√

𝜋
⟩ = ∫

𝜋

−𝜋

cos 𝑗𝑥
√

𝜋
sin 𝑘𝑥
√

𝜋
d𝑥 = 0,

where we have used that cos 𝑗𝑥 sin 𝑘𝑥 is an odd function for the last equality.

Exercise 6.B.5. Suppose 𝑓 : [−𝜋, 𝜋] → 𝐑 is continuous. For each nonnegative integer 
𝑘, define

𝑎𝑘 = 1√
𝜋 ∫

𝜋

−𝜋
𝑓(𝑥) cos(𝑘𝑥) 𝑑𝑥 and 𝑏𝑘 = 1√

𝜋 ∫
𝜋

−𝜋
𝑓(𝑥) sin(𝑘𝑥) 𝑑𝑥.

Prove that

𝑎2
0
2

+ ∑
∞

𝑘=1
(𝑎2

𝑘 + 𝑏2
𝑘) ≤ ∫

𝜋

−𝜋
𝑓2.

The inequality above is actually an equality for all continuous functions
𝑓 : [−𝜋, 𝜋] → 𝐑. However, proving that this inequality is an equality involves Fourier
series techniques beyond the scope of this book.

Solution. Consider 𝐶[−𝜋, 𝜋], the vector space of continuous real-valued functions on [−𝜋, 𝜋],
with inner product

⟨𝑓, 𝑔⟩ = ∫
𝜋

−𝜋
𝑓𝑔.

As we showed in Exercise 6.B.5,

1
√

2𝜋
,
cos 𝑥
√

𝜋
,
cos 2𝑥
√

𝜋
, …,

cos 𝑛𝑥
√

𝜋
,
sin 𝑥
√

𝜋
,
sin 2𝑥
√

𝜋
, …,

sin 𝑛𝑥
√

𝜋

is an orthonormal list of vectors in 𝐶[−𝜋, 𝜋] for any 𝑛 ≥ 1. Observe that, for 𝑘 ≥ 1,

𝑎0 = 1√
𝜋 ∫

𝜋

−𝜋
𝑓(𝑥) d𝑥 =

√
2⟨𝑓,

1
√

2𝜋
⟩;

𝑎𝑘 = 1√
𝜋 ∫

𝜋

−𝜋
𝑓(𝑥) cos(𝑘𝑥) d𝑥 = ⟨𝑓,

cos 𝑘𝑥
√

𝜋
⟩;

𝑏𝑘 = 1√
𝜋 ∫

𝜋

−𝜋
𝑓(𝑥) sin(𝑘𝑥) d𝑥 = ⟨𝑓,

sin 𝑘𝑥
√

𝜋
⟩.
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Thus, by Bessel’s inequality (6.26),

𝑎2
0
2

+ ∑
𝑛

𝑘=1
(𝑎2

𝑘 + 𝑏2
𝑘) ≤ ‖𝑓‖2 = ∫

𝜋

−𝜋
𝑓2.

for all 𝑛 ≥ 1. It then follows from the monotone convergence theorem that ∑∞
𝑘=1(𝑎2

𝑘 + 𝑏2
𝑘) is

a convergent series. Furthermore,

𝑎2
0
2

+ ∑
∞

𝑘=1
(𝑎2

𝑘 + 𝑏2
𝑘) ≤ ∫

𝜋

−𝜋
𝑓2.

Exercise 6.B.6. Suppose 𝑒1, …, 𝑒𝑛 is an orthonormal basis of 𝑉 .

(a) Prove that if 𝑣1, …, 𝑣𝑛 are vectors in 𝑉  such that

‖𝑒𝑘 − 𝑣𝑘‖ <
1

√
𝑛

for each 𝑘, then 𝑣1, …, 𝑣𝑛 is a basis of 𝑉 .

(b) Show that there exist 𝑣1, …, 𝑣𝑛 ∈ 𝑉  such that

‖𝑒𝑘 − 𝑣𝑘‖ ≤
1

√
𝑛

for each 𝑘, but 𝑣1, …, 𝑣𝑛 is not linearly independent.

This exercise states in (a) that an appropriately small perturbation of an orthonormal
basis is a basis. Then (b) shows that the number 1/

√
𝑛 on the right side of the inequality

in (a) cannot be improved upon.

Solution.

(a) It will suffice to show that 𝑣1, …, 𝑣𝑛 is linearly independent, so suppose that 
∑𝑛

𝑘=1 𝑎𝑘𝑣𝑘 = 0 and observe that

∑𝑛
𝑘=1 |𝑎𝑘|2 = ‖∑𝑛

𝑘=1 𝑎𝑘𝑒𝑘‖2 (6.24)

= ‖∑𝑛
𝑘=1 𝑎𝑘(𝑒𝑘 − 𝑣𝑘)‖2 (∑𝑛

𝑘=1 𝑎𝑘𝑣𝑘 = 0)

≤ (∑𝑛
𝑘=1|𝑎𝑘|‖𝑒𝑘 − 𝑣𝑘‖)

2
(triangle inequality)

≤ (∑𝑛
𝑘=1 |𝑎𝑘|2)(∑𝑛

𝑘=1 ‖𝑒𝑘 − 𝑣𝑘‖2). (Cauchy-Schwarz inequality)

By assumption we have ∑𝑛
𝑘=1 ‖𝑒𝑘 − 𝑣𝑘‖2 < 1. It follows that ∑𝑛

𝑘=1 |𝑎𝑘|2 = 0, which is
the case if and only if each 𝑎𝑘 = 0. Thus 𝑣1, …, 𝑣𝑛 is linearly independent.

(b) For each 𝑘 ∈ {1, …, 𝑛} let

𝑣𝑘 = 𝑒𝑘 −
𝑒1 + ⋯ + 𝑒𝑛

𝑛
= (− 1

𝑛)𝑒1 + ⋯ + (1 − 1
𝑛)𝑒𝑘 + ⋯ + (− 1

𝑛)𝑒𝑛.
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Notice that 𝑣1 + ⋯ + 𝑣𝑛 = 0, so that 𝑣1, …, 𝑣𝑛 is linearly dependent. Furthermore, for
each 𝑘 ∈ {1, …, 𝑛}, 6.24 shows that

‖𝑒𝑘 − 𝑣𝑘‖ = ‖ 1
𝑛𝑒1 + ⋯ + 1

𝑛𝑒𝑘 + ⋯ + 1
𝑛𝑒𝑛‖ = 1

𝑛 ‖𝑒1 + ⋯ + 𝑒𝑛‖ = 1
𝑛 ⋅

√
𝑛 = 1√

𝑛 .

Exercise 6.B.7. Suppose 𝑇 ∈ ℒ(𝐑3) has an upper-triangular matrix with respect to
the basis (1, 0, 0), (1, 1, 1), (1, 1, 2). Find an orthonormal basis of 𝐑3 with respect to
which 𝑇  has an upper-triangular matrix.

Solution. Performing the Gram-Schmidt procedure on the basis (1, 0, 0), (1, 1, 1), (1, 1, 2)
yields the orthonormal basis

(1, 0, 0), (0, 1√
2
, 1√

2
), (0, − 1√

2
, 1√

2
).

As the proof of 6.37 shows, the matrix of 𝑇  with respect to this orthonormal basis must also
be upper-triangular.

Exercise 6.B.8. Make 𝒫2(𝐑) into an inner product space by defining ⟨𝑝, 𝑞⟩ = ∫1
0

𝑝𝑞
for all 𝑝, 𝑞 ∈ 𝒫2(𝐑).

(a) Apply the Gram-Schmidt procedure to the basis 1, 𝑥, 𝑥2 to produce an orthonor-
mal basis of 𝒫2(𝐑).

(b) The differentiation operator (the operator that takes 𝑝 to 𝑝′) on 𝒫2(𝐑) has an up-
per-triangular matrix with respect to the basis 1, 𝑥, 𝑥2, which is not an orthonormal
basis. Find the matrix of the differentiation operator on 𝒫2(𝐑) with respect to the
orthonormal basis produced in (a) and verify that this matrix is upper triangular,
as expected from the proof of 6.37.

Solution.

(a) By applying the Gram-Schmidt procedure we obtain the orthonormal basis

1, 2
√

3(𝑥 − 1
2), 6

√
5(𝑥2 − 𝑥 + 1

6).

(b) Some routine calculations reveal that the matrix of 𝑇  with respect to the orthonormal
basis found in part (a) is

⎝
⎜⎜
⎜⎜
⎜⎛

0
0

0

0
2
√

3

0

0
0

6√5
3⎠
⎟⎟
⎟⎟
⎟⎞

,

which is indeed upper-triangular.

212 / 366



Exercise 6.B.9. Suppose 𝑒1, …, 𝑒𝑚 is the result of applying the Gram-Schmidt pro-
cedure to a linearly independent list 𝑣1, …, 𝑣𝑚 ∈ 𝑉 . Prove that ⟨𝑣𝑘, 𝑒𝑘⟩ > 0 for each
𝑘 = 1, …, 𝑚.

Solution. Let 𝑢1, …, 𝑢𝑚 be a list in 𝑉  and let 𝑓1, …, 𝑓𝑚 be an orthonormal list in 𝑉  with the
property that span(𝑓1, …, 𝑓𝑘) = span(𝑢1, …, 𝑢𝑘) for each 𝑘 ∈ {1, …, 𝑚}. We will prove that

⟨𝑢𝑘, 𝑓𝑘⟩ = 0 for some 𝑘 ∈ {1, …, 𝑚} ⇒ 𝑢1, …, 𝑢𝑚 is linearly dependent.

The contrapositive of this implication will give us the desired result.

Suppose that there exists some 𝑘 ∈ {1, …, 𝑚} such that ⟨𝑢𝑘, 𝑓𝑘⟩ = 0. Notice that
𝑢𝑘 ∈ span(𝑢1, …, 𝑢𝑘) = span(𝑓1, …, 𝑓𝑘); it follows from Exercise 6.B.3 that

‖𝑢𝑘‖2 = |⟨𝑢𝑘, 𝑓1⟩|
2 + ⋯ + |⟨𝑢𝑘, 𝑓𝑘−1⟩|

2 + |⟨𝑢𝑘, 𝑓𝑘⟩|2 = |⟨𝑢𝑘, 𝑓1⟩|
2 + ⋯ + |⟨𝑢𝑘, 𝑓𝑘−1⟩|

2.

Another application of Exercise 6.B.3 shows that 𝑢𝑘 ∈ span(𝑓1, …, 𝑓𝑘−1) = span(𝑢1, …, 𝑢𝑘−1).
Thus 𝑢1, …, 𝑢𝑚 is linearly dependent.

Exercise 6.B.10. Suppose 𝑣1, …, 𝑣𝑚 is a linearly independent list in 𝑉 . Explain
why the orthonormal list produced by the formulas of the Gram-Schmidt proce-
dure (6.32) is the only orthonormal list 𝑒1, …, 𝑒𝑚 in 𝑉  such that ⟨𝑣𝑘, 𝑒𝑘⟩ > 0 and
span(𝑣1, …, 𝑣𝑘) = span(𝑒1, …, 𝑒𝑘) for each 𝑘 = 1, …, 𝑚.

The result in this exercise is used in the proof of 7.58.

Solution. Here is a useful lemma.

213 / 366



Lemma L.10. Suppose 𝑣1, …, 𝑣𝑚 is a linearly independent list in 𝑉  and let 𝑒1, …, 𝑒𝑚 be
the orthonormal list obtained by applying the Gram-Schmidt procedure to 𝑣1, …, 𝑣𝑚.
Let 𝑆 = {𝜆 ∈ 𝐅 : |𝜆| = 1} (if 𝐅 = 𝐑 then 𝑆 = {−1, 1} and if 𝐅 = 𝐂 then 𝑆 is the unit
circle in the complex plane) and let 𝑆𝑚 be the collection of functions {1, …, 𝑚} → 𝑆.
The orthonormal lists 𝑢1, …, 𝑢𝑚 satisfying span(𝑢1, …, 𝑢𝑘) = span(𝑣1, …, 𝑣𝑘) for each 
𝑘 ∈ {1, …, 𝑚} are exactly those of the form 𝑓(1)𝑒1, …, 𝑓(𝑚)𝑒𝑚 for some 𝑓 ∈ 𝑆𝑚.

Proof. Let 𝑓 ∈ 𝑆𝑚 be given and suppose 𝑗, 𝑘 ∈ {1, …, 𝑚} are such that 𝑗 ≠ 𝑘. Observe
that

‖𝑓(𝑘)𝑒𝑘‖ = |𝑓(𝑘)|‖𝑒𝑘‖ = 1 and ⟨𝑓(𝑗)𝑒𝑗, 𝑓(𝑘)𝑒𝑘⟩ = 𝑓(𝑗)𝑓(𝑘)⟨𝑒𝑗, 𝑒𝑘⟩ = 0.

Furthermore, since 0 ∉ 𝑆 we have for each 𝑘 ∈ {1, …, 𝑚},

span(𝑓(1)𝑒1, …, 𝑓(𝑘)𝑒𝑘) = span(𝑒1, …, 𝑒𝑘) = span(𝑣1, …, 𝑣𝑘).

Thus 𝑓(1)𝑒1, …, 𝑓(𝑚)𝑒𝑚 is an orthonormal list satisfying

span(𝑓(1)𝑒1, …, 𝑓(𝑘)𝑒𝑘) = span(𝑣1, …, 𝑣𝑘)

for each 𝑘 ∈ {1, …, 𝑚}.

Now suppose that 𝑢1, …, 𝑢𝑚 is an orthonormal list satisfying

span(𝑢1, …, 𝑢𝑘) = span(𝑣1, …, 𝑣𝑘) = span(𝑒1, …, 𝑒𝑘)

for each 𝑘 ∈ {1, …, 𝑚}. In particular span(𝑒1) = span(𝑢1), from which it follows that 
𝑢1 = 𝜆1𝑒1 for some 𝜆1 ∈ 𝐅. Because ‖𝑢1‖ = ‖𝑒1‖ = 1 we see that |𝜆1| = 1, so that
𝜆1 ∈ 𝑆; let 𝑓(1) = 𝜆1.

Given that span(𝑒1, 𝑒2) = span(𝑢1, 𝑢2), notice that 𝑒1, 𝑒2 is an orthonormal basis of 
span(𝑒1, 𝑒2) and that 𝑢2 ∈ span(𝑒1, 𝑒2). It follows from 6.30 that

𝑢2 = ⟨𝑢2, 𝑒1⟩𝑒1 + ⟨𝑢2, 𝑒2⟩𝑒2.

The orthonormality of the list 𝑢1, 𝑢2 shows that

0 = ⟨𝑢1, 𝑢2⟩ = ⟨𝑓(1)𝑒1, 𝑢2⟩ = 𝑓(1)⟨𝑒1, 𝑢2⟩,

which implies ⟨𝑒1, 𝑢2⟩ = 0 since 𝑓(1) ≠ 0. Thus 𝑢2 = 𝜆2𝑒2 for some 𝜆 ∈ 𝐅. Because 
‖𝑢2‖ = ‖𝑒2‖ = 1 we see that |𝜆2| = 1, so that 𝜆2 ∈ 𝑆; let 𝑓(2) = 𝜆2.

By continuing in this manner we obtain an 𝑓 ∈ 𝑆𝑚 such that 𝑢𝑘 = 𝑓(𝑘)𝑒𝑘 for each
𝑘 ∈ {1, …, 𝑚}. □

Returning to the exercise, 6.32 and Exercise 6.B.9 show that the orthonormal list 𝑒1, …, 𝑒𝑚

produced by the Gram-Schmidt procedure indeed satisfies ⟨𝑣𝑘, 𝑒𝑘⟩ > 0 and

span(𝑣1, …, 𝑣𝑘) = span(𝑒1, …, 𝑒𝑘)

for each 𝑘 ∈ {1, …, 𝑚}.
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Conversely, suppose that 𝑢1, …, 𝑢𝑚 is an orthonormal list in 𝑉  such that ⟨𝑣𝑘, 𝑢𝑘⟩ > 0 and

span(𝑣1, …, 𝑣𝑘) = span(𝑢1, …, 𝑢𝑘)

for each 𝑘 ∈ {1, …, 𝑚}. Lemma L.10 shows that 𝑢1, …, 𝑢𝑚 is of the form 𝑓(1)𝑒1, …, 𝑓(𝑚)𝑒𝑚

for some 𝑓 : {1, …, 𝑚} → 𝐅 satisfying |𝑓(𝑘)| = 1 for each 𝑘 ∈ {1, …, 𝑚}. For such a 𝑘, observe
that

⟨𝑣𝑘, 𝑢𝑘⟩ > 0 ⇔ 𝑓(𝑘)⟨𝑣𝑘, 𝑒𝑘⟩ > 0.

Since ⟨𝑣𝑘, 𝑒𝑘⟩ > 0 by Exercise 6.B.9, 𝑓(𝑘) must be a positive real number. Combining this
with |𝑓(𝑘)| = 1, we see that 𝑓(𝑘) = 1 for each 𝑘 ∈ {1, …, 𝑚}. Thus 𝑢1, …, 𝑢𝑚 is nothing but
𝑒1, …, 𝑒𝑚.

Exercise 6.B.11. Find a polynomial 𝑞 ∈ 𝒫2(𝐑) such that 𝑝(1
2) = ∫1

0
𝑝𝑞 for every

𝑝 ∈ 𝒫2(𝐑).

Solution. Equip 𝒫2(𝐑) with the inner product ⟨𝑝, 𝑞⟩ = ∫1
0

𝑝𝑞 and define 𝜑 ∈ (𝒫2(𝐑))′ by 
𝜑(𝑝) = 𝑝(1

2). As the proof of 6.42 shows, if we take

𝑞 = 𝜑(𝑒1)𝑒1 + 𝜑(𝑒2)𝑒2 + 𝜑(𝑒3)𝑒3 = −15𝑥2 + 15𝑥 − 3
2 ,

where 𝑒1, 𝑒2, 𝑒3 is the orthonormal basis of 𝒫2(𝐑) found in Exercise 6.B.8 (a), then

𝜑(𝑝) = 𝑝(1
2) = ⟨𝑝, 𝑞⟩ = ∫

1

0
𝑝𝑞

for every 𝑝 ∈ 𝒫2(𝐑).

Exercise 6.B.12. Find a polynomial 𝑞 ∈ 𝒫2(𝐑) such that

∫
1

0
𝑝(𝑥) cos(𝜋𝑥) 𝑑𝑥 = ∫

1

0
𝑝𝑞

for every 𝑝 ∈ 𝒫2(𝐑).

Solution. Equip 𝒫2(𝐑) with the inner product ⟨𝑝, 𝑞⟩ = ∫1
0

𝑝𝑞 and define 𝜑 ∈ (𝒫2(𝐑))′ by 
𝜑(𝑝) = ∫1

0
𝑝(𝑥) cos(𝜋𝑥) d𝑥. As the proof of 6.42 shows, if we take

𝑞 = 𝜑(𝑒1)𝑒1 + 𝜑(𝑒2)𝑒2 + 𝜑(𝑒3)𝑒3 = −
24
𝜋2 (𝑥 − 1

2),

where 𝑒1, 𝑒2, 𝑒3 is the orthonormal basis of 𝒫2(𝐑) found in Exercise 6.B.8 (a), then

𝜑(𝑝) = ∫
1

0
𝑝(𝑥) cos(𝜋𝑥) d𝑥 = ⟨𝑝, 𝑞⟩ = ∫

1

0
𝑝𝑞

for every 𝑝 ∈ 𝒫2(𝐑).
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Exercise 6.B.13. Show that a list 𝑣1, …, 𝑣𝑚 of vectors in 𝑉  is linearly dependent if and
only if the Gram-Schmidt formula in 6.32 produces 𝑓𝑘 = 0 for some 𝑘 ∈ {1, …, 𝑚}.

This exercise gives an alternative to Gaussian elimination techniques for determining
whether a list of vectors in an inner product space is linearly dependent.

Solution. If 𝑣1, …, 𝑣𝑚 is linearly independent then each 𝑓𝑘 must be non-zero, as the proof
of 6.32 shows.

Suppose that 𝑣1, …, 𝑣𝑚 is linearly dependent. If 𝑣1 = 0 then 𝑓1 = 0; otherwise, let
𝑘 ∈ {2, …, 𝑚} be the least integer such that 𝑣𝑘 ∈ span(𝑣1, …, 𝑣𝑘−1) and note that 𝑣1, …, 𝑣𝑘−1

is linearly independent. This linear independence allows us to construct 𝑓1, …, 𝑓𝑘−1 as in 6.32
so that:
• each 𝑓𝑖 ≠ 0;
• span(𝑣1, …, 𝑣𝑖) = span(𝑓1, …, 𝑓𝑖) for each 𝑖 ∈ {1, …, 𝑘 − 1};
• 𝑓1, …, 𝑓𝑖−1 is pairwise orthogonal.

It follows that 𝑣𝑘 ∈ span(𝑓1, …, 𝑓𝑘−1), say 𝑣𝑘 = 𝑎1𝑓1 + ⋯ + 𝑎𝑘−1𝑓𝑘−1. Notice that, for each 
𝑖 ∈ {1, …, 𝑘 − 1},

⟨𝑣𝑘, 𝑓𝑖⟩ = ⟨𝑎𝑖𝑓𝑖, 𝑓𝑖⟩ = 𝑎𝑖‖𝑓𝑖‖
2 ⇒ 𝑎𝑖 =

⟨𝑣𝑘, 𝑓𝑖⟩
‖𝑓𝑖‖

2 .

Thus, using the formula for 𝑓𝑘 in 6.32,

𝑓𝑘 = 𝑣𝑘 − ∑
𝑘−1

𝑖=1

⟨𝑣𝑘, 𝑓𝑖⟩
‖𝑓𝑖‖

2 𝑓𝑖 = 𝑣𝑘 − ∑
𝑘−1

𝑖=1
𝑎𝑖𝑓𝑖 = 𝑣𝑘 − 𝑣𝑘 = 0.

Exercise 6.B.14. Suppose 𝑉  is a real inner product space and 𝑣1, …, 𝑣𝑚 is a linearly
independent list of vectors in 𝑉 . Prove that there exist exactly 2𝑚 orthonormal lists 
𝑒1, …, 𝑒𝑚 of vectors in 𝑉  such that

span(𝑣1, …, 𝑣𝑘) = span(𝑒1, …, 𝑒𝑘)

for each 𝑘 ∈ {1, …, 𝑚}.

Solution. Let 𝑒1, …, 𝑒𝑚 be the orthonormal list obtained by applying the Gram-Schmidt
procedure to 𝑣1, …, 𝑣𝑚. Lemma L.10 shows that the orthonormal lists 𝑢1, …, 𝑢𝑚 satisfying 
span(𝑣1, …, 𝑣𝑘) = span(𝑢1, …, 𝑢𝑘) for each 𝑘 ∈ {1, …, 𝑚} are precisely those of the form

𝑓(1)𝑒1, …, 𝑓(𝑚)𝑒𝑚

for some 𝑓 : {1, …, 𝑚} → {−1, 1}. It is straightforward to verify that there are 2𝑚

such functions, and that each 𝑓 : {1, …, 𝑚} → {−1, 1} gives a distinct orthonormal list 
𝑓(1)𝑒1, …, 𝑓(𝑚)𝑒𝑚. Thus there 2𝑚 orthonormal lists 𝑢1, …, 𝑢𝑚 of vectors in 𝑉  such that

span(𝑣1, …, 𝑣𝑘) = span(𝑢1, …, 𝑢𝑘)
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for each 𝑘 ∈ {1, …, 𝑚}.

Exercise 6.B.15. Suppose ⟨⋅, ⋅⟩1 and ⟨⋅, ⋅⟩2 are inner products on 𝑉  such that
⟨𝑢, 𝑣⟩1 = 0 if and only if ⟨𝑢, 𝑣⟩2 = 0. Prove that there is a positive number 𝑐 such that
⟨𝑢, 𝑣⟩1 = ⟨𝑢, 𝑣⟩2 for every 𝑢, 𝑣 ∈ 𝑉 .

This exercise shows that if two inner products have the same pairs of orthogonal vec-
tors, then each of the inner products is a scalar multiple of the other inner product.

Solution. If 𝑉 = {0} then we may take any 𝑐 > 0 we like, since the only inner product on 
𝑉  is the map (0, 0) ↦ 0. Suppose therefore that 𝑉 ≠ {0} and for each non-zero 𝑣 ∈ 𝑉  define

𝑐𝑣 =
⟨𝑣, 𝑣⟩1
⟨𝑣, 𝑣⟩2

;

notice that 𝑐𝑣 is positive. Suppose 𝑢, 𝑣 ∈ 𝑉  are non-zero. Using orthogonal decomposition
6.13, we have

⟨𝑢 −
⟨𝑢, 𝑣⟩2
⟨𝑣, 𝑣⟩2

𝑣, 𝑣⟩
2

= 0.

Our assumption is that orthogonality with respect to ⟨⋅, ⋅⟩2 is equivalent to orthogonality
with respect to ⟨⋅, ⋅⟩1 and thus

⟨𝑢 −
⟨𝑢, 𝑣⟩2
⟨𝑣, 𝑣⟩2

𝑣, 𝑣⟩
1

= 0 ⇔ ⟨𝑢, 𝑣⟩1 −
⟨𝑢, 𝑣⟩2
⟨𝑣, 𝑣⟩2

⟨𝑣, 𝑣⟩1 = 0 ⇔ ⟨𝑢, 𝑣⟩1 = 𝑐𝑣⟨𝑢, 𝑣⟩2.

Reversing the roles of 𝑢 and 𝑣 shows that ⟨𝑣, 𝑢⟩1 = 𝑐𝑢⟨𝑣, 𝑢⟩2 and combining this with conju-
gate symmetry gives us

𝑐𝑣⟨𝑢, 𝑣⟩2 = ⟨𝑢, 𝑣⟩1 = ⟨𝑣, 𝑢⟩1 = 𝑐𝑢⟨𝑣, 𝑢⟩2 = 𝑐𝑢⟨𝑢, 𝑣⟩2.

Thus, for all non-zero 𝑢, 𝑣 ∈ 𝑉 , we have

(1) ⟨𝑢, 𝑣⟩1 = 𝑐𝑣⟨𝑢, 𝑣⟩2;

(2) 𝑐𝑣⟨𝑢, 𝑣⟩2 = 𝑐𝑢⟨𝑢, 𝑣⟩2.

Given non-zero 𝑢, 𝑣 ∈ 𝑉 , there exists a non-zero 𝑤 ∈ 𝑉  such that ⟨𝑤, 𝑢⟩2 ≠ 0 and ⟨𝑣, 𝑤⟩2 ≠ 0:
if ⟨𝑢, 𝑣⟩2 ≠ 0 then take 𝑤 = 𝑢 and if ⟨𝑢, 𝑣⟩2 = 0 then take 𝑤 = 𝑢 + 𝑣. Using (2), it follows that

𝑐𝑢⟨𝑤, 𝑢⟩2 = 𝑐𝑤⟨𝑤, 𝑢⟩2 and 𝑐𝑤⟨𝑣, 𝑤⟩2 = 𝑐𝑣⟨𝑣, 𝑤⟩2.

Since ⟨𝑤, 𝑢⟩2 ≠ 0 and ⟨𝑣, 𝑤⟩2 ≠ 0, these two equations imply that 𝑐𝑢 = 𝑐𝑤 = 𝑐𝑣. If we denote
this common value by 𝑐 (noting that 𝑐 > 0), then we have shown that 𝑐𝑣 = 𝑐 for all non-
zero 𝑣 ∈ 𝑉 . It follows from (1) that ⟨𝑢, 𝑣⟩1 = 𝑐⟨𝑢, 𝑣⟩2 for all non-zero 𝑢, 𝑣 ∈ 𝑉 . Certainly this
equation also holds if 𝑢 = 0 or 𝑣 = 0 and thus ⟨𝑢, 𝑣⟩1 = 𝑐⟨𝑢, 𝑣⟩2 for all 𝑢, 𝑣 ∈ 𝑉 .
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Exercise 6.B.16. Suppose 𝑉  is finite-dimensional. Suppose ⟨⋅, ⋅⟩1, ⟨⋅, ⋅⟩2 are inner prod-
ucts on 𝑉  with corresponding norms ‖⋅‖1 and ‖⋅‖2. Prove that there exists a positive
number 𝑐 such that ‖𝑣‖1 ≤ 𝑐‖𝑣‖2 for every 𝑣 ∈ 𝑉 .

Solution. By 6.35 there exists an orthonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉  with respect to ⟨⋅, ⋅⟩2.
Let 𝑣 ∈ 𝑉  be given, so that 𝑣 = 𝑎1𝑒1 + ⋯ + 𝑎𝑛𝑒𝑛 for some scalars 𝑎1, …, 𝑎𝑛. Observe that

|𝑎1| + ⋯ + |𝑎𝑛| ≤ 𝑛 max{|𝑎1|, …, |𝑎𝑛|} ≤ 𝑛√|𝑎1|
2 + ⋯ + |𝑎𝑛|2 = 𝑛‖𝑣‖2, (1)

where the last equality follows from 6.24. If we let 𝑀 = max{‖𝑒1‖1, …, ‖𝑒𝑛‖1}, which is pos-
itive since each 𝑒𝑘 ≠ 0, then it follows from (1) and the triangle inequality that

‖𝑣‖1 ≤ |𝑎1|‖𝑒1‖1 + ⋯ + |𝑎𝑛|‖𝑒𝑛‖1 ≤ 𝑀(|𝑎1| + ⋯ + |𝑎𝑛|) ≤ 𝑛𝑀‖𝑣‖2.

Thus the desired positive constant is 𝑐 = 𝑛𝑀 .

Exercise 6.B.17. Suppose 𝐅 = 𝐂 and 𝑉  is finite-dimensional. Prove that if 𝑇  is an
operator on 𝑉  such that 1 is the only eigenvalue of 𝑇  and ‖𝑇 𝑣‖ ≤ ‖𝑣‖ for all 𝑣 ∈ 𝑉 , then
𝑇  is the identity operator.

Solution. By Schur’s theorem (6.38), there is an orthonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉  with re-
spect to which the matrix of 𝑇  is upper-triangular; because the only eigenvalue of 𝑇  is 1,
the diagonal entries of this matrix must equal 1. Thus, for each 𝑘 ∈ {1, …, 𝑛},

𝑇𝑒𝑘 = 𝐴1,𝑘𝑒1 + ⋯ + 𝐴1,𝑘−1𝑒𝑘−1 + 𝑒𝑘 ⇒ ‖𝑇𝑒𝑘‖2 = |𝐴1,𝑘|2 + ⋯ + |𝐴1,𝑘−1|
2 + 1,

where we have used 6.24. By assumption ‖𝑇 𝑒𝑘‖2 ≤ ‖𝑒𝑘‖2 = 1 and thus

|𝐴1,𝑘|2 + ⋯ + |𝐴1,𝑘−1|
2 ≤ 0 ⇒ 𝐴1,𝑘 = ⋯ = 𝐴1,𝑘−1 = 0.

It follows that the matrix of 𝑇  with respect to 𝑒1, …, 𝑒𝑛 is diagonal. Since each diagonal entry
is equal to 1, we may conclude that 𝑇  is the identity operator.

Exercise 6.B.18. Suppose 𝑢1, …, 𝑢𝑚 is a linearly independent list in 𝑉 . Show that
there exists 𝑣 ∈ 𝑉  such that ⟨𝑢𝑘, 𝑣⟩ = 1 for all 𝑘 ∈ {1, …, 𝑚}.

Solution. Let 𝑈 = span(𝑢1, …, 𝑢𝑚), so that 𝑢1, …, 𝑢𝑚 is a basis of 𝑈 , let 𝜑1, …, 𝜑𝑚 be
the dual basis of 𝑈 ′, and let 𝜑 = 𝜑1 + ⋯ + 𝜑𝑚. The Riesz representation theorem (6.42)
shows that there is a unique 𝑣 ∈ 𝑈  such that 𝜑(𝑢) = ⟨𝑢, 𝑣⟩ for each 𝑢 ∈ 𝑈 . In particular,
⟨𝑢𝑘, 𝑣⟩ = 𝜑(𝑢𝑘) = 1 for each 𝑘 ∈ {1, …, 𝑚}.

218 / 366



Exercise 6.B.19. Suppose 𝑣1, …, 𝑣𝑛 is a basis of 𝑉 . Prove that there exists a basis 
𝑢1, …, 𝑢𝑛 of 𝑉  such that

⟨𝑣𝑗, 𝑢𝑘⟩ = {
0 if 𝑗 ≠ 𝑘,
1 if 𝑗 = 𝑘.

Solution. Let 𝜑1, …, 𝜑𝑛 be the dual basis of 𝑣1, …, 𝑣𝑛. For each 𝑘 ∈ {1, …, 𝑛}, the Riesz
representation theorem (6.42) shows that there is some 𝑢𝑘 ∈ 𝑉  such that 𝜑𝑘(𝑣) = ⟨𝑣, 𝑢𝑘⟩ for
every 𝑣 ∈ 𝑉 . It follows that

⟨𝑣𝑗, 𝑢𝑘⟩ = 𝜑𝑘(𝑣𝑗) = {
0 if 𝑗 ≠ 𝑘,
1 if 𝑗 = 𝑘.

Suppose 𝑎1, …, 𝑎𝑛 are scalars such that 𝑎1𝑢1 + ⋯ + 𝑎𝑛𝑢𝑛 = 0. For each 𝑘 ∈ {1, …, 𝑛}, observe
that

0 = ⟨𝑎1𝑢1 + ⋯ + 𝑎𝑛𝑢𝑛, 𝑣𝑘⟩ = 𝑎1⟨𝑢1, 𝑣𝑘⟩ + ⋯ + 𝑎𝑛⟨𝑢𝑛, 𝑣𝑘⟩ = 𝑎𝑘.

It follows that 𝑢1, …, 𝑢𝑛 is linearly independent and hence forms a basis of 𝑉 .

Exercise 6.B.20. Suppose 𝐅 = 𝐂, 𝑉  is finite-dimensional, and ℰ ⊆ ℒ(𝑉 ) is such that

𝑆𝑇 = 𝑇𝑆

for all 𝑆, 𝑇 ∈ ℰ. Prove that there is an orthonormal basis of 𝑉  with respect to which
every element of ℰ has an upper-triangular matrix.

This exercise strengthens Exercise 9(b) in Section 5E (in the context of inner product
spaces) by asserting that the basis in that exercise can be chosen to be orthonormal.

Solution. By Exercise 5.E.9 (b) there is a basis 𝑣1, …, 𝑣𝑛 of 𝑉  with respect to which every
element of ℰ has an upper-triangular matrix, i.e. such that

𝑇𝑒𝑘 ∈ span(𝑣1, …, 𝑣𝑘)

for every 𝑘 ∈ {1, …, 𝑚} and every 𝑇 ∈ ℰ. Let 𝑒1, …, 𝑒𝑛 be the orthonormal basis obtained by
applying the Gram-Schmidt procedure (6.32) to 𝑣1, …, 𝑣𝑛 and note that

𝑇𝑒𝑘 ∈ span(𝑣1, …, 𝑣𝑘) = span(𝑒1, …, 𝑒𝑘)

for every 𝑘 ∈ {1, …, 𝑚} and every 𝑇 ∈ ℰ. Thus 𝑒1, …, 𝑒𝑛 is an orthonormal basis of 𝑉  with
respect to which every element of ℰ has an upper-triangular matrix.

Exercise 6.B.21. Suppose 𝐅 = 𝐂, 𝑉  is finite-dimensional, 𝑇 ∈ ℒ(𝑉 ), and all eigenval-
ues of 𝑇  have absolute value less than 1. Let 𝜀 > 0. Prove that there exists a positive
integer 𝑚 such that ‖𝑇 𝑚𝑣‖ ≤ 𝜀‖𝑣‖ for every 𝑣 ∈ 𝑉 .
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Solution. We will first translate the problem into a statement involving column vectors in 
𝐂𝑛,1 and matrices in 𝐂𝑛,𝑛, where 𝑛 = dim 𝑉 . We shall use the following notation, which
differs from the notation of the question.

• ⟨⋅, ⋅⟩𝑉  : 𝑉 × 𝑉 → 𝐂. This is the given inner product on 𝑉 .

• ‖⋅‖𝑉 : 𝑉 → [0, ∞). This is the norm on 𝑉  arising from ⟨⋅, ⋅⟩𝑉 , i.e.

‖𝑣‖𝑉 = √⟨𝑣, 𝑣⟩𝑉 .

• ⟨⋅, ⋅⟩ : 𝐂𝑛,1 × 𝐂𝑛,1 → 𝐂. This is the Euclidean inner product on 𝐂𝑛,1, i.e.

⟨𝑥, 𝑦⟩ = ∑
𝑛

𝑘=1
𝑥𝑘𝑦𝑘, where 𝑥 =

⎝
⎜⎛

𝑥1
⋮

𝑥𝑛⎠
⎟⎞ and 𝑦 =

⎝
⎜⎛

𝑦1
⋮

𝑦𝑛⎠
⎟⎞.

• ‖⋅‖ : 𝐂𝑛,1 → [0, ∞). This is the Euclidean norm on 𝐂𝑛,1 arising from ⟨⋅, ⋅⟩, i.e.

‖𝑥‖ = √⟨𝑥, 𝑥⟩ = (∑
𝑛

𝑘=1
|𝑥𝑘|2)

1/2

, where 𝑥 =
⎝
⎜⎛

𝑥1
⋮

𝑥𝑛⎠
⎟⎞.

Schur’s theorem (6.38) implies that there is an orthonormal (with respect to ⟨⋅, ⋅⟩𝑉 ) basis 
𝑒1, …, 𝑒𝑛 of 𝑉  such that the matrix 𝐴 ∈ 𝐂𝑛,𝑛 of 𝑇  with respect to 𝑒1, …, 𝑒𝑛 is upper-trian-
gular. Given 𝑣 = 𝑥1𝑒1 + ⋯ + 𝑥𝑛𝑒𝑛 ∈ 𝑉 , observe that

‖𝑣‖𝑉 = (∑
𝑛

𝑘=1
|𝑥𝑘|2)

1/2

= ‖𝑥‖, where 𝑥 =
⎝
⎜⎛

𝑥1
⋮

𝑥𝑛⎠
⎟⎞.

Thus it will suffice to show that there exists a positive integer 𝑚 such that

‖𝐴𝑚𝑥‖ ≤ 𝜀‖𝑥‖ for all 𝑥 ∈ 𝐂𝑛,1.

In what follows, by a strictly upper-triangular matrix we mean a matrix that is upper-tri-
angular and whose diagonal entries are zero. We shall use the following two easily verified
facts about strictly upper-triangular matrices:

(i) if 𝐷 ∈ 𝐂𝑛,𝑛 is diagonal and 𝑁 ∈ 𝐂𝑛,𝑛 is strictly upper-triangular then 𝐷𝑁  and 𝑁𝐷
are both strictly upper-triangular;

(ii) if 𝑁 ∈ 𝐂𝑛,𝑛 is strictly upper-triangular then 𝑁𝑛 = 0.

Let 𝐷 be the diagonal matrix whose diagonal entries are exactly those of 𝑈  and let 𝑁  be
the strictly upper-triangular matrix whose entries above the diagonal are exactly those of 
𝑈 , so that 𝑈 = 𝐷 + 𝑁 . Let

𝜌 = max{|𝐷1,1|, …, |𝐷𝑛,𝑛|} = max{|𝑈1,1|, …, |𝑈𝑛,𝑛|}

and note that 0 ≤ 𝜌 < 1 since the diagonal elements of 𝐷 and 𝑈  are precisely the eigenvalues
of 𝑇 . Note further that

‖𝐷𝑥‖ = (|𝐷1,1|
2|𝑥1|

2 + ⋯ + |𝐷𝑛,𝑛|2|𝑥𝑛|2)
1/2

≤ 𝜌‖𝑥‖
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for any 𝑥 ∈ 𝐂𝑛,1. Let

𝐶 = ∑
𝑛

𝑗=1
∑

𝑛

𝑘=1
|𝑁𝑗,𝑘|2;

a calculation similar to the one given in Exercise 6.A.19 shows that ‖𝑁𝑥‖ ≤ 𝐶‖𝑥‖ for all
𝑥 ∈ 𝐂𝑛,1. Putting everything together, for any integer 𝑚 ≥ 𝑛 we have the inequality

‖𝑈𝑚𝑥‖ = ‖(𝐷 + 𝑁)𝑚𝑥‖ ≤ ∑
𝑛−1

𝑘=0
(𝑚

𝑘 )𝜌𝑚−𝑘𝐶𝑘‖𝑥‖.

This can be shown using induction, but is best illustrated by example. If 𝑚 = 3 and 𝑛 = 2
then (i) and (ii) show that 𝐷𝑁𝑁 = 𝑁𝐷𝑁 = 𝑁𝑁𝐷 = 𝑁𝑁𝑁 = 0. Thus

‖𝑈𝑚𝑥‖ = ‖(𝐷 + 𝑁)𝑚𝑥‖

≤ ‖(𝐷𝐷𝐷 + 𝐷𝐷𝑁 + 𝐷𝑁𝐷 + 𝑁𝐷𝐷 + 𝐷𝑁𝑁 + 𝑁𝐷𝑁 + 𝑁𝑁𝐷 + 𝑁𝑁𝑁)𝑥‖

= ‖(𝐷𝐷𝐷 + 𝐷𝐷𝑁 + 𝐷𝑁𝐷 + 𝑁𝐷𝐷)𝑥‖

≤ ‖𝐷𝐷𝐷𝑥‖ + ‖𝐷𝐷𝑁𝑥‖ + ‖𝐷𝑁𝐷𝑥‖ + ‖𝑁𝐷𝐷𝑥‖

≤ 𝜌(𝜌(𝜌‖𝑥‖)) + 𝜌(𝜌(𝐶‖𝑥‖)) + 𝜌(𝐶(𝜌‖𝑥‖)) + 𝐶(𝜌(𝜌‖𝑥‖))

= ∑
1

𝑘=0
(3
𝑘
)𝜌3−𝑘𝐶𝑘‖𝑥‖.

For any 0 ≤ 𝑘 ≤ 𝑛 − 1 we have (𝑚
𝑘 ) ≤ 𝑚𝑛−1 and 𝜌𝑚−𝑘 ≤ 𝜌𝑚−𝑛+1, since 0 ≤ 𝜌 < 1. Thus,

letting 𝜇 = max{1, 𝐶, …, 𝐶𝑛−1}, we have the inequality

‖𝑈𝑚𝑥‖ ≤ ∑
𝑛−1

𝑘=0
(𝑚

𝑘 )𝜌𝑚−𝑘𝐶𝑘‖𝑥‖ ≤ 𝜇𝑛𝑚𝑛−1𝜌𝑚−𝑛+1‖𝑥‖

for any 𝑥 ∈ 𝐂𝑛,1. Because 0 ≤ 𝜌 < 1 we have lim𝑚→∞ 𝑚𝑛−1𝜌𝑚−𝑛+1 = 0. Thus there exists a
positive integer 𝑚 such that ‖𝑈𝑚𝑥‖ ≤ 𝜀‖𝑥‖ for every 𝑥 ∈ 𝐂𝑛,1.
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Exercise 6.B.22. Suppose 𝐶[−1, 1] is the vector space of continuous real-valued func-
tions on the interval [−1, 1] with inner product given by

⟨𝑓, 𝑔⟩ = ∫
1

−1
𝑓𝑔

for all 𝑓, 𝑔 ∈ 𝐶[−1, 1]. Let 𝜑 be the linear functional on 𝐶[−1, 1] defined by 𝜑(𝑓) = 𝑓(0).
Show that there does not exist 𝑔 ∈ 𝐶[−1, 1] such that

𝜑(𝑓) = ⟨𝑓, 𝑔⟩

for every 𝑓 ∈ 𝐶[−1, 1].

This exercise shows that the Riesz representation theorem (6.42) does not hold on infi-
nite-dimensional vector spaces without additional hypotheses on 𝑉  and 𝜑.

Solution. Suppose such a 𝑔 exists and define ℎ ∈ 𝐶[−1, 1] by ℎ(𝑥) = 𝑥2𝑔(𝑥). Observe that

0 = ℎ(0) = 𝜑(ℎ) = ⟨ℎ, 𝑔⟩ = ∫
1

−1
[𝑥𝑔(𝑥)]2 d𝑥.

Because the integrand is non-negative and continuous, we have ∫1
−1

[𝑥𝑔(𝑥)]2 d𝑥 = 0 if and
only if 𝑥𝑔(𝑥) = 0 for all 𝑥 ∈ [−1, 1]. This implies that 𝑔(𝑥) = 0 for all 𝑥 ∈ [−1, 1] ∖ {0}; the
continuity of 𝑔 then implies that 𝑔(0) = 0 also. Thus

𝑓(0) = ∫
1

−1
𝑓(𝑥)𝑔(𝑥) d𝑥 = ∫

1

−1
0 d𝑥 = 0

for every 𝑓 ∈ 𝐶[−1, 1], which is certainly not true. We may conclude that no such 𝑔 exists.

Exercise 6.B.23. For all 𝑢, 𝑣 ∈ 𝑉 , define 𝑑(𝑢, 𝑣) = ‖𝑢 − 𝑣‖.

(a) Show that 𝑑 is a metric on 𝑉 .

(b) Show that if 𝑉  is finite-dimensional, then 𝑑 is a complete metric on 𝑉  (meaning
that every Cauchy sequence converges).

(c) Show that every finite-dimensional subspace of 𝑉  is a closed subset of 𝑉  (with
respect to the metric 𝑑).

This exercise requires familiarity with metric spaces.

Solution.

(a) Certainly 𝑑 is non-negative. The equivalence of 𝑑(𝑢, 𝑣) = 0 and 𝑢 = 𝑣 follows from
6.9(a). The symmetry of 𝑑 follows from 6.9(b), and the triangle inequality for 𝑑 is
immediate from 6.17.

(b) Let 𝑣1, …, 𝑣𝑛 be a basis of 𝑉  and consider the 1-norm with respect to this basis:

‖𝑣‖1 = |𝑎1| + ⋯ + |𝑎𝑛|,
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where 𝑣 = 𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛. By Exercise 6.B.16, it will suffice to show that 𝑉  is com-
plete with respect to ‖⋅‖1.

Let (𝑣𝑚)∞
𝑚=1 be a Cauchy sequence in (𝑉 , ‖⋅‖1), where 𝑣𝑚 = 𝑎𝑚,1𝑣1 + ⋯ + 𝑎𝑚,𝑛𝑣𝑛. For

any 𝑗 ∈ {1, …, 𝑛} and any positive integers 𝑘 and 𝑚, we have the inequality

|𝑎𝑚,𝑗 − 𝑎𝑘,𝑗| ≤ ‖𝑣𝑚 − 𝑣𝑘‖1.

It follows that (𝑎𝑚,𝑗)
∞
𝑚=1 is a Cauchy sequence in the complete metric space 𝐅 and thus

there exists some 𝑎𝑗 ∈ 𝐅 such that lim𝑚→∞ 𝑎𝑚,𝑗 = 𝑎𝑗. Define 𝑣 = 𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛 and
observe that

‖𝑣𝑚 − 𝑣‖1 = |𝑎𝑚,1 − 𝑎1| + ⋯ + |𝑎𝑚,𝑛 − 𝑎𝑛| → 0 as 𝑚 → ∞.

Thus (𝑣𝑚)∞
𝑚=1 is convergent. We may conclude that 𝑉  is complete with respect to ‖⋅‖1.

(c) Suppose 𝑈  is a finite-dimensional subspace of 𝑉  and (𝑢𝑚)∞
𝑚=1 is a sequence contained

in 𝑈  satisfying lim𝑚→∞‖𝑢𝑚 − 𝑣‖ for some 𝑣 ∈ 𝑉 . We need to show that 𝑣 ∈ 𝑈 . The
norm ‖⋅‖ restricts to a norm on 𝑈 ; by part (b), this normed space (𝑈, ‖⋅‖) must be
complete since 𝑈  is finite-dimensional. Because convergent sequences are necessarily
Cauchy, completeness implies that the sequence (𝑢𝑚)∞

𝑚=1 converges to some 𝑢 ∈ 𝑈 .
Since limits of sequences are unique it follows that 𝑣 = 𝑢 ∈ 𝑈 , as desired.
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6.C. Orthogonal Complements and Minimization Problems

Exercise 6.C.1. Suppose 𝑣1, …, 𝑣𝑚 ∈ 𝑉 . Prove that

{𝑣1, …, 𝑣𝑚}⟂ = (span(𝑣1, …, 𝑣𝑚))⟂.

Solution. Suppose that 𝑣 ∈ (span(𝑣1, …, 𝑣𝑚))⟂. In particular, for every 𝑘 ∈ {1, …, 𝑚},

𝑣 ∈ span(𝑣1, …, 𝑣𝑚) ⇒ ⟨𝑣, 𝑣𝑘⟩ = 0.

It follows that 𝑣 ∈ {𝑣1, …, 𝑣𝑚}⟂ and hence that (span(𝑣1, …, 𝑣𝑚))⟂ ⊆ {𝑣1, …, 𝑣𝑚}⟂.

Now suppose that 𝑣 ∈ {𝑣1, …, 𝑣𝑚}⟂ and let 𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚 ∈ span(𝑣1, …, 𝑣𝑚) be given.
Observe that

⟨𝑣, 𝑎1𝑣1 + ⋯ + 𝑎𝑚𝑣𝑚⟩ = 𝑎1⟨𝑣, 𝑣1⟩ + ⋯ + 𝑎𝑚⟨𝑣, 𝑣𝑚⟩ = 0.

It follows that 𝑣 ∈ (span(𝑣1, …, 𝑣𝑚))⟂ and hence that {𝑣1, …, 𝑣𝑚}⟂ ⊆ (span(𝑣1, …, 𝑣𝑚))⟂. We
may conclude that

{𝑣1, …, 𝑣𝑚}⟂ = (span(𝑣1, …, 𝑣𝑚))⟂.

Exercise 6.C.2. Suppose 𝑈  is a subspace of 𝑉  with basis 𝑢1, …, 𝑢𝑚 and
𝑢1, …, 𝑢𝑚, 𝑣1, …, 𝑣𝑛

is a basis of 𝑉 . Prove that if the Gram-Schmidt procedure is applied to the basis of 𝑉
above, producing a list 𝑒1, …, 𝑒𝑚, 𝑓1, …, 𝑓𝑛, then 𝑒1, …, 𝑒𝑚 is an orthonormal basis of 𝑈
and 𝑓1, …, 𝑓𝑛 is an orthonormal basis of 𝑈⟂.

Solution. The Gram-Schmidt procedure guarantees that

span(𝑒1, …, 𝑒𝑚) = span(𝑢1, …, 𝑢𝑚) = 𝑈,

and 6.25 shows that 𝑒1, …, 𝑒𝑚 is linearly independent. Thus 𝑒1, …, 𝑒𝑚 is an orthonormal basis
of 𝑈 .

The Gram-Schmidt procedure also guarantees that for any 𝑘 ∈ {1, …, 𝑛} the vector 𝑓𝑘 is
orthogonal to each vector in the list 𝑒1, …, 𝑒𝑛. By Exercise 6.C.1, this implies that

𝑓𝑘 ∈ (span(𝑒1, …, 𝑒𝑚))⟂ = 𝑈⟂.

Note that 𝑓1, …, 𝑓𝑛 is linearly independent by 6.25 and dim 𝑈⟂ = dim 𝑉 − dim 𝑈 = 𝑛 by
6.51. Thus, by 2.38, 𝑓1, …, 𝑓𝑛 is an orthonormal basis of 𝑈⟂.
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Exercise 6.C.3. Suppose 𝑈  is the subspace of 𝐑4 defined by

𝑈 = span((1, 2, 3, −4), (−5, 4, 3, 2)).

Find an orthonormal basis of 𝑈  and an orthonormal basis of 𝑈⟂.

Solution. It is straightforward to verify that

𝑢1 = (1, 2, 3, −4), 𝑢2 = (−5, 4, 3, 2), 𝑣1 = (1, 0, 0, 0), 𝑣2 = (0, 1, 0, 0)

is a basis of 𝐑4. Certainly 𝑢1, 𝑢2 is a basis of 𝑈 . Performing the Gram-Schmidt procedure
on this list yields the orthonormal list

𝑒1 = 1√
30

(1, 2, 3, −4), 𝑒2 = 1√
12030

(−77, 56, 39, 38),

𝑓1 = 1√
76190

(190, 117, 60, 151), 𝑓2 = 1
9
√

190
(0, 81, −90, 27).

As we showed in Exercise 6.C.3, 𝑒1, 𝑒2 must be an orthonormal basis of 𝑈  and 𝑓1, 𝑓2 must
be an orthonormal basis of 𝑈⟂.

Exercise 6.C.4. Suppose 𝑒1, …, 𝑒𝑛 is a list of vectors in 𝑉  with ‖𝑒𝑘‖ = 1 for each
𝑘 = 1, …, 𝑛 and

‖𝑣‖2 = |⟨𝑣, 𝑒1⟩|
2 + ⋯ + |⟨𝑣, 𝑒𝑛⟩|2

for all 𝑣 ∈ 𝑉 . Prove that 𝑒1, …, 𝑒𝑛 is an orthonormal basis of 𝑉 .

This exercise provides a converse to 6.30(b).

Solution. Let 𝑘 ∈ {1, …, 𝑛} be given and observe that

‖𝑒𝑘‖2 = |⟨𝑒𝑘, 𝑒𝑘⟩|2 + ∑
𝑛

𝑗=1, 𝑗≠𝑘
|⟨𝑒𝑘, 𝑒𝑗⟩|

2 ⇔ 1 = 1 + ∑
𝑛

𝑗=1, 𝑗≠𝑘
|⟨𝑒𝑘, 𝑒𝑗⟩|

2

⇒ ∑
𝑛

𝑗=1, 𝑗≠𝑘
|⟨𝑒𝑘, 𝑒𝑗⟩|

2 = 0.

Thus ⟨𝑒𝑘, 𝑒𝑗⟩ = 0 for each 𝑗 ≠ 𝑘. It follows that 𝑒1, …, 𝑒𝑛 is an orthonormal list and hence,
by 6.25, 𝑒1, …, 𝑒𝑛 is linearly independent. Suppose that 𝑣 ∈ {𝑒1, …, 𝑒𝑛}⟂ and observe that

‖𝑣‖2 = |⟨𝑣, 𝑒1⟩|
2 + ⋯ + |⟨𝑣, 𝑒𝑛⟩|2 = 0 ⇔ 𝑣 = 0.

Thus {𝑒1, …, 𝑒𝑛}⟂ = {0}. It follows from Exercise 6.C.1 and 6.54 that span(𝑒1, …, 𝑒𝑛) = 𝑉 .
We may conclude that 𝑒1, …, 𝑒𝑛 is an orthonormal basis of 𝑉 .

Exercise 6.C.5. Suppose that 𝑉  is finite-dimensional and 𝑈  is a subspace of 𝑉 . Show
that 𝑃𝑈⟂ = 𝐼 − 𝑃𝑈 , where 𝐼 is the identity operator on 𝑉 .
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Solution. By 6.49 and 6.52, for any 𝑣 ∈ 𝑉  we can write 𝑣 = 𝑢 + 𝑤 for unique vectors
𝑢 ∈ 𝑈 = (𝑈⟂)⟂ and 𝑤 ∈ 𝑈⟂. It follows that

𝑃𝑈(𝑣) + 𝑃𝑈⟂(𝑣) = 𝑢 + 𝑤 = 𝑣.

Thus 𝑃𝑈 + 𝑃𝑈⟂ = 𝐼 .

Exercise 6.C.6. Suppose 𝑉  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 , 𝑊). Show that

𝑇 = 𝑇𝑃(null 𝑇 )⟂ = 𝑃range 𝑇 𝑇 .

Solution. By 6.49 we have 𝑉 = null 𝑇 ⊕ (null 𝑇 )⟂. Thus, for any 𝑣 ∈ 𝑉 , we can write
𝑣 = 𝑥 + 𝑦, where 𝑥 ∈ null 𝑇  and 𝑦 ∈ (null 𝑇 )⟂. It follows that

𝑇𝑣 = 𝑇𝑦 = 𝑇𝑃(null 𝑇 )⟂(𝑣)

and hence that 𝑇 = 𝑇𝑃(null 𝑇 )⟂ .

Because range 𝑇  is finite-dimensional, 6.49 allows us to write 𝑊 = range 𝑇 ⊕ (range 𝑇 )⟂. For
any 𝑣 ∈ 𝑉 , observe that 𝑇𝑣 = 𝑇𝑣 + 0 ∈ range 𝑇 ⊕ (range 𝑇 )⟂. It follows that

𝑇𝑣 = 𝑃range 𝑇 𝑇𝑣

and hence that 𝑇 = 𝑃range 𝑇 𝑇 .

Exercise 6.C.7. Suppose that 𝑋 and 𝑌  are finite-dimensional subspaces of 𝑉 . Prove
that 𝑃𝑋𝑃𝑌 = 0 if and only if ⟨𝑥, 𝑦⟩ = 0 for all 𝑥 ∈ 𝑋 and all 𝑦 ∈ 𝑌 .

Solution. Suppose that ⟨𝑥, 𝑦⟩ = 0 for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 . For 𝑣 ∈ 𝑉  write 𝑣 = 𝑦 + 𝑧, where
𝑦 ∈ 𝑌  and 𝑧 ∈ 𝑌 ⟂, so that 𝑃𝑌 𝑣 = 𝑦. Our hypothesis ensures that 𝑦 ∈ 𝑋⟂ and thus

𝑃𝑋𝑃𝑌 𝑣 = 𝑃𝑋𝑣 = 0

by 6.57(c). Hence 𝑃𝑋𝑃𝑌 = 0.

For the converse, suppose that 𝑃𝑋𝑃𝑌 = 0 and let 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌  be given. Using 6.57(b)
and 6.57(e), observe that

𝑃𝑋𝑦 = 𝑃𝑋𝑃𝑌 𝑦 = 0 ⇒ 𝑦 ∈ null 𝑃𝑋 ⇒ 𝑦 ∈ 𝑋⟂ ⇒ ⟨𝑥, 𝑦⟩ = 0.
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Exercise 6.C.8. Suppose 𝑈  is a finite-dimensional subspace of 𝑉  and 𝑣 ∈ 𝑉 . Define a
linear functional 𝜑 : 𝑈 → 𝐅 by

𝜑(𝑢) = ⟨𝑢, 𝑣⟩

for all 𝑢 ∈ 𝑈 . By the Riesz representation theorem (6.42) as applied to the inner product
space 𝑈 , there exists a unique vector 𝑤 ∈ 𝑈  such that

𝜑(𝑢) = ⟨𝑢, 𝑤⟩

for all 𝑢 ∈ 𝑈 . Show that 𝑤 = 𝑃𝑈𝑣.

Solution. We have ⟨𝑢, 𝑣⟩ = ⟨𝑢, 𝑤⟩ for every 𝑢 ∈ 𝑈 . Equivalently, ⟨𝑢, 𝑣 − 𝑤⟩ = 0 for every 
𝑢 ∈ 𝑈 , so that 𝑣 − 𝑤 ∈ 𝑈⟂. It follows that 𝑣 = 𝑤 + 𝑣 − 𝑤, where 𝑤 ∈ 𝑈  and 𝑣 − 𝑤 ∈ 𝑈⟂.
Thus 𝑃𝑈𝑣 = 𝑤.

Exercise 6.C.9. Suppose 𝑉  is finite-dimensional. Suppose 𝑃 ∈ ℒ(𝑉 ) is such that
𝑃 2 = 𝑃  and every vector in null 𝑃  is orthogonal to every vector in range 𝑃 . Prove that
there exists a subspace 𝑈  of 𝑉  such that 𝑃 = 𝑃𝑈 .

Solution. By Exercise 3.B.27 and 6.49 we have the decompositions

𝑉 = range 𝑃 ⊕ null 𝑃 and 𝑉 = range 𝑃 ⊕ (range 𝑃)⟂,

which implies dim null 𝑃 = dim (range 𝑃)⟂. Combining this with the hypothesis
null 𝑃 ⊆ (range 𝑃)⟂, we see that null 𝑃 = (range 𝑃)⟂. Let 𝑈 = range 𝑃 ; we claim that
𝑃 = 𝑃𝑈 . Let 𝑣 = 𝑃𝑥 + 𝑤 ∈ 𝑉  be given, where 𝑃𝑥 ∈ range 𝑃  and 𝑤 ∈ (range 𝑃)⟂ = null 𝑃 .
Observe that

𝑃𝑈𝑣 = 𝑃𝑥 = 𝑃(𝑃𝑥 + 𝑤) = 𝑃𝑣,

where we have used 𝑃 2 = 𝑃  and 𝑤 ∈ null 𝑃  for the second equality. Thus 𝑃 = 𝑃𝑈 .

Exercise 6.C.10. Suppose 𝑉  is finite-dimensional and 𝑃 ∈ ℒ(𝑉 ) is such that 𝑃 2 = 𝑃
and

‖𝑃𝑣‖ ≤ ‖𝑣‖

for every 𝑣 ∈ 𝑉 . Prove that there exists a subspace 𝑈  of 𝑉  such that 𝑃 = 𝑃𝑈 .

Solution. Suppose 𝑤 ∈ null 𝑃  and 𝑃𝑥 ∈ range 𝑃 . Our hypothesis gives us the inequality

‖𝑃𝑥‖ = ‖𝑃(𝑃𝑥 + 𝜆𝑤)‖ ≤ ‖𝑃𝑥 + 𝜆𝑤‖

for any 𝜆 ∈ 𝐅. It follows from Exercise 6.A.6 that ⟨𝑤, 𝑃𝑥⟩ = 0 and hence that null 𝑃  is con-
tained in (range 𝑃)⟂. We can now let 𝑈 = range 𝑃  and proceed as in Exercise 6.C.9 to see
that 𝑃 = 𝑃𝑈 .
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Exercise 6.C.11. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝑈  is a finite-dimensional subspace of 𝑉 .
Prove that

𝑈 is invariant under 𝑇 ⇔ 𝑃𝑈𝑇𝑃𝑈 = 𝑇𝑃𝑈 .

Solution. Suppose that 𝑈  is invariant under 𝑇  and let 𝑣 ∈ 𝑉  be given. Observe that

𝑃𝑈𝑣 ∈ 𝑈 ⇒ 𝑇𝑃𝑈𝑣 ∈ 𝑈 ⇒ 𝑃𝑈𝑇𝑃𝑈𝑣 = 𝑇𝑃𝑈𝑣,

where the last implication follows from 6.57(b). Now suppose that 𝑈  is not invariant under
𝑇 , i.e. there is some 𝑢 ∈ 𝑈  such that 𝑇𝑢 ∉ 𝑈 . Note that

𝑇𝑃𝑈𝑢 = 𝑇𝑢 ∉ 𝑈 and 𝑃𝑈𝑇𝑃𝑈𝑢 ∈ 𝑈,

where we have used 6.57(b) and 6.57(d). It follows that

𝑃𝑈𝑇𝑃𝑈𝑢 ≠ 𝑇𝑃𝑈𝑢 ⇒ 𝑃𝑈𝑇𝑃𝑈 ≠ 𝑃𝑈𝑇 .

Exercise 6.C.12. Suppose 𝑉  is finite-dimensional, 𝑇 ∈ ℒ(𝑉 ), and 𝑈  is a subspace of 
𝑉 . Prove that

𝑈 and 𝑈⟂ are both invariant under 𝑇 ⇔ 𝑃𝑈𝑇 = 𝑇𝑃𝑈 .

Solution. Suppose that 𝑈  and 𝑈⟂ are both invariant under 𝑇  and let 𝑣 = 𝑢 + 𝑤 ∈ 𝑉  be
given, where 𝑢 ∈ 𝑈  and 𝑤 ∈ 𝑈⟂. By assumption we have 𝑇𝑢 ∈ 𝑈  and 𝑇𝑤 ∈ 𝑈⟂; using 6.57,
it follows that

𝑃𝑈𝑇𝑣 = 𝑃𝑈(𝑇𝑢 + 𝑇𝑤) = 𝑇𝑢 = 𝑇𝑃𝑈𝑢 = 𝑇𝑃𝑈(𝑢 + 𝑤) = 𝑇𝑃𝑈𝑣.

If 𝑈  is not invariant under 𝑇  then there exists some 𝑢 ∈ 𝑈  such that 𝑇𝑢 ∉ 𝑈 . It follows that

𝑇𝑃𝑈𝑢 = 𝑇𝑢 ∉ 𝑈 and 𝑃𝑈𝑇𝑢 ∈ 𝑈,

so that 𝑇𝑃𝑈 ≠ 𝑃𝑈𝑇 . Similarly, if 𝑈⟂ is not invariant under 𝑇  then there exists some 𝑤 ∈ 𝑈⟂

such that 𝑇𝑤 ∉ 𝑈⟂. It follows that

𝑇𝑃𝑈𝑤 = 𝑇(0) = 0 and 𝑃𝑈𝑇𝑤 ≠ 0,

so that 𝑇𝑃𝑈 ≠ 𝑃𝑈𝑇 .
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Exercise 6.C.13. Suppose 𝐅 = 𝐑 and 𝑉  is finite-dimensional. For each 𝑣 ∈ 𝑉 , let 𝜑𝑣

denote the linear functional on 𝑉  defined by

𝜑𝑣(𝑢) = ⟨𝑢, 𝑣⟩

for all 𝑢 ∈ 𝑉 .

(a) Show that 𝑣 ↦ 𝜑𝑣 is an injective linear map from 𝑉  to 𝑉 ′.

(b) Use (a) and a dimension-counting argument to show that 𝑣 ↦ 𝜑𝑣 is an isomor-
phism from 𝑉  onto 𝑉 ′.

The purpose of this exercise is to give an alternative proof of the Riesz representation
theorem (6.42 and 6.58) when 𝐅 = 𝐑. Thus you should not use the Riesz representa-
tion theorem as a tool in your solution.

Solution.

(a) Let 𝑢, 𝑣, 𝑤 ∈ 𝑉  be given and note that

𝜑𝑣+𝑤(𝑢) = ⟨𝑢, 𝑣 + 𝑤⟩ = ⟨𝑢, 𝑣⟩ + ⟨𝑢, 𝑤⟩ = 𝜑𝑣(𝑢) + 𝜑𝑤(𝑢).

Similarly, for any 𝑢, 𝑣 ∈ 𝑉  and any 𝜆 ∈ 𝐑,

𝜑𝜆𝑣(𝑢) = ⟨𝑢, 𝜆𝑣⟩ = 𝜆⟨𝑢, 𝑣⟩ = 𝜆𝜑𝑣(𝑢).

Thus 𝑣 ↦ 𝜑𝑣 is linear. Suppose that 𝑣 ∈ 𝑉  is such that 𝜑𝑣 = 0, i.e. ⟨𝑢, 𝑣⟩ = 0 for every
𝑢 ∈ 𝑈 . It follows that 𝑣 ∈ 𝑉 ⟂ and hence, by 6.48(c), 𝑣 = 0. Thus 𝑣 ↦ 𝜑𝑣 is injective.

(b) By 3.111, 3.65, and part (a), the map 𝑣 ↦ 𝜑𝑣 must be an isomorphism.

Exercise 6.C.14. Suppose that 𝑒1, …, 𝑒𝑛 is an orthonormal basis of 𝑉 . Explain why
the dual basis (see 3.112) of 𝑒1, …, 𝑒𝑛 is 𝑒1, …, 𝑒𝑛 under the identification of 𝑉 ′ with 𝑉
provided by the Riesz representation theorem (6.58).

Solution. Let 𝜑1, …, 𝜑𝑛 be the dual basis of 𝑒1, …, 𝑒𝑛. Using the notation of 6.58, for any 
𝑗, 𝑘 ∈ {1, …, 𝑛} we have

𝜑𝑒𝑘(𝑒𝑗) = ⟨𝑒𝑗, 𝑒𝑘⟩ = {
1 if 𝑗 = 𝑘,
0 if 𝑗 ≠ 𝑘.

Thus 𝜑𝑒𝑘 = 𝜑𝑘 for each 𝑘 ∈ {1, …, 𝑛}, i.e. we may identify 𝑒𝑘 with 𝜑𝑘.

Exercise 6.C.15. In 𝐑4, let

𝑈 = span((1, 1, 0, 0), (1, 1, 1, 2)).

Find 𝑢 ∈ 𝑈  such that ‖𝑢 − (1, 2, 3, 4)‖ is as small as possible.
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Solution. Let 𝑢1 = (1, 1, 0, 0) and 𝑢2 = (1, 1, 1, 2), so that 𝑢1, 𝑢2 is a basis of 𝑈 . Performing
the Gram-Schmidt procedure on the list 𝑢1, 𝑢2 yields the list

𝑒1 = 1√
2
(1, 1, 0, 0), 𝑒2 = 1√

5
(0, 0, 1, 2),

which is an orthonormal basis of 𝑈 . Let 𝑣 = (1, 2, 3, 4). According to 6.61, to minimize ‖𝑢 − 𝑣‖
we should take 𝑢 = 𝑃𝑈𝑣. This can be calculated using 6.57(i):

𝑃𝑈𝑣 = ⟨𝑣, 𝑒1⟩𝑒1 + ⟨𝑣, 𝑒2⟩𝑒2 = (3
2 , 3

2 , 11
5 , 22

5 ).

Exercise 6.C.16. Suppose 𝐶[−1, 1] is the vector space of continuous real-valued func-
tions on the interval [−1, 1] with inner product given by

⟨𝑓, 𝑔⟩ = ∫
1

−1
𝑓𝑔

for all 𝑓, 𝑔 ∈ 𝐶[−1, 1]. Let 𝑈  be the subspace of 𝐶[−1, 1] defined by

𝑈 = {𝑓 ∈ 𝐶[−1, 1] : 𝑓(0) = 0}.

(a) Show that 𝑈⟂ = {0}.

(b) Show that 6.49 and 6.52 do not hold without the finite-dimensional hypothesis.

Solution.

(a) Certainly 0 ∈ 𝑈⟂. Suppose that 𝑔 ∈ 𝑈⟂. Let 𝑓 : [−1, 1] → 𝐑 be given by 𝑓(𝑥) = 𝑥2𝑔(𝑥)
and note that 𝑓 ∈ 𝑈 , so that

0 = ⟨𝑓, 𝑔⟩ = ∫
1

−1
[𝑥𝑔(𝑥)]2 d𝑥.

Because the integrand [𝑥𝑔(𝑥)]2 is continuous and non-negative we must have 𝑥𝑔(𝑥) = 0
for every 𝑥 ∈ [−1, 1], which implies 𝑔(𝑥) = 0 for all non-zero 𝑥 ∈ [−1, 1]. The continuity
of 𝑔 gives us 𝑔(0) = 0 also and thus 𝑔 = 0. We may conclude that 𝑈⟂ = {0}.

(b) From part (a) we have 𝑈 ⊕ 𝑈⟂ = 𝑈 ≠ 𝐶[−1, 1] and thus 6.49 does not hold. Part (a)
and 6.48(b) give us

(𝑈⟂)⟂ = {0}⟂ = 𝐶[−1, 1] ≠ 𝑈,

so that 6.52 does not hold.

Exercise 6.C.17. Find 𝑝 ∈ 𝒫3(𝐑) such that 𝑝(0) = 0, 𝑝′(0) = 0, and

∫
1

0
|2 + 3𝑥 − 𝑝(𝑥)|2 𝑑𝑥

is as small as possible.
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Solution. Equip 𝒫3(𝐑) with the inner product

⟨𝑝, 𝑞⟩ = ∫
1

0
𝑝(𝑥)𝑞(𝑥) d𝑥

and let 𝑈 = {𝑝 ∈ 𝒫3(𝐑) : 𝑝(0) = 𝑝′(0) = 0}. It is straightforward to verify that 𝑈  is a sub-
space of 𝒫3(𝐑) and that 𝑥2, 𝑥3 is a basis of 𝑈 . Performing the Gram-Schmidt procedure on
this basis yields the orthonormal basis 𝑒1, 𝑒2 of 𝑈 , where

𝑒1 =
√

5𝑥2, 𝑒2 = 6
√

7(𝑥3 − 5
6𝑥2).

Let 𝑞(𝑥) = 2 + 3𝑥. According to 6.61, to minimize ‖𝑞 − 𝑝‖2 = ∫1
0

|2 + 3𝑥 − 𝑝(𝑥)|2 d𝑥 we
should take 𝑝 = 𝑃𝑈𝑞. This can be calculated using 6.57(i):

𝑃𝑈𝑞 = ⟨𝑞, 𝑒1⟩𝑒1 + ⟨𝑞, 𝑒2⟩𝑒2 = 24𝑥2 − 203
10 𝑥3.

Exercise 6.C.18. Find 𝑝 ∈ 𝒫5(𝐑) that makes ∫𝜋
−𝜋

|sin 𝑥 − 𝑝(𝑥)|2 𝑑𝑥 as small as pos-
sible.

The polynomial 6.65 is an excellent approximation to the answer to this exercise, but
here you are asked to find the exact solution, which involves powers of 𝜋. A computer
that can perform symbolic integration should help.

Solution. Equip 𝐶[−𝜋, 𝜋] with the inner product

⟨𝑝, 𝑞⟩ = ∫
𝜋

−𝜋
𝑝(𝑥)𝑞(𝑥) d𝑥

and let 𝑈 = 𝒫5(𝐑). Performing the Gram-Schmidt procedure on the basis 1, 𝑥, 𝑥2, 𝑥3, 𝑥4, 𝑥5

of 𝑈  gives us the orthonormal basis

𝑒1 =
1

√
2𝜋

, 𝑒2 = √ 3
2𝜋3 𝑥, 𝑒3 = −

1
2
√ 5

2𝜋5 (𝜋2 − 3𝑥2),

𝑒4 = −
1
2
√ 7

2𝜋7 (3𝜋2𝑥 − 5𝑥3), 𝑒5 =
3

8
√

2𝜋9
(3𝜋4 − 30𝜋2𝑥2 + 35𝑥4),

𝑒6 = −
1
8
√ 11

2𝜋11 (15𝜋4𝑥 − 70𝜋2𝑥3 + 63𝑥5).

According to 6.61, to minimize ‖sin 𝑥 − 𝑝‖2 = ∫𝜋
−𝜋

|sin 𝑥 − 𝑝(𝑥)|2 d𝑥 we should take
𝑝 = 𝑃𝑈(sin 𝑥). This can be calculated using 6.57(i):

𝑃𝑈(sin 𝑥) =
105(1465 − 153𝜋2 + 𝜋4)

8𝜋6 𝑥 −
315(1155 − 125𝜋2 + 𝜋4)

4𝜋8 𝑥3

+
693(945 − 105𝜋2 + 𝜋4)

8𝜋10 𝑥5.
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Exercise 6.C.19. Suppose 𝑉  is finite-dimensional and 𝑃 ∈ ℒ(𝑉 ) is an orthogonal pro-
jection of 𝑉  onto some subspace of 𝑉 . Prove that 𝑃 † = 𝑃 .

Solution. Suppose 𝑈  is the subspace of 𝑉  such that 𝑃 = 𝑃𝑈 . Using 6.57(e) and 6.52, ob-
serve that

(null 𝑃 )⟂ = (null 𝑃𝑈)⟂ = (𝑈⟂)⟂ = 𝑈.

Thus 𝑃 |(null 𝑃)⟂ = 𝑃|𝑈 . Since 𝑃 = 𝑃𝑈 , 6.57(b) shows that 𝑃 |(null 𝑃)⟂ is simply the identity
operator on (null 𝑃 )⟂ = 𝑈 . Combining this with 6.57(d), we have

𝑃 † = (𝑃 |(null 𝑃)⟂)−1𝑃range 𝑃 = 𝑃𝑈 = 𝑃.

Exercise 6.C.20. Suppose 𝑉  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 , 𝑊). Show that

null 𝑇 † = (range 𝑇 )⟂ and range 𝑇 † = (null 𝑇 )⟂.

Solution. Because (𝑇 |(null 𝑇 )⟂)−1 is injective (by 6.67), we have

null 𝑇 † = null 𝑃range 𝑇 = (range 𝑇 )⟂,

where we have used 6.57(e) for the last equality.

6.57(d) shows that 𝑃range 𝑇  is a surjection from 𝑊  onto range 𝑇 , and 6.67 shows that 
(𝑇 |(null 𝑇 )⟂)−1 is a surjection from range 𝑇  onto (null 𝑇 )⟂. Thus range 𝑇 † = (null 𝑇 )⟂.

𝑊 range 𝑇 (null 𝑇 )⟂𝑃range 𝑇 (𝑇 |(null 𝑇 )⟂)−1

Exercise 6.C.21. Suppose 𝑇 ∈ ℒ(𝐅3, 𝐅2) is defined by

𝑇 (𝑎, 𝑏, 𝑐) = (𝑎 + 𝑏 + 𝑐, 2𝑏 + 3𝑐).

(a) For (𝑥, 𝑦) ∈ 𝐅2, find a formula for 𝑇 †(𝑥, 𝑦).

(b) Verify that the equation 𝑇𝑇 † = 𝑃range 𝑇  from 6.69(b) holds with the formula for 
𝑇 † obtained in (a).

(c) Verify that the equation 𝑇 †𝑇 = 𝑃(null 𝑇 )⟂ from 6.69(c) holds with the formula for 
𝑇 † obtained in (a).

Solution.

(a) We proceed as in example 6.71. Note that 𝑇  is surjective, so that 𝑃range 𝑇  is the identity
operator on 𝑊 . Note further that

null 𝑇 = {(𝑎, 𝑏, 𝑐) ∈ 𝐅3 : 𝑎 + 𝑏 + 𝑐 = 0, 2𝑏 + 3𝑐 = 0} = span((1, −3, 2)).

For (𝑥, 𝑦) ∈ 𝐅2, it follows that

232 / 366



𝑇 †(𝑥, 𝑦) = (𝑇 |(null 𝑇 )⟂)−1𝑃range 𝑇 (𝑥, 𝑦) = (𝑇 |(null 𝑇 )⟂)−1(𝑥, 𝑦).

If (𝑇 |(null 𝑇 )⟂)−1(𝑥, 𝑦) = (𝑎, 𝑏, 𝑐) ∈ 𝐅3 then (𝑎, 𝑏, 𝑐) must satisfy 𝑇 (𝑎, 𝑏, 𝑐) = (𝑥, 𝑦) and 
⟨(𝑎, 𝑏, 𝑐), (1, −3, 2)⟩ = 0. In other words, (𝑎, 𝑏, 𝑐) must satisfy the following equations

𝑎 + 𝑏 + 𝑐 = 𝑥,

2𝑏 + 3𝑐 = 𝑦,

𝑎 − 3𝑏 + 2𝑐 = 0.

Solving this system of equations yields the solution

𝑎 = 1
14(13𝑥 − 5𝑦), 𝑏 = 1

14(3𝑥 + 𝑦), 𝑐 = 1
7(−𝑥 + 2𝑦).

Thus

𝑇 †(𝑥, 𝑦) = 1
14(13𝑥 − 5𝑦, 3𝑥 + 𝑦, −2𝑥 + 4𝑦).

(b) As noted in part (a), 𝑃range 𝑇  is the identity operator on 𝑊 . Observe that

𝑇𝑇 †(𝑥, 𝑦) = 1
14𝑇 (13𝑥 − 5𝑦, 3𝑥 + 𝑦, −2𝑥 + 4𝑦) = 1

14(14𝑥, 14𝑦) = (𝑥, 𝑦).

Thus 𝑇𝑇 † = 𝑃range 𝑇 .

(c) As noted in part (a), null 𝑇 = span((1, −3, 2)). Thus

(null 𝑇 )⟂ = {(𝑎, 𝑏, 𝑐) ∈ 𝐅3 : 𝑎 − 3𝑏 + 2𝑐 = 0}.

It is straightforward to verify that (1, 1, 1), (0, 2, 3) is a basis of (null 𝑇 )⟂. Performing
the Gram-Schmidt procedure on this basis gives us the orthonormal basis

1√
3
(1, 1, 1), 1√

42
(−5, 1, 4).

A tedious calculation using the formula for 𝑇 † found in part (a) and the formula for 
𝑃(null 𝑇 )⟂ given by 6.57(i) shows that

𝑇 †𝑇 (𝑎, 𝑏, 𝑐) = 𝑃(null 𝑇 )⟂(𝑎, 𝑏, 𝑐) = 1
14(13𝑎 + 3𝑏 − 2𝑐, 3𝑎 + 5𝑏 + 6𝑐, −2𝑎 + 6𝑏 + 10𝑐).

Exercise 6.C.22. Suppose 𝑉  is finite-dimensional and 𝑇 ∈ ℒ(𝑉 , 𝑊). Prove that

𝑇𝑇 †𝑇 = 𝑇 and 𝑇 †𝑇𝑇 † = 𝑇 †.

Both formulas above clearly hold if 𝑇  is invertible because in that case we can replace
𝑇 † with 𝑇 −1.

Solution. By 6.69(b) we have 𝑇𝑇 † = 𝑃range 𝑇 . It follows that 𝑇𝑇 †𝑇 = 𝑃range 𝑇 𝑇 = 𝑇 , since 
𝑃range 𝑇  is the identity operator on range 𝑇  by 6.57(b).

By 6.69(c) we have 𝑇 †𝑇 = 𝑃(null 𝑇 )⟂ and thus 𝑇 †𝑇𝑇 † = 𝑃(null 𝑇 )⟂𝑇 † = 𝑇 †, since 𝑇 † maps into
(null 𝑇 )⟂ and 𝑃(null 𝑇 )⟂ is the identity operator on (null 𝑇 )⟂.
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Exercise 6.C.23. Suppose 𝑉  and 𝑊  are finite-dimensional and 𝑇 ∈ ℒ(𝑉 , 𝑊). Prove
that

(𝑇 †)† = 𝑇 .

The equation above is analogous to the equation (𝑇 −1)−1 = 𝑇  that holds if 𝑇  is in-
vertible.

Solution. By Exercise 6.C.20 and 6.52 we have

(𝑇 †)† = (𝑇 †|(null 𝑇 †)⟂)−1𝑃range 𝑇 † = (𝑇 †|((range 𝑇)⟂)
⟂)

−1
𝑃(null 𝑇 )⟂ = (𝑇 †|range 𝑇 )−1𝑃(null 𝑇 )⟂ .

Because 𝑃range 𝑇  is the identity operator on range 𝑇  we have 𝑇 †|range 𝑇 = (𝑇 |(null 𝑇 )⟂)−1. Thus

(𝑇 †)† = ((𝑇 |(null 𝑇 )⟂)−1)
−1

𝑃(null 𝑇 )⟂ = 𝑇 |(null 𝑇 )⟂ 𝑃(null 𝑇 )⟂ = 𝑇𝑃(null 𝑇 )⟂ .

For any 𝑣 ∈ 𝑉  we have 𝑣 = 𝑢 + 𝑤, where 𝑢 ∈ null 𝑇  and 𝑤 ∈ (null 𝑇 )⟂. It follows that

(𝑇 †)†(𝑣) = 𝑇𝑃(null 𝑇 )⟂(𝑣) = 𝑇𝑤 = 𝑇𝑣.

Thus (𝑇 †)† = 𝑇 .
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Chapter 7. Operators on Inner Product Spaces

7.A. Self-Adjoint and Normal Operators

Exercise 7.A.1. Suppose 𝑛 is a positive integer. Define 𝑇 ∈ ℒ(𝐅𝑛) by

𝑇 (𝑧1, …, 𝑧𝑛) = (0, 𝑧1, …, 𝑧𝑛−1).

Find a formula for 𝑇 ∗(𝑧1, …, 𝑧𝑛).

Solution. Observe that

⟨(𝑤1, …, 𝑤𝑛), 𝑇 ∗(𝑧1, …, 𝑧𝑛)⟩ = ⟨𝑇 (𝑤1, …, 𝑤𝑛), (𝑧1, …, 𝑧𝑛)⟩

= ⟨(0, 𝑤1, …, 𝑤𝑛−1), (𝑧1, …, 𝑧𝑛)⟩

= 𝑤1𝑧2 + ⋯ + 𝑤𝑛−1𝑧𝑛

= ⟨(𝑤1, …, 𝑤𝑛), (𝑧2, …, 𝑧𝑛, 0)⟩.

Thus 𝑇 ∗(𝑧1, …, 𝑧𝑛) = (𝑧2, …, 𝑧𝑛, 0).

Exercise 7.A.2. Suppose 𝑇 ∈ ℒ(𝑉 , 𝑊). Prove that

𝑇 = 0 ⇔ 𝑇 ∗ = 0 ⇔ 𝑇 ∗𝑇 = 0 ⇔ 𝑇𝑇 ∗ = 0.

Solution. Suppose 𝑇 = 0, fix 𝑤 ∈ 𝑊 , and observe that

⟨𝑣, 𝑇 ∗𝑤⟩ = ⟨𝑇𝑣, 𝑤⟩ = ⟨0, 𝑤⟩ = 0

for any 𝑣 ∈ 𝑉 . Thus 𝑇 ∗𝑤 ∈ 𝑉 ⟂. It follows from 6.48(c) that 𝑇 ∗𝑤 = 0 and hence that 𝑇 ∗ = 0.
Combining this with 7.5(c) shows that 𝑇 = 0 if and only if 𝑇 ∗ = 0.

That 𝑇 = 0 implies 𝑇 ∗𝑇 = 0 is clear. Suppose that 𝑇 ∗𝑇 = 0, let 𝑣 ∈ 𝑉  be given, and observe
that

0 = ⟨0, 𝑣⟩ = ⟨𝑇 ∗𝑇𝑣, 𝑣⟩ = ⟨𝑇𝑣, 𝑇 𝑣⟩ = ‖𝑇𝑣‖2 ⇒ 𝑇𝑣 = 0.

Thus 𝑇 = 0, so that 𝑇 = 0 if and only if 𝑇 ∗𝑇 = 0. Replacing 𝑇  with 𝑇 ∗ in this result and
using 7.5(c) shows that 𝑇 ∗ = 0 if and only if 𝑇𝑇 ∗ = 0.

Exercise 7.A.3. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝜆 ∈ 𝐅. Prove that

𝜆 is an eigenvalue of 𝑇 ⇔ 𝜆 is an eigenvalue of 𝑇 ∗.

Solution. Observe that
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𝜆 is an eigenvalue of 𝑇 ⇔ 𝑇 − 𝜆𝐼 is not surjective (5.7(c))

⇔ range(𝑇 − 𝜆𝐼) ≠ 𝑉

⇔ (range(𝑇 − 𝜆𝐼))⟂ ≠ {0} (7.48(c))

⇔ null (𝑇 − 𝜆𝐼)∗ ≠ {0} (7.6(a))

⇔ null (𝑇 ∗ − 𝜆𝐼) ≠ {0} (7.5(a), (b), (e))

⇔ 𝑇 ∗ − 𝜆𝐼 is not injective

⇔ 𝜆 is an eigenvalue of 𝑇 ∗. (5.7(b))

Exercise 7.A.4. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝑈  is a subspace of 𝑉 . Prove that

𝑈 is invariant under 𝑇 ⇔ 𝑈⟂ is invariant under 𝑇 ∗.

Solution. Suppose that 𝑈  is invariant under 𝑇  and let 𝑣 ∈ 𝑈⟂ be given. Observe that

⟨𝑢, 𝑇 ∗𝑣⟩ = ⟨𝑇𝑢, 𝑣⟩ = 0

for any 𝑢 ∈ 𝑈 , where the last equality follows since 𝑇𝑢 ∈ 𝑈  and 𝑣 ∈ 𝑈⟂. Thus 𝑇 ∗𝑣 ∈ 𝑈⟂ and
it follows that 𝑈⟂ is invariant under 𝑇 ∗.

Now suppose that 𝑈⟂ is invariant under 𝑇 ∗. The previous paragraph shows that (𝑈⟂)⟂ is
invariant under (𝑇 ∗)∗, which by 6.52 and 7.5(c) is exactly the statement that 𝑈  is invariant
under 𝑇 .

Exercise 7.A.5. Suppose 𝑇 ∈ ℒ(𝑉 , 𝑊). Suppose 𝑒1, …, 𝑒𝑛 is an orthonormal basis of 
𝑉  and 𝑓1, …, 𝑓𝑚 is an orthonormal basis of 𝑊 . Prove that

‖𝑇 𝑒1‖
2 + ⋯ + ‖𝑇𝑒𝑛‖2 = ‖𝑇 ∗𝑓1‖

2 + ⋯ + ‖𝑇 ∗𝑓𝑚‖2.

The numbers ‖𝑇 𝑒1‖
2, …, ‖𝑇 𝑒𝑛‖2 in the equation above depend on the orthonormal ba-

sis 𝑒1, …, 𝑒𝑛, but the right side of the equation does not depend on 𝑒1, …, 𝑒𝑛. Thus the
equation above shows that the sum on the left side does not depend on which orthonor-
mal basis 𝑒1, …, 𝑒𝑛 is used.

Solution. Using 6.30(b), observe that

∑
𝑛

𝑗=1
‖𝑇 𝑒𝑗‖2 = ∑

𝑛

𝑗=1
∑

𝑛

𝑘=1
|⟨𝑇 𝑒𝑗, 𝑓𝑘⟩|2 = ∑

𝑛

𝑗=1
∑

𝑛

𝑘=1
|⟨𝑒𝑗, 𝑇 ∗𝑓𝑘⟩|2

= ∑
𝑛

𝑘=1
∑

𝑛

𝑗=1
|⟨𝑇 ∗𝑓𝑘, 𝑒𝑗⟩|

2 = ∑
𝑛

𝑘=1
‖𝑇 ∗𝑓𝑘‖2.
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Exercise 7.A.6. Suppose 𝑇 ∈ ℒ(𝑉 , 𝑊). Prove that

(a) 𝑇 is injective ⇔ 𝑇 ∗ is surjective;

(b) 𝑇 is surjective ⇔ 𝑇 ∗ is injective.

Solution.

(a) Observe that

𝑇 is injective ⇔ null 𝑇 = {0}

⇔ (range 𝑇 ∗)⟂ = {0} (7.6(c))

⇔ range 𝑇 ∗ = 𝑉 (7.48(c))

⇔ 𝑇 ∗ is surjective.

(b) Part (a) shows that 𝑇 ∗ is injective if and only if (𝑇 ∗)∗ is surjective, which by 7.5(c) is
exactly the statement that 𝑇 ∗ is injective if and only if 𝑇  is surjective.

Exercise 7.A.7. Prove that if 𝑇 ∈ ℒ(𝑉 , 𝑊), then

(a) dim null 𝑇 ∗ = dim null 𝑇 + dim 𝑊 − dim 𝑉 ;

(b) dim range 𝑇 ∗ = dim range 𝑇 .

Solution.

(a) We have

dim null 𝑇 ∗ = dim (range 𝑇 )⟂ = dim 𝑊 − dim range 𝑇

= dim null 𝑇 + dim 𝑊 − dim 𝑉 ,

where the first equality is 7.6(a), the second equality is 6.51, and the last equality
follows from the fundamental theorem of linear maps (3.21).

(b) We have

dim range 𝑇 ∗ = dim (null 𝑇 )⟂ = dim 𝑉 − dim null 𝑇 = dim range 𝑇 ,

where the first equality is 7.6(b), the second equality is 6.51, and the last equality
follows from the fundamental theorem of linear maps (3.21).

Exercise 7.A.8. Suppose 𝐴 is an 𝑚-by-𝑛 matrix with entries in 𝐅. Use (b) in Exercise
7 to prove that the row rank of 𝐴 equals the column rank of 𝐴.

This exercise asks for yet another alternative proof of a result that was previously
proved in 3.57 and 3.133.
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Solution. For a column vector 𝑣 with entries in 𝐅, let 𝑣 denote the column vector obtained
by taking the complex conjugate of each entry of 𝑣, e.g.

𝑣 =
⎝
⎜⎜
⎛ 1 − 𝑖

𝜋 + 9𝑖√
2 ⎠

⎟⎟
⎞ ⇒ 𝑣 =

⎝
⎜⎜
⎛ 1 + 𝑖

𝜋 − 9𝑖√
2 ⎠

⎟⎟
⎞.

For a matrix 𝑀  with entries in 𝐅, let 𝑀  be the matrix obtained by taking the complex
conjugate of each entry of 𝑀 . Suppose that 𝑣1, …, 𝑣ℓ is a basis of the span of the columns of
𝑀 . We claim that the list 𝑣1, …, 𝑣ℓ is linearly independent. Indeed, for scalars 𝑎1, …, 𝑎ℓ ∈ 𝐅,
observe that

𝑎1𝑣1 + ⋯ + 𝑎ℓ𝑣ℓ = 0 ⇒ 𝑎1𝑣1 + ⋯ + 𝑎ℓ𝑣ℓ = 0

⇒ 𝑎1 = ⋯ = 𝑎ℓ = 0 ⇒ 𝑎1 = ⋯ = 𝑎ℓ = 0.

It follows that the column rank of 𝑀  is greater than or equal to the column rank of 𝑀 . By
replacing 𝑀  with 𝑀  in this result, we see that the column rank of 𝑀  must equal the column
rank of 𝑀 .

Let 𝑇 ∈ ℒ(𝐅𝑛, 𝐅𝑚) be such that the matrix of 𝑇  with respect to the standard orthonormal
bases of 𝐅𝑛 and 𝐅𝑚 is 𝐴; 7.9 shows that the matrix of 𝑇 ∗ with respect to the standard
orthonormal bases of 𝐅𝑚 and 𝐅𝑛 is 𝐴∗. Using Exercise 7.A.7 and our previous discussion, it
follows that

column rank of 𝐴 = dim range 𝑇 = dim range 𝑇 ∗

= column rank of 𝐴∗ = column rank of 𝐴t = row rank of 𝐴.

Exercise 7.A.9. Prove that the product of two self-adjoint operators on 𝑉  is self-ad-
joint if and only if the two operators commute.

Solution. Suppose 𝑆, 𝑇 ∈ ℒ(𝑉 ) are self-adjoint and observe that, by 7.5(d),

(𝑆𝑇 )∗ = 𝑇 ∗𝑆∗ = 𝑇𝑆.

Thus (𝑆𝑇 )∗ = 𝑆𝑇  if and only if 𝑇𝑆 = 𝑆𝑇 . That is, 𝑆𝑇  is self-adjoint if and only if 𝑆 and 𝑇
commute.

Exercise 7.A.10. Suppose 𝐅 = 𝐂 and 𝑇 ∈ ℒ(𝑉 ). Prove that 𝑇  is self-adjoint if and
only if

⟨𝑇 𝑣, 𝑣⟩ = ⟨𝑇 ∗𝑣, 𝑣⟩

for all 𝑣 ∈ 𝑉 .

Solution. Note that

⟨𝑇 𝑣, 𝑣⟩ = ⟨𝑇 ∗𝑣, 𝑣⟩ for all 𝑣 ∈ 𝑉 ⇔ ⟨(𝑇 − 𝑇 ∗)𝑣, 𝑣⟩ = 0 for all 𝑣 ∈ 𝑉 .
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The desired equivalence then follows from 7.13.

Exercise 7.A.11. Define an operator 𝑆 : 𝐅2 → 𝐅2 by 𝑆(𝑤, 𝑧) = (−𝑧, 𝑤).

(a) Find a formula for 𝑆∗.

(b) Show that 𝑆 is normal but not self-adjoint.

(c) Find all eigenvalues of 𝑆.

If 𝐅 = 𝐑, then 𝑆 is the operator on 𝐑2 of counterclockwise rotation by 90°.

Solution.

(a) Observe that

⟨𝑆(𝑤, 𝑧), (𝑥, 𝑦)⟩ = ⟨(−𝑧, 𝑤), (𝑥, 𝑦)⟩ = −𝑧𝑥 + 𝑤𝑦 = ⟨(𝑤, 𝑧), (𝑦, −𝑥)⟩.

Thus 𝑆∗(𝑥, 𝑦) = (𝑦, −𝑥).

(b) Certainly 𝑆∗ ≠ 𝑆, but notice that 𝑆∗ = 𝑆−1. It follows that 𝑆𝑆∗ = 𝐼 = 𝑆∗𝑆, so that 𝑆
is normal.

(c) As shown in Example 5.9, 𝑆 has no eigenvalues if 𝐅 = 𝐑 and 𝑆 has ±𝑖 as eigenvalues
if 𝐅 = 𝐂.

Exercise 7.A.12. An operator 𝐵 ∈ ℒ(𝑉 ) is called skew if

𝐵∗ = −𝐵.

Suppose that 𝑇 ∈ ℒ(𝑉 ). Prove that 𝑇  is normal if and only if there exist commuting
operators 𝐴 and 𝐵 such that 𝐴 is self-adjoint, 𝐵 is a skew operator, and 𝑇 = 𝐴 + 𝐵.

Solution. Suppose there exist such operators 𝐴 and 𝐵. Observe that

𝑇𝑇 ∗ − 𝑇 ∗𝑇 = (𝐴 + 𝐵)(𝐴∗ + 𝐵∗) − (𝐴∗ + 𝐵∗)(𝐴 + 𝐵)

= (𝐴 + 𝐵)(𝐴 − 𝐵) − (𝐴 − 𝐵)(𝐴 + 𝐵) = 𝐴2 − 𝐵2 − 𝐴2 + 𝐵2 = 0,

where we have used 7.5(a) for the first equality, that 𝐴 is self-adjoint and 𝐵 is skew for the
second equality, and that 𝐴 and 𝐵 commute for the third equality. Thus 𝑇  is normal.

Suppose that 𝑇  is normal and define

𝐴 =
𝑇 + 𝑇 ∗

2
and 𝐵 =

𝑇 − 𝑇 ∗

2
.

Certainly 𝐴 + 𝐵 = 𝑇 , and 7.5(a), (b), and (c) show that 𝐴 is self-adjoint and 𝐵 is skew.
Observe that

(𝑇 + 𝑇 ∗)(𝑇 − 𝑇 ∗) − (𝑇 − 𝑇 ∗)(𝑇 + 𝑇 ∗) = 𝑇 2 − (𝑇 ∗)2 − 𝑇 2 + (𝑇 ∗)2 = 0,

where we have used that 𝑇  and 𝑇 ∗ commute for the first equality. It follows that 4𝐴𝐵 = 4𝐵𝐴
and hence that 𝐴 and 𝐵 commute.
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Exercise 7.A.13. Suppose 𝐅 = 𝐑. Define 𝒜 ∈ ℒ(ℒ(𝑉 )) by 𝒜𝑇 = 𝑇 ∗ for all 𝑇 ∈ ℒ(𝑉 ).

(a) Find all eigenvalues of 𝒜.

(b) Find the minimal polynomial of 𝒜.

Solution.

(a) We are looking for 𝑇 ≠ 0 and 𝜆 ∈ 𝐑 such that 𝑇 ∗ = 𝜆𝑇 . Taking the adjoint of both
sides of this equation and using 7.5 shows that 𝑇 = 𝜆𝑇 ∗ and thus 𝑇 ∗ = 𝜆2𝑇 ∗. Exercise
7.A.2 shows that 𝑇 ∗ ≠ 0 since 𝑇 ≠ 0 and thus 𝜆2 = 1, so that ±1 are the only possible
eigenvalues of 𝒜. These are indeed eigenvalues of 𝒜, since

𝐼∗ = 𝐼 and (−𝐼)∗ = −𝐼∗ = −𝐼,

where we have used 7.5.

(b) By part (a) and 5.27(a), the minimal polynomial of 𝒜 has two distinct zeros and hence
must have degree at least two. Using 7.5(c), observe that

(𝒜2 − 𝐼)(𝑇 ) = (𝑇 ∗)∗ − 𝑇 = 0

for any 𝑇 ∈ ℒ(𝑉 ). Thus 𝑧2 − 1 is the minimal polynomial of 𝒜.

Exercise 7.A.14. Define an inner product on 𝒫2(𝐑) by ⟨𝑝, 𝑞⟩ = ∫1
0

𝑝𝑞. Define an op-
erator 𝑇 ∈ ℒ(𝒫2(𝐑)) by

𝑇(𝑎𝑥2 + 𝑏𝑥 + 𝑐) = 𝑏𝑥.

(a) Show that with this inner product, the operator 𝑇  is not self-adjoint.

(b) The matrix of 𝑇  with respect to the basis 1, 𝑥, 𝑥2 is

⎝
⎜⎛

0
0
0

0
1
0

0
0
0⎠
⎟⎞.

This matrix equals its conjugate transpose, even though 𝑇  is not self-adjoint. Ex-
plain why this is not a contradiction.

Solution.

(a) Let 𝑝, 𝑞 ∈ 𝒫2(𝐑) be given by 𝑝 = 2𝑥 and 𝑞 = 1, so that 𝑇𝑝 = 𝑝 and 𝑇𝑞 = 0. Observe
that

⟨𝑇𝑝, 𝑞⟩ = ∫
1

0
2𝑥 d𝑥 = 1 ≠ 0 = ⟨𝑝, 𝑇 𝑞⟩.

Thus 𝑇  is not self-adjoint.

(b) The result in 7.9 requires that the basis of 𝒫2(𝐑) is orthonormal, but 1, 𝑥, 𝑥2 is not an
orthonormal basis:
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⟨1, 𝑥⟩ = ∫
1

0
𝑥 d𝑥 = 1

2 ≠ 0.

Exercise 7.A.15. Suppose 𝑇 ∈ ℒ(𝑉 ) is invertible. Prove that

(a) 𝑇 is self-adjoint ⇔ 𝑇 −1 is self-adjoint;

(b) 𝑇 is normal ⇔ 𝑇 −1 is normal.

Solution.

(a) Suppose that 𝑇  is self-adjoint. Using 7.5(f), observe that

(𝑇 −1)∗ = (𝑇 ∗)−1 = 𝑇 −1.

Thus 𝑇 −1 is self-adjoint. Replacing 𝑇  with 𝑇 −1 in the previous result and using that 
(𝑇 −1)−1 = 𝑇  gives us the desired equivalence.

(b) Suppose that 𝑇  is normal. Using 7.5(f), observe that

𝑇 −1(𝑇 −1)∗ = 𝑇 −1(𝑇 ∗)−1 = (𝑇 ∗𝑇 )−1 = (𝑇𝑇 ∗)−1 = (𝑇 ∗)−1𝑇 −1 = (𝑇 −1)∗𝑇 −1.

Thus 𝑇 −1 is normal. Replacing 𝑇  with 𝑇 −1 in the previous result and using that 
(𝑇 −1)−1 = 𝑇  gives us the desired equivalence.

Exercise 7.A.16. Suppose 𝐅 = 𝐑.

(a) Show that the set of self-adjoint operators on 𝑉  is a subspace of ℒ(𝑉 ).

(b) What is the dimension of the subspace of ℒ(𝑉 ) in (a) [in terms of dim 𝑉 ]?

Solution.

(a) The zero operator is self-adjoint by Exercise 7.A.2; closure under operator addition and
closure under scalar multiplication follow from 7.5(a) and 7.5(b).

(b) Suppose dim 𝑉 = 𝑛. By 3.71 and 7.9, it will suffice to find the dimension of the sub-
space ℰ of 𝐑𝑛,𝑛 consisting of those matrices 𝐴 such that 𝐴 = 𝐴t. For 𝑘 ∈ {1, …, 𝑛}
let 𝐸𝑘,𝑘 be the matrix with a 1 in the 𝑘th diagonal entry and zeros elsewhere, and for
𝑗, 𝑘 ∈ {1, …, 𝑛} with 𝑗 < 𝑘 let 𝐸𝑗,𝑘 be the matrix with a 1 in the 𝑗th row and 𝑘th column,
a 1 in the 𝑘th row and 𝑗th column, and zeros elsewhere. Let ℬ be the list consisting of the
matrices 𝐸𝑗,𝑘 with 𝑗 ≤ 𝑘. It is straightforward to verify that ℬ is linearly independent.
Since any 𝐴 ∈ ℰ satisfies 𝐴 = 𝐴t, the entry in row 𝑗 and column 𝑘 of 𝐴 must equal the
entry in row 𝑘 and column 𝑗 of 𝐴. It follows that ℬ spans ℰ and hence that ℬ is a basis
of ℰ. A simple counting argument shows that ℬ has length 𝑛(𝑛 + 1)/2 and thus

dim ℰ =
𝑛(𝑛 + 1)

2
.
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Exercise 7.A.17. Suppose 𝐅 = 𝐂. Show that the set of self-adjoint operators on 𝑉  is
not a subspace of ℒ(𝑉 ).

Solution. 7.5(e) shows that the identity operator 𝐼 is self-adjoint. Let 𝑣 ∈ 𝑉  be non-zero
and observe that

(𝑖𝐼)(𝑣) = 𝑖𝑣 ≠ −𝑖𝑣 = (𝑖𝐼)(𝑣) = (𝑖𝐼)∗(𝑣),

where we have used 7.5(b). It follows that 𝑖𝐼 is not self-adjoint, hence that the set of self-
adjoint operators on 𝑉  is not closed under scalar multiplication, and hence that this set is
not a subspace of 𝑉 .

Exercise 7.A.18. Suppose dim 𝑉 ≥ 2. Show that the set of normal operators on 𝑉  is
not a subspace of ℒ(𝑉 ).

Solution. Let 𝑒1, 𝑒2, …, 𝑒𝑛 be an orthonormal basis of 𝑉  and let 𝑆, 𝑇 ∈ ℒ(𝑉 ) be the opera-
tors whose matrices with respect to this basis are

𝐴 =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛

1
0
0
⋮
0

0
0
0
⋮
0

0
0
0
⋮
0

⋯
⋯
⋯
⋱
⋯

0
0
0
⋮
0⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎞

and 𝐵 =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛

0
−1
0
⋮
0

1
0
0
⋮
0

0
0
0
⋮
0

⋯
⋯
⋯
⋱
⋯

0
0
0
⋮
0⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎞

.

Note that 𝑆 is self-adjoint and hence normal. Note further that 𝑇  satisfies 𝑇 ∗ = −𝑇 , so that
𝑇𝑇 ∗ = 𝑇 ∗𝑇 = −𝑇 2; it follows that 𝑇  is also normal. However, some calculations reveal that

(𝐴 + 𝐵)(𝐴 + 𝐵)∗ =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛

2
−1
0
⋮
0

−1
1
0
⋮
0

0
0
0
⋮
0

⋯
⋯
⋯
⋱
⋯

0
0
0
⋮
0⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎞

≠ (𝐴 + 𝐵)∗(𝐴 + 𝐵) =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛

2
1
0
⋮
0

1
1
0
⋮
0

0
0
0
⋮
0

⋯
⋯
⋯
⋱
⋯

0
0
0
⋮
0⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎞

.

Thus 𝑆 + 𝑇  is not normal. It follows that the set of normal operators on 𝑉  is not closed
under addition and hence cannot be a subspace of ℒ(𝑉 ).

Exercise 7.A.19. Suppose 𝑇 ∈ ℒ(𝑉 ) and ‖𝑇 ∗𝑣‖ ≤ ‖𝑇𝑣‖ for every 𝑣 ∈ 𝑉 . Prove that 𝑇
is normal.

This exercise fails on infinite-dimensional inner product spaces, leading to what are
called hyponormal operators, which have a well-developed theory.

Solution. Let 𝑒1, …, 𝑒𝑛 be an orthonormal basis of 𝑉 . It follows from Exercise 7.A.5 that

‖𝑇 𝑒1‖
2 + ⋯ + ‖𝑇𝑒𝑛‖2 = ‖𝑇 ∗𝑒1‖

2 + ⋯ + ‖𝑇 ∗𝑒𝑛‖2. (∗)
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By assumption we have ‖𝑇 ∗𝑒𝑘‖ ≤ ‖𝑇𝑒𝑘‖ for each 𝑘 ∈ {1, …, 𝑛}. In fact, each of these inequal-
ities must be an equality, otherwise the right-hand side of (∗) would be strictly less than
the left-hand side. Because 𝑒1, …, 𝑒𝑛 was an arbitrary orthonormal basis of 𝑉 , we have now
shown that ‖𝑇 ∗𝑒1‖ = ‖𝑇𝑒1‖ for any 𝑒1 ∈ 𝑉  such that ‖𝑒1‖ = 1. Thus for any non-zero 𝑣 ∈ 𝑉
we have

‖𝑇 ∗(
𝑣

‖𝑣‖
)‖ = ‖𝑇(

𝑣
‖𝑣‖

)‖ ⇒ ‖𝑇 ∗𝑣‖ = ‖𝑇𝑣‖.

7.20 allows us to conclude that 𝑇  is normal.

Exercise 7.A.20. Suppose 𝑃 ∈ ℒ(𝑉 ) is such that 𝑃 2 = 𝑃 . Prove that the following are
equivalent.

(a) 𝑃  is self-adjoint.

(b) 𝑃  is normal.

(c) There is a subspace 𝑈  of 𝑉  such that 𝑃 = 𝑃𝑈 .

Solution. Certainly (a) implies (b).

Suppose (b) holds and note that

null 𝑃 = null 𝑃 ∗ = (range 𝑃)⟂,

where the first equality is 7.21(a) and the second equality is 7.6(a). It follows from Exercise
6.C.9 that (c) holds.

Suppose that (c) holds, let 𝑣 = 𝑢1 + 𝑥1 and 𝑤 = 𝑢2 + 𝑥2 be given, where 𝑢1, 𝑢2 ∈ 𝑈  and 
𝑥1, 𝑥2 ∈ 𝑈⟂, and observe that

⟨𝑃𝑈𝑣, 𝑤⟩ = ⟨𝑢1, 𝑢2 + 𝑥2⟩ = ⟨𝑢1, 𝑢2⟩ = ⟨𝑢1 + 𝑥1, 𝑢2⟩ = ⟨𝑣, 𝑃𝑈𝑤⟩.

Thus 𝑃𝑈 = 𝑃  is self-adjoint, i.e. (a) holds.

Exercise 7.A.21. Suppose 𝐷 : 𝒫8(𝐑) → 𝒫8(𝐑) is the differentiation operator defined
by 𝐷𝑝 = 𝑝′. Prove that there does not exist an inner product on 𝒫8(𝐑) that makes 𝐷
a normal operator.

Solution. If 𝑇 ∈ ℒ(𝑉 ) is normal then null 𝑇 2 = null 𝑇  (we will prove a stronger result in
Exercise 7.A.27), since if 𝑣 ∈ null 𝑇 2 then 𝑣 ∈ null 𝑇 ∗𝑇  by 7.20 and thus

⟨𝑇 ∗𝑇𝑣, 𝑣⟩ = 0 ⇔ ⟨𝑇𝑣, 𝑇 𝑣⟩ = 0 ⇔ 𝑇𝑣 = 0.

Notice that null 𝐷2 ≠ null 𝐷 since 𝐷2(𝑥) = 0 but 𝐷(𝑥) = 1. It follows from our previous
discussion that there does not exist an inner product on 𝒫8(𝐑) that makes 𝐷 a normal
operator.
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Exercise 7.A.22. Give an example of an operator 𝑇 ∈ ℒ(𝐑3) such that 𝑇  is normal
but not self-adjoint.

Solution. Let 𝑇 ∈ ℒ(𝐑3) be the operator whose matrix with respect to the standard or-
thonormal basis of 𝐑3 is

⎝
⎜⎛

0
−1
0

1
0
0

0
0
0⎠
⎟⎞.

It follows from 7.9 that 𝑇 ∗ = −𝑇  and hence that 𝑇𝑇 ∗ = 𝑇 ∗𝑇 = −𝑇 2. Thus 𝑇  is normal but
not self-adjoint (since 𝑇 ≠ 0).

Exercise 7.A.23. Suppose 𝑇  is a normal operator on 𝑉 . Suppose also that 𝑣, 𝑤 ∈ 𝑉
satisfy the equations

‖𝑣‖ = ‖𝑤‖ = 2, 𝑇𝑣 = 3𝑣, 𝑇𝑤 = 4𝑤.

Show that ‖𝑇 (𝑣 + 𝑤)‖ = 10.

Solution. Because 𝑣 and 𝑤 are eigenvectors of 𝑇  corresponding to distinct eigenvalues, they
must be orthogonal by 7.22. The Pythagorean theorem then implies that

‖𝑇 (𝑣 + 𝑤)‖2 = ‖3𝑣 + 4𝑤‖2 = ‖3𝑣‖2 + ‖4𝑤‖2 = 36 + 64 = 100.

Thus ‖𝑇 (𝑣 + 𝑤)‖ = 10.

Exercise 7.A.24. Suppose 𝑇 ∈ ℒ(𝑉 ) and

𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + ⋯ + 𝑎𝑚−1𝑧𝑚−1 + 𝑧𝑚

is the minimal polynomial of 𝑇 . Prove that the minimal polynomial of 𝑇 ∗ is

𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + ⋯ + 𝑎𝑚−1𝑧𝑚−1 + 𝑧𝑚.

This exercise shows that the minimal polynomial of 𝑇 ∗ equals the minimal polynomial
of 𝑇  if 𝐅 = 𝐑.

Solution. For 𝑝 ∈ 𝒫(𝐅), let 𝑝 ∈ 𝒫(𝐅) be the polynomial whose coefficients are the complex
conjugates of the coefficients of 𝑝; notice that deg 𝑝 = deg 𝑝. Letting 𝑝 ∈ 𝒫(𝐅) be the minimal
polynomial of 𝑇 , i.e.

𝑝(𝑧) = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + ⋯ + 𝑎𝑚−1𝑧𝑚−1 + 𝑧𝑚,

our aim is to show that 𝑝 is the minimal polynomial of 𝑇 ∗. Notice that, by 7.5 and Exercise
7.A.2,

𝑝(𝑇 ) = 0 ⇒ [𝑝(𝑇 )]∗ = 0 ⇒ 𝑝(𝑇 ∗) = 0.
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Suppose 𝑠 ∈ 𝒫(𝐅) satisfies deg 𝑠 < deg 𝑝. It follows that deg 𝑠 < deg 𝑝 and hence that

𝑠(𝑇 ) ≠ 0 ⇒ [𝑠(𝑇 )]∗ ≠ 0 ⇒ 𝑠(𝑇 ∗) ≠ 0.

Thus the minimal polynomial of 𝑇 ∗ must have degree at least deg 𝑝. Since 𝑝 is monic,
deg 𝑝 = deg 𝑝, and 𝑝(𝑇 ∗) = 0, we may conclude that 𝑝 is the minimal polynomial of 𝑇 ∗.

Exercise 7.A.25. Suppose 𝑇 ∈ ℒ(𝑉 ). Prove that 𝑇  is diagonalizable if and only if 𝑇 ∗

is diagonalizable.

Solution. Let 𝑝 ∈ 𝒫(𝐅) be the minimal polynomial of 𝑇 ; using the notation of Exercise
7.A.24, 𝑝 is the minimal polynomial of 𝑇 ∗. For 𝛼 ∈ 𝐅 notice that

𝑝(𝛼) = 0 ⇔ 𝑝(𝛼) = 0 ⇔ 𝑝(𝛼) = 0.

It follows that if 𝑝 is of the form 𝑝(𝑧) = (𝑧 − 𝛼1) ⋯ (𝑧 − 𝛼𝑚) for some distinct 𝛼1, …, 𝛼𝑚 ∈ 𝐅
then 𝑝 is of the form 𝑝(𝑧) = (𝑧 − 𝛼1) ⋯ (𝑧 − 𝛼𝑚), where 𝛼1, …, 𝛼𝑚 are distinct. By 5.62 this
is exactly the statement that 𝑇 ∗ is diagonalizable if 𝑇  is diagonalizable. Replacing 𝑇  with 
𝑇 ∗ in this implication and using that (𝑇 ∗)∗ = 𝑇  gives us the desired equivalence.

Exercise 7.A.26. Fix 𝑢, 𝑥 ∈ 𝑉 . Define 𝑇 ∈ ℒ(𝑉 ) by 𝑇𝑣 = ⟨𝑣, 𝑢⟩𝑥 for every 𝑣 ∈ 𝑉 .

(a) Prove that if 𝑉  is a real vector space, then 𝑇  is self-adjoint if and only if the list 
𝑢, 𝑥 is linearly dependent.

(b) Prove that 𝑇  is normal if and only if the list 𝑢, 𝑥 is linearly dependent.

Solution. Note that example 7.3 gives us the formula

𝑇 ∗𝑣 = ⟨𝑣, 𝑥⟩𝑢.

(a) Suppose that 𝑢, 𝑥 is linearly dependent, say 𝑥 = 𝜆𝑢 for some 𝜆 ∈ 𝐑, and observe that

𝑇𝑣 = ⟨𝑣, 𝑢⟩𝑥 = 𝜆⟨𝑣, 𝑢⟩𝑢 = ⟨𝑣, 𝜆𝑢⟩𝑢 = ⟨𝑣, 𝑥⟩𝑢 = 𝑇 ∗𝑣

for any 𝑣 ∈ 𝑉 . Thus 𝑇  is self-adjoint.

Now suppose that 𝑇  is self-adjoint. If 𝑢 = 0 then we are done, so suppose that 𝑢 ≠ 0.
Since 𝑇  is self-adjoint we must have

𝑇𝑣 = ⟨𝑣, 𝑢⟩𝑥 = ⟨𝑣, 𝑥⟩𝑢 = 𝑇 ∗𝑣

for every 𝑣 ∈ 𝑉 . In particular,

⟨𝑢, 𝑢⟩𝑥 = ⟨𝑢, 𝑥⟩𝑢 ⇒ 𝑥 =
⟨𝑢, 𝑥⟩
⟨𝑢, 𝑢⟩

𝑢,

demonstrating that 𝑢, 𝑥 is linearly dependent.

(b) Note that

(𝑇𝑇 ∗ − 𝑇 ∗𝑇 )𝑣 = ⟨𝑣, 𝑥⟩⟨𝑢, 𝑢⟩𝑥 − ⟨𝑣, 𝑢⟩⟨𝑥, 𝑥⟩𝑢
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for any 𝑣 ∈ 𝑉 . Suppose that 𝑢, 𝑥 is linearly dependent, say 𝑥 = 𝜆𝑢 for some 𝜆 ∈ 𝐅, and
observe that

(𝑇𝑇 ∗ − 𝑇 ∗𝑇 )𝑣 = ⟨𝑣, 𝑥⟩⟨𝑢, 𝑢⟩𝑥 − ⟨𝑣, 𝑢⟩⟨𝑥, 𝑥⟩𝑢

= |𝜆|2⟨𝑣, 𝑢⟩⟨𝑢, 𝑢⟩𝑢 − |𝜆|2⟨𝑣, 𝑢⟩⟨𝑢, 𝑢⟩𝑢 = 0

for every 𝑣 ∈ 𝑉 . Thus 𝑇  is normal.

Conversely, suppose that 𝑇  is normal. If 𝑢 = 0 then we are done, so suppose that 𝑢 ≠
0 and observe that

(𝑇𝑇 ∗ − 𝑇 ∗𝑇 )𝑥 = ⟨𝑥, 𝑥⟩⟨𝑢, 𝑢⟩𝑥 − ⟨𝑥, 𝑢⟩⟨𝑥, 𝑥⟩𝑢 = 0 ⇒ 𝑥 =
⟨𝑥, 𝑢⟩
⟨𝑢, 𝑢⟩

𝑢,

demonstrating that 𝑢, 𝑥 is linearly dependent.

Exercise 7.A.27. Suppose 𝑇 ∈ ℒ(𝑉 ) is normal. Prove that

null 𝑇 𝑘 = null 𝑇 and range 𝑇 𝑘 = range 𝑇

for every positive integer 𝑘.

Solution. We will use induction to prove that null 𝑇 𝑘 = null 𝑇  for every positive integer 
𝑘. The base case 𝑘 = 1 is clear, so suppose that the result holds for some positive integer 
𝑘. Certainly null 𝑇 𝑘 ⊆ null 𝑇 𝑘+1, so suppose that 𝑣 ∈ null 𝑇 𝑘+1. It follows from 7.20 that
𝑣 ∈ null 𝑇 ∗𝑇 𝑘 and hence that

⟨𝑇 ∗𝑇 𝑘𝑣, 𝑇 𝑘−1𝑣⟩ = 0 ⇔ ⟨𝑇 𝑘𝑣, 𝑇 𝑘𝑣⟩ = 0 ⇔ 𝑇 𝑘𝑣 = 0.

Thus null 𝑇 𝑘+1 = null 𝑇 𝑘 = null 𝑇 , where the last equality is our induction hypothesis. This
completes the induction step and the proof.

If 𝑇  is normal then 𝑇 ∗ is normal, and 7.5(d) shows that (𝑇 𝑘)∗ = (𝑇 ∗)𝑘 for every positive
integer 𝑘. It then follows from the previous result that

range 𝑇 𝑘 = (null (𝑇 𝑘)∗)
⟂

(7.6(d))

= (null (𝑇 ∗)𝑘)
⟂

= (null 𝑇 ∗)⟂ (𝑇 ∗ is normal)

= range 𝑇 (7.6(d))

for any positive integer 𝑘.

Exercise 7.A.28. Suppose 𝑇 ∈ ℒ(𝑉 ) is normal. Prove that if 𝜆 ∈ 𝐅, then the minimal
polynomial of 𝑇  is not a polynomial multiple of (𝑥 − 𝜆)2.
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Solution. We will prove the contrapositive. Suppose 𝑇 ∈ ℒ(𝑉 ) has minimal polynomial
𝑝 ∈ 𝒫(𝐅) of the form 𝑝(𝑥) = (𝑥 − 𝜆)2𝑞(𝑥) for some 𝜆 ∈ 𝐅 and some 𝑞 ∈ 𝒫(𝐅). Because
the polynomial (𝑥 − 𝜆)𝑞(𝑥) has degree strictly less than 𝑝, there must exist some 𝑣 ∈ 𝑉
such that 𝑞(𝑇 )𝑣 ∉ null(𝑇 − 𝜆𝐼). Since 𝑝(𝑇 ) = 0 we have 𝑞(𝑇 )𝑣 ∈ null(𝑇 − 𝜆𝐼)2 and thus 
null(𝑇 − 𝜆𝐼)2 ≠ null(𝑇 − 𝜆𝐼). It follows from Exercise 7.A.27 that 𝑇 − 𝜆𝐼 is not normal.
The contrapositive of 7.21(d) allows us to conclude that 𝑇  is not normal.

Exercise 7.A.29. Prove or give a counterexample: If 𝑇 ∈ ℒ(𝑉 ) and there is an ortho-
normal basis 𝑒1, …, 𝑒𝑛 of 𝑉  such that ‖𝑇 𝑒𝑘‖ = ‖𝑇 ∗𝑒𝑘‖ for each 𝑘 = 1, …, 𝑛, then 𝑇  is
normal.

Solution. This is false. Let 𝑇  be the operator on 𝐅2 whose matrix with respect to the
standard orthonormal basis 𝑒1, 𝑒2 of 𝐅2 is

( 1
−1

1
0);

As we showed in Exercise 7.A.18, 𝑇  is not normal. However,

‖𝑇 𝑒1‖ = ‖𝑇 ∗𝑒1‖ =
√

2 and ‖𝑇𝑒2‖ = ‖𝑇 ∗𝑒2‖ = 1.

Exercise 7.A.30. Suppose that 𝑇 ∈ ℒ(𝐅3) is normal and 𝑇 (1, 1, 1) = (2, 2, 2). Suppose
(𝑧1, 𝑧2, 𝑧3) ∈ null 𝑇 . Prove that 𝑧1 + 𝑧2 + 𝑧3 = 0.

Solution. If 𝑢 ≔ (𝑧1, 𝑧2, 𝑧3) = 0 then we are done, so suppose that 𝑢 ≠ 0. It follows that 
𝑢 is an eigenvector of 𝑇  corresponding to the eigenvalue 0. Note that 𝑣 ≔ (1, 1, 1) is an
eigenvector of 𝑇  corresponding to the eigenvalue 2. Since these are eigenvectors of a normal
operator corresponding to distinct eigenvalues, they must be orthogonal by 7.22. That is,

⟨𝑢, 𝑣⟩ = 𝑧1 + 𝑧2 + 𝑧3 = 0.

Exercise 7.A.31. Fix a positive integer 𝑛. In the inner product space of continuous
real-valued functions on [−𝜋, 𝜋] with inner product ⟨𝑓, 𝑔⟩ = ∫𝜋

−𝜋
𝑓𝑔, let

𝑉 = span(1, cos 𝑥, cos 2𝑥, …, cos 𝑛𝑥, sin 𝑥, sin 2𝑥, …, sin 𝑛𝑥).

(a) Define 𝐷 ∈ ℒ(𝑉 ) by 𝐷𝑓 = 𝑓 ′. Show that 𝐷∗ = −𝐷. Conclude that 𝐷 is normal
but not self-adjoint.

(b) Define 𝑇 ∈ ℒ(𝑉 ) by 𝑇𝑓 = 𝑓″. Show that 𝑇  is self-adjoint.

Solution.

(a) For each 𝑘 ∈ {1, …, 𝑛}, let

𝑣 =
1

√
2𝜋

, 𝑒𝑘 =
cos 𝑘𝑥
√

𝜋
, and 𝑓𝑘 =

sin 𝑘𝑥
√

𝜋
.
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If we let ℬ = 𝑣, 𝑒1, …, 𝑒𝑛, 𝑓1, …, 𝑓𝑛, then ℬ is an orthonormal basis of 𝑉 , as
shown in Exercise 6.B.4. Observe that 𝐷𝑣 = 0, 𝐷𝑒𝑘 = −𝑘𝑓𝑘, and 𝐷𝑓𝑘 = 𝑘𝑒𝑘 for each
𝑘 ∈ {1, …, 𝑛}. It follows from 7.9 that

𝐷∗𝑣 = 0 = −𝐷𝑣, 𝐷∗𝑒𝑘 = 𝑘𝑓𝑘 = −𝐷𝑒𝑘, and 𝐷∗𝑓𝑘 = −𝑘𝑒𝑘 = −𝐷𝑓𝑘

for each 𝑘 ∈ {1, …, 𝑛}. Thus 𝐷∗ = −𝐷, so that 𝐷∗ is normal (𝐷∗𝐷 = 𝐷𝐷∗ = −𝐷2) but
not self-adjoint (since 𝑉 ≠ 0).

(b) Notice that 𝑇 = 𝐷2. It follows from 7.5 that

𝑇 ∗ = (𝐷2)∗ = (𝐷∗)2 = (−𝐷)2 = 𝐷2 = 𝑇 .

Thus 𝑇  is self-adjoint.

Exercise 7.A.32. Suppose 𝑇 : 𝑉 → 𝑊  is a linear map. Show that under the standard
identification of 𝑉  with 𝑉 ′ (see 6.58) and the corresponding identification of 𝑊  with 
𝑊 ′, the adjoint map 𝑇 ∗ : 𝑊 → 𝑉  corresponds to the dual map 𝑇 ′ : 𝑊 ′ → 𝑉 ′. More
precisely, show that

𝑇 ′(𝜑𝑤) = 𝜑𝑇 ∗𝑤

for all 𝑤 ∈ 𝑊 , where 𝜑𝑤 and 𝜑𝑇 ∗𝑤 are defined as in 6.58.

Solution. For any 𝑣 ∈ 𝑉  and 𝑤 ∈ 𝑊 , observe that

[𝑇 ′(𝜑𝑤)]𝑣 = 𝜑𝑤(𝑇 𝑣) = ⟨𝑇𝑣, 𝑤⟩ = ⟨𝑣, 𝑇 ∗𝑤⟩ = 𝜑𝑇 ∗𝑤(𝑣).

248 / 366



7.B. Spectral Theorem

Exercise 7.B.1. Prove that a normal operator on a complex inner product space is
self-adjoint if and only if all its eigenvalues are real.

This exercise strengthens the analogy (for normal operators) between self-adjoint op-
erators and real numbers.

Solution. Suppose 𝑉  is a complex inner product space and 𝑇 ∈ ℒ(𝑉 ) is normal. If 𝑇  is self-
adjoint then 7.12 shows that every eigenvalue of 𝑇  is real. Suppose that every eigenvalue of
𝑇  is real. The complex spectral theorem (7.31) implies that there is an orthonormal basis of
𝑉  with respect to which the matrix ℳ(𝑇) is diagonal. Because each eigenvalue of 𝑇  is real,
the diagonal entries of ℳ(𝑇) must be real. It follows that ℳ(𝑇) equals its own conjugate
transpose and hence that 𝑇  is self-adjoint.

Exercise 7.B.2. Suppose 𝐅 = 𝐂. Suppose 𝑇 ∈ ℒ(𝑉 ) is normal and has only one eigen-
value. Prove that 𝑇  is a scalar multiple of the identity operator.

Solution. Suppose that 𝜆 ∈ 𝐂 is the sole eigenvalue of 𝑇 . The complex spectral theorem
(7.31) implies that there is an orthonormal basis of 𝑉  with respect to which ℳ(𝑇) is diag-
onal. Because 𝜆 is the only eigenvalue of 𝑇 , each diagonal entry of ℳ(𝑇) must be equal to 
𝜆. Thus 𝑇 = 𝜆𝐼 .

Exercise 7.B.3. Suppose 𝐅 = 𝐂 and 𝑇 ∈ ℒ(𝑉 ) is normal. Prove that the set of eigen-
values of 𝑇  is contained in {0, 1} if and only if there is a subspace 𝑈  of 𝑉  such that 
𝑇 = 𝑃𝑈 .

Solution. If there exists a subspace 𝑈  of 𝑉  such that 𝑇 = 𝑃𝑈  then 𝑇 2 = 𝑇  and it follows
from Exercise 5.A.8 that the set of eigenvalues of 𝑇  is contained in {0, 1}.

Suppose that the set of eigenvalues of 𝑇  is contained in {0, 1}. The complex spectral theorem
(7.31) implies that there is an orthonormal basis ℬ of 𝑉  consisting of eigenvectors of 𝑇 .
Each basis vector in ℬ must correspond either to the eigenvalue 0 or the eigenvalue 1. Let 
𝑢1, …, 𝑢𝑚 be those basis vectors in ℬ corresponding to the eigenvalue 1 and let 𝑣1, …, 𝑣𝑛

be those basis vectors in ℬ corresponding to the eigenvalue 0; either of these lists may be
empty. Let 𝑈 = span(𝑢1, …, 𝑢𝑚). Because ℬ is an orthonormal basis of 𝑉 , it follows that 
𝑈⟂ = span(𝑣1, …, 𝑣𝑛) and hence that

𝑃𝑈𝑢𝑘 = 𝑢𝑘 = 𝑇𝑢𝑘 and 𝑃𝑈𝑣𝑘 = 0 = 𝑇𝑣𝑘.

Thus 𝑇 = 𝑃𝑈 .
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Exercise 7.B.4. Prove that a normal operator on a complex inner product space is
skew (meaning that it equals the negative of its adjoint) if and only if all its eigenvalues
are purely imaginary (meaning that they have real part equal to 0).

Solution. Suppose 𝑉  is a complex inner product space and 𝑇 ∈ ℒ(𝑉 ) is normal. By the
complex spectral theorem (7.31) there is an orthonormal basis of 𝑉  with respect to which 
ℳ(𝑇) is of the form

⎝
⎜⎜
⎛𝜆1

⋮
0

⋯
⋱
⋯

0
⋮

𝜆𝑛⎠
⎟⎟
⎞

,

where 𝜆1, …, 𝜆𝑛 ∈ 𝐂 are the eigenvalues of 𝑇 . Observe that

𝑇 is skew ⇔ ℳ(𝑇) = −[ℳ(𝑇 )]∗ ⇔ each 𝜆𝑘 = −𝜆𝑘

⇔ each 𝜆𝑘 is purely imaginary ⇔ each eigenvalue of 𝑇 is purely imaginary.

Exercise 7.B.5. Prove or give a counterexample: If 𝑇 ∈ ℒ(𝐂3) is a diagonalizable op-
erator, then 𝑇  is normal (with respect to the usual inner product).

Solution. This is false. Consider the basis

𝑣1 = (1, 0, 0), 𝑣2 = (0, 1, 0), 𝑣3 = (1, 0, 1)

of 𝐂3 and define 𝑇 ∈ ℒ(𝐂3) by

𝑇𝑣1 = 𝑣1, 𝑇 𝑣2 = 𝑣2, 𝑇 𝑣3 = 2𝑣3.

Observe that 𝑇  is diagonalizable since 𝐂3 has a basis 𝑣1, 𝑣2, 𝑣3 consisting of eigenvectors of
𝑇 . Observe further that 𝑣1, 𝑣3 are eigenvectors of 𝑇  corresponding to distinct eigenvalues,
and that 𝑣1 and 𝑣3 are not orthogonal: ⟨𝑣1, 𝑣3⟩ = 1. It follows from 7.22 that 𝑇  is not normal.

Exercise 7.B.6. Suppose 𝑉  is a complex inner product space and 𝑇 ∈ ℒ(𝑉 ) is a normal
operator such that 𝑇 9 = 𝑇 8. Prove that 𝑇  is self-adjoint and 𝑇 2 = 𝑇 .

Solution. The complex spectral theorem (7.31) implies that there is an orthonormal basis 
𝑒1, …, 𝑒𝑛 of 𝑉  consisting of eigenvectors of 𝑇 , so that 𝑇𝑒𝑘 = 𝜆𝑘𝑒𝑘 for each 𝑘 ∈ {1, …, 𝑛},
where 𝜆1, …, 𝜆𝑛 are the eigenvalues of 𝑇 . By assumption we have

𝑇 9𝑒𝑘 = 𝑇 8𝑒𝑘 ⇔ 𝜆9
𝑘𝑒𝑘 = 𝜆8

𝑘𝑒𝑘 ⇔ 𝜆9
𝑘 = 𝜆8

𝑘 ⇔ 𝜆𝑘 ∈ {0, 1}.

It follows from Exercise 7.B.3 that 𝑇 = 𝑃𝑈  for some subspace 𝑈  of 𝑉 , so that 𝑇 2 = 𝑇 , and
Exercise 7.B.1 (or Exercise 7.A.20) shows that 𝑇  is self-adjoint.
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Exercise 7.B.7. Give an example of an operator 𝑇  on a complex vector space such
that 𝑇 9 = 𝑇 8 but 𝑇 2 ≠ 𝑇 .

Solution. Let 𝑇  be the operator on 𝐂2 whose matrix with respect to the standard basis of
𝐂2 is

(0
0

1
0).

It follows that 𝑇 9 = 𝑇 8 = 𝑇 2 = 0 but 𝑇 ≠ 0.

Exercise 7.B.8. Suppose 𝐅 = 𝐂 and 𝑇 ∈ ℒ(𝑉 ). Prove that 𝑇  is normal if and only if
every eigenvector of 𝑇  is also an eigenvector of 𝑇 ∗.

Solution. If 𝑇  is normal then every eigenvector of 𝑇  is an eigenvector of 𝑇 ∗ by 7.21(e).

Suppose that every eigenvector of 𝑇  is also an eigenvector of 𝑇 ∗. By Schur’s theorem (6.38)
there is an orthonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉  with respect to which 𝐴 ≔ ℳ(𝑇) is upper-
triangular. It follows that 𝑇𝑒1 = 𝐴1,1𝑒1, so that 𝑒1 is an eigenvector of 𝑇 . Our assumption
implies that 𝑒1 is also an eigenvector of 𝑇 ∗, say 𝑇 ∗𝑒1 = 𝜇1𝑒1. On the other hand, by 7.9,

𝑇 ∗𝑒1 = 𝐴1,1𝑒1 + 𝐴1,2𝑒2 + ⋯ + 𝐴1,𝑛𝑒𝑛.

It follows from unique representation that 𝐴1,2 = ⋯ = 𝐴1,𝑛 = 0. Thus 𝑇𝑒2 = 𝐴2,2𝑒2, so that
𝑒2 is an eigenvector of 𝑇 . Our assumption implies that 𝑒2 is also an eigenvector of 𝑇 ∗, say 
𝑇 ∗𝑒2 = 𝜇2𝑒2. On the other hand, by 7.9,

𝑇 ∗𝑒2 = 𝐴2,2𝑒2 + 𝐴2,3𝑒3 + ⋯ + 𝐴2,𝑛𝑒𝑛.

It follows from unique representation that 𝐴2,3 = ⋯ = 𝐴2,𝑛 = 0. Continuing in this manner,
we see that 𝐴 is a diagonal matrix. The complex spectral theorem allows us to conclude that
𝑇  is normal.

Exercise 7.B.9. Suppose 𝐅 = 𝐂 and 𝑇 ∈ ℒ(𝑉 ). Prove that 𝑇  is normal if and only if
there exists a polynomial 𝑝 ∈ 𝒫(𝐂) such that 𝑇 ∗ = 𝑝(𝑇 ).

Solution. If there exists such a polynomial 𝑝 then 𝑇  commutes with 𝑇 ∗ = 𝑝(𝑇 ) by 5.17(b).
Thus 𝑇  is normal.

Suppose that 𝑇  is normal. By the complex spectral theorem (7.31), there is an orthonormal
basis 𝑒1, …, 𝑒𝑛 of 𝑉  such that each 𝑒𝑘 is an eigenvector of 𝑇 . Let 𝜆1, …, 𝜆𝑚 be the distinct
eigenvalues of 𝑇 . Exercise 4.7 shows that there is a polynomial 𝑝 ∈ 𝒫(𝐂) satisfying 𝑝(𝜆𝑗) = 𝜆𝑗

for each 𝑗 ∈ {1, …, 𝑚}. For any 𝑘 ∈ {1, …, 𝑛} we have 𝑇𝑒𝑘 = 𝜆𝑗𝑒𝑘 for some 𝑗 ∈ {1, …, 𝑚}. It
follows that

𝑝(𝑇 )𝑒𝑘 = 𝑝(𝜆𝑗)𝑒𝑘 = 𝜆𝑗𝑒𝑘 = 𝑇 ∗𝑒𝑘,
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where we have used 7.21(e) for the last equality. Thus 𝑝(𝑇 ) = 𝑇 ∗.

Exercise 7.B.10. Suppose 𝑉  is a complex inner product space. Prove that every normal
operator on 𝑉  has a square root.

An operator 𝑆 ∈ ℒ(𝑉 ) is called a square root of 𝑇 ∈ ℒ(𝑉 ) if 𝑆2 = 𝑇 . We will discuss
more about square roots of operators in Sections 7C and 8C.

Solution. Let 𝑇 ∈ ℒ(𝑉 ) be normal. The complex spectral theorem (7.31) implies that there
is an orthonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉  such that 𝑇𝑒𝑘 = 𝜆𝑘𝑒𝑘 for each 𝑘 ∈ {1, …, 𝑛}, where 
𝜆1, …, 𝜆𝑛 ∈ 𝐂 are the eigenvalues of 𝑇 . Because any complex number has a square root, for
each 𝑘 there exists some 𝜇𝑘 ∈ 𝐂 such that 𝜇2

𝑘 = 𝜆𝑘. Define 𝑆 ∈ ℒ(𝑉 ) by 𝑆𝑒𝑘 = 𝜇𝑘𝑒𝑘 and
observe that

𝑆2𝑒𝑘 = 𝜇2
𝑘𝑒𝑘 = 𝜆𝑘𝑒𝑘 = 𝑇𝑒𝑘.

Thus 𝑆2 = 𝑇 .

Exercise 7.B.11. Prove that every self-adjoint operator on 𝑉  has a cube root.

An operator 𝑆 ∈ ℒ(𝑉 ) is called a cube root of 𝑇 ∈ ℒ(𝑉 ) if 𝑆3 = 𝑇 .

Solution. Let 𝑇 ∈ ℒ(𝑉 ) be self-adjoint. The relevant spectral theorem (7.29 or 7.31) implies
that there is an orthonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉  such that 𝑇𝑒𝑘 = 𝜆𝑘𝑒𝑘 for each 𝑘 ∈ {1, …, 𝑛},
where 𝜆1, …, 𝜆𝑛 ∈ 𝐅 are the eigenvalues of 𝑇 . Note that each 𝜆𝑘 must be real by 7.12. Because
any real number has a cube root, for each 𝑘 there exists some 𝜇𝑘 ∈ 𝐑 such that 𝜇3

𝑘 = 𝜆𝑘.
Define 𝑆 ∈ ℒ(𝑉 ) by 𝑆𝑒𝑘 = 𝜇𝑘𝑒𝑘 and observe that

𝑆3𝑒𝑘 = 𝜇3
𝑘𝑒𝑘 = 𝜆𝑘𝑒𝑘 = 𝑇𝑒𝑘.

Thus 𝑆3 = 𝑇 .

Exercise 7.B.12. Suppose 𝑉  is a complex vector space and 𝑇 ∈ ℒ(𝑉 ) is normal. Prove
that if 𝑆 is an operator on 𝑉  that commutes with 𝑇 , then 𝑆 commutes with 𝑇 ∗.

The result in this exercise is called Fuglede’s theorem.

Solution. By Exercise 7.B.9 there is a polynomial 𝑝 = ∑𝑚
𝑘=0 𝑎𝑘𝑧𝑘 ∈ 𝒫(𝐂) such that

𝑇 ∗ = 𝑝(𝑇 ). Since 𝑆𝑇 = 𝑇𝑆, a straightforward induction argument shows that 𝑆𝑇 𝑘 = 𝑇 𝑘𝑆
for any non-negative integer 𝑘. It follows that

𝑆𝑇 ∗ = 𝑆𝑝(𝑇 ) = 𝑆(∑
𝑚

𝑘=0
𝑎𝑘𝑇 𝑘) = ∑

𝑚

𝑘=0
𝑎𝑘𝑆𝑇 𝑘 = ∑

𝑚

𝑘=0
𝑎𝑘𝑇 𝑘𝑆 = (∑

𝑚

𝑘=0
𝑎𝑘𝑇 𝑘)𝑆 = 𝑝(𝑇 )𝑆 = 𝑇 ∗𝑆.
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Exercise 7.B.13. Without using the complex spectral theorem, use the version of
Schur’s theorem that applies to two commuting operators (take ℰ = {𝑇 , 𝑇 ∗} in Exercise
20 in Section 6B) to give a different proof that if 𝐅 = 𝐂 and 𝑇 ∈ ℒ(𝑉 ) is normal, then
𝑇  has a diagonal matrix with respect to some orthonormal basis of 𝑉 .

Solution. Since 𝑇  and 𝑇 ∗ commute, Exercise 6.B.20 implies that there is an orthonormal
basis 𝑒1, …, 𝑒𝑛 of 𝑉  such that ℳ(𝑇) and ℳ(𝑇 ∗) are upper-triangular. Because ℳ(𝑇 ∗) is the
conjugate transpose of ℳ(𝑇) (by 7.9), it must be that ℳ(𝑇) is also lower-triangular. Thus
ℳ(𝑇) is diagonal.

Exercise 7.B.14. Suppose 𝐅 = 𝐑 and 𝑇 ∈ ℒ(𝑉 ). Prove that 𝑇  is self-adjoint if and
only if all pairs of eigenvectors corresponding to distinct eigenvalues of 𝑇  are orthogonal
and 𝑉 = 𝐸(𝜆1, 𝑇 ) ⊕ ⋯ ⊕ 𝐸(𝜆𝑚, 𝑇 ), where 𝜆1, …, 𝜆𝑚 denote the distinct eigenvalues of
𝑇 .

Solution. If 𝑇  is self-adjoint then 7.22 shows that all pairs of eigenvectors corresponding to
distinct eigenvalues of 𝑇  are orthogonal, and the real spectral theorem (7.29) shows that 𝑇
is diagonalizable, which by 5.55 is equivalent to

𝑉 = 𝐸(𝜆1, 𝑇 ) ⊕ ⋯ ⊕ 𝐸(𝜆𝑚, 𝑇 ),

where 𝜆1, …, 𝜆𝑚 are the distinct eigenvalues of 𝑇 .

Now suppose that all pairs of eigenvectors corresponding to distinct eigenvalues of 𝑇  are
orthogonal and

𝑉 = 𝐸(𝜆1, 𝑇 ) ⊕ ⋯ ⊕ 𝐸(𝜆𝑚, 𝑇 ),

where 𝜆1, …, 𝜆𝑚 are the distinct eigenvalues of 𝑇 . Choose an orthonormal basis for each
eigenspace 𝐸(𝜆𝑘, 𝑇 ). Our hypotheses ensure that the list obtained by concatenating these
orthonormal bases is an orthonormal basis of 𝑉  consisting of eigenvectors of 𝑇 . It follows
from the real spectral theorem (7.29) that 𝑇  is self-adjoint.

Exercise 7.B.15. Suppose 𝐅 = 𝐂 and 𝑇 ∈ ℒ(𝑉 ). Prove that 𝑇  is normal if and only
if all pairs of eigenvectors corresponding to distinct eigenvalues of 𝑇  are orthogonal and
𝑉 = 𝐸(𝜆1, 𝑇 ) ⊕ ⋯ ⊕ 𝐸(𝜆𝑚, 𝑇 ), where 𝜆1, …, 𝜆𝑚 denote the distinct eigenvalues of 𝑇 .

Solution. If 𝑇  is normal then 7.22 shows that all pairs of eigenvectors corresponding to
distinct eigenvalues of 𝑇  are orthogonal, and the complex spectral theorem (7.31) shows that
𝑇  is diagonalizable, which by 5.55 is equivalent to

𝑉 = 𝐸(𝜆1, 𝑇 ) ⊕ ⋯ ⊕ 𝐸(𝜆𝑚, 𝑇 ),

where 𝜆1, …, 𝜆𝑚 are the distinct eigenvalues of 𝑇 .
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Now suppose that all pairs of eigenvectors corresponding to distinct eigenvalues of 𝑇  are
orthogonal and

𝑉 = 𝐸(𝜆1, 𝑇 ) ⊕ ⋯ ⊕ 𝐸(𝜆𝑚, 𝑇 ),

where 𝜆1, …, 𝜆𝑚 are the distinct eigenvalues of 𝑇 . Choose an orthonormal basis for each
eigenspace 𝐸(𝜆𝑘, 𝑇 ). Our hypotheses ensure that the list obtained by concatenating these
orthonormal bases is an orthonormal basis of 𝑉  consisting of eigenvectors of 𝑇 . It follows
from the complex spectral theorem (7.31) that 𝑇  is normal.

Exercise 7.B.16. Suppose 𝐅 = 𝐂 and ℰ ⊆ ℒ(𝑉 ). Prove that there is an orthonormal
basis of 𝑉  with respect to which every element of ℰ has a diagonal matrix if and only
if 𝑆 and 𝑇  are commuting normal operators for all 𝑆, 𝑇 ∈ ℰ.

This exercise extends the complex spectral theorem to the context of a collection of
commuting normal operators.

Solution. If there exists such an orthonormal basis of 𝑉  then each 𝑇 ∈ ℰ is normal by the
complex spectral theorem (7.31) and each pair 𝑆, 𝑇 ∈ ℰ commutes by 5.74 (since diagonal
matrices always commute).

Suppose 𝑆 and 𝑇  are commuting normal operators for all 𝑆, 𝑇 ∈ ℰ. By Exercise 6.B.20,
there is an orthonormal basis of 𝑉  with respect to which the matrix of each 𝑇 ∈ ℰ is upper-
triangular. Because 𝑇  is normal this matrix must actually be diagonal, as the proof of the
complex spectral theorem (7.31) shows.

Exercise 7.B.17. Suppose 𝐅 = 𝐑 and ℰ ⊆ ℒ(𝑉 ). Prove that there is an orthonormal
basis of 𝑉  with respect to which every element of ℰ has a diagonal matrix if and only
if 𝑆 and 𝑇  are commuting self-adjoint operators for all 𝑆, 𝑇 ∈ ℰ.

This exercise extends the real spectral theorem to the context of a collection of com-
muting self-adjoint operators.

Solution. If there exists such an orthonormal basis of 𝑉  then each 𝑇 ∈ ℰ is self-adjoint by
the real spectral theorem (7.29) and each pair 𝑆, 𝑇 ∈ ℰ commutes by 5.74 (since diagonal
matrices always commute).

Suppose 𝑆 and 𝑇  are commuting self-adjoint operators for all 𝑆, 𝑇 ∈ ℰ. The real spectral
theorem (7.29) shows that each 𝑇 ∈ ℰ is diagonalizable and thus by Exercise 5.E.2 there is a
basis 𝑣1, …, 𝑣𝑛 of 𝑉  with respect to which the matrix of each 𝑇 ∈ ℰ is diagonal. Perform the
Gram-Schmidt procedure on 𝑣1, …, 𝑣𝑛 to obtain an orthonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉  such that

span(𝑒1, …, 𝑒𝑘) = span(𝑣1, …, 𝑣𝑘)

for each 𝑘 ∈ {1, …, 𝑛}. Let 𝑇 ∈ ℰ be given and note that span(𝑣1, …, 𝑣𝑘) = span(𝑒1, …, 𝑒𝑘) is
invariant under 𝑇  for each 𝑘 ∈ {1, …, 𝑛} since ℳ(𝑇 , (𝑣1, …, 𝑣𝑛)) is diagonal. Thus, by 5.39, 
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ℳ(𝑇 , (𝑒1, …, 𝑒𝑛)) is upper-triangular. Because 𝑇  is self-adjoint this matrix must actually be
diagonal, as the proof of the real spectral theorem (7.29) shows.

Exercise 7.B.18. Give an example of a real inner product space 𝑉 , an operator
𝑇 ∈ ℒ(𝑉 ), and real numbers 𝑏2 < 4𝑐 such that

𝑇 2 + 𝑏𝑇 + 𝑐𝐼

is not invertible.

This exercise shows that the hypothesis that 𝑇  is self-adjoint cannot be deleted in 7.26,
even for real vector spaces.

Solution. Let 𝑉 = 𝐑2 with the usual inner product and let 𝑇 ∈ ℒ(𝐑2) be a counterclock-
wise rotation about the origin by 90°, so that the matrix of 𝑇  with respect to the standard
orthonormal basis of 𝐑2 is

(0
1

−1
0 ).

Observe that 𝑇 2 + 𝐼 (i.e. taking 𝑏 = 0 and 𝑐 = 1) is zero and hence not invertible.

Exercise 7.B.19. Suppose 𝑇 ∈ ℒ(𝑉 ) is self-adjoint and 𝑈  is a subspace of 𝑉  that is
invariant under 𝑇 .

(a) Prove that 𝑈⟂ is invariant under 𝑇 .

(b) Prove that 𝑇 |𝑈 ∈ ℒ(𝑈) is self-adjoint.

(c) Prove that 𝑇 |𝑈⟂ ∈ ℒ(𝑈⟂) is self-adjoint.

Solution.

(a) This is immediate from Exercise 7.A.4 and the fact that 𝑇 ∗ = 𝑇 .

(b) Because 𝑇  is self-adjoint we have ⟨𝑇𝑥, 𝑦⟩ = ⟨𝑥, 𝑇 𝑦⟩ for all 𝑥, 𝑦 ∈ 𝑉 . In particular this
equality holds for all 𝑥, 𝑦 ∈ 𝑈 . It follows that 𝑇 |𝑈  is self-adjoint.

(c) This follows by replacing 𝑈  with 𝑈⟂ in part (b), which is valid by part (a).
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Exercise 7.B.20. Suppose 𝑇 ∈ ℒ(𝑉 ) is normal and 𝑈  is a subspace of 𝑉  that is invari-
ant under 𝑇 .

(a) Prove that 𝑈⟂ is invariant under 𝑇 .

(b) Prove that 𝑈  is invariant under 𝑇 ∗.

(c) Prove that (𝑇 |𝑈)∗ = (𝑇 ∗)|𝑈 .

(d) Prove that 𝑇 |𝑈 ∈ ℒ(𝑈) and 𝑇 |𝑈⟂ ∈ ℒ(𝑈⟂) are normal operators.

This exercise can be used to give yet another proof of the complex spectral theorem
(use induction on dim 𝑉  and the result that 𝑇  has an eigenvector).

Solution.

(a) Let 𝑒1, …, 𝑒𝑚 be an orthonormal basis of 𝑈  and let 𝑒𝑚+1, …, 𝑒𝑛 be an orthonormal basis
of 𝑈⟂, so that 𝑒1, …, 𝑒𝑛 is an orthonormal basis of 𝑉 . Because 𝑈  is invariant under 𝑇 ,
the matrix of 𝑇  with respect to 𝑒1, …, 𝑒𝑛 is of the form

⎝
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎛

𝐴1,1

⋮
𝐴𝑚,1

0
⋮
0

⋯
⋱
⋯
⋯
⋱
⋯

𝐴1,𝑚

⋮
𝐴𝑚,𝑚

0
⋮
0

𝐴1,𝑚+1

⋮
𝐴𝑚,𝑚+1

𝐴𝑚+1,𝑚+1

⋮
𝐴𝑛,𝑚+1

⋯
⋱
⋯
⋯
⋱
⋯

𝐴1,𝑛

⋮
𝐴𝑚,𝑛

𝐴𝑚+1,𝑛

⋮
𝐴𝑛,𝑛 ⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎞

.

It follows from 7.9 and the matrix above that

∑
𝑚

𝑘=1
‖𝑇 𝑒𝑘‖2 = ∑

𝑚

𝑘=1
∑
𝑚

𝑗=1
|𝐴𝑗,𝑘|2 and ∑

𝑚

𝑘=1
‖𝑇 ∗𝑒𝑘‖2 = ∑

𝑚

𝑘=1
∑

𝑛

𝑗=1
|𝐴𝑘,𝑗|

2 = ∑
𝑛

𝑘=1
∑
𝑚

𝑗=1
|𝐴𝑗,𝑘|2,

where we have swapped the indices 𝑗 and 𝑘 for the last equality. For each 𝑘 ∈ {1, …, 𝑚}
we have ‖𝑇 𝑒𝑘‖2 = ‖𝑇 ∗𝑒𝑘‖2 and thus

0 = ∑
𝑚

𝑘=1
‖𝑇 ∗𝑒𝑘‖2 − ∑

𝑚

𝑘=1
‖𝑇 𝑒𝑘‖2 = ∑

𝑛

𝑘=1
∑
𝑚

𝑗=1
|𝐴𝑗,𝑘|2 − ∑

𝑚

𝑘=1
∑
𝑚

𝑗=1
|𝐴𝑗,𝑘|2 = ∑

𝑛

𝑘=𝑚+1
∑
𝑚

𝑗=1
|𝐴𝑗,𝑘|2.

It follows that 𝐴𝑗,𝑘 = 0 for each 𝑗 ∈ {1, …, 𝑚} and each 𝑘 ∈ {𝑚 + 1, …, 𝑛}, so that the
matrix of 𝑇  with respect to 𝑒1, …, 𝑒𝑛 is of the form

⎝
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎛

𝐴1,1

⋮
𝐴𝑚,1

0
⋮
0

⋯
⋱
⋯
⋯
⋱
⋯

𝐴1,𝑚

⋮
𝐴𝑚,𝑚

0
⋮
0

0
⋮
0

𝐴𝑚+1,𝑚+1

⋮
𝐴𝑛,𝑚+1

⋯
⋱
⋯
⋯
⋱
⋯

0
⋮
0

𝐴𝑚+1,𝑛

⋮
𝐴𝑛,𝑛 ⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎞

.

Thus 𝑈⟂ is invariant under 𝑇 .
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(b) With respect to the orthonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉  from part (a), 7.9 shows that the
matrix of 𝑇 ∗ is

⎝
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎜⎛𝐴1,1

⋮
𝐴1,𝑚

0
⋮
0

⋯
⋱
⋯

⋯
⋱
⋯

𝐴𝑚,1

⋮
𝐴𝑚,𝑚

0
⋮
0

0
⋮
0

𝐴𝑚+1,𝑚+1

⋮
𝐴𝑚+1,𝑛

⋯
⋱
⋯

⋯
⋱
⋯

0
⋮
0

𝐴𝑛,𝑚+1

⋮
𝐴𝑛,𝑛 ⎠

⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟⎟
⎟⎞

.

Thus 𝑈  is invariant under 𝑇 ∗.

(c) With respect to the orthonormal basis 𝑒1, …, 𝑒𝑚 of 𝑈  from part (a) we have

ℳ(𝑇 |𝑈) =

⎝
⎜⎜
⎜⎛

𝐴1,1

⋮
𝐴𝑚,1

⋯
⋱
⋯

𝐴1,𝑚

⋮
𝐴𝑚,𝑚⎠

⎟⎟
⎟⎞ ⇒ ℳ((𝑇 |𝑈)∗) =

⎝
⎜⎜
⎜⎜
⎛𝐴1,1

⋮
𝐴1,𝑚

⋯
⋱
⋯

𝐴𝑚,1

⋮
𝐴𝑚,𝑚⎠

⎟⎟
⎟⎟
⎞

.

Part (b) shows that

ℳ((𝑇 ∗)|𝑈) =

⎝
⎜⎜
⎜⎜
⎛𝐴1,1

⋮
𝐴1,𝑚

⋯
⋱
⋯

𝐴𝑚,1

⋮
𝐴𝑚,𝑚⎠

⎟⎟
⎟⎟
⎞

= ℳ((𝑇 |𝑈)∗).

Thus (𝑇 |𝑈)∗ = (𝑇 ∗)|𝑈 .

(d) Using part (c), notice that

(𝑇 |𝑈)∗𝑇 |𝑈 = (𝑇 ∗)|𝑈 𝑇 |𝑈 = (𝑇 ∗𝑇 )|𝑈 = (𝑇𝑇 ∗)|𝑈 = 𝑇 |𝑈 (𝑇 ∗)|𝑈 = 𝑇 |𝑈 (𝑇 |𝑈)∗.

Thus 𝑇 |𝑈  is normal. Replacing 𝑈  with 𝑈⟂ in this result, which is valid by part (a),
shows that 𝑇 |𝑈⟂ is normal.

Exercise 7.B.21. Suppose that 𝑇  is a self-adjoint operator on a finite-dimensional inner
product space and that 2 and 3 are the only eigenvalues of 𝑇 . Prove that

𝑇 2 − 5𝑇 + 6𝐼 = 0.

Solution. Exercise 7.B.14 if 𝐅 = 𝐑, or Exercise 7.B.15 if 𝐅 = 𝐂, shows that

𝑉 = 𝐸(2, 𝑇 ) ⊕ 𝐸(3, 𝑇 ).

Thus any 𝑣 ∈ 𝑉  is of the form 𝑣 = 𝑥 + 𝑦, where 𝑥 ∈ 𝐸(2, 𝑇 ) and 𝑦 ∈ 𝐸(3, 𝑇 ). It follows that

(𝑇 2 − 5𝑇 + 6𝐼)𝑣 = (𝑇 − 3𝐼)(𝑇 − 2𝐼)𝑥 + (𝑇 − 2𝐼)(𝑇 − 3𝐼)𝑦 = 0.
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Exercise 7.B.22. Give an example of an operator 𝑇 ∈ ℒ(𝐂3) such that 2 and 3 are
the only eigenvalues of 𝑇  and 𝑇 2 − 5𝑇 + 6𝐼 ≠ 0.

Solution. Let 𝑒1, 𝑒2, 𝑒3 be the standard basis of 𝐂3 and define 𝑇 ∈ ℒ(𝐂3) by

𝑇𝑒1 = 2𝑒1, 𝑇 𝑒2 = 𝑒1 + 2𝑒2, 𝑇 𝑒3 = 3𝑒3,

so that the matrix of 𝑇  with respect to 𝑒1, 𝑒2, 𝑒3 is

⎝
⎜⎛

2
0
0

1
2
0

0
0
3⎠
⎟⎞.

Since this matrix is upper-triangular, we see that 2 and 3 are the only eigenvalues of 𝑇 .
However, notice that

(𝑇 2 − 5𝑇 + 6𝐼)𝑒2 = −𝑒1 ≠ 0.

Exercise 7.B.23. Suppose 𝑇 ∈ ℒ(𝑉 ) is self-adjoint, 𝜆 ∈ 𝐅, and 𝜀 > 0. Suppose there
exists 𝑣 ∈ 𝑉  such that ‖𝑣‖ = 1 and

‖𝑇 𝑣 − 𝜆𝑣‖ < 𝜀.

Prove that 𝑇  has an eigenvalue 𝜆′ such that |𝜆 − 𝜆′| < 𝜀.

This exercise shows that for a self-adjoint operator, a number that is close to satisfying
an equation that would make it an eigenvalue is close to an eigenvalue.

Solution. The relevant spectral theorem (7.29 or 7.31) implies that there is an orthonormal
basis 𝑒1, …, 𝑒𝑛 of 𝑉  consisting of eigenvectors of 𝑇 , so that 𝑇𝑒𝑘 = 𝜆𝑘𝑒𝑘 for each 𝑘 ∈ {1, …, 𝑛},
where 𝜆1, …, 𝜆𝑛 ∈ 𝐅 are the eigenvalues of 𝑇 . It follows from 6.30 and that

‖𝑇 𝑣 − 𝜆𝑣‖2 = |𝜆1 − 𝜆|2|⟨𝑣, 𝑒1⟩|
2 + ⋯ + |𝜆𝑛 − 𝜆|2|⟨𝑣, 𝑒𝑛⟩|2.

Let 𝜆′ be the eigenvalue in {𝜆1, …, 𝜆𝑛} which minimizes |𝜆𝑘 − 𝜆| and observe that

|𝜆′ − 𝜆|2 = |𝜆′ − 𝜆|2‖𝑣‖2

= |𝜆′ − 𝜆|2|⟨𝑣, 𝑒1⟩|
2 + ⋯ + |𝜆′ − 𝜆|2|⟨𝑣, 𝑒𝑛⟩|2

≤ |𝜆1 − 𝜆|2|⟨𝑣, 𝑒1⟩|
2 + ⋯ + |𝜆𝑛 − 𝜆|2|⟨𝑣, 𝑒𝑛⟩|2

= ‖𝑇𝑣 − 𝜆𝑣‖2

< 𝜀2.

Thus |𝜆′ − 𝜆| < 𝜀.
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Exercise 7.B.24. Suppose 𝑈  is a finite-dimensional vector space and 𝑇 ∈ ℒ(𝑈).

(a) Suppose 𝐅 = 𝐑. Prove that 𝑇  is diagonalizable if and only if there is a basis of 𝑈
such that the matrix of 𝑇  with respect to this basis equals its transpose.

(b) Suppose 𝐅 = 𝐂. Prove that 𝑇  is diagonalizable if and only if there is a basis of 𝑈
such that the matrix of 𝑇  with respect to this basis commutes with its conjugate
transpose.

This exercise adds another equivalence to the list of conditions equivalent to diagonal-
izability in 5.55.

Solution.

(a) If 𝑇  is diagonalizable then there is a basis 𝑢1, …, 𝑢𝑛 of 𝑈  such that

𝐴 ≔ ℳ(𝑇 , (𝑢1, …, 𝑢𝑛))

is diagonal. It follows that 𝐴 = 𝐴t.

Now suppose that there is a basis 𝑢1, …, 𝑢𝑛 of 𝑈  such that 𝐴 = 𝐴t, where

𝐴 = ℳ(𝑇 , (𝑢1, …, 𝑢𝑛)).

For 𝑢 = 𝑎1𝑢1 + ⋯ + 𝑎𝑛𝑢𝑛 and 𝑣 = 𝑏1𝑢1 + ⋯ + 𝑏𝑛𝑢𝑛 in 𝑈 , define

⟨𝑢, 𝑣⟩ = 𝑎1𝑏1 + ⋯ + 𝑎𝑛𝑏𝑛;

it is straightforward to verify that this defines an inner product on 𝑈 . Notice that 
𝑢1, …, 𝑢𝑛 is an orthonormal basis of 𝑈  with respect to this inner product; it follows
that 𝑇  is self-adjoint with respect to this inner product and so we may apply the real
spectral theorem (7.29) to obtain a basis of 𝑈  consisting of eigenvectors of 𝑇 . Thus 𝑇
is diagonalizable.

(b) If 𝑇  is diagonalizable then there is a basis 𝑢1, …, 𝑢𝑛 of 𝑈  such that

𝐴 ≔ ℳ(𝑇 , (𝑢1, …, 𝑢𝑛))

is diagonal. It follows that 𝐴∗ is also diagonal and hence that 𝐴𝐴∗ = 𝐴∗𝐴, since diag-
onal matrices always commute.

Now suppose that there is a basis 𝑢1, …, 𝑢𝑛 of 𝑈  such that 𝐴𝐴∗ = 𝐴∗𝐴, where

𝐴 = ℳ(𝑇 , (𝑢1, …, 𝑢𝑛)).

For 𝑢 = 𝑎1𝑢1 + ⋯ + 𝑎𝑛𝑢𝑛 and 𝑣 = 𝑏1𝑢1 + ⋯ + 𝑏𝑛𝑢𝑛 in 𝑈 , define

⟨𝑢, 𝑣⟩ = 𝑎1𝑏1 + ⋯ + 𝑎𝑛𝑏𝑛;

it is straightforward to verify that this defines an inner product on 𝑈 . Notice that 
𝑢1, …, 𝑢𝑛 is an orthonormal basis of 𝑈  with respect to this inner product; it follows
that 𝑇  is normal with respect to this inner product and so we may apply the complex
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spectral theorem (7.31) to obtain a basis of 𝑈  consisting of eigenvectors of 𝑇 . Thus 𝑇
is diagonalizable.

Exercise 7.B.25. Suppose that 𝑇 ∈ ℒ(𝑉 ) and there is an orthonormal basis 𝑒1, …, 𝑒𝑛

of 𝑉  consisting of eigenvectors of 𝑇 , with corresponding eigenvalues 𝜆1, …, 𝜆𝑛. Show
that if 𝑘 ∈ {1, …, 𝑛}, then the pseudoinverse 𝑇 † satisfies the equation

𝑇 †𝑒𝑘 =
⎩{
⎨
{⎧ 1

𝜆𝑘
𝑒𝑘 if 𝜆𝑘 ≠ 0,

0 if 𝜆𝑘 = 0.

Solution. By the relevant spectral theorem (7.29 or 7.31), 𝑇  is either self-adjoint if 𝐅 = 𝐑
or normal if 𝐅 = 𝐂. In either case, 7.21 shows that

null 𝑇 = null 𝑇 ∗ and range 𝑇 = range 𝑇 ∗.

Let 𝑘 ∈ {1, …, 𝑛} be given. If 𝜆𝑘 = 0 then

𝑒𝑘 ∈ null 𝑇 = null 𝑇 ∗ = (range 𝑇 )⟂ = null 𝑃range 𝑇 ,

where we have used 6.57(e) and 7.6(a). It follows that

𝑇 †𝑒𝑘 = (𝑇 |(null 𝑇 )⟂)−1𝑃range 𝑇 𝑒𝑘 = (𝑇 |(null 𝑇 )⟂)−1(0) = 0.

If 𝜆𝑘 ≠ 0 then observe that

𝜆−1
𝑘 𝑒𝑘 = 𝑇(𝜆−2

𝑘 𝑒𝑘) ⇒ 𝜆−1
𝑘 𝑒𝑘 ∈ range 𝑇 = range 𝑇 ∗ = (null 𝑇 )⟂,

where we have used 7.6(b). Because the restriction of 𝑇  to (null 𝑇 )⟂ is an isomorphism be-
tween (null 𝑇 )⟂ and range 𝑇  (see 6.67), it follows that (𝑇 |(null 𝑇 )⟂)−1𝑇(𝜆−1

𝑘 𝑒𝑘) = 𝜆−1
𝑘 𝑒𝑘 and

hence that

𝑇 †𝑒𝑘 = (𝑇 |(null 𝑇 )⟂)−1𝑃range 𝑇 𝑒𝑘 = (𝑇 |(null 𝑇 )⟂)−1𝑃range 𝑇 𝑇(𝜆−1
𝑘 𝑒𝑘)

= (𝑇 |(null 𝑇 )⟂)−1𝑇(𝜆−1
𝑘 𝑒𝑘) = 𝜆−1

𝑘 𝑒𝑘.
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7.C. Positive Operators

Exercise 7.C.1. Suppose 𝑇 ∈ ℒ(𝑉 ). Prove that if both 𝑇  and −𝑇  are positive opera-
tors, then 𝑇 = 0.

Solution. Let 𝑣 ∈ 𝑉  be given. Observe that ⟨𝑇 𝑣, 𝑣⟩ ≥ 0 since 𝑇  is positive and

⟨−𝑇𝑣, 𝑣⟩ ≥ 0 ⇔ −⟨𝑇𝑣, 𝑣⟩ ≥ 0 ⇔ ⟨𝑇𝑣, 𝑣⟩ ≤ 0

since −𝑇  is positive. Thus ⟨𝑇 𝑣, 𝑣⟩ = 0 and it follows from 7.43 that 𝑇𝑣 = 0. Hence 𝑇 = 0.

Exercise 7.C.2. Suppose 𝑇 ∈ ℒ(𝐅4) is the operator whose matrix (with respect to the
standard basis) is

⎝
⎜⎜
⎜⎜
⎛ 2

−1
0
0

−1
2

−1
0

0
−1
2

−1

0
0

−1
2 ⎠

⎟⎟
⎟⎟
⎞

.

Show that 𝑇  is an invertible positive operator.

Solution. Note that the matrix in question equals its conjugate transpose; since the stan-
dard basis of 𝐅4 is orthonormal, it follows that 𝑇  is self-adjoint. Some calculations reveal
that 𝑇  has 4 distinct eigenvalues:

3 ±
√

5
2

,
5 ±

√
5

2
.

Notice that each eigenvalue is strictly positive. It follows from 5.7 and 7.38(b) that 𝑇  is an
invertible positive operator.

Exercise 7.C.3. Suppose 𝑛 is a positive integer and 𝑇 ∈ ℒ(𝐅𝑛) is the operator whose
matrix (with respect to the standard basis) consists of all 1’s. Show that 𝑇  is a positive
operator.

Solution. The matrix of 𝑇  with respect to the standard basis of 𝐅𝑛 (which is orthonormal)
equals its conjugate transpose; it follows that 𝑇  is self-adjoint. As shown in Exercise 5.B.3
(a), the eigenvalues of 𝑇  are contained in {0, 1}. Thus, by 7.38(b), 𝑇  is positive.

Exercise 7.C.4. Suppose 𝑛 is a positive integer with 𝑛 > 1. Show that there exists an
𝑛-by-𝑛 matrix 𝐴 such that all of the entries of 𝐴 are positive numbers and 𝐴 = 𝐴∗, but
the operator on 𝐅𝑛 whose matrix (with respect to the standard basis) equals 𝐴 is not
a positive operator.
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Solution. Let

𝐴 =

⎝
⎜⎜
⎜⎜
⎛1

2
⋮
2

2
1
⋮
2

⋯
⋯
⋱
⋯

2
2
⋮
1⎠
⎟⎟
⎟⎟
⎞

.

Observe that each entry of 𝐴 is positive and 𝐴 = 𝐴∗. Let 𝑇 ∈ ℒ(𝐅𝑛) be the operator on 𝐅𝑛

whose matrix with respect to the standard basis equals 𝐴, i.e.

𝑇 (𝑥1, 𝑥2, …, 𝑥𝑛) = (𝑥1 + 2𝑥2 + ⋯ + 2𝑥𝑛, 2𝑥1 + 𝑥2 + ⋯ + 2𝑥𝑛, …, 2𝑥1 + 2𝑥2 + ⋯ + 𝑥𝑛).

Notice that

𝑇 (−1, 1, 0, …, 0) = (1, −1, 0, …, 0).

It follows that −1 is an eigenvalue of 𝑇 . Thus, by 7.38(b), 𝑇  is not a positive operator.

Exercise 7.C.5. Suppose 𝑇 ∈ ℒ(𝑉 ) is self-adjoint. Prove that 𝑇  is a positive operator
if and only if for every orthonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉 , all entries on the diagonal of 
ℳ(𝑇 , (𝑒1, …, 𝑒𝑛)) are nonnegative numbers.

Solution. Suppose that 𝑇  is a positive operator and let 𝑒1, …, 𝑒𝑛 be an orthonormal basis of
𝑉 . For 𝑘 ∈ {1, …, 𝑛}, 6.30(a) shows that the 𝑘th diagonal entry of ℳ(𝑇 , (𝑒1, …, 𝑒𝑛)) is equal
to ⟨𝑇 𝑒𝑘, 𝑒𝑘⟩; this must be non-negative by the positivity of 𝑇 .

Suppose that for every orthonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉 , all entries on the diagonal of 
ℳ(𝑇 , (𝑒1, …, 𝑒𝑛)) are nonnegative numbers. Because 𝑇  is self-adjoint, the relevant spectral
theorem (7.29 or 7.31) implies the existence of an orthonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉  with
respect to which the matrix of 𝑇  is diagonal. By assumption each diagonal entry of this
matrix is non-negative and it then follows from 7.38(c) that 𝑇  is a positive operator.

Exercise 7.C.6. Prove that the sum of two positive operators on 𝑉  is a positive oper-
ator.

Solution. Suppose that 𝑆, 𝑇 ∈ ℒ(𝑉 ) are positive operators and note that 𝑆 + 𝑇  is self-
adjoint by 7.5(a). Let 𝑣 ∈ 𝑉  be given and observe that

⟨(𝑆 + 𝑇)𝑣, 𝑣⟩ = ⟨𝑆𝑣 + 𝑇𝑣, 𝑣⟩ = ⟨𝑆𝑣, 𝑣⟩ + ⟨𝑇𝑣, 𝑣⟩ ≥ 0.

Thus 𝑆 + 𝑇  is positive.

Exercise 7.C.7. Suppose 𝑆 ∈ ℒ(𝑉 ) is an invertible positive operator and 𝑇 ∈ ℒ(𝑉 ) is
a positive operator. Prove that 𝑆 + 𝑇  is invertible.

Solution. Let us prove the following lemma (see 7.61 also).
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Lemma L.11. If 𝑇 ∈ ℒ(𝑉 ) is a positive operator then 𝑇  is invertible if and only if 
⟨𝑇 𝑣, 𝑣⟩ > 0 for every non-zero 𝑣 ∈ 𝑉 .

Proof. Suppose that 𝑇  is invertible and let 𝑣 ∈ 𝑉  be non-zero. It follows that 𝑇𝑣 is non-
zero and thus, by the contrapositive of 7.43, we have ⟨𝑇 𝑣, 𝑣⟩ > 0. If 𝑇  is not invertible
then there exists some non-zero 𝑣 ∈ 𝑉  such that 𝑇𝑣 = 0, which gives us ⟨𝑇 𝑣, 𝑣⟩ = 0.□

Let 𝑣 ∈ 𝑉  be non-zero. Lemma L.11 shows that ⟨𝑆𝑣, 𝑣⟩ > 0 and it follows from the positivity
of 𝑇  that

⟨(𝑆 + 𝑇)𝑣, 𝑣⟩ = ⟨𝑆𝑣, 𝑣⟩ + ⟨𝑇𝑣, 𝑣⟩ > 0.

Another application of Lemma L.11 allows us to conclude that 𝑆 + 𝑇  is invertible.

Exercise 7.C.8. Suppose 𝑇 ∈ ℒ(𝑉 ). Prove that 𝑇  is a positive operator if and only if
the pseudoinverse 𝑇 † is a positive operator.

Solution. Suppose that 𝑇  is a positive operator. By 7.38(c) there is an orthonormal basis 
𝑒1, …, 𝑒𝑛 of 𝑉  such that 𝑇𝑒𝑘 = 𝜆𝑘𝑒𝑘 with 𝜆𝑘 ≥ 0. For each 𝑘 ∈ {1, …, 𝑛} let

𝜇𝑘 = {
𝜆−1

𝑘 if 𝜆𝑘 ≠ 0,
0 if 𝜆𝑘 = 0.

It follows from Exercise 7.B.25 that 𝑇 †𝑒𝑘 = 𝜇𝑘𝑒𝑘 for each 𝑘 ∈ {1, …, 𝑛}. Because each 𝜇𝑘 is
non-negative, 7.38(c) implies that 𝑇 † is a positive operator.

Replacing 𝑇  with 𝑇 † in the preceding result and using that (𝑇 †)† = 𝑇  (see Exercise 6.C.23)
gives us the converse statement.

Exercise 7.C.9. Suppose 𝑇 ∈ ℒ(𝑉 ) is a positive operator and 𝑆 ∈ ℒ(𝑊, 𝑉 ). Prove
that 𝑆∗𝑇𝑆 is a positive operator on 𝑊 .

Solution. For any 𝑤 ∈ 𝑊  observe that

⟨𝑆∗𝑇𝑆𝑤, 𝑤⟩ = ⟨𝑇 (𝑆𝑤), 𝑆𝑤⟩ ≥ 0,

where we have used the positivity of 𝑇 .

Exercise 7.C.10. Suppose 𝑇  is a positive operator on 𝑉 . Suppose 𝑣, 𝑤 ∈ 𝑉  are such
that

𝑇𝑣 = 𝑤 and 𝑇𝑤 = 𝑣.

Prove that 𝑣 = 𝑤.

Solution. Notice that
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‖𝑣 − 𝑤‖2 = ⟨𝑣 − 𝑤, 𝑣 − 𝑤⟩ = ⟨𝑇𝑤 − 𝑇𝑣, 𝑣 − 𝑤⟩ = −⟨𝑇 (𝑣 − 𝑤), 𝑣 − 𝑤⟩ ≤ 0,

where we have used that 𝑇  is a positive operator for the final inequality. It follows that 
‖𝑣 − 𝑤‖2 = 0, which is the case if and only if 𝑣 = 𝑤.

Exercise 7.C.11. Suppose 𝑇  is a positive operator on 𝑉  and 𝑈  is a subspace of 𝑉
invariant under 𝑇 . Prove that 𝑇 |𝑈 ∈ ℒ(𝑈) is a positive operator on 𝑈 .

Solution. Exercise 7.B.19 (b) shows that 𝑇 |𝑈  is self-adjoint, and for any 𝑢 ∈ 𝑈  we have

⟨𝑇 |𝑈(𝑢), 𝑢⟩ = ⟨𝑇𝑢, 𝑢⟩ ≥ 0,

where we have used that 𝑇  is a positive operator. Thus 𝑇 |𝑈  is a positive operator.

Exercise 7.C.12. Suppose 𝑇 ∈ ℒ(𝑉 ) is a positive operator. Prove that 𝑇 𝑘 is a positive
operator for every positive integer 𝑘.

Solution. By 7.38(c) there is an orthonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉  such that 𝑇𝑒𝑗 = 𝜆𝑗𝑒𝑗 with
𝜆𝑗 ≥ 0 for each 𝑗 ∈ {1, …, 𝑛}. Let 𝑘 be a positive integer and observe that 𝑇 𝑘𝑒𝑗 = 𝜆𝑘

𝑗 𝑒𝑗 for
each 𝑗 ∈ {1, …, 𝑛}. Because each 𝜆𝑘

𝑗  is non-negative, 7.38(c) allows us to conclude that 𝑇 𝑘 is
a positive operator.

Exercise 7.C.13. Suppose 𝑇 ∈ ℒ(𝑉 ) is self-adjoint and 𝛼 ∈ 𝐑.

(a) Prove that 𝑇 − 𝛼𝐼 is a positive operator if and only if 𝛼 is less than or equal to
every eigenvalue of 𝑇 .

(b) Prove that 𝛼𝐼 − 𝑇  is a positive operator if and only if 𝛼 is greater than or equal
to every eigenvalue of 𝑇 .

Solution.

(a) The relevant spectral theorem (7.29 or 7.31) implies the existence of an orthonormal
basis 𝑒1, …, 𝑒𝑛 such that 𝑇𝑒𝑘 = 𝜆𝑘𝑒𝑘 for some eigenvalues 𝜆1, …, 𝜆𝑛; note that each 𝜆𝑘

is real by 7.12. It follows that the matrix of 𝑇 − 𝛼𝐼 with respect to 𝑒1, …, 𝑒𝑛 is

⎝
⎜⎜
⎛𝜆1 − 𝛼

⋮
0

⋯
⋱
⋯

0
⋮

𝜆𝑛 − 𝛼⎠
⎟⎟
⎞

.

If 𝛼 is less than or equal to every eigenvalue of 𝑇  then each diagonal entry of this
matrix is non-negative and it follows from 7.38(c) that 𝑇 − 𝛼𝐼 is a positive operator; if
𝛼 is greater than some eigenvalue of 𝑇  then at least one diagonal entry of this matrix
is negative and it follows from Exercise 7.C.5 that 𝑇 − 𝛼𝐼 is not a positive operator.

(b) It is straightforward to modify the argument in part (a) to prove part (b).
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Exercise 7.C.14. Suppose 𝑇  is a positive operator on 𝑉  and 𝑣1, …, 𝑣𝑚 ∈ 𝑉 . Prove that

∑
𝑚

𝑗=1
∑
𝑚

𝑘=1
⟨𝑇𝑣𝑘, 𝑣𝑗⟩ ≥ 0.

Solution. Using the positivity of 𝑇 , observe that

∑
𝑚

𝑗=1
∑
𝑚

𝑘=1
⟨𝑇𝑣𝑘, 𝑣𝑗⟩ = ⟨𝑇𝑣1 + ⋯ + 𝑇𝑣𝑚, 𝑣1 + ⋯ + 𝑣𝑚⟩ = ⟨𝑇 (𝑣1 + ⋯ + 𝑣𝑚), 𝑣1 + ⋯ + 𝑣𝑚⟩ ≥ 0.

Exercise 7.C.15. Suppose 𝑇 ∈ ℒ(𝑉 ) is self-adjoint. Prove that there exist positive
operators 𝐴, 𝐵 ∈ ℒ(𝑉 ) such that

𝑇 = 𝐴 − 𝐵 and
√

𝑇 ∗𝑇 = 𝐴 + 𝐵 and 𝐴𝐵 = 𝐵𝐴 = 0.

Solution. The relevant spectral theorem (7.29 or 7.31) implies the existence of an orthonor-
mal basis 𝑒1, …, 𝑒𝑛 such that 𝑇𝑒𝑘 = 𝜆𝑘𝑒𝑘 for some eigenvalues 𝜆1, …, 𝜆𝑛; note that each 𝜆𝑘

is real by 7.12. Note further that the operator 𝑅 ∈ ℒ(𝑉 ) given by 𝑅𝑒𝑘 = |𝜆𝑘|𝑒𝑘 is positive
by 7.38(c) and satisfies 𝑅2𝑒𝑘 = 𝜆2

𝑘𝑒𝑘 = 𝑇 2𝑒𝑘; it follows from the uniqueness in 7.39 that
𝑅 =

√
𝑇 2 =

√
𝑇 ∗𝑇 .

For each 𝑘 ∈ {1, …, 𝑛} define

𝛼𝑘 = {
𝜆𝑘 if 𝜆𝑘 ≥ 0,
0 if 𝜆𝑘 < 0,

and 𝛽𝑘 = {
−𝜆𝑘 if 𝜆𝑘 ≤ 0,
0 if 𝜆𝑘 > 0.

Notice that, for each 𝑘 ∈ {1, …, 𝑛},

𝛼𝑘, 𝛽𝑘 ≥ 0, 𝛼𝑘 − 𝛽𝑘 = 𝜆𝑘, 𝛼𝑘 + 𝛽𝑘 = |𝜆𝑘|, and 𝛼𝑘𝛽𝑘 = 0.

Define 𝐴, 𝐵 ∈ ℒ(𝑉 ) by 𝐴𝑒𝑘 = 𝛼𝑘𝑒𝑘 and 𝐵𝑒𝑘 = 𝛽𝑘𝑒𝑘 and note that 𝐴 and 𝐵 are positive
operators by 7.38(c). Furthermore,

(𝐴 − 𝐵)𝑒𝑘 = (𝛼𝑘 − 𝛽𝑘)𝑒𝑘 = 𝜆𝑘𝑒𝑘 = 𝑇𝑒𝑘, (𝐴 + 𝐵)𝑒𝑘 = (𝛼𝑘 + 𝛽𝑘)𝑒𝑘 = |𝜆𝑘|𝑒𝑘 =
√

𝑇 ∗𝑇𝑒𝑘,

𝐴𝐵𝑒𝑘 = 𝐵𝐴𝑒𝑘 = 𝛼𝑘𝛽𝑘𝑒𝑘 = 0.

It follows that

𝑇 = 𝐴 − 𝐵,
√

𝑇 ∗𝑇 = 𝐴 + 𝐵 and 𝐴𝐵 = 𝐵𝐴 = 0.

Exercise 7.C.16. Suppose 𝑇  is a positive operator on 𝑉 . Prove that

null
√

𝑇 = null 𝑇 and range
√

𝑇 = range 𝑇 .

Solution. Note that 
√

𝑇  is positive, hence self-adjoint, hence normal; it follows from Exercise
7.A.27 that
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null
√

𝑇 = null (
√

𝑇)2 = null 𝑇 and range
√

𝑇 = range (
√

𝑇)2 = range 𝑇 .

Exercise 7.C.17. Suppose that 𝑇 ∈ ℒ(𝑉 ) is a positive operator. Prove that there exists
a polynomial 𝑝 with real coefficients such that 

√
𝑇 = 𝑝(𝑇 ).

Solution. By 7.38(c) there is an orthonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉  such that 𝑇𝑒𝑘 = 𝜆𝑘𝑒𝑘

with 𝜆𝑘 ≥ 0, where 𝜆1, …, 𝜆𝑛 are the eigenvalues of 𝑇 ; note that 
√

𝑇𝑒𝑘 = √𝜆𝑘𝑒𝑘. Exercise
4.7 shows that there is a polynomial 𝑝 ∈ 𝒫(𝐑) satisfying 𝑝(𝜆𝑘) = √𝜆𝑘 for each 𝑘 ∈ {1, …, 𝑛}
and it follows that

𝑝(𝑇 )𝑒𝑘 = 𝑝(𝜆𝑘)𝑒𝑘 = √𝜆𝑘𝑒𝑘 =
√

𝑇𝑒𝑘.

Thus 
√

𝑇 = 𝑝(𝑇 ).

Exercise 7.C.18. Suppose 𝑆 and 𝑇  are positive operators on 𝑉 . Prove that 𝑆𝑇  is a
positive operator if and only if 𝑆 and 𝑇  commute.

Solution. If 𝑆 and 𝑇  do not commute then, by Exercise 7.A.9, 𝑆𝑇  is not self-adjoint and
hence not a positive operator.

If 𝑆 and 𝑇  commute then Exercise 7.A.9 shows that 𝑆𝑇  is self-adjoint and Exercise 7.B.16/
Exercise 7.B.17 shows that there is an orthonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉  consisting of eigenvec-
tors of both 𝑆 and 𝑇 , say 𝑆𝑒𝑘 = 𝜇𝑘𝑒𝑘 and 𝑇𝑒𝑘 = 𝜆𝑘𝑒𝑘; each 𝜇𝑘 and each 𝜆𝑘 is a non-negative
real number by 7.38(b). It follows that 𝑆𝑇𝑒𝑘 = 𝜇𝑘𝜆𝑘𝑒𝑘, so that each 𝑒𝑘 is an eigenvector of
𝑆𝑇  with a corresponding non-negative real eigenvalue. Thus, by 7.38(c), 𝑆𝑇  is a positive
operator.

Exercise 7.C.19. Show that the identity operator on 𝐅2 has infinitely many self-adjoint
square roots.

Solution. For any 𝑡 ∈ (0, 1), let 𝑅𝑡 be the operator on 𝐅2 whose matrix with respect to the
standard orthonormal basis of 𝐅2 is

(
√

1 − 𝑡2

𝑡
𝑡

−
√

1 − 𝑡2
);

note that each 𝑡 ∈ (0, 1) gives a distinct operator 𝑅𝑡. Because the matrix above equals its
conjugate transpose, 𝑅𝑡 is self-adjoint. A calculation shows that 𝑅2

𝑡 = 𝐼 .
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Exercise 7.C.20. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝑒1, …, 𝑒𝑛 is an orthonormal basis of 𝑉 . Prove
that 𝑇  is a positive operator if and only if there exist 𝑣1, …, 𝑣𝑛 ∈ 𝑉  such that

⟨𝑇 𝑒𝑘, 𝑒𝑗⟩ = ⟨𝑣𝑘, 𝑣𝑗⟩

for all 𝑗, 𝑘 = 1, …, 𝑛.

The numbers {⟨𝑇 𝑒𝑘, 𝑒𝑗⟩}𝑗,𝑘 = 1,…,𝑛 are the entries in the matrix of 𝑇  with respect to

the orthonormal basis 𝑒1, …, 𝑒𝑛.

Solution. Suppose that 𝑇  is a positive operator and for each 𝑘 ∈ {1, …, 𝑛} let 𝑣𝑘 =
√

𝑇𝑒𝑘.
It follows that

⟨𝑇 𝑒𝑘, 𝑒𝑗⟩ = ⟨
√

𝑇𝑒𝑘,
√

𝑇𝑒𝑗⟩ = ⟨𝑣𝑘, 𝑣𝑗⟩

for all 𝑗, 𝑘 ∈ {1, …, 𝑛}.

Now suppose that there exist 𝑣1, …, 𝑣𝑛 ∈ 𝑉  such that

⟨𝑇 𝑒𝑘, 𝑒𝑗⟩ = ⟨𝑣𝑘, 𝑣𝑗⟩

for all 𝑗, 𝑘 ∈ {1, …, 𝑛}. Define 𝑅 ∈ ℒ(𝑉 ) by 𝑅𝑒𝑘 = 𝑣𝑘, so that

⟨𝑇 𝑒𝑘, 𝑒𝑗⟩ = ⟨𝑅𝑒𝑘, 𝑅𝑒𝑗⟩ = ⟨𝑅∗𝑅𝑒𝑘, 𝑒𝑗⟩

for all 𝑗, 𝑘 ∈ {1, …, 𝑛}. It follows that

ℳ(𝑇 , (𝑒1, …, 𝑒𝑛)) = ℳ(𝑅∗𝑅, (𝑒1, …, 𝑒𝑛))

and hence that 𝑇 = 𝑅∗𝑅. We may use 7.38(f) to conclude that 𝑇  is a positive operator.

Exercise 7.C.21. Suppose 𝑛 is a positive integer. The 𝑛-by-𝑛 Hilbert matrix is the 𝑛-
by-𝑛 matrix whose entry in row 𝑗, column 𝑘 is 1

𝑗+𝑘−1 . Suppose 𝑇 ∈ ℒ(𝑉 ) is an operator
whose matrix with respect to some orthonormal basis of 𝑉  is the 𝑛-by-𝑛 Hilbert matrix.
Prove that 𝑇  is a positive invertible operator.

Example: The 4-by-4 Hilbert matrix is

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎛

1
1
2
1
3
1
4

1
2
1
3
1
4
1
5

1
3
1
4
1
5
1
6

1
4
1
5
1
6
1
7⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎞

.

Solution. (This solution uses some integration of complex-valued functions of a real vari-
able.) Suppose that 𝑒1, …, 𝑒𝑛 is the orthonormal basis of 𝑉  with respect to which the matrix
of 𝑇  is the 𝑛-by-𝑛 Hilbert matrix. For any 𝑣 = 𝑥1𝑒1 + ⋯ + 𝑥𝑛𝑒𝑛 ∈ 𝑉 , observe that
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⟨𝑇 𝑣, 𝑣⟩ = ⟨∑
𝑛

𝑘=1
𝑥𝑘𝑇𝑒𝑘, ∑

𝑛

𝑗=1
𝑥𝑗𝑒𝑗⟩

= ∑
𝑛

𝑗,𝑘=1
𝑥𝑗𝑥𝑘⟨𝑇 𝑒𝑘, 𝑒𝑗⟩

= ∑
𝑛

𝑗,𝑘=1

𝑥𝑗𝑥𝑘

𝑗 + 𝑘 − 1

= ∑
𝑛

𝑗,𝑘=1
𝑥𝑗𝑥𝑘 ∫

1

0
𝑡𝑗+𝑘−2 d𝑡

= ∫
1

0
∑

𝑛

𝑗,𝑘=1
𝑥𝑗𝑥𝑘𝑡𝑗+𝑘−2 d𝑡

= ∫
1

0
(∑

𝑛

𝑗=1
𝑥𝑗𝑡𝑗−1)(∑

𝑛

𝑘=1
𝑥𝑘𝑡𝑘−1) d𝑡

= ∫
1

0
(∑

𝑛

𝑗=1
𝑥𝑗𝑡𝑗−1)(∑

𝑛

𝑘=1
𝑥𝑘𝑡𝑘−1) d𝑡

= ∫
1

0
|∑

𝑛

𝑘=1
𝑥𝑘𝑡𝑘−1|

2

d𝑡.

Observe that the integrand above is a non-negative and continuous function [0, 1] → 𝐑. It
follows that the integral is non-negative and vanishes if and only if

|∑
𝑛

𝑘=1
𝑥𝑘𝑡𝑘−1|

2

= 0 for all 𝑡 ∈ [0, 1] ⇔ ∑
𝑛

𝑘=1
𝑥𝑘𝑡𝑘−1 = 0 for all 𝑡 ∈ [0, 1]

⇔ 𝑥𝑘 = 0 for all 𝑘 ∈ {1, …, 𝑛} ⇔ 𝑣 = 0.

Thus ⟨𝑇 𝑣, 𝑣⟩ ≥ 0 for every 𝑣 ∈ 𝑉  and ⟨𝑇 𝑣, 𝑣⟩ = 0 if and only if 𝑣 = 0; it follows from Lem-
ma L.11 that 𝑇  is an invertible positive operator.

Exercise 7.C.22. Suppose 𝑇 ∈ ℒ(𝑉 ) is a positive operator and 𝑢 ∈ 𝑉  is such that 
‖𝑢‖ = 1 and ‖𝑇𝑢‖ ≥ ‖𝑇𝑣‖ for all 𝑣 ∈ 𝑉  with ‖𝑣‖ = 1. Show that 𝑢 is an eigenvector of 𝑇
corresponding to the largest eigenvalue of 𝑇 .

Solution. Suppose 0 ≤ 𝜆1 < ⋯ < 𝜆𝑛 are the distinct eigenvalues of 𝑇 ; each 𝜆𝑘 is a non-
negative real number by 7.38(b). Exercise 7.B.14/Exercise 7.B.15 shows that

𝑉 = 𝐸(𝜆1, 𝑇 ) ⊕ ⋯ ⊕ 𝐸(𝜆𝑛, 𝑇 )
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and that all pairs of eigenvectors of 𝑇  corresponding to distinct eigenvalues are orthogonal.
Suppose that 𝑢 = 𝑣1 + ⋯ + 𝑣𝑛 where each 𝑣𝑘 ∈ 𝐸(𝜆𝑘, 𝑇 ). It follows from the Pythagorean
theorem that 1 = ‖𝑢‖2 = ‖𝑣1‖

2 + ⋯ + ‖𝑣𝑛‖2 and hence that

‖𝑇𝑢‖2 = 𝜆2
1‖𝑣1‖

2 + ⋯ + 𝜆2
𝑛‖𝑣𝑛‖2 ≤ 𝜆2

𝑛(‖𝑣1‖
2 + ⋯ + ‖𝑣𝑛‖2) = 𝜆2

𝑛.

Letting 𝑤 be a unit eigenvector corresponding to the eigenvalue 𝜆𝑛, our hypothesis implies
that 𝜆2

𝑛 = ‖𝑇𝑤‖2 ≤ ‖𝑇𝑢‖2. Thus ‖𝑇𝑢‖2 = 𝜆2
𝑛, which gives us

‖𝑇𝑢‖2 = 𝜆2
𝑛 ⇔ 𝜆2

1‖𝑣1‖
2 + ⋯ + 𝜆2

𝑛(‖𝑣𝑛‖2 − 1) = 0.

Note that if 𝜆𝑛 = 0 then 𝑇  must be the zero operator and the desired result is clear. If 𝜆𝑛 ≠ 0
then the equation above shows that ‖𝑣𝑛‖2 = 1; combining this with 1 = ‖𝑣1‖

2 + ⋯ + ‖𝑣𝑛‖2

shows that 𝑣1 = ⋯ = 𝑣𝑛−1 = 0 and hence that 𝑢 = 𝑣𝑛 ∈ 𝐸(𝜆𝑛, 𝑇 ), as desired.

Exercise 7.C.23. For 𝑇 ∈ ℒ(𝑉 ) and 𝑢, 𝑣 ∈ 𝑉 , define ⟨𝑢, 𝑣⟩𝑇  by ⟨𝑢, 𝑣⟩𝑇 = ⟨𝑇𝑢, 𝑣⟩.

(a) Suppose 𝑇 ∈ ℒ(𝑉 ). Prove that ⟨⋅, ⋅⟩𝑇  is an inner product on 𝑉  if and only if 𝑇  is
an invertible positive operator (with respect to the original inner product ⟨⋅, ⋅⟩).

(b) Prove that every inner product on 𝑉  is of the form ⟨⋅, ⋅⟩𝑇  for some positive invert-
ible operator 𝑇 ∈ ℒ(𝑉 ).

Solution.

(a) Suppose that 𝑇  is an invertible positive operator. We must verify each property of
definition 6.2.

Positivity. For any 𝑣 ∈ 𝑉  we have ⟨𝑣, 𝑣⟩𝑇 = ⟨𝑇𝑣, 𝑣⟩ ≥ 0 by the positivity of 𝑇 .

Definiteness. We have ⟨0, 0⟩𝑇 = ⟨𝑇 (0), 0⟩ = 0, and for 𝑣 ≠ 0 we have

⟨𝑣, 𝑣⟩𝑇 = ⟨𝑇𝑣, 𝑣⟩ > 0

by Lemma L.11.

Additivity in first slot. For 𝑢, 𝑣, 𝑤 ∈ 𝑉  we have

⟨𝑢 + 𝑣, 𝑤⟩𝑇 = ⟨𝑇 (𝑢 + 𝑣), 𝑤⟩ = ⟨𝑇𝑢 + 𝑇𝑣, 𝑤⟩ = ⟨𝑇𝑢, 𝑤⟩ + ⟨𝑇𝑣, 𝑤⟩ = ⟨𝑢, 𝑤⟩𝑇 + ⟨𝑣, 𝑤⟩𝑇 .

Homoegeneity in first slot. For 𝑢, 𝑣 ∈ 𝑉  and 𝜆 ∈ 𝐅 we have

⟨𝜆𝑢, 𝑣⟩𝑇 = ⟨𝑇 (𝜆𝑢), 𝑣⟩ = ⟨𝜆𝑇𝑢, 𝑣⟩ = 𝜆⟨𝑇𝑢, 𝑣⟩ = 𝜆⟨𝑢, 𝑣⟩𝑇 .

Conjugate symmetry. For 𝑢, 𝑣 ∈ 𝑉  we have

⟨𝑢, 𝑣⟩𝑇 = ⟨𝑇𝑢, 𝑣⟩ = ⟨𝑣, 𝑇𝑢⟩ = ⟨𝑇𝑣, 𝑢⟩ = ⟨𝑣, 𝑢⟩𝑇 ,

where we have used that 𝑇  is self-adjoint for the third equality.

Thus ⟨⋅, ⋅⟩𝑇  is an inner product on 𝑉 .

Now suppose that ⟨⋅, ⋅⟩𝑇  is an inner product on 𝑉  and let 𝑢, 𝑣 ∈ 𝑉  be given. Observe
that
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⟨𝑇𝑢, 𝑣⟩ = ⟨𝑢, 𝑣⟩𝑇 = ⟨𝑣, 𝑢⟩𝑇 = ⟨𝑇𝑣, 𝑢⟩ = ⟨𝑢, 𝑇 𝑣⟩.

Thus 𝑇  is self-adjoint. Furthermore, for any 𝑣 ∈ 𝑉 ,

⟨𝑇 𝑣, 𝑣⟩ = ⟨𝑣, 𝑣⟩𝑇 ≥ 0.

Thus 𝑇  is a positive operator. Finally, for 𝑣 ≠ 0,

⟨𝑇 𝑣, 𝑣⟩ = ⟨𝑣, 𝑣⟩𝑇 > 0.

It follows from Lemma L.11 that 𝑇  is invertible.

(b) Let ⟨⋅, ⋅⟩1 be the original inner product on 𝑉  and let ⟨⋅, ⋅⟩2 be an arbitrary inner prod-
uct on 𝑉 ; we need to show that there exists an invertible operator 𝑇 ∈ ℒ(𝑉 ) which is
positive with respect to ⟨⋅, ⋅⟩1 such that ⟨𝑢, 𝑣⟩2 = ⟨𝑇𝑢, 𝑣⟩1 for every 𝑢, 𝑣 ∈ 𝑉 .

Let 𝑒1, …, 𝑒𝑛 be an orthonormal basis of 𝑉  with respect to ⟨⋅, ⋅⟩1 and let 𝑓1, …, 𝑓𝑛 be an
orthonormal basis of 𝑉  with respect to ⟨⋅, ⋅⟩2. Define 𝑅 ∈ ℒ(𝑉 ) by 𝑅𝑓𝑘 = 𝑒𝑘 and note
that 𝑅 is invertible since 𝑅 maps a basis to a basis. Now define 𝑇 ∈ ℒ(𝑉 ) by 𝑇 = 𝑅∗𝑅,
where 𝑅∗ is the adjoint of 𝑅 with respect to ⟨⋅, ⋅⟩1. Observe that 𝑇  is invertible by 7.5(f)
and Exercise 3.D.2, and 𝑇  is positive with respect to ⟨⋅, ⋅⟩1 by 7.38(f). Furthermore, for
any 𝑢 = 𝑥1𝑓1 + ⋯ + 𝑥𝑛𝑓𝑛 and 𝑣 = 𝑦1𝑓1 + ⋯ + 𝑦𝑛𝑓𝑛 in 𝑉 , observe that

⟨𝑢, 𝑣⟩2 = 𝑥1𝑦1 + ⋯ + 𝑥𝑛𝑦𝑛 = ⟨𝑅𝑢, 𝑅𝑣⟩1 = ⟨𝑅∗𝑅𝑢, 𝑣⟩1 = ⟨𝑇𝑢, 𝑣⟩1.

Exercise 7.C.24. Suppose 𝑆 and 𝑇  are positive operators on 𝑉 . Prove that

null(𝑆 + 𝑇) = null 𝑆 ∩ null 𝑇 .

Solution. Exercise 7.C.6 shows that 𝑆 + 𝑇  is a positive operator. Observe that

𝑆𝑣 = 0 and 𝑇𝑣 = 0 ⇔ ⟨𝑆𝑣, 𝑣⟩ = 0 and ⟨𝑇𝑣, 𝑣⟩ = 0

⇔ ⟨𝑆𝑣, 𝑣⟩ + ⟨𝑇𝑣, 𝑣⟩ = 0 ⇔ ⟨(𝑆 + 𝑇)𝑣, 𝑣⟩ = 0 ⇔ (𝑆 + 𝑇)𝑣 = 0,

where we have used 7.43 several times. Thus null(𝑆 + 𝑇) = null 𝑆 ∩ null 𝑇 .

Exercise 7.C.25. Let 𝑇  be the second derivative operator in Exercise 31(b) in Section
7A. Show that −𝑇  is a positive operator.

Solution. Define the orthonormal basis ℬ = 𝑣, 𝑒1, …, 𝑒𝑛, 𝑓1, …, 𝑓𝑛 as in Exercise 7.A.31 and
observe that

−𝑇𝑣 = 0, −𝑇𝑒𝑘 = 𝑘2𝑒𝑘, −𝑇𝑓𝑘 = 𝑘2𝑓𝑘.

It follows that the matrix of −𝑇  with respect to ℬ is diagonal with non-negative diagonal
entries; 7.38(c) allows us to conclude that −𝑇  is a positive operator.
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7.D. Isometries, Unitary Operators, and Matrix Factoriza-
tion

Exercise 7.D.1. Suppose dim 𝑉 ≥ 2 and 𝑆 ∈ ℒ(𝑉 , 𝑊). Prove that 𝑆 is an isometry
if and only if 𝑆𝑒1, 𝑆𝑒2 is an orthonormal list in 𝑊  for every orthonormal list 𝑒1, 𝑒2 of
length two in 𝑉 .

Solution. Suppose 𝑆 is an isometry and suppose 𝑒1, 𝑒2 is an orthonormal list in 𝑉 . Let
𝑈 = span(𝑒1, 𝑒2) and note that 𝑒1, 𝑒2 is an orthonormal basis of 𝑈 . Note further that 𝑆|𝑈  is
an isometry; it follows from 7.49(d) that 𝑆𝑒1, 𝑆𝑒2 is an orthonormal list in 𝑊 .

Now suppose that 𝑆𝑒1, 𝑆𝑒2 is an orthonormal list in 𝑊  for every orthonormal list 𝑒1, 𝑒2 in 𝑉 .
Let 𝑒1, 𝑒2, …, 𝑒𝑛 be an orthonormal basis of 𝑉  and let 𝑗 < 𝑘 in {1, …, 𝑛} be given. Since 𝑒𝑗, 𝑒𝑘

is an orthonormal list in 𝑉 , our hypothesis guarantees that 𝑆𝑒𝑗, 𝑆𝑒𝑘 is an orthonormal list
in 𝑉 . Thus ‖𝑆𝑒𝑗‖ = ‖𝑆𝑒𝑘‖ = 1 and ⟨𝑆𝑒𝑗, 𝑆𝑒𝑘⟩ = 0. Because 𝑗 < 𝑘 in {1, …, 𝑛} were arbitrary,
it follows that 𝑆𝑒1, …, 𝑆𝑒𝑛 is an orthonormal list in 𝑊 . We may use 7.49(d) to conclude that
𝑆 is an isometry.

Exercise 7.D.2. Suppose 𝑇 ∈ ℒ(𝑉 , 𝑊). Prove that 𝑇  is a scalar multiple of an isom-
etry if and only if 𝑇  preserves orthogonality.

The phrase “𝑇  preserves orthogonality” means that ⟨𝑇𝑢, 𝑇 𝑣⟩ = 0 for all 𝑢, 𝑣 ∈ 𝑉
such that ⟨𝑢, 𝑣⟩ = 0.

Solution. Suppose that 𝑇 = 𝜆𝑆 for some 𝜆 ∈ 𝐅 and some isometry 𝑆 ∈ ℒ(𝑉 , 𝑊). For any
𝑢, 𝑣 ∈ 𝑉  such that ⟨𝑢, 𝑣⟩ = 0, observe that

⟨𝑇𝑢, 𝑇 𝑣⟩ = ⟨𝜆𝑆𝑢, 𝜆𝑆𝑣⟩ = |𝜆|2⟨𝑆𝑢, 𝑆𝑣⟩ = |𝜆|2⟨𝑢, 𝑣⟩ = 0,

where we have used 7.49(c) for the third equality. Thus 𝑇  preserves orthogonality.

Now suppose that 𝑇  preserves orthogonality. Let 𝑒1, …, 𝑒𝑛 be an orthonormal basis of 𝑉  and
let 𝑘 ∈ {1, …, 𝑛} be given. Using the identity ⟨𝑢 + 𝑣, 𝑢 − 𝑣⟩ = ‖𝑢‖2 − ‖𝑣‖2, observe that

⟨𝑒1 + 𝑒𝑘, 𝑒1 − 𝑒𝑘⟩ = ‖𝑒1‖ − ‖𝑒𝑘‖ = 0 ⇒ ⟨𝑇𝑒1 + 𝑇𝑒𝑘, 𝑇 𝑒1 − 𝑇𝑒𝑘⟩ = ‖𝑇𝑒1‖ − ‖𝑇𝑒𝑘‖ = 0.

Thus, letting 𝜆 = ‖𝑇𝑒1‖, we have 𝜆 = ‖𝑇𝑒𝑘‖ for each 𝑘 ∈ {1, …, 𝑛}. If 𝜆 = 0 then 𝑇 = 0𝐼 , so
that 𝑇  is a scalar multiple of the identity operator, which is certainly an isometry. If 𝜆 ≠ 0
then let 𝑆 = 𝜆−1𝑇 . Observe that, for any distinct 𝑗, 𝑘 ∈ {1, …, 𝑛},

⟨𝑒𝑗, 𝑒𝑘⟩ = 0 ⇒ ⟨𝑇𝑒𝑗, 𝑇 𝑒𝑘⟩ = 0 ⇔ ⟨𝜆𝑆𝑒𝑗, 𝜆𝑆𝑒𝑘⟩ = 0 ⇔ |𝜆|2⟨𝑆𝑒𝑗, 𝑆𝑒𝑘⟩ = 0.

Since 𝜆 ≠ 0, this last equation implies that ⟨𝑆𝑒𝑗, 𝑆𝑒𝑘⟩ = 0. Furthermore, using that 𝜆 is a
non-negative real number,

‖𝑆𝑒𝑘‖ = 𝜆−1‖𝑇 𝑒𝑘‖ = 1.
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Thus 𝑆𝑒1, …, 𝑆𝑒𝑛 is an orthonormal list in 𝑊 . It follows from 7.49(d) that 𝑆 is an isometry
and hence that 𝑇 = 𝜆𝑆 is a scalar multiple of an isometry.

Exercise 7.D.3.

(a) Show that the product of two unitary operators on 𝑉  is a unitary operator.

(b) Show that the inverse of a unitary operator on 𝑉  is a unitary operator.

This exercise shows that the set of unitary operators on 𝑉  is a group, where the group
operation is the usual product of two operators.

Solution.

(a) Suppose 𝑆, 𝑇 ∈ ℒ(𝑉 ) are unitary operators. For any 𝑣 ∈ 𝑉 , observe that

‖𝑆𝑇𝑣‖ = ‖𝑆𝑣‖ = ‖𝑣‖.

Thus 𝑆𝑇  is a unitary operator.

(b) Suppose that 𝑆 ∈ ℒ(𝑉 ) is a unitary operator. For any 𝑣 ∈ 𝑉  we have 𝑣 = 𝑆𝑢 for some
𝑢 ∈ 𝑉 . It follows that

‖𝑆−1𝑣‖ = ‖𝑢‖ = ‖𝑆𝑢‖ = ‖𝑣‖.

Thus 𝑆−1 is a unitary operator.

Exercise 7.D.4. Suppose 𝐅 = 𝐂 and 𝐴, 𝐵 ∈ ℒ(𝑉 ) are self-adjoint. Show that 𝐴 + 𝑖𝐵
is unitary if and only if 𝐴𝐵 = 𝐵𝐴 and 𝐴2 + 𝐵2 = 𝐼 .

Solution. Suppose 𝐴 + 𝑖𝐵 is unitary. It follows from 7.53(f) that (𝐴 + 𝑖𝐵)∗ = 𝐴 − 𝑖𝐵 is also
unitary. Thus, for any 𝑣 ∈ 𝑉 ,

‖𝐴𝑣‖2 + ‖𝐵𝑣‖2 + 𝑖(⟨(𝐴𝐵 − 𝐵𝐴)𝑣, 𝑣⟩) = ‖𝐴𝑣 + 𝑖𝐵𝑣‖2 = ‖𝑣‖2,

‖𝐴𝑣‖2 + ‖𝐵𝑣‖2 − 𝑖(⟨(𝐴𝐵 − 𝐵𝐴)𝑣, 𝑣⟩) = ‖𝐴𝑣 − 𝑖𝐵𝑣‖2 = ‖𝑣‖2.

Subtracting the latter of these equations from the former, we see that

⟨(𝐴𝐵 − 𝐵𝐴)𝑣, 𝑣⟩ = 0

for every 𝑣 ∈ 𝑉 . It follows from 7.13 that 𝐴𝐵 = 𝐵𝐴. We can now use 7.53(c) to see that

𝐼 = (𝐴 + 𝑖𝐵)∗(𝐴 + 𝑖𝐵) = (𝐴 − 𝑖𝐵)(𝐴 + 𝑖𝐵) = 𝐴2 + 𝐵2 + 𝑖(𝐴𝐵 − 𝐵𝐴) = 𝐴2 + 𝐵2.

If 𝐴𝐵 = 𝐵𝐴 and 𝐴2 + 𝐵2 = 𝐼 then

(𝐴 + 𝑖𝐵)∗(𝐴 − 𝑖𝐵) = (𝐴 − 𝑖𝐵)(𝐴 + 𝑖𝐵) = 𝐴2 + 𝐵2 + 𝑖(𝐴𝐵 − 𝐵𝐴) = 𝐼.

Thus, by 7.49(b), 𝐴 + 𝑖𝐵 is unitary.
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Exercise 7.D.5. Suppose 𝑆 ∈ ℒ(𝑉 ). Prove that the following are equivalent.

(a) 𝑆 is a self-adjoint unitary operator.

(b) 𝑆 = 2𝑃 − 𝐼 for some orthogonal projection 𝑃  on 𝑉 .

(c) There exists a subspace 𝑈  of 𝑉  such that 𝑆𝑢 = 𝑢 for every 𝑢 ∈ 𝑈  and 𝑆𝑤 = −𝑤
for every 𝑤 ∈ 𝑈⟂.

Solution. Suppose that (a) holds, i.e. suppose that 𝑆 is a self-adjoint unitary operator. Let
𝑃 = 1

2(𝑆 + 𝐼) and notice that 𝑃  is self-adjoint and that 𝑆 = 2𝑃 − 𝐼 . Notice further that, by
7.53(b), 𝑆2 = 𝐼 ; it follows that

𝑃 2 =
𝑆2 + 2𝑆 + 𝐼

4
=

𝑆 + 𝐼
2

= 𝑃 .

We may now invoke Exercise 7.A.20 to see that 𝑃  is an orthogonal projection. Thus (b) holds.

Suppose that (b) holds, so that there is some subspace 𝑈  of 𝑉  such that 𝑆 = 2𝑃𝑈 − 𝐼 . For
any 𝑢 ∈ 𝑈  and any 𝑤 ∈ 𝑈⟂ it follows that

𝑆𝑢 = 2𝑃𝑈𝑢 − 𝑢 = 𝑢 and 𝑆𝑤 = 2𝑃𝑈𝑤 − 𝑤 = −𝑤,

where we have used 6.57. Thus (c) holds.

Suppose that (c) holds, i.e. suppose there exists a subspace 𝑈  of 𝑉  such that 𝑆𝑢 = 𝑢 for
every 𝑢 ∈ 𝑈  and 𝑆𝑤 = −𝑤 for every 𝑤 ∈ 𝑈⟂. Let 𝑣1 = 𝑢1 + 𝑤1 and 𝑣2 = 𝑢2 + 𝑤2 in 𝑉  be
given, where 𝑢1, 𝑢2 ∈ 𝑈  and 𝑤1, 𝑤2 ∈ 𝑈⟂. Observe that

⟨𝑆𝑣1, 𝑣2⟩ = ⟨𝑢1 − 𝑤1, 𝑢2 + 𝑤2⟩ = ⟨𝑢1, 𝑢2⟩ − ⟨𝑤1, 𝑤2⟩ = ⟨𝑢1 + 𝑤1, 𝑢2 − 𝑤2⟩ = ⟨𝑆𝑣1, 𝑣2⟩.

Thus 𝑆 is self-adjoint. Furthermore,

𝑆2𝑣1 = 𝑆(𝑆(𝑢1 + 𝑤1)) = 𝑆(𝑢1 − 𝑤1) = 𝑢1 + 𝑤1 = 𝑣1.

Thus 𝑆 is its own inverse. Combining this with the fact that 𝑆 is self-adjoint and 7.53(c),
we see that 𝑆 is a self-adjoint unitary operator, i.e. (a) holds.

Exercise 7.D.6. Suppose 𝑇1, 𝑇2 are both normal operators on 𝐅3 with 2, 5, 7 as eigen-
values. Prove that there exists a unitary operator 𝑆 ∈ ℒ(𝐅3) such that 𝑇1 = 𝑆∗𝑇2𝑆.

Solution. Let 𝜆1 = 2, 𝜆2 = 5, 𝜆3 = 7, and let 𝑒1, 𝑒2, 𝑒3, 𝑓1, 𝑓2, 𝑓3 ∈ 𝑉  be such that

𝑇1𝑒𝑘 = 𝜆𝑘𝑒𝑘 and 𝑇2𝑓𝑘 = 𝜆𝑘𝑓𝑘.

Without loss of generality, we may assume that each 𝑒𝑘 and each 𝑓𝑘 is a unit vector. Com-
bining this with 7.22, we see that each list 𝑒1, 𝑒2, 𝑒3 and 𝑓1, 𝑓2, 𝑓3 is an orthonormal basis
of 𝐅3. Define 𝑆 ∈ ℒ(𝑉 ) by 𝑆𝑒𝑘 = 𝑓𝑘 and note that 𝑆 is a unitary operator by 7.53(d). Note
further that

𝑆∗𝑇2𝑆𝑒𝑘 = 𝑆∗𝑇2𝑓𝑘 = 𝜆𝑘𝑆∗𝑓𝑘 = 𝜆𝑘𝑒𝑘 = 𝑇1𝑒𝑘,
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where we have used that 𝑆∗ = 𝑆−1, which holds by 7.53(c). Thus 𝑇1 = 𝑆∗𝑇2𝑆.

Exercise 7.D.7. Give an example of two self-adjoint operators 𝑇1, 𝑇2 ∈ ℒ(𝐅4) such
that the eigenvalues of both operators are 2, 5, 7 but there does not exist a unitary
operator 𝑆 ∈ ℒ(𝐅4) such that 𝑇1 = 𝑆∗𝑇2𝑆. Be sure to explain why there is no unitary
operator with the required property.

Solution. Let 𝑇1 and 𝑇2 be the operators on 𝐅4 whose matrices with respect to the standard
basis of 𝐅4 are

⎝
⎜⎜
⎜⎜
⎛2

0
0
0

0
2
0
0

0
0
5
0

0
0
0
7⎠
⎟⎟
⎟⎟
⎞

and

⎝
⎜⎜
⎜⎜
⎛2

0
0
0

0
5
0
0

0
0
5
0

0
0
0
7⎠
⎟⎟
⎟⎟
⎞

.

Since these matrices are diagonal and the standard basis of 𝐅4 is orthonormal, we see that 
𝑇1 and 𝑇2 are self-adjoint and that their eigenvalues are precisely 2, 5, 7. If there was an
isometry 𝑆 ∈ ℒ(𝐅4) such that 𝑇1 = 𝑆∗𝑇2𝑆 then since 𝑆∗𝑆 = 𝐼 (by 7.42), we would have

𝑇1 − 2𝐼 = 𝑆∗𝑇2𝑆 − 2𝐼 = 𝑆∗(𝑇2 − 2𝐼)𝑆.

It would then follow from Exercise 3.D.8 that dim null(𝑇1 − 2𝐼) = dim null(𝑇2 − 2𝐼). How-
ever, from the matrices of 𝑇1 and 𝑇2 above we can see that

dim null(𝑇1 − 2𝐼) = 2 ≠ 1 = dim null(𝑇2 − 2𝐼).

Exercise 7.D.8. Prove or give a counterexample: If 𝑆 ∈ ℒ(𝑉 ) and there exists an or-
thonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉  such that ‖𝑆𝑒𝑘‖ = 1 for each 𝑒𝑘, then 𝑆 is a unitary
operator.

Solution. This is false. Let 𝑒1, 𝑒2 be the standard orthonormal basis of 𝐑2 and let 𝑆 ∈ ℒ(𝐑2)
be given by 𝑆𝑒1 = 𝑆𝑒2 = 𝑒1. Observe that ‖𝑆𝑒1‖ = ‖𝑆𝑒2‖ = ‖𝑒1‖ = 1, but 𝑆 is not a unitary
operator because 𝑆 is not injective.

Exercise 7.D.9. Suppose 𝐅 = 𝐂 and 𝑇 ∈ ℒ(𝑉 ). Suppose every eigenvalue of 𝑇  has
absolute value 1 and ‖𝑇 𝑣‖ ≤ ‖𝑣‖ for every 𝑣 ∈ 𝑉 . Prove that 𝑇  is a unitary operator.

Solution. By Schur’s theorem (6.38) there is an orthonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉  with
respect to which 𝐴 ≔ ℳ(𝑇 , (𝑒1, …, 𝑒𝑛)) is upper-triangular. Note that |𝐴𝑗,𝑗| = 1 for each
𝑗 ∈ {1, …, 𝑛} since each diagonal entry of 𝐴 is an eigenvalue of 𝑇 . For any 𝑘 ∈ {2, …, 𝑛} it
follows that

∑
𝑘

𝑗=1
|𝐴𝑗,𝑘|2 = 1 + ∑

𝑘−1

𝑗=1
|𝐴𝑗,𝑘|2 = ‖𝑇𝑒𝑘‖2 ≤ ‖𝑒𝑘‖2 = 1.
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Thus ∑𝑘−1
𝑗=1 |𝐴𝑗,𝑘|2 = 0, which gives us 𝐴1,𝑘 = ⋯ = 𝐴𝑘−1,𝑘 = 0. Hence 𝐴 is a diagonal matrix,

i.e. 𝑒1, …, 𝑒𝑛 is an orthonormal basis of 𝑉  consisting of eigenvectors of 𝑇 . By assumption
each eigenvalue of 𝑇  has absolute value 1 and thus, by 7.55, 𝑇  is a unitary operator.

Exercise 7.D.10. Suppose 𝐅 = 𝐂 and 𝑇 ∈ ℒ(𝑉 ) is a self-adjoint operator such that 
‖𝑇 𝑣‖ ≤ ‖𝑣‖ for all 𝑣 ∈ 𝑉 .

(a) Show that 𝐼 − 𝑇 2 is a positive operator.

(b) Show that 𝑇 + 𝑖
√

𝐼 − 𝑇 2 is a unitary operator.

Solution.

(a) For any 𝑣 ∈ 𝑉  observe that

⟨(𝐼 − 𝑇 2)𝑣, 𝑣⟩ = ⟨𝑣 − 𝑇 2𝑣, 𝑣⟩ = ⟨𝑣, 𝑣⟩ − ⟨𝑇 2𝑣, 𝑣⟩

= ⟨𝑣, 𝑣⟩ − ⟨𝑇𝑣, 𝑇 𝑣⟩ = ‖𝑣‖2 − ‖𝑇𝑣‖2 ≥ 0.

Thus 𝐼 − 𝑇 2 is a positive operator.

(b) Let us prove the following lemma.

Lemma L.12. If 𝑆 ∈ ℒ(𝑉 ) is positive and 𝑇 ∈ ℒ(𝑉 ) is such that 𝑆𝑇 = 𝑇𝑆, then√
𝑆𝑇 = 𝑇

√
𝑆.

Proof. By Exercise 7.C.17 there is a polynomial 𝑝 ∈ 𝒫(𝐑) such that 
√

𝑆 = 𝑝(𝑆).
Because 𝑆 and 𝑇  commute, we can argue as in Exercise 7.B.12 to see that 

√
𝑆

and 𝑇  commute. □

A straightforward calculation (or 5.17) shows that 𝑇  and 𝐼 − 𝑇 2 commute. It follows
from Lemma L.12 that 𝑇  and 

√
𝐼 − 𝑇 2 commute. Observe that

𝑇 2 + (
√

𝐼 − 𝑇 2)
2

= 𝐼.

Thus, by Exercise 7.D.4, 𝑇 + 𝑖
√

𝐼 − 𝑇 2 is a unitary operator.

Exercise 7.D.11. Suppose 𝑆 ∈ ℒ(𝑉 ). Prove that 𝑆 is a unitary operator if and only if

{𝑆𝑣 : 𝑣 ∈ 𝑉 and ‖𝑣‖ ≤ 1} = {𝑣 ∈ 𝑉 : ‖𝑣‖ ≤ 1}.

Solution. Let 𝑋 = {𝑆𝑣 : 𝑣 ∈ 𝑉 and ‖𝑣‖ ≤ 1} and 𝑌 = {𝑣 ∈ 𝑉 : ‖𝑣‖ ≤ 1}, so that our goal is
to show that 𝑆 is a unitary operator if and only if 𝑋 = 𝑌 .

Suppose that 𝑆 is a unitary operator. If 𝑆𝑣 ∈ 𝑋 for some 𝑣 ∈ 𝑉  such that ‖𝑣‖ ≤ 1, then
observe that ‖𝑆𝑣‖ = ‖𝑣‖ ≤ 1; it follows that 𝑆𝑣 ∈ 𝑌  and hence that 𝑋 ⊆ 𝑌 . Now suppose 
𝑣 ∈ 𝑌 , so that ‖𝑣‖ ≤ 1, and note that 𝑆 is invertible and that 𝑆−1 is an isometry by 7.53. It
follows that
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𝑣 = 𝑆(𝑆−1𝑣) and ‖𝑆−1𝑣‖ = ‖𝑣‖ ≤ 1.

Thus 𝑣 ∈ 𝑋, so that 𝑌 ⊆ 𝑋. We may conclude that 𝑋 = 𝑌 .

Now suppose that 𝑆 is not unitary. If 𝑆 is not invertible then 𝑆 is not surjective and thus
there exists some necessarily non-zero 𝑤 ∉ range 𝑆, which implies ‖𝑤‖−1𝑤 ∉ range 𝑆. Thus 
‖𝑤‖−1𝑤 ∈ 𝑌  but ‖𝑤‖−1𝑤 ∉ 𝑋, so that 𝑋 ≠ 𝑌 . Suppose that 𝑆 is invertible. Because 𝑆 is
not unitary, there must exist some 𝑣 ∈ 𝑉  such that ‖𝑆𝑣‖ ≠ ‖𝑣‖; note that 𝑣 must be non-
zero. By replacing 𝑣 with ‖𝑣‖−1𝑣 if necessary, we may assume that ‖𝑣‖ = 1. Consider the
following cases.

Case 1. If ‖𝑆𝑣‖ > 1 then 𝑆𝑣 ∈ 𝑋 but 𝑆𝑣 ∉ 𝑌 . Thus 𝑋 ≠ 𝑌 .

Case 2. If ‖𝑆𝑣‖ < 1 then note that ‖𝑆𝑣‖ ≠ 0 since 𝑣 ≠ 0 and 𝑆 is injective. Let 𝑢 = ‖𝑆𝑣‖−1𝑆𝑣,
so that 𝑢 ∈ 𝑌 . We claim that 𝑢 ∉ 𝑋. Indeed, if 𝑢 ∈ 𝑋 then 𝑢 = 𝑆𝑤 for some 𝑤 ∈ 𝑉  such
that ‖𝑤‖ ≤ 1. It follows from the injectivity of 𝑆 that

𝑆𝑣
‖𝑆𝑣‖

= 𝑆𝑤 ⇒ 𝑣 = ‖𝑆𝑣‖𝑤 ⇒ ‖𝑣‖ = ‖𝑆𝑣‖‖𝑤‖ < 1,

contradicting that ‖𝑣‖ = 1. Thus 𝑢 ∉ 𝑋, so that 𝑋 ≠ 𝑌 .

In any case, we have shown that if 𝑆 is not unitary then 𝑋 ≠ 𝑌 . We may conclude that 𝑆
is a unitary operator if and only if 𝑋 = 𝑌 .

Exercise 7.D.12. Prove or give a counterexample: If 𝑆 ∈ ℒ(𝑉 ) is invertible and 
‖𝑆−1𝑣‖ = ‖𝑆𝑣‖ for every 𝑣 ∈ 𝑉 , then 𝑆 is unitary.

Solution. This is false. For a counterexample, consider the operator 𝑆 ∈ ℒ(𝐂2) whose ma-
trix with respect to the standard basis of 𝐂2 is

( 𝑖
√

2

√
2

−𝑖
).

A calculation shows that 𝑆 is its own inverse, so that ‖𝑆−1𝑣‖ = ‖𝑆𝑣‖ for every 𝑣 ∈ 𝑉 . How-
ever, observe that

‖𝑆(1, 0)‖ = ‖(𝑖,
√

2)‖ =
√

3 ≠ 1 = ‖(1, 0)‖.

Thus 𝑆 is not a unitary operator.

Exercise 7.D.13. Explain why the columns of a square matrix of complex numbers
form an orthonormal list in 𝐂𝑛 if and only if the rows of the matrix form an orthonormal
list in 𝐂𝑛.

Solution. Suppose 𝐴 ∈ 𝐂𝑛,𝑛 and let 𝑆 ∈ ℒ(𝐂𝑛) be such that 𝐴 is the matrix of 𝑆 with
respect to the standard orthonormal basis of 𝐂𝑛. Observe that
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the columns of 𝐴 form an orthonormal list in 𝐂𝑛

⇔ 𝑆 is unitary ⇔ the rows of 𝐴 form an orthonormal list in 𝐂𝑛;

the first equivalence is 7.49(e) and the second equivalence is 7.53(e).

Exercise 7.D.14. Suppose 𝑣 ∈ 𝑉  with ‖𝑣‖ = 1 and 𝑏 ∈ 𝐅. Also suppose dim 𝑉 ≥ 2.
Prove that there exists a unitary operator 𝑆 ∈ ℒ(𝑉 ) such that ⟨𝑆𝑣, 𝑣⟩ = 𝑏 if and only if
|𝑏| ≤ 1.

Solution. If there exists such a unitary operator then, using the Cauchy-Schwarz inequality,

|𝑏| = |⟨𝑆𝑣, 𝑣⟩| ≤ ‖𝑆𝑣‖‖𝑣‖ = ‖𝑣‖2 ≤ 1.

Now suppose that |𝑏| ≤ 1. Let 𝑒1 = 𝑣 and extend this to an orthonormal basis 𝑒1, 𝑒2, …, 𝑒𝑛

of 𝑉 . Define 𝑆 ∈ ℒ(𝑉 ) by

𝑆𝑒1 = 𝑏𝑒1 + √1 − |𝑏|2𝑒2, 𝑆𝑒2 = −√1 − |𝑏|2𝑒1 + 𝑏𝑒2, 𝑆𝑒𝑘 = 𝑒𝑘 for 𝑘 > 2.

Given that 𝑒1, 𝑒2, …, 𝑒𝑛 is an orthonormal basis of 𝑉 , some straightforward calculations show
that 𝑆𝑒1, 𝑆𝑒2, …, 𝑆𝑒𝑛 is also an orthonormal basis of 𝑉 . Thus 𝑆 is a unitary operator by
7.53(d). Furthermore,

⟨𝑆𝑣, 𝑣⟩ = ⟨𝑏𝑒1 + √1 − |𝑏|2𝑒2, 𝑒1⟩ = 𝑏‖𝑒‖2 = 𝑏.

Exercise 7.D.15. Suppose 𝑇  is a unitary operator on 𝑉  such that 𝑇 − 𝐼 is invertible.

(a) Prove that (𝑇 + 𝐼)(𝑇 − 𝐼)−1 is a skew operator (meaning that it equals the nega-
tive of its adjoint).

(b) Prove that if 𝐅 = 𝐂, then 𝑖(𝑇 + 𝐼)(𝑇 − 𝐼)−1 is a self-adjoint operator.

The function 𝑧 ↦ 𝑖(𝑧 + 1)(𝑧 − 1)−1 maps the unit circle in 𝐂 (except for the point 1)
to 𝐑. Thus (b) illustrates the analogy between the unitary operators and the unit circle
in 𝐂, along with the analogy between the self-adjoint operators and 𝐑.

Solution.

(a) Using that 𝑇 ∗𝑇 = 𝑇𝑇 ∗ = 𝐼 , which holds by 7.53(b), observe that
[(𝑇 + 𝐼)(𝑇 − 𝐼)−1]∗ = 𝑅∗𝑅(𝑇 − 𝑇 ∗),

− (𝑇 + 𝐼)(𝑇 − 𝐼)−1 = (𝑇 − 𝑇 ∗)𝑅∗𝑅,
(1)

where 𝑅 = (𝑇 − 𝐼)−1. Observe further that

(𝑅∗𝑅)−1𝑇 = (2𝐼 − 𝑇 − 𝑇 ∗)𝑇 = 𝑇(2𝐼 − 𝑇 − 𝑇 ∗) = 𝑇 (𝑅∗𝑅)−1.

Since 𝑇 −1 = 𝑇 ∗ (by 7.53(c)), taking the inverse of both sides of the equation 
(𝑅∗𝑅)−1𝑇 = 𝑇(𝑅∗𝑅)−1 shows that (𝑅∗𝑅)𝑇 ∗ = 𝑇 ∗(𝑅∗𝑅). Hence 𝑅∗𝑅 commutes with 
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𝑇 ∗, and we can similarly show that 𝑅∗𝑅 commutes with 𝑇 . Thus 𝑅∗𝑅 commutes with
𝑇 − 𝑇 ∗. It follows from the expressions in (1) that

[(𝑇 + 𝐼)(𝑇 − 𝐼)−1]∗ = −(𝑇 + 𝐼)(𝑇 − 𝐼)−1.

(b) Using part (a) and 7.5(b), we have

[𝑖(𝑇 + 𝐼)(𝑇 − 𝐼)−1]∗ = (−𝑖)[−(𝑇 + 𝐼)(𝑇 − 𝐼)−1] = 𝑖(𝑇 + 𝐼)(𝑇 − 𝐼)−1.

Exercise 7.D.16. Suppose 𝐅 = 𝐂 and 𝑇 ∈ ℒ(𝑉 ) is self-adjoint. Prove that

(𝑇 + 𝑖𝐼)(𝑇 − 𝑖𝐼)−1

is a unitary operator and 1 is not an eigenvalue of this operator.

Solution. Let 𝑄 = (𝑇 + 𝑖𝐼)(𝑇 − 𝑖𝐼)−1. The complex spectral theorem (7.31) guarantees the
existence of an orthonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉  such that 𝑇𝑒𝑘 = 𝜆𝑘𝑒𝑘 for some eigenvalues
𝜆1, …, 𝜆𝑛, which must be real since 𝑇  is self-adjoint. For each 𝑘 ∈ {1, …, 𝑛} a routine calcu-
lation shows that

𝑄𝑒𝑘 =
𝜆𝑘 + 𝑖
𝜆𝑘 − 𝑖

𝑒𝑘 and |
𝜆𝑘 + 𝑖
𝜆𝑘 − 𝑖

| = 1.

Thus, by 7.55, 𝑄 is a unitary operator. Now observe that for any 𝑣 ∈ 𝑉 ,

𝑄𝑣 = 𝑣 ⇒ 𝑄∗𝑣 = 𝑣 ⇒ (𝑇 − 𝑖𝐼)𝑣 = (𝑇 + 𝑖𝐼)𝑣 ⇒ 2𝑖𝑣 = 0 ⇒ 𝑣 = 0.

Thus 1 is not an eigenvalue of 𝑄.

Exercise 7.D.17. Explain why the characterization of unitary matrices given by 7.57
holds.

Solution. Let 𝑄 ∈ 𝐅𝑛,𝑛 be a matrix and let 𝑆 ∈ ℒ(𝐅𝑛) be such that 𝑄 is the matrix of 𝑆
with respect to the standard orthonormal basis of 𝐅𝑛. By definition, 𝑄 is a unitary matrix
if and only if 7.49(e) holds (we are taking both orthonormal bases 𝑒1, …, 𝑒𝑛 and 𝑓1, …, 𝑓𝑚 in
the statement of 7.49 to be the standard orthonormal basis of 𝐅𝑛). Observe that

7.57(a) ⇔ 7.49(e) ⇔ 7.49(a) ⇔ 7.53(a) ⇔ 7.53(e) ⇔ 7.57(b).

Thus 7.57(a) and 7.57(b) are equivalent. After identifying elements of 𝐅𝑛 with column vec-
tors, i.e. 𝑛-by-1 matrices, note that ‖𝑄𝑣‖ = ‖𝑆𝑣‖ for any 𝑣 ∈ 𝐅𝑛. As noted before, 𝑄 is a
unitary matrix if and only if 𝑆 is a unitary operator. The equivalence of 7.57(a) and 7.57(c)
is now immediate from the definition of a unitary operator. Finally, by 7.9, the matrix of 𝑆∗

is 𝑄∗. The equivalence of 7.57(a) and 7.57(d) then follows from the equivalence of 7.53(a)
and 7.53(b).
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Exercise 7.D.18. A square matrix 𝐴 is called symmetric if it equals its transpose.
Prove that if 𝐴 is a symmetric matrix with real entries, then there exists a unitary
matrix 𝑄 with real entries such that 𝑄∗𝐴𝑄 is a diagonal matrix.

Solution. Suppose 𝐴 ∈ 𝐑𝑛,𝑛 and let 𝑒1, …, 𝑒𝑛 be the standard orthonormal basis of 𝐑𝑛. Let
𝑇 ∈ ℒ(𝐑𝑛) be such that ℳ(𝑇 , (𝑒1, …, 𝑒𝑛)) = 𝐴. By assumption 𝐴 = 𝐴t and thus 𝑇  is self-
adjoint. It follows from the real spectral theorem (7.29) that there exists an orthonormal
basis 𝑓1, …, 𝑓𝑛 of 𝐑𝑛 such that 𝐷 ≔ ℳ(𝑇 , (𝑓1, …, 𝑓𝑛)) is diagonal. Let

𝑄 = ℳ(𝐼, (𝑓1, …, 𝑓𝑛), (𝑒1, …, 𝑒𝑛)).

Certainly the identity operator on 𝐑𝑛 is an isometry. It follows from the equivalence of
7.49(a) and 7.49(e) that 𝑄 is a unitary matrix. On one hand, 7.57 shows that 𝑄−1 = 𝑄∗. On
the other hand, 3.82 shows that

𝑄−1 = ℳ(𝑇 , (𝑒1, …, 𝑒𝑛), (𝑓1, …, 𝑓𝑛)).

Thus, using the change-of-basis formula (3.84), we have that 𝑄∗𝐴𝑄 = 𝐷 is diagonal.

Exercise 7.D.19. Suppose 𝑛 is a positive integer. For this exercise, we adopt the no-
tation that a typical element 𝑧 of 𝐂𝑛 is denoted by 𝑧 = (𝑧0, 𝑧1, …, 𝑧𝑛−1). Define linear
functionals 𝜔0, 𝜔1, …, 𝜔𝑛−1 on 𝐂𝑛 by

𝜔𝑗(𝑧0, 𝑧1, …, 𝑧𝑛−1) =
1

√
𝑛

∑
𝑛−1

𝑚=0
𝑧𝑚𝑒−2𝜋𝑖𝑗𝑚/𝑛.

The discrete Fourier transform is the operator ℱ : 𝐂𝑛 → 𝐂𝑛 defined by

ℱ𝑧 = (𝜔0(𝑧), 𝜔1(𝑧), …, 𝜔𝑛−1(𝑧)).

(a) Show that ℱ is a unitary operator on 𝐂𝑛.

(b) Show that if (𝑧0, …, 𝑧𝑛−1) ∈ 𝐂𝑛 and 𝑧𝑛 is defined to equal 𝑧0, then

ℱ−1(𝑧0, 𝑧1, …, 𝑧𝑛−1) = ℱ(𝑧𝑛, 𝑧𝑛−1, …, 𝑧1).

(c) Show that ℱ4 = 𝐼 .

The discrete Fourier transform has many important applications in data analysis. The
usual Fourier transform involves expressions of the form ∫∞

−∞
𝑓(𝑥)𝑒−2𝜋𝑖𝑡𝑥𝑑𝑥 for com-

plex-valued integrable functions 𝑓  defined on 𝐑.

Solution.

(a) For this exercise, let us count from 0 to 𝑛 − 1 instead of from 1 to 𝑛 for columns of
matrices etc. Let 𝑒0, …, 𝑒𝑛−1 be the standard orthonormal basis of 𝐂𝑛 and observe that

𝜔𝑗𝑒𝑘 =
𝛼𝑗𝑘
√

𝑛
, where 𝛼 = 𝑒−2𝜋𝑖/𝑛.
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It follows that

𝑄 ≔ ℳ(ℱ, (𝑒0, …, 𝑒𝑛−1)) =
1

√
𝑛

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛1

1
1
⋮
1

1
𝛼
𝛼2

⋮
𝛼𝑛−1

1
𝛼2

𝛼4

⋮
𝛼2(𝑛−1)

⋯
⋯
⋯
⋱
⋯

1
𝛼𝑛−1

𝛼2(𝑛−1)

⋮
𝛼(𝑛−1)(𝑛−1)⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

.

Thus the Euclidean inner product of the 𝑗th and 𝑘th columns of 𝑄 is

1
𝑛

∑
𝑛−1

𝑚=0
(𝛼𝑗𝛼𝑘)𝑚 =

1
𝑛

∑
𝑛−1

𝑚=0
(𝑒2𝜋𝑖(𝑘−𝑗)/𝑛)𝑚.

If 𝑗 = 𝑘 then 𝑒2𝜋𝑖(𝑘−𝑗)/𝑛 = 1, so that

1
𝑛

∑
𝑛−1

𝑚=0
(𝑒2𝜋𝑖(𝑘−𝑗)/𝑛)𝑚 =

1
𝑛

∑
𝑛−1

𝑚=0
1 = 1,

and if 𝑗 ≠ 𝑘 then 𝑒2𝜋𝑖(𝑘−𝑗)/𝑛 ≠ 1 and the geometric series formula gives us

1
𝑛

∑
𝑛−1

𝑚=0
(𝑒2𝜋𝑖(𝑘−𝑗)/𝑛)𝑚 =

1 − [𝑒2𝜋𝑖(𝑘−𝑗)/𝑛]𝑛

𝑛(1 − 𝑒2𝜋𝑖(𝑘−𝑗)/𝑛)
=

1 − 𝑒2𝜋𝑖(𝑘−𝑗)

𝑛(1 − 𝑒2𝜋𝑖(𝑘−𝑗)/𝑛)
= 0,

where we have used that 𝑒2𝜋𝑖(𝑘−𝑗) = 1 since 𝑘 − 𝑗 is an integer. We have now shown
that the columns of 𝑄 form an orthonormal list in 𝐂𝑛 with respect to the Euclidean
inner product. It follows from 7.49 that ℱ is a unitary operator.

(b) Define ℰ ∈ ℒ(𝐂𝑛) by ℰ(𝑧0, 𝑧1, …, 𝑧𝑛−1) = ℱ(𝑧0, 𝑧𝑛−1, …, 𝑧1) and observe that

ℰ𝑒0 = ℱ𝑒0 and ℰ𝑒𝑘 = ℱ𝑒𝑛−𝑘 for 𝑘 ∈ {1, …, 𝑛 − 1}.

Thus, letting 𝑋 = ℳ(ℰ, (𝑒0, …, 𝑒𝑛−1)), we have

𝑋𝑗,𝑘 = {
𝑄𝑗,𝑘 if 𝑘 = 0,
𝑄𝑗,𝑛−𝑘 if 𝑘 ∈ {1, …, 𝑛 − 1}.

For 𝑘 ∈ {1, …, 𝑛 − 1}, observe that

𝛼𝑘𝑗 = 𝑒2𝜋𝑖𝑗𝑘/𝑛 = 𝑒2𝜋𝑖𝑗𝑘/𝑛𝑒−2𝜋𝑖𝑗 = 𝑒−2𝜋𝑖𝑗(𝑛−𝑘)/𝑛 = 𝛼𝑗(𝑛−𝑘).

It follows that

𝑄∗
𝑗,𝑘 = 𝑄𝑘,𝑗 =

𝛼𝑘𝑗
√

𝑛
=

𝛼𝑗(𝑛−𝑘)
√

𝑛
= 𝑄𝑗,𝑛−𝑘.

By inspection of 𝑄, it is also clear that 𝑄∗
𝑗,0 = 𝑄𝑗,0. Thus 𝑄∗

𝑗,𝑘 = 𝑋𝑗,𝑘 for all 𝑗, 𝑘 and
it follows that ℰ = ℱ∗ = ℱ−1.

(c) The formula in part (b) shows that

ℱ2(𝑧0, 𝑧1, …, 𝑧𝑛−1) = (𝑧0, 𝑧𝑛−1, …, 𝑧1) ⇒ ℱ4(𝑧0, 𝑧1, …, 𝑧𝑛−1) = (𝑧0, 𝑧1, …, 𝑧𝑛−1).
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Exercise 7.D.20. Suppose 𝐴 is a square matrix with linearly independent columns.
Prove that there exist unique matrices 𝑅 and 𝑄 such that 𝑅 is lower triangular with
only positive numbers on its diagonal, 𝑄 is unitary, and 𝐴 = 𝑅𝑄.

Solution. If 𝐴 has linearly independent columns then Exercise 7.A.7 (b) shows that 𝐴∗ also
has linearly independent columns. It follows from 7.58 that there exists a unitary matrix 
𝑃  and an upper triangular matrix 𝑈  with only positive numbers on its diagonal such that
𝐴∗ = 𝑃𝑈 . It follows that 𝐴 = 𝑅𝑄, where 𝑅 = 𝑈∗ and 𝑄 = 𝑃 ∗. Observe that 𝑅 is lower tri-
angular with only positive numbers on its diagonal and that 𝑄 is unitary by 7.57.
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7.E. Singular Value Decomposition

Exercise 7.E.1. Suppose 𝑇 ∈ ℒ(𝑉 , 𝑊). Show that 𝑇 = 0 if and only if all singular
values of 𝑇  are 0.

Solution. Let 𝑁  be the number of positive singular values of 𝑇 . It will suffice to show that
𝑇 = 0 if and only if 𝑁 = 0. Indeed, 7.68(b) shows that

𝑁 = 0 ⇔ dim range 𝑇 = 0 ⇔ 𝑇 = 0.

Exercise 7.E.2. Suppose 𝑇 ∈ ℒ(𝑉 , 𝑊) and 𝑠 > 0. Prove that 𝑠 is a singular value of 
𝑇  if and only if there exist nonzero vectors 𝑣 ∈ 𝑉  and 𝑤 ∈ 𝑊  such that

𝑇𝑣 = 𝑠𝑤 and 𝑇 ∗𝑤 = 𝑠𝑣.

The vectors 𝑣, 𝑤 satisfying both equations above are called a Schmidt pair. Erhard
Schmidt introduced the concept of singular values in 1907.

Solution. Suppose that 𝑠 is a singular value of 𝑇 . Thus, letting 𝑠1, …, 𝑠𝑚 be the positive
singular values of 𝑇 , we have 𝑠 = 𝑠𝑘 for some 𝑘 ∈ {1, …, 𝑚}. Let 𝑒1, …, 𝑒𝑚 and 𝑓1, …, 𝑓𝑚 be
the orthonormal lists obtained from the SVD (7.70). It follows from 7.70 and 7.75 that

𝑇𝑒𝑘 = 𝑠𝑘𝑓𝑘 and 𝑇 ∗𝑓𝑘 = 𝑠𝑘𝑒𝑘.

Thus we can take 𝑣 = 𝑒𝑘 and 𝑤 = 𝑓𝑘.

Conversely, suppose there exist non-zero vectors 𝑣 ∈ 𝑉  and 𝑤 ∈ 𝑊  such that

𝑇𝑣 = 𝑠𝑤 and 𝑇 ∗𝑤 = 𝑠𝑣.

It follows that 𝑇 ∗𝑇𝑣 = 𝑠2𝑣, so that 𝑠2 is an eigenvalue of 𝑇 ∗𝑇 . Thus 
√

𝑠2 = 𝑠 is a singular
value of 𝑇 , where we have used that 𝑠 is non-negative.

Exercise 7.E.3. Give an example of 𝑇 ∈ ℒ(𝐂2) such that 0 is the only eigenvalue of 
𝑇  and the singular values of 𝑇  are 5, 0.

Solution. Let 𝑇 ∈ ℒ(𝐂2) be the operator whose matrix with respect to the standard basis
of 𝐂2 is

(0
0

5
0)

and note that 0 is the only eigenvalue of 𝑇 . Note further that the matrix of 𝑇 ∗𝑇  is

(0
5

0
0)(0

0
5
0) = (0

0
0
25).

Thus the singular values of 𝑇  are 5, 0.
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Exercise 7.E.4. Suppose that 𝑇 ∈ ℒ(𝑉 , 𝑊), 𝑠1 is the largest singular value of 𝑇 , and 
𝑠𝑛 is the smallest singular value of 𝑇 . Prove that

{‖𝑇𝑣‖ : 𝑣 ∈ 𝑉 and ‖𝑣‖ = 1} = [𝑠𝑛, 𝑠1].

Solution. We consider several cases.

Case 1. If 𝑠1 = 𝑠𝑛 = 0 then all singular values of 𝑇  equal 0 and Exercise 7.E.1 shows that 
𝑇 = 0. Thus

{‖𝑇𝑣‖ : 𝑣 ∈ 𝑉 and ‖𝑣‖ = 1} = {0} = [0, 0] = [𝑠𝑛, 𝑠1].

Case 2. If 𝑠1 = 𝑠𝑛 > 0 then note that all singular values of 𝑠−1
1 𝑇  equal 1. It follows from

7.69 that 𝑠−1
1 𝑇  is an isometry and hence that

{‖𝑇𝑣‖ : 𝑣 ∈ 𝑉 and ‖𝑣‖ = 1} = {𝑠1} = [𝑠1, 𝑠1] = [𝑠𝑛, 𝑠1].

Case 3. Suppose that 𝑠1 > 𝑠𝑛, which implies 𝑠1 > 0. Let 𝑠1, …, 𝑠𝑚 be the positive singular
values of 𝑇  and let 𝑒1, …, 𝑒𝑚 and 𝑓1, …, 𝑓𝑚 be the orthonormal lists obtained from the SVD
(7.70). For any 𝑣 ∈ 𝑉 , 7.70 and 6.24 show that

𝑇𝑣 = 𝑠1⟨𝑣, 𝑒1⟩𝑓1 + ⋯ + 𝑠𝑚⟨𝑣, 𝑒𝑚⟩𝑓𝑚 ⇒ ‖𝑇𝑣‖2 = 𝑠2
1|⟨𝑣, 𝑒1⟩|

2 + ⋯ + 𝑠2
𝑚|⟨𝑣, 𝑒𝑚⟩|2.

For any 𝑣 ∈ 𝑉  such that ‖𝑣‖ = 1, it follows from Bessel’s inequality (6.26) that

‖𝑇 𝑣‖2 ≤ 𝑠2
1(|⟨𝑣, 𝑒1⟩|

2 + ⋯ + |⟨𝑣, 𝑒𝑚⟩|2) ≤ 𝑠2
1‖𝑣‖

2 = 𝑠2
1 ⇒ ‖𝑇𝑣‖ ≤ 𝑠1.

Thus {‖𝑇𝑣‖ : 𝑣 ∈ 𝑉 and ‖𝑣‖ = 1} ⊆ [0, 𝑠1]. To complete the exercise, we now consider two
subcases.

Case 3.1. If 𝑠𝑛 > 0 then it must be that 𝑚 = 𝑛 = dim 𝑉 , so that 𝑒1, …, 𝑒𝑛 is an orthonormal
basis of 𝑉 . It follows that

‖𝑇 𝑣‖2 ≥ 𝑠2
𝑛(|⟨𝑣, 𝑒1⟩|

2 + ⋯ + |⟨𝑣, 𝑒𝑛⟩|2) = 𝑠2
𝑛‖𝑣‖2 = 𝑠2

𝑛 ⇒ ‖𝑇𝑣‖ ≥ 𝑠𝑛.

Thus {‖𝑇𝑣‖ : 𝑣 ∈ 𝑉 and ‖𝑣‖ = 1} ⊆ [𝑠𝑛, 𝑠1]. For 𝑠 ∈ [𝑠𝑛, 𝑠1], let

𝑣 = √𝑠2 − 𝑠2
𝑛

𝑠2
1 − 𝑠2

𝑛
𝑒1 + √𝑠2

1 − 𝑠2

𝑠2
1 − 𝑠2

𝑛
𝑒𝑛.

A calculation shows that ‖𝑣‖ = 1 and ‖𝑇 𝑣‖ = 𝑠. Thus [𝑠𝑛, 𝑠1] ⊆ {‖𝑇𝑣‖ : 𝑣 ∈ 𝑉 and ‖𝑣‖ = 1}
and we may conclude that

{‖𝑇𝑣‖ : 𝑣 ∈ 𝑉 and ‖𝑣‖ = 1} = [𝑠𝑛, 𝑠1].

Case 3.2. If 𝑠𝑛 = 0 then it must be that 𝑚 < 𝑛 = dim 𝑉 . Extend the orthonormal list 
𝑒1, …, 𝑒𝑚 to an orthonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉 . As noted in the discussion after the proof
of 7.70, it follows that 𝑒𝑛 ∈ null 𝑇 . For 𝑠 ∈ [0, 𝑠1], let
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𝑣 =
𝑠
𝑠1

𝑒1 + √1 −
𝑠2

𝑠2
1
𝑒𝑛.

A calculation shows that ‖𝑣‖ = 1 and ‖𝑇 𝑣‖ = 𝑠. Thus [0, 𝑠1] ⊆ {‖𝑇𝑣‖ : 𝑣 ∈ 𝑉 and ‖𝑣‖ = 1}
and we may conclude that

{‖𝑇𝑣‖ : 𝑣 ∈ 𝑉 and ‖𝑣‖ = 1} = [0, 𝑠1] = [𝑠𝑛, 𝑠1].

Exercise 7.E.5. Suppose 𝑇 ∈ ℒ(𝐂2) is defined by 𝑇 (𝑥, 𝑦) = (−4𝑦, 𝑥). Find the singular
values of 𝑇 .

Solution. The matrix of 𝑇  with respect to the standard basis of 𝐂2 is

𝐴 = (0
1

−4
0 ) ⇒ 𝐴∗𝐴 = ( 0

−4
1
0)(0

1
−4
0 ) = (1

0
0
16).

Thus the singular values of 𝑇  are 4, 1.

Exercise 7.E.6. Find the singular values of the differentiation operator 𝐷 ∈ ℒ(𝒫2(𝐑))
defined by 𝐷𝑝 = 𝑝′, where the inner product on 𝒫2(𝐑) is as in Example 6.34.

Solution. As shown in Example 6.34, the list

𝑒1 = √1
2 , 𝑒2 = √3

2𝑥, 𝑒3 = √45
8 (𝑥2 − 1

3)

is an orthonormal basis of 𝒫2(𝐑) with respect to the inner product given in Example 6.34.
Observe that

𝐷𝑒1 = 0, 𝐷𝑒2 = √3
2 =

√
3𝑒1, 𝐷𝑒3 = √45

8 (2𝑥) =
√

15𝑒2.

Thus the matrix of 𝐷 with respect to 𝑒1, 𝑒2, 𝑒3 is

𝐴 =

⎝
⎜⎜
⎜⎛

0
0
0

√
3

0
0

0
√

15
0 ⎠

⎟⎟
⎟⎞ ⇒ 𝐴∗𝐴 =

⎝
⎜⎜
⎜⎛

0√
3

0

0
0

√
15

0
0
0⎠
⎟⎟
⎟⎞

⎝
⎜⎜
⎜⎛

0
0
0

√
3

0
0

0
√

15
0 ⎠

⎟⎟
⎟⎞ =

⎝
⎜⎛

0
0
0

0
3
0

0
0
15⎠

⎟⎞.

It follows that the singular values of 𝐷 are 
√

15,
√

3, 0.

Exercise 7.E.7. Suppose that 𝑇 ∈ ℒ(𝑉 ) is self-adjoint or that 𝐅 = 𝐂 and 𝑇 ∈ ℒ(𝑉 ) is
normal. Let 𝜆1, …, 𝜆𝑛 be the eigenvalues of 𝑇 , each included in this list as many times
as the dimension of the corresponding eigenspace. Show that the singular values of 𝑇
are |𝜆1|, …, |𝜆𝑛|, after these numbers have been sorted into decreasing order.

Solution. By Exercise 7.B.14/Exercise 7.B.15, we know that there is a decomposition of 𝑉
into a direct sum of mutually orthogonal eigenspaces of 𝑇 . Thus 𝑛 = dim 𝑉  and there exists

284 / 366



an orthonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉  such that 𝑇𝑒𝑘 = 𝜆𝑘𝑒𝑘 for each 𝑘 ∈ {1, …, 𝑛}. It follows
from 7.21(e) that

𝑇 ∗𝑒𝑘 = 𝜆𝑘𝑒𝑘 ⇒ 𝑇 ∗𝑇𝑒𝑘 = |𝜆𝑘|2𝑒𝑘.

Thus each vector in the list |𝜆1|, …, |𝜆𝑛| is a singular value of 𝑇 . As noted in the table on
p. 272, the length of the list of singular values of 𝑇  is exactly dim 𝑉 = 𝑛. Thus, after being
sorted into decreasing order, |𝜆1|, …, |𝜆𝑛| are the singular values of 𝑇 .

Exercise 7.E.8. Suppose 𝑇 ∈ ℒ(𝑉 , 𝑊). Suppose 𝑠1 ≥ 𝑠2 ≥ ⋯ ≥ 𝑠𝑚 > 0 and 𝑒1, …, 𝑒𝑚

is an orthonormal list in 𝑉  and 𝑓1, …, 𝑓𝑚 is an orthonormal list in 𝑊  such that

𝑇𝑣 = 𝑠1⟨𝑣, 𝑒1⟩𝑓1 + ⋯ + 𝑠𝑚⟨𝑣, 𝑒𝑚⟩𝑓𝑚

for every 𝑣 ∈ 𝑉 .

(a) Prove that 𝑓1, …, 𝑓𝑚 is an orthonormal basis of range 𝑇 .

(b) Prove that 𝑒1, …, 𝑒𝑚 is an orthonormal basis of (null 𝑇 )⟂.

(c) Prove that 𝑠1, …, 𝑠𝑚 are the positive singular values of 𝑇 .

(d) Prove that if 𝑘 ∈ {1, …, 𝑚}, then 𝑒𝑘 is an eigenvector of 𝑇 ∗𝑇  with corresponding
eigenvalue 𝑠2

𝑘.

(e) Prove that

𝑇𝑇 ∗𝑤 = 𝑠2
1⟨𝑤, 𝑓1⟩𝑓1 + ⋯ + 𝑠2

𝑚⟨𝑤, 𝑓𝑚⟩𝑓𝑚

for all 𝑤 ∈ 𝑊 .

Solution.

(a) Because the equation

𝑇𝑣 = 𝑠1⟨𝑣, 𝑒1⟩𝑓1 + ⋯ + 𝑠𝑚⟨𝑣, 𝑒𝑚⟩𝑓𝑚

holds for all 𝑣 ∈ 𝑉 , it is clear that 𝑓1, …, 𝑓𝑚 spans range 𝑇 . By assumption 𝑓1, …, 𝑓𝑚 is
orthonormal and hence linearly independent (6.25). Thus 𝑓1, …, 𝑓𝑚 is an orthonormal
basis of range 𝑇 .

(b) If 𝑣 ∈ null 𝑇  then

0 = 𝑇𝑣 = 𝑠1⟨𝑣, 𝑒1⟩𝑓1 + ⋯ + 𝑠𝑚⟨𝑣, 𝑒𝑚⟩𝑓𝑚 ⇒ ⟨𝑣, 𝑒1⟩ = ⋯ = ⟨𝑣, 𝑒𝑚⟩ = 0,

where we have used that 𝑓1, …, 𝑓𝑚 is linearly independent and that each 𝑠𝑘 is strictly
positive. Thus {𝑒1, …, 𝑒𝑚} ⊆ (null 𝑇 )⟂. By assumption 𝑒1, …, 𝑒𝑚 is orthonormal. Fur-
thermore, by 6.67 we have dim (null 𝑇 )⟂ = dim range 𝑇 = 𝑚. It follows from 6.28 that
𝑒1, …, 𝑒𝑚 is an orthonormal basis of (null 𝑇 )⟂.

(c) Extend the orthonormal list 𝑒1, …, 𝑒𝑚 to an orthonormal basis 𝑒1, …, 𝑒dim 𝑉  of 𝑉  and
extend the orthonormal list 𝑓1, …, 𝑓𝑚 to an orthonormal basis 𝑓1, …, 𝑓dim 𝑉  of 𝑊 . As in
the discussion after the proof of 7.70, we have
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𝑇𝑒𝑘 = {𝑠𝑘𝑓𝑘 if 𝑘 ∈ {1, …, 𝑚},
0 otherwise.

For any 𝑗 ∈ {1, …, dim 𝑊}, it follows that

𝑇 ∗𝑓𝑗 = ∑
dim 𝑉

𝑘=1
⟨𝑇 ∗𝑓𝑗, 𝑒𝑘⟩𝑒𝑘 = ∑

dim 𝑉

𝑘=1
⟨𝑓𝑗, 𝑇 𝑒𝑘⟩𝑒𝑘 = {𝑠𝑗𝑒𝑗 if 𝑗 ∈ {1, …, 𝑚},

0 otherwise.

Thus

𝑇 ∗𝑇𝑒𝑘 = {𝑠2
𝑘𝑒𝑘 if 𝑘 ∈ {1, …, 𝑚},

0 otherwise.

From this expression and the fact that 𝑠1 ≥ 𝑠2 ≥ ⋯ ≥ 𝑠𝑚 > 0, we see that the list 
𝑠2

1, …, 𝑠2
𝑚 consists of the eigenvalues of 𝑇 ∗𝑇  listed in decreasing order with each eigen-

value appearing as many times as the dimension of the corresponding eigenspace of 
𝑇 ∗𝑇 . It follows that the singular values of 𝑇  are precisely 𝑠1, …, 𝑠𝑚.

(d) We proved this in part (c).

(e) Because the equation

𝑇𝑣 = 𝑠1⟨𝑣, 𝑒1⟩𝑓1 + ⋯ + 𝑠𝑚⟨𝑣, 𝑒𝑚⟩𝑓𝑚

holds for all 𝑣 ∈ 𝑉 , the calculation in the proof of 7.75 shows that equation 7.77 holds
for all 𝑤 ∈ 𝑊 . Thus, for any 𝑤 ∈ 𝑊 ,

𝑇𝑇 ∗𝑤 = 𝑇(∑
𝑚

𝑘=1
𝑠𝑘⟨𝑤, 𝑓𝑘⟩𝑒𝑘) = ∑

𝑚

𝑗=1
𝑠𝑗⟨∑

𝑚

𝑘=1
𝑠𝑘⟨𝑤, 𝑓𝑘⟩𝑒𝑘, 𝑒𝑗⟩𝑓𝑗 = ∑

𝑚

𝑗=1
𝑠2

𝑗⟨𝑤, 𝑓𝑗⟩𝑓𝑗.

Exercise 7.E.9. Suppose 𝑇 ∈ ℒ(𝑉 , 𝑊). Show that 𝑇  and 𝑇 ∗ have the same positive
singular values.

Solution. Let 𝑠1, …, 𝑠𝑚 be the positive singular values of 𝑇 ∗. By the SVD (7.70), there exists
an orthonormal list 𝑓1, …, 𝑓𝑚 in 𝑊  and an orthonormal list 𝑒1, …, 𝑒𝑚 in 𝑉  such that

𝑇 ∗𝑤 = 𝑠1⟨𝑤, 𝑓1⟩𝑒1 + ⋯ + 𝑠𝑚⟨𝑤, 𝑓𝑚⟩𝑒𝑚

for every 𝑤 ∈ 𝑊 . It follows from 7.75 that

𝑇𝑣 = (𝑇 ∗)∗𝑣 = 𝑠1⟨𝑣, 𝑒1⟩𝑓1 + ⋯ + 𝑠𝑚⟨𝑣, 𝑒𝑚⟩𝑓𝑚

for every 𝑣 ∈ 𝑉 . Thus, by Exercise 7.E.8, the positive singular values of 𝑇  are 𝑠1, …, 𝑠𝑚. We
have now shown that if 𝑠1, …, 𝑠𝑚 are the positive singular values of 𝑇 ∗ then 𝑠1, …, 𝑠𝑚 are the
positive singular values of 𝑇 . Replacing 𝑇  with 𝑇 ∗ in this result and using that (𝑇 ∗)∗ = 𝑇
gives us the desired equivalence.

286 / 366



Exercise 7.E.10. Suppose 𝑇 ∈ ℒ(𝑉 , 𝑊) has singular values 𝑠1, …, 𝑠𝑛. Prove that if 𝑇
is an invertible linear map, then 𝑇 −1 has singular values

1
𝑠𝑛

, …,
1
𝑠1

.

Solution. Because 𝑇  is invertible, 7.68 shows that each singular value of 𝑇  must be positive.
By the SVD (7.70), there exists an orthonormal list 𝑒1, …, 𝑒𝑛 in 𝑉  and an orthonormal list 
𝑓1, …, 𝑓𝑛 in 𝑊  such that

𝑇𝑣 = 𝑠1⟨𝑣, 𝑒1⟩𝑓1 + ⋯ + 𝑠𝑛⟨𝑣, 𝑒𝑛⟩𝑓𝑛

for every 𝑣 ∈ 𝑉 . Note that 𝑇 −1 = 𝑇 † by 6.69(a). It follows from 7.75 that

𝑇 −1𝑤 =
⟨𝑤, 𝑓𝑛⟩

𝑠𝑛
𝑒𝑛 + ⋯ +

⟨𝑤, 𝑓1⟩
𝑠1

𝑒1

for every 𝑤 ∈ 𝑊 . Since

𝑠1 ≥ ⋯ ≥ 𝑠𝑛 > 0 ⇒
1
𝑠𝑛

≥ ⋯ ≥
1
𝑠1

> 0,

Exercise 7.E.8 shows that 𝑠−1
𝑛 , …, 𝑠−1

1  are the singular values of 𝑇 −1 (we are taking the or-
thonormal lists required by Exercise 7.E.8 to be 𝑓𝑛, …, 𝑓1 and 𝑒𝑛, …, 𝑒1).

Exercise 7.E.11. Suppose that 𝑇 ∈ ℒ(𝑉 , 𝑊) and 𝑣1, …, 𝑣𝑛 is an orthonormal basis of
𝑉 . Let 𝑠1, …, 𝑠𝑛 denote the singular values of 𝑇 .

(a) Prove that ‖𝑇 𝑣1‖
2 + ⋯ + ‖𝑇𝑣𝑛‖2 = 𝑠2

1 + ⋯ + 𝑠2
𝑛.

(b) Prove that if 𝑊 = 𝑉  and 𝑇  is a positive operator, then

⟨𝑇 𝑣1, 𝑣1⟩ + ⋯ + ⟨𝑇𝑣𝑛, 𝑣𝑛⟩ = 𝑠1 + ⋯ + 𝑠𝑛.

See the comment after Exercise 5 in Section 7A.

Solution.

(a) Let 𝑠1, …, 𝑠𝑚 be the positive singular values of 𝑇 . As discussed after the proof of 7.70,
there exists an orthonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉  and an orthonormal basis 𝑓1, …, 𝑓dim 𝑊

such that

𝑇𝑒𝑘 = {𝑠𝑘𝑓𝑘 if 𝑘 ∈ {1, …, 𝑚},
0 otherwise.

It follows from Exercise 7.A.5 that

∑
𝑛

𝑘=1
‖𝑇 𝑣𝑘‖2 = ∑

𝑛

𝑘=1
‖𝑇 𝑒𝑘‖2 = ∑

𝑚

𝑘=1
‖𝑠𝑘𝑓𝑘‖2 = ∑

𝑚

𝑘=1
𝑠2

𝑘 = ∑
𝑛

𝑘=1
𝑠2

𝑘,

where we have used that 𝑠𝑘 = 0 if 𝑘 > 𝑚 for the last equality.
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(b) Because 𝑇  is a positive operator, 𝑇  must be self-adjoint and each of its eigenvalues
must be non-negative. Recalling that singular values are non-negative, Exercise 7.E.7
shows that 𝑠1, …, 𝑠𝑛 must be the eigenvalues of 𝑇 . It follows from 7.39 that √𝑠1, …, √𝑠𝑛

are the eigenvalues of 
√

𝑇  and another application of Exercise 7.E.7 shows that the
singular values of 

√
𝑇  are √𝑠1, …, √𝑠𝑛. Thus, by part (a),

∑
𝑛

𝑘=1
⟨𝑇 𝑣𝑛, 𝑣𝑛⟩ = ∑

𝑛

𝑘=1
‖
√

𝑇𝑣𝑛‖2 = 𝑠1 + ⋯ + 𝑠𝑛.

Exercise 7.E.12.

(a) Give an example of a finite-dimensional vector space and an operator 𝑇  on it such
that the singular values of 𝑇 2 do not equal the squares of the singular values of 𝑇 .

(b) Suppose 𝑇 ∈ ℒ(𝑉 ) is normal. Prove that the singular values of 𝑇 2 equal the squares
of the singular values of 𝑇 .

Solution.

(a) Consider the operator 𝑇 ∈ ℒ(𝐅2) whose matrix with respect to the standard basis of 
𝐅2 is

(0
0

1
0).

A calculation shows that the singular values of 𝑇  are 1, 0. However, since 𝑇 2 = 0, the
singular values of 𝑇 2 are 0, 0.

(b) Suppose that 𝑠1, …, 𝑠𝑛 are the singular values of 𝑇 , so that there is an orthonormal
basis 𝑒1, …, 𝑒𝑛 of 𝑉  such that 𝑇 ∗𝑇𝑒𝑘 = 𝑠2

𝑘𝑒𝑘. Using that 𝑇  is normal, observe that

(𝑇 2)∗𝑇 2𝑒𝑘 = (𝑇 ∗𝑇 )2𝑒𝑘 = 𝑠4
𝑘𝑒𝑘.

Thus the singular values of 𝑇 2 are 𝑠2
1, …, 𝑠2

𝑛.

Exercise 7.E.13. Suppose 𝑇1, 𝑇2 ∈ ℒ(𝑉 ). Prove that 𝑇1 and 𝑇2 have the same singular
values if and only if there exist unitary operators 𝑆1, 𝑆2 ∈ ℒ(𝑉 ) such that 𝑇1 = 𝑆1𝑇2𝑆2.

Solution. Suppose there exist such unitary operators and observe that

𝑇 ∗
1 = 𝑆∗

2𝑇 ∗
2 𝑆∗

1 = 𝑆−1
2 𝑇 ∗

2 𝑆−1
1 ⇒ 𝑇 ∗

1 𝑇1 = 𝑆−1
2 𝑇 ∗

2 𝑇2𝑆2

⇒ 𝑇 ∗
1 𝑇1 − 𝜆𝐼 = 𝑆−1

2 (𝑇 ∗
2 𝑇2 − 𝜆𝐼)𝑆2 for all 𝜆 ∈ 𝐅

⇒ dim 𝐸(𝜆, 𝑇 ∗
1 𝑇1) = dim 𝐸(𝜆, 𝑇 ∗

2 𝑇2) for all 𝜆 ∈ 𝐅.

Thus 𝑇1 and 𝑇2 have the same singular values.
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Now suppose that 𝑇1 and 𝑇2 have the same singular values 𝑠1, …, 𝑠𝑚, …, 𝑠𝑛, where 𝑠1, …, 𝑠𝑚

are positive and 𝑠𝑘 = 0 if 𝑘 > 𝑚 (it may be the case that 𝑚 = 𝑛). By the SVD (7.70), there
exist orthonormal bases

𝑒1, …, 𝑒𝑛, 𝑓1, …, 𝑓𝑛, 𝑔1, …, 𝑔𝑛, ℎ1, …, ℎ𝑛

of 𝑉  such that

𝑇1𝑒𝑘 = {
𝑠𝑘𝑓𝑘 if 𝑘 ∈ {1, …, 𝑚},
0 otherwise,

and 𝑇2𝑔𝑘 = {𝑠𝑘ℎ𝑘 if 𝑘 ∈ {1, …, 𝑚},
0 otherwise.

Define 𝑆1, 𝑆2 ∈ ℒ(𝑉 ) by 𝑆1ℎ𝑘 = 𝑓𝑘 and 𝑆2𝑒𝑘 = 𝑔𝑘 and note that 𝑆1 and 𝑆2 are unitary op-
erators by 7.53(d). Furthermore,

𝑘 ∈ {1, …, 𝑚} ⇒ 𝑆1𝑇2𝑆2𝑒𝑘 = 𝑆1𝑇2𝑔𝑘 = 𝑠𝑘𝑆1ℎ𝑘 = 𝑠𝑘𝑓𝑘 = 𝑇1𝑒𝑘,

𝑘 > 𝑚 ⇒ 𝑆1𝑇2𝑆2𝑒𝑘 = 𝑆1𝑇2𝑔𝑘 = 0 = 𝑇1𝑒𝑘.

Thus 𝑇1 = 𝑆1𝑇2𝑆2.

Exercise 7.E.14. Suppose 𝑇 ∈ ℒ(𝑉 , 𝑊). Let 𝑠𝑛 denote the smallest singular value of 
𝑇 . Prove that 𝑠𝑛‖𝑣‖ ≤ ‖𝑇𝑣‖ for every 𝑣 ∈ 𝑉 .

Solution. If 𝑣 = 0 then the inequality is clear, so suppose that 𝑣 ≠ 0. It follows from Exercise
7.E.4 that

𝑠𝑛 ≤ ‖𝑇(
𝑣

‖𝑣‖
)‖ ⇒ 𝑠𝑛‖𝑣‖ ≤ ‖𝑇𝑣‖.

Exercise 7.E.15. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝑠1 ≥ ⋯ ≥ 𝑠𝑛 are the singular values of 𝑇 .
Prove that if 𝜆 is an eigenvalue of 𝑇 , then 𝑠1 ≥ |𝜆| ≥ 𝑠𝑛.

Solution. Let 𝑣 ∈ 𝑉  be such that 𝑇𝑣 = 𝜆𝑣 and ‖𝑣‖ = 1. It follows from Exercise 7.E.4 that

|𝜆| = ‖𝜆𝑣‖ = ‖𝑇𝑣‖ ∈ [𝑠𝑛, 𝑠1].

Exercise 7.E.16. Suppose 𝑇 ∈ ℒ(𝑉 , 𝑊). Prove that (𝑇 ∗)† = (𝑇 †)∗.

Compare the result in this exercise to the analogous result for invertible linear maps
[see 7.5(f)].

Solution. Let 𝑠1, …, 𝑠𝑚 be the positive singular values of 𝑇 . The SVD (7.70) and 7.75 imply
the existence of an orthonormal list 𝑒1, …, 𝑒𝑚 in 𝑉  and an orthonormal list 𝑓1, …, 𝑓𝑚 in 𝑊
such that

𝑇 ∗𝑤 = 𝑠1⟨𝑤, 𝑓1⟩𝑒1 + ⋯ + 𝑠𝑚⟨𝑤, 𝑓𝑚⟩𝑒𝑚
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for every 𝑤 ∈ 𝑊 . Since 𝑠1, …, 𝑠𝑚 are also the positive singular values of 𝑇 ∗ (see Exercise
7.E.9), another application of 7.75 shows that

(𝑇 ∗)†𝑣 =
⟨𝑣, 𝑒1⟩

𝑠1
𝑓1 + ⋯ +

⟨𝑣, 𝑒𝑚⟩
𝑠𝑚

𝑓𝑚

for every 𝑣 ∈ 𝑉 .

Also by 7.75, we have

𝑇 †𝑤 =
⟨𝑤, 𝑓𝑚⟩

𝑠𝑚
𝑒𝑚 + ⋯ +

⟨𝑤, 𝑓1⟩
𝑠1

𝑒1

for every 𝑤 ∈ 𝑊 . It follows from Exercise 7.E.8 that 𝑠−1
𝑚 , …, 𝑠−1

𝑚  are the positive singular
values of 𝑇 † and we can apply 7.75 once more to see that

(𝑇 †)∗𝑣 =
⟨𝑣, 𝑒𝑚⟩

𝑠𝑚
𝑓𝑚 + ⋯ +

⟨𝑣, 𝑒1⟩
𝑠1

𝑓1

for every 𝑣 ∈ 𝑉 . Thus (𝑇 ∗)† = (𝑇 †)∗.

Exercise 7.E.17. Suppose 𝑇 ∈ ℒ(𝑉 ). Prove that 𝑇  is self-adjoint if and only if 𝑇 † is
self-adjoint.

Solution. Observe that

𝑇 = 𝑇 ∗ ⇔ 𝑇 † = (𝑇 ∗)† ⇔ 𝑇 † = (𝑇 †)∗,

where we have used Exercise 6.C.23 for the first equivalence and Exercise 7.E.16 for the
second equivalence.
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7.F. Consequences of Singular Value Decomposition

Exercise 7.F.1. Prove that if 𝑆, 𝑇 ∈ ℒ(𝑉 , 𝑊), then |‖𝑆‖ − ‖𝑇 ‖| ≤ ‖𝑆 − 𝑇‖.

The inequality above is called the reverse triangle inequality.

Solution. The proof is essentially the same as the proof given in Exercise 4.2.

Exercise 7.F.2. Suppose that 𝑇 ∈ ℒ(𝑉 ) is self-adjoint or that 𝐅 = 𝐂 and 𝑇 ∈ ℒ(𝑉 )
is normal. Prove that

‖𝑇 ‖ = max{|𝜆| : 𝜆 is an eigenvalue of 𝑇 }.

Solution. Let 𝜆1, …, 𝜆𝑛 be the eigenvalues of 𝑇 , included in this list as many times as the
dimension of the corresponding eigenspace. As shown in Exercise 7.E.7, the singular values
of 𝑇  are |𝜆1|, …, |𝜆𝑛| (sorted in decreasing order). It follows from 7.88(a) that

‖𝑇 ‖ = max{|𝜆| : 𝜆 is an eigenvalue of 𝑇 }.

Exercise 7.F.3. Suppose 𝑇 ∈ ℒ(𝑉 , 𝑊) and 𝑣 ∈ 𝑉 . Prove that

‖𝑇 𝑣‖ = ‖𝑇 ‖‖𝑣‖ ⇔ 𝑇 ∗𝑇𝑣 = ‖𝑇 ‖2𝑣.

Solution. Suppose that 𝑇 ∗𝑇𝑣 = ‖𝑇 ‖2𝑣. Using 7.88(c) and 7.91, it follows that

‖𝑇 ‖2‖𝑣‖ = ‖𝑇 ∗𝑇𝑣‖ ≤ ‖𝑇 ∗‖‖𝑇 𝑣‖ = ‖𝑇 ‖‖𝑇𝑣‖ ⇒ ‖𝑇 ‖‖𝑣‖ ≤ ‖𝑇𝑣‖.

Since ‖𝑇 𝑣‖ ≤ ‖𝑇 ‖‖𝑣‖ (by 7.88(c)), we may conclude that ‖𝑇 𝑣‖ = ‖𝑇 ‖‖𝑣‖.

Suppose that ‖𝑇 𝑣‖ = ‖𝑇 ‖‖𝑣‖ and observe that

‖𝑇 ∗𝑇𝑣 − ‖𝑇 ‖2𝑣‖
2

= ⟨𝑇 ∗𝑇𝑣 − ‖𝑇 ‖2𝑣, 𝑇 ∗𝑇𝑣 − ‖𝑇 ‖2𝑣⟩

= ‖𝑇 ∗𝑇𝑣‖2 + ‖𝑇 ‖4‖𝑣‖2 − 2 Re⟨𝑇 ∗𝑇𝑣, ‖𝑇 ‖2𝑣⟩

≤ ‖𝑇 ∗‖2‖𝑇 𝑣‖2 + ‖𝑇 ‖2‖𝑇 𝑣‖2 − 2‖𝑇 ‖2‖𝑇 𝑣‖2 (7.88(c))

= 0. (7.91)

Thus 𝑇 ∗𝑇𝑣 = ‖𝑇 ‖2𝑣.

Exercise 7.F.4. Suppose 𝑇 ∈ ℒ(𝑉 , 𝑊), 𝑣 ∈ 𝑉 , and ‖𝑇 𝑣‖ = ‖𝑇 ‖‖𝑣‖. Prove that if 𝑢 ∈ 𝑉
and ⟨𝑢, 𝑣⟩ = 0, then ⟨𝑇𝑢, 𝑇 𝑣⟩ = 0.

Solution. By Exercise 7.F.4 we must have 𝑇 ∗𝑇𝑣 = ‖𝑇 ‖2𝑣. It follows that
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⟨𝑇𝑢, 𝑇 𝑣⟩ = ⟨𝑢, 𝑇 ∗𝑇𝑣⟩ = ⟨𝑢, ‖𝑇 ‖2𝑣⟩ = ‖𝑇 ‖2⟨𝑢, 𝑣⟩ = 0.

Exercise 7.F.5. Suppose 𝑈  is a finite-dimensional inner product space, 𝑇 ∈ ℒ(𝑉 , 𝑈),
and 𝑆 ∈ ℒ(𝑈, 𝑊). Prove that

‖𝑆𝑇 ‖ ≤ ‖𝑆‖‖𝑇 ‖.

Solution. By 7.88(c) we have, for any 𝑣 ∈ 𝑉 ,

‖𝑆𝑇𝑣‖ ≤ ‖𝑆‖‖𝑇𝑣‖ ≤ ‖𝑆‖‖𝑇 ‖‖𝑣‖.

It follows from the minimality of ‖𝑆𝑇 ‖ that ‖𝑆𝑇 ‖ ≤ ‖𝑆‖‖𝑇 ‖.

Exercise 7.F.6. Prove or give a counterexample: If 𝑆, 𝑇 ∈ ℒ(𝑉 ), then ‖𝑆𝑇 ‖ = ‖𝑇𝑆‖.

Solution. This is false. For a counterexample, consider the operators 𝑆, 𝑇 ∈ ℒ(𝐑2) whose
matrices with respect to the standard basis of 𝐑2 are

(1
0

0
0) and (0

0
1
0).

A routine calculation shows that 𝑆𝑇 = 0 whereas 𝑇𝑆 ≠ 0. It follows from 7.87(b) that

‖𝑆𝑇 ‖ = 0 ≠ ‖𝑇𝑆‖.

Exercise 7.F.7. Show that defining 𝑑(𝑆, 𝑇 ) = ‖𝑆 − 𝑇‖ for 𝑆, 𝑇 ∈ ℒ(𝑉 , 𝑊) makes 𝑑 a
metric on ℒ(𝑉 , 𝑊).

This exercise is intended for readers who are familiar with metric spaces.

Solution. Certainly 𝑑 is non-negative and 𝑑(𝑇 , 𝑇 ) = 0 for any 𝑇 ∈ ℒ(𝑉 , 𝑊). Furthermore,
𝑑(𝑆, 𝑇 ) = 0 implies 𝑆 = 𝑇  by 7.87(b), and we have 𝑑(𝑆, 𝑇 ) = 𝑑(𝑇 , 𝑆) for any 𝑆, 𝑇 ∈ ℒ(𝑉 , 𝑊)
since ‖𝑆𝑣 − 𝑇𝑣‖ = ‖𝑇𝑣 − 𝑆𝑣‖ for any 𝑣 ∈ 𝑉 . Finally, 7.87(d) shows that

𝑑(𝑅, 𝑇 ) ≤ 𝑑(𝑅, 𝑆) + 𝑑(𝑆, 𝑇 )

for any 𝑅, 𝑆, 𝑇 ∈ ℒ(𝑉 , 𝑊).

Exercise 7.F.8.

(a) Prove that if 𝑇 ∈ ℒ(𝑉 ) and ‖𝐼 − 𝑇‖ < 1, then 𝑇  is invertible.

(b) Suppose that 𝑆 ∈ ℒ(𝑉 ) is invertible. Prove that if 𝑇 ∈ ℒ(𝑉 ) and

‖𝑆 − 𝑇‖ < 1/‖𝑆−1‖,

then 𝑇  is invertible.

This exercise shows that the set of invertible operators in ℒ(𝑉 ) is an open subset of 
ℒ(𝑉 ), using the metric defined in Exercise 7.
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Solution.

(a) We will prove the contrapositive statement. Suppose that 𝑇  is not invertible, so that
there is some non-zero 𝑣 ∈ 𝑉  such that 𝑇𝑣 = 0. It follows that

‖𝐼 − 𝑇‖‖𝑣‖ ≥ ‖(𝐼 − 𝑇 )𝑣‖ = ‖𝑣‖ ⇒ ‖𝐼 − 𝑇‖ ≥ 1.

(b) The proof is a generalization of the proof in part (a). We will again prove the contra-
positive statement. Suppose that 𝑇  is not invertible, so that there is some non-zero 
𝑣 ∈ 𝑉  such that 𝑇𝑣 = 0. Observe that

‖𝑣‖ = ‖𝑆−1𝑆𝑣‖ ≤ ‖𝑆−1‖‖𝑆𝑣‖ = ‖𝑆−1‖‖(𝑆 − 𝑇)𝑣‖ ≤ ‖𝑆−1‖‖𝑆 − 𝑇‖‖𝑣‖

⇒ ‖𝑆 − 𝑇‖ ≥
1

‖𝑆−1‖
.

Exercise 7.F.9. Suppose 𝑇 ∈ ℒ(𝑉 ). Prove that for every 𝜀 > 0, there exists an invert-
ible operator 𝑆 ∈ ℒ(𝑉 ) such that 0 < ‖𝑇 − 𝑆‖ < 𝜀.

Solution. Because 𝑇  can have only finitely many eigenvalues, we can choose some 𝛿 ∈ (0, 𝜀)
such that 𝛿 is not an eigenvalue of 𝑇 . Letting 𝑆 = 𝑇 − 𝛿𝐼 , it follows that 𝑆 is invertible and
that 𝑆 ≠ 𝑇 . Thus

0 < ‖𝑇 − 𝑆‖ = ‖𝛿𝐼‖ = 𝛿 < 𝜀.

Exercise 7.F.10. Suppose dim 𝑉 > 1 and 𝑇 ∈ ℒ(𝑉 ) is not invertible. Prove that for
every 𝜀 > 0, there exists 𝑆 ∈ ℒ(𝑉 ) such that 0 < ‖𝑇 − 𝑆‖ < 𝜀 and 𝑆 is not invertible.

Solution. Since 𝑇  is not invertible, there exists some 𝑒1 ∈ null 𝑇  such that ‖𝑒1‖ = 1. Extend
this to an orthonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉  and note that 𝑛 ≥ 2. Define 𝑆 ∈ ℒ(𝑉 ) by 𝑆𝑒1 = 0
and 𝑆𝑒𝑘 = 𝑇𝑒𝑘 − 𝜀

2𝑒𝑘 for 𝑘 ≥ 2. Notice that 𝑆 is not invertible and that 𝑆 ≠ 𝑇 . Notice fur-
ther that, for any 𝑣 ∈ 𝑉 ,

‖(𝑇 − 𝑆)𝑣‖2 = ‖𝜀
2 (⟨𝑣, 𝑒2⟩𝑒2 + ⋯ + ⟨𝑣, 𝑒𝑛⟩𝑒𝑛)‖

2

= 𝜀2

4 (|⟨𝑣, 𝑒2⟩|
2 + ⋯ + |⟨𝑣, 𝑒𝑛⟩|2) ≤ 𝜀2

4 ‖𝑣‖2.

Thus ‖(𝑇 − 𝑆)𝑣‖ ≤ 𝜀
2‖𝑣‖ for any 𝑣 ∈ 𝑉 . It follows that ‖𝑇 − 𝑆‖ ≤ 𝜀

2 < 𝜀 and hence that
0 < ‖𝑇 − 𝑆‖ < 𝜀, since 𝑆 ≠ 𝑇 .

Exercise 7.F.11. Suppose 𝐅 = 𝐂 and 𝑇 ∈ ℒ(𝑉 ). Prove that for every 𝜀 > 0 there exists
a diagonalizable operator 𝑆 ∈ ℒ(𝑉 ) such that 0 < ‖𝑇 − 𝑆‖ < 𝜀.

Solution. We will prove that 𝑆 may be chosen to have dim 𝑉  distinct eigenvalues, which
implies the desired result by 5.58.
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By Schur’s theorem (6.38), there is an orthonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉  with respect to which
the matrix of 𝑇  is upper-triangular, say

ℳ(𝑇 , (𝑒1, …, 𝑒𝑛)) =

⎝
⎜⎜
⎜⎜
⎜⎜
⎛𝜆1

0
⋮
0

∗
𝜆2
⋮
0

⋯
⋯
⋱
⋯

∗
∗
⋮

𝜆𝑛⎠
⎟⎟
⎟⎟
⎟⎟
⎞

.

Let 𝐷 ∈ ℒ(𝑉 ) be given by 𝐷𝑒𝑘 = 𝑘𝑒𝑘, so that

ℳ(𝐷, (𝑒1, …, 𝑒𝑛)) =

⎝
⎜⎜
⎜⎜
⎛1

0
⋮
0

0
2
⋮
0

⋯
⋯
⋱
⋯

0
0
⋮
𝑛⎠
⎟⎟
⎟⎟
⎞

.

It is straightforward to verify that ‖𝐷‖ = 𝑛. For 𝛿 ∈ 𝐑 and 𝑗, 𝑘 ∈ {1, …, 𝑛} such that 𝑗 < 𝑘,
notice that

𝜆𝑗 + 𝑗𝛿 = 𝜆𝑘 + 𝑘𝛿 ⇔ 𝛿 =
𝜆𝑗 − 𝜆𝑘

𝑘 − 𝑗
.

Since there are only finitely many such choices of 𝑗 and 𝑘, we may choose a 𝛿 ∈ (0, 𝜀
𝑛) such

that 𝜆𝑗 + 𝑗𝛿 ≠ 𝜆𝑘 + 𝑘𝛿 for each 𝑗, 𝑘 ∈ {1, …, 𝑛} satisfying 𝑗 < 𝑘. It follows that the diagonal
entries of the upper-triangular matrix

ℳ(𝑇 + 𝛿𝐷, (𝑒1, …, 𝑒𝑛)) =

⎝
⎜⎜
⎜⎜
⎜⎜
⎛𝜆1 + 𝛿

0
⋮
0

∗
𝜆2 + 2𝛿

⋮
0

⋯
⋯
⋱
⋯

∗
∗
⋮

𝜆𝑛 + 𝑛𝛿⎠
⎟⎟
⎟⎟
⎟⎟
⎞

,

and hence the 𝑛 eigenvalues of the operator 𝑆 ≔ 𝑇 + 𝛿𝐷, are distinct. Furthermore,

0 < 𝛿 ⇒ 𝑆 ≠ 𝑇 ⇒ 0 < ‖𝑇 − 𝑆‖,

𝛿 < 𝜀
𝑛 ⇒ ‖𝑇 − 𝑆‖ = 𝛿‖𝐷‖ < 𝜀.

Exercise 7.F.12. Suppose 𝑇 ∈ ℒ(𝑉 ) is a positive operator. Show that ‖
√

𝑇‖ = √‖𝑇‖.

Solution. Let 𝑠 be the largest singular value of 
√

𝑇 , i.e. ‖
√

𝑇‖ = 𝑠. Since 
√

𝑇  is positive
and hence normal, Exercise 7.E.12 (b) shows that the singular values of 𝑇  equal the squares
of the singular values of 

√
𝑇 . Given that singular values are non-negative, it follows that the

largest singular value of 𝑇  is 𝑠2, i.e. ‖𝑇 ‖ = 𝑠2. Thus ‖
√

𝑇‖ = 𝑠 = √‖𝑇‖.

Exercise 7.F.13. Suppose 𝑆, 𝑇 ∈ ℒ(𝑉 ) are positive operators. Show that

‖𝑆 − 𝑇‖ ≤ max{‖𝑆‖, ‖𝑇 ‖} ≤ ‖𝑆 + 𝑇‖.

Solution. Let us prove a couple of useful lemmas.
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Lemma L.13. If 𝐴 ∈ ℒ(𝑉 ) is a self-adjoint operator then ‖𝐴‖𝐼 − 𝐴 is a positive op-
erator.

Proof. First note that ‖𝐴‖𝐼 − 𝐴 is a real-linear combination of self-adjoint operators
and hence is itself self-adjoint (see 7.5). Now suppose that 𝜆 ∈ 𝐑 is an eigenvalue of 
‖𝐴‖𝐼 − 𝐴, say ‖𝐴‖𝑣 − 𝐴𝑣 = 𝜆𝑣 for some 𝑣 ∈ 𝑉 . It follows that 𝜆 − ‖𝐴‖ is an eigenvalue
of 𝐴 and hence, by Exercise 7.F.2,

|𝜆 − ‖𝐴‖| ≤ ‖𝐴‖ ⇒ 𝜆 ≥ 0.

Thus ‖𝐴‖𝐼 − 𝐴 is a positive operator by 7.38(b). □

Lemma L.14. If 𝐴 and 𝐵 − 𝐴 are positive operators then ‖𝐴‖ ≤ ‖𝐵‖.

Proof. Note that 𝐵 = (𝐵 − 𝐴) + 𝐴 is a positive operator by Exercise 7.C.6. It follows
from Lemma L.13 that ‖𝐵‖𝐼 − 𝐵 is a positive operator and hence that

‖𝐵‖𝐼 − 𝐴 = (‖𝐵‖𝐼 − 𝐵) + (𝐵 − 𝐴)

is a positive operator. Suppose 𝜆 ≥ 0 is an eigenvalue of 𝐴, say 𝐴𝑣 = 𝜆𝑣 for some 𝑣 ∈ 𝑉 .
Observe that

(‖𝐵‖𝐼 − 𝐴)𝑣 = (‖𝐵‖ − 𝜆)𝑣,

so that ‖𝐵‖ − 𝜆 is an eigenvalue of the positive operator ‖𝐵‖𝐼 − 𝐴. It follows that 
‖𝐵‖ − 𝜆 is non-negative and hence that 𝜆 ≤ ‖𝐵‖. Since this was true for any eigenvalue
of 𝐴, and each such eigenvalue is non-negative, Exercise 7.F.2 shows that

‖𝐴‖ = max{|𝜆| : 𝜆 is an eigenvalue of 𝐴} ≤ ‖𝐵‖,

as desired. □

Returning to the exercise, suppose 𝜆 ∈ 𝐑 is an eigenvalue of the self-adjoint operator 𝑆 − 𝑇 ,
say (𝑆 − 𝑇)𝑣 = 𝜆𝑣 for some 𝑣 ∈ 𝑉 . It follows that

(‖𝑆‖𝐼 − (𝑆 − 𝑇))𝑣 = (‖𝑆‖ − 𝜆)𝑣

and hence that ‖𝑆‖ − 𝜆 is an eigenvalue of ‖𝑆‖𝐼 − (𝑆 − 𝑇). Notice that ‖𝑆‖𝐼 − (𝑆 − 𝑇) is a
positive operator by Lemma L.13 and Exercise 7.C.6, so that its eigenvalues are non-negative.
Thus 𝜆 ≤ ‖𝑆‖ and a similar argument with the operator 𝑆 − 𝑇 + ‖𝑇 ‖𝐼 shows that −‖𝑇 ‖ ≤ 𝜆.
It follows that |𝜆| ≤ max{‖𝑆‖, ‖𝑇 ‖} and hence, by Exercise 7.F.2,

‖𝑆 − 𝑇‖ = max{|𝜆| : 𝜆 is an eigenvalue of 𝑆 − 𝑇} ≤ max{‖𝑆‖, ‖𝑇 ‖}.

Applying Lemma L.14 twice, first with 𝐴 = 𝑇  and 𝐵 = 𝑆 + 𝑇  and then with 𝐴 = 𝑆 and
𝐵 = 𝑆 + 𝑇 , shows that
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‖𝑆‖ ≤ ‖𝑆 + 𝑇‖ and ‖𝑇 ‖ ≤ ‖𝑆 + 𝑇‖ ⇒ max{‖𝑆‖, ‖𝑇 ‖} ≤ ‖𝑆 + 𝑇‖.

Exercise 7.F.14. Suppose 𝑈  and 𝑊  are subspaces of 𝑉  such that ‖𝑃𝑈 − 𝑃𝑊 ‖ < 1.
Prove that dim 𝑈 = dim 𝑊 .

Solution. Using the identities 𝑃𝑈 = 𝐼 − 𝑃𝑈⟂ and 𝑃𝑊 = 𝐼 − 𝑃𝑊⟂ (see Exercise 6.C.5) and
Exercise 7.F.8 (a), we see that the operators 𝑃𝑈⟂ + 𝑃𝑊  and 𝑃𝑈 + 𝑃𝑊⟂ are invertible. It
follows that

𝑈 ∩ 𝑊⟂ = (null 𝑃𝑈⟂) ∩ (null 𝑃𝑊 ) ⊆ null(𝑃𝑈⟂ + 𝑃𝑊 ) = {0} ⇒ 𝑈 ∩ 𝑊⟂ = {0},

𝑉 = range(𝑃𝑈 + 𝑃𝑊⟂) ⊆ (range 𝑃𝑈) + (range 𝑃𝑊⟂) = 𝑈 + 𝑊⟂ ⇒ 𝑈 + 𝑊⟂ = 𝑉 .

Thus, using 6.51,

dim 𝑉 = dim(𝑈 + 𝑊⟂) = dim 𝑈 + dim 𝑊⟂ − dim(𝑈 ∩ 𝑊⟂) = dim 𝑉 + dim 𝑈 − dim 𝑊

⇒ dim 𝑈 = dim 𝑊.

Exercise 7.F.15. Define 𝑇 ∈ ℒ(𝐅3) by

𝑇 (𝑧1, 𝑧2, 𝑧3) = (𝑧3, 2𝑧1, 3𝑧2).

Find (explicitly) a unitary operator 𝑆 ∈ ℒ(𝐅3) such that 𝑇 = 𝑆
√

𝑇 ∗𝑇 .

Solution. Let 𝑒1, 𝑒2, 𝑒3 be the standard orthonormal basis of 𝐅3. A routine calculation shows
that the singular value decomposition of 𝑇  is

𝑇𝑣 = 3⟨𝑣, 𝑒2⟩𝑒3 + 2⟨𝑣, 𝑒1⟩𝑒2 + ⟨𝑣, 𝑒3⟩𝑒1.

As the proof of 7.93 shows, if we take 𝑆 ∈ ℒ(𝑉 ) to be the unitary operator defined by

𝑆𝑒2 = 𝑒3, 𝑆𝑒1 = 𝑒2, and 𝑆𝑒3 = 𝑒1,

then 𝑇 = 𝑆
√

𝑇 ∗𝑇 .

Exercise 7.F.16. Suppose 𝑆 ∈ ℒ(𝑉 ) is a positive invertible operator. Prove that there
exists 𝛿 > 0 such that 𝑇  is a positive operator for every self-adjoint operator 𝑇 ∈ ℒ(𝑉 )
with ‖𝑆 − 𝑇‖ < 𝛿.

Solution. Let 𝜇 be the least singular value of 𝑆 and note that 𝜇 > 0 since 𝑆 is invertible.
Note further that √𝜇 > 0 is the least singular value of 

√
𝑆 by Exercise 7.E.12 (b). Thus, by

Exercise 7.E.14,

⟨𝑆𝑣, 𝑣⟩ = ⟨𝑆1/2𝑣, 𝑆1/2𝑣⟩ = ‖𝑆1/2𝑣‖2 ≥ 𝜇‖𝑣‖2 (1)

for every 𝑣 ∈ 𝑉 . Suppose 𝑇 ∈ ℒ(𝑉 ) is a self-adjoint operator satisfying ‖𝑆 − 𝑇‖ < 𝜇. For any
𝑣 ∈ 𝑉 , the Cauchy-Schwarz inequality gives us
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⟨(𝑆 − 𝑇)𝑣, 𝑣⟩ ≤ ‖(𝑆 − 𝑇)𝑣‖‖𝑣‖ ≤ ‖𝑆 − 𝑇‖‖𝑣‖2 < 𝜇‖𝑣‖2

⇒ 𝜇‖𝑣‖2 + ⟨(𝑇 − 𝑆)𝑣, 𝑣⟩ > 0. (2)

Combining inequalities (1) and (2) we obtain, for any 𝑣 ∈ 𝑉 ,

⟨𝑇 𝑣, 𝑣⟩ = ⟨𝑆𝑣, 𝑣⟩ + ⟨(𝑇 − 𝑆)𝑣, 𝑣⟩ ≥ 𝜇‖𝑣‖2 + ⟨(𝑇 − 𝑆)𝑣, 𝑣⟩ > 0.

Thus 𝑇  is a positive operator.

Exercise 7.F.17. Prove that if 𝑢 ∈ 𝑉  and 𝜑𝑢 is the linear functional on 𝑉  defined by
the equation 𝜑𝑢(𝑣) = ⟨𝑣, 𝑢⟩, then ‖𝜑𝑢‖ = ‖𝑢‖.

Here we are thinking of the scalar field 𝐅 as an inner product space with ⟨𝛼, 𝛽⟩ = 𝛼𝛽
for all 𝛼, 𝛽 ∈ 𝐅. Thus ‖𝜑𝑢‖ means the norm of 𝜑𝑢 as a linear map from 𝑉  to 𝐅.

Solution. The Cauchy-Schwarz inequality shows that

|𝜑𝑢(𝑣)| = |⟨𝑣, 𝑢⟩| ≤ ‖𝑢‖‖𝑣‖

for any 𝑣 ∈ 𝑉 . It follows that ‖𝜑𝑢‖ ≤ ‖𝑢‖. Since |𝜑𝑢(𝑢)| = |⟨𝑢, 𝑢⟩| = ‖𝑢‖, we may conclude
that ‖𝜑𝑢‖ = ‖𝑢‖.

Exercise 7.F.18. Suppose 𝑒1, …, 𝑒𝑛 is an orthonormal basis of 𝑉  and 𝑇 ∈ ℒ(𝑉 , 𝑊).

(a) Prove that max{‖𝑇𝑒1‖, …, ‖𝑇 𝑒𝑛‖} ≤ ‖𝑇 ‖ ≤ (‖𝑇𝑒1‖
2 + ⋯ + ‖𝑇𝑒𝑛‖2)

1/2
.

(b) Prove that ‖𝑇 ‖ = (‖𝑇𝑒1‖
2 + ⋯ + ‖𝑇𝑒𝑛‖2)

1/2
 if and only if dim range 𝑇 ≤ 1.

Here 𝑒1, …, 𝑒𝑛 is an arbitrary orthonormal basis of 𝑉 , not necessarily connected with
a singular value decomposition of 𝑇 . If 𝑠1, …, 𝑠𝑛 is the list of singular values of 𝑇 ,
then the right side of the inequality above equals (𝑠2

1 + ⋯ + 𝑠2
𝑛)1/2, as was shown in

Exercise 11(a) in Section 7E.

Solution.

(a) For any 𝑘 ∈ {1, …, 𝑛} we have ‖𝑇 𝑒𝑘‖ ≤ ‖𝑇 ‖‖𝑒𝑘‖ = ‖𝑇 ‖ and thus

max{‖𝑇𝑒1‖, …, ‖𝑇 𝑒𝑛‖} ≤ ‖𝑇 ‖.

Let 𝑠1, …, 𝑠𝑛 be the singular values of 𝑇  and suppose that 𝑠1, …, 𝑠𝑚 are the positive
singular values of 𝑇 . Suppose further that

𝑇𝑣 = 𝑠1⟨𝑣, 𝑓1⟩𝑔1 + ⋯ + 𝑠𝑚⟨𝑣, 𝑓𝑚⟩𝑔𝑚

is a singular value decomposition of 𝑇 . For any 𝑣 ∈ 𝑉 , observe that

‖𝑇 𝑣‖2 = 𝑠2
1|⟨𝑣, 𝑓1⟩|

2 + ⋯ + 𝑠2
𝑚|⟨𝑣, 𝑓𝑚⟩|2

≤ (𝑠2
1 + ⋯ + 𝑠2

𝑚)‖𝑣‖2

≤ (𝑠2
1 + ⋯ + 𝑠2

𝑛)‖𝑣‖2.
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Thus ‖𝑇 𝑣‖ ≤ (𝑠2
1 + ⋯ + 𝑠2

𝑛)1/2‖𝑣‖ for every 𝑣 ∈ 𝑉 , which implies that

‖𝑇 ‖ ≤ (𝑠2
1 + ⋯ + 𝑠2

𝑛)1/2 = (‖𝑇𝑒1‖
2 + ⋯ + ‖𝑇𝑒𝑛‖2)

1/2
,

where we have used Exercise 7.E.11 (a) for the last equality.

(b) Let 𝑠1, …, 𝑠𝑛 be the singular values of 𝑇 . By Exercise 7.E.11 (a) and 7.68(b), it will
suffice to show that ‖𝑇 ‖ = (𝑠2

1 + ⋯ + 𝑠2
𝑛)1/2 if and only if 𝑇  has at most one positive

singular value.

If 𝑇  has at most one positive singular value then 𝑠𝑘 = 0 for 𝑘 ≥ 2. It follows that

‖𝑇 ‖ = 𝑠1 = (𝑠2
1)

1/2 = (𝑠2
1 + ⋯ + 𝑠2

𝑛)1/2.

If 𝑇  has at least two positive singular values then 𝑠2 > 0 and it follows that

‖𝑇 ‖ = 𝑠1 = (𝑠2
1)

1/2 < (𝑠2
1 + 𝑠2

2 + ⋯ + 𝑠2
𝑛)1/2.

Exercise 7.F.19. Prove that if 𝑇 ∈ ℒ(𝑉 , 𝑊), then ‖𝑇 ∗𝑇 ‖ = ‖𝑇 ‖2.

This formula for ‖𝑇 ∗𝑇 ‖ leads to the important subject of 𝐶∗-algebras.

Solution. For any 𝑣 ∈ 𝑉 , observe that

‖(𝑇 ∗𝑇 )1/2 𝑣‖2 = ⟨(𝑇 ∗𝑇 )1/2 𝑣, (𝑇 ∗𝑇 )1/2 𝑣⟩ = ⟨𝑇 ∗𝑇𝑣, 𝑣⟩ = ⟨𝑇𝑣, 𝑇 𝑣⟩ = ‖𝑇𝑣‖2 ≤ ‖𝑇 ‖2‖𝑣‖2.

It follows that ‖(𝑇 ∗𝑇 )1/2‖ ≤ ‖𝑇 ‖. By the polar decomposition (7.93), there exists a unitary
operator 𝑆 ∈ ℒ(𝑉 ) such that 𝑇 = 𝑆(𝑇 ∗𝑇 )1/2. Note that

‖𝑆‖ = max{‖𝑆𝑣‖ : 𝑣 ∈ 𝑉 and ‖𝑉 ‖ = 1} = max{1} = 1.

It then follows from Exercise 7.F.5 that

‖𝑇 ‖ = ‖𝑆(𝑇 ∗𝑇 )1/2‖ ≤ ‖𝑆‖‖(𝑇 ∗𝑇 )1/2‖ = ‖(𝑇 ∗𝑇 )1/2‖.

Thus ‖(𝑇 ∗𝑇 )1/2‖ = ‖𝑇 ‖, which is equivalent to ‖𝑇 ∗𝑇 ‖ = ‖𝑇 ‖2 by Exercise 7.F.12.

Exercise 7.F.20. Suppose 𝑇 ∈ ℒ(𝑉 ) is normal. Prove that ‖𝑇 𝑘‖ = ‖𝑇 ‖𝑘 for every pos-
itive integer 𝑘.

Solution. Let 𝑘 be a positive integer and suppose 𝑠1, …, 𝑠𝑛 are the singular values of 𝑇 , so
that ‖𝑇 ‖ = 𝑠1. As in Exercise 7.E.12 (b), let 𝑒1, …, 𝑒𝑛 be an orthonormal basis of 𝑉  such that
𝑇 ∗𝑇𝑒𝑗 = 𝑠2

𝑗𝑒𝑗 for each 𝑗 ∈ {1, …, 𝑛}. Using the normality of 𝑇 , it follows that

(𝑇 𝑘)∗𝑇 𝑘𝑒𝑗 = (𝑇 ∗𝑇 )𝑘𝑒𝑗 = 𝑠2𝑘
𝑗 𝑒𝑗

for each 𝑗 ∈ {1, …, 𝑛}. Thus the singular values of 𝑇 𝑘 are 𝑠𝑘
1, …, 𝑠𝑘

𝑛; these are still in decreas-
ing order since the function 𝑥 ↦ 𝑥𝑘 is strictly increasing on [0, ∞). It follows that

‖𝑇 𝑘‖ = 𝑠𝑘
1 = ‖𝑇 ‖𝑘.
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Exercise 7.F.21. Suppose dim 𝑉 > 1 and dim 𝑊 > 1. Prove that the norm on ℒ(𝑉 , 𝑊)
does not come from an inner product. In other words, prove that there does not exist
an inner product on ℒ(𝑉 , 𝑊) such that

max{‖𝑇𝑣‖ : 𝑣 ∈ 𝑉 and ‖𝑣‖ ≤ 1} = √⟨𝑇 , 𝑇 ⟩

for all 𝑇 ∈ ℒ(𝑉 , 𝑊).

Solution. Let 𝑣1, …, 𝑣𝑚 be an orthonormal basis of 𝑉  and let 𝑤1, …, 𝑤𝑛 be an orthonormal
basis of 𝑊 ; note that 𝑚, 𝑛 ≥ 2. Let 𝑆, 𝑇 ∈ ℒ(𝑉 , 𝑊) be the linear maps given by

𝑆𝑣1 = 𝑤1, 𝑆𝑣2 = 𝑤2, and 𝑆𝑣𝑘 = 0 if 𝑘 > 2,

𝑇 𝑣1 = −𝑤1, 𝑇 𝑣2 = 𝑤2, and 𝑇𝑣𝑘 = 0 if 𝑘 > 2.

It is straightforward to verify that

‖𝑆 + 𝑇‖ = ‖𝑆 − 𝑇‖ = 2 and ‖𝑆‖ = ‖𝑇 ‖ = 1

⇒ ‖𝑆 + 𝑇‖2 + ‖𝑆 − 𝑇‖2 = 8 ≠ 4 = 2(‖𝑆‖2 + ‖𝑇 ‖2).

Thus the norm on ℒ(𝑉 , 𝑊) does not satisfy the parallelogram equality (6.21) and hence
does not come from an inner product.

Exercise 7.F.22. Suppose 𝑇 ∈ ℒ(𝑉 , 𝑊). Let 𝑛 = dim 𝑉  and let 𝑠1 ≥ ⋯ ≥ 𝑠𝑛 denote
the singular values of 𝑇 . Prove that if 1 ≤ 𝑘 ≤ 𝑛, then

min{‖𝑇 |𝑈‖ : 𝑈 is a subspace of 𝑉 with dim 𝑈 = 𝑘} = 𝑠𝑛−𝑘+1.

Solution. For 𝑘 ∈ {1, …, 𝑛}, let 𝐸𝑘 = {‖𝑇 |𝑈‖ : 𝑈 is a subspace of 𝑉 with dim 𝑈 = 𝑘}. If 𝑇
has no positive singular values, i.e. 𝑇 = 0, then

min 𝐸𝑘 = min{0} = 0 = 𝑠𝑛−𝑘+1

for any 𝑘 ∈ {1, …, 𝑛}. Furthermore, since the only subspace of 𝑉  with dimension 𝑛 is 𝑉  itself,
we have

min 𝐸𝑛 = min{‖𝑇 ‖} = ‖𝑇 ‖ = 𝑠1.

We may therefore assume that 𝑇  has at least one singular value and that 1 ≤ 𝑘 < 𝑛.

Suppose that 𝑠1 ≥ ⋯ ≥ 𝑠𝑚 are the positive singular values of 𝑇 , where 𝑚 ≥ 1, and let

𝑇𝑣 = 𝑠1⟨𝑣, 𝑒1⟩𝑓1 + ⋯ + 𝑠𝑚⟨𝑣, 𝑒𝑚⟩𝑓𝑚

be a singular value decomposition of 𝑇 . Extend the orthonormal list 𝑒1, …, 𝑒𝑚 to an ortho-
normal basis 𝑒1, …, 𝑒𝑛 of 𝑉 , so that

𝑇𝑒𝑗 = {
𝑠𝑗𝑓𝑗 if 1 ≤ 𝑗 ≤ 𝑚,
0 if 𝑚 < 𝑗 ≤ 𝑛.
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For 1 ≤ 𝑘 < 𝑛 let 𝑋 = span(𝑒𝑛−𝑘+1, …, 𝑒𝑛) and note that dim 𝑋 = 𝑘. We consider two cases.

Case 1. If 1 ≤ 𝑘 ≤ 𝑛 − 𝑚, so that 𝑚 + 1 ≤ 𝑛 − 𝑘 + 1, then 𝑠𝑛−𝑘+1 = 0. Furthermore, 𝑇  van-
ishes on each of the basis vectors 𝑒𝑛−𝑘+1, …, 𝑒𝑛, so that 𝑇 |𝑋 = 0. Since 𝐸𝑘 is bounded below
by zero, it follows that min 𝐸𝑘 = 0 = 𝑠𝑛−𝑘+1.

Case 2. Suppose that 𝑛 − 𝑚 < 𝑘 < 𝑛, so that 1 ≤ 𝑛 − 𝑘 < 𝑚, and let 𝑈  be any subspace
of 𝑉  satisfying dim 𝑈 = 𝑘. If 𝑣 ∈ 𝑉  is such that ‖𝑣‖ ≤ 1 then note that 𝑃𝑈𝑣 ∈ 𝑈  and that 
‖𝑃𝑈𝑣‖ ≤ ‖𝑣‖ ≤ 1. It follows that ‖𝑇𝑃𝑈𝑣‖ ≤ ‖𝑇 |𝑈‖, since

‖𝑇 |𝑈‖ = max{‖𝑇𝑢‖ : 𝑢 ∈ 𝑈 and ‖𝑢‖ ≤ 1}.

Thus ‖𝑇𝑃𝑈‖ ≤ ‖𝑇 |𝑈‖. Next, observe that

dim range(𝑇𝑃𝑈⟂) ≤ dim range 𝑃𝑈⟂ = dim 𝑈⟂ = dim 𝑉 − dim 𝑈 = 𝑛 − 𝑘.

It follows from 7.92 that ‖𝑇 − 𝑇𝑃𝑈⟂‖ ≥ 𝑠𝑛−𝑘+1. Combining these inequalities with the iden-
tity 𝑃𝑈 = 𝐼 − 𝑃𝑈⟂ from Exercise 6.C.5, we have

‖𝑇 |𝑈‖ ≥ ‖𝑇𝑃𝑈‖ = ‖𝑇 − 𝑇𝑃𝑈⟂‖ ≥ 𝑠𝑛−𝑘+1.

Thus 𝑠𝑛−𝑘+1 is a lower bound of 𝐸𝑘. Now observe that, for any 𝑥 ∈ 𝑋,

‖(𝑇 |𝑋)𝑥‖2 = 𝑠2
𝑛−𝑘+1|⟨𝑥, 𝑒𝑛−𝑘+1⟩|

2 + ⋯ + 𝑠2
𝑚|⟨𝑥, 𝑒𝑚⟩|2 ≤ 𝑠2

𝑛−𝑘+1‖𝑥‖2.

It follows that ‖𝑇 |𝑋‖ ≤ 𝑠𝑛−𝑘+1; in fact, this is an equality since ‖𝑒𝑛−𝑘+1‖ = 1 and

(𝑇 |𝑋)(𝑒𝑛−𝑘+1) = 𝑠𝑛−𝑘+1𝑓𝑛−𝑘+1 ⇒ ‖(𝑇 |𝑋)(𝑒𝑛−𝑘+1)‖ = 𝑠𝑛−𝑘+1.

Thus the lower bound 𝑠𝑛−𝑘+1 belongs to 𝐸𝑘, i.e. min 𝐸𝑘 = 𝑠𝑛−𝑘+1.

Exercise 7.F.23. Suppose 𝑇 ∈ ℒ(𝑉 , 𝑊). Show that 𝑇  is uniformly continuous with
respect to the metrics on 𝑉  and 𝑊  that arise from the norms on those spaces (see
Exercise 23 in Section 6B).

Solution. Let 𝜀 > 0 be given and let 𝛿 = 𝜀(1 + ‖𝑇 ‖)−1. If 𝑢, 𝑣 ∈ 𝑉  are such that ‖𝑢 − 𝑣‖ < 𝛿,
then observe that

‖𝑇𝑢 − 𝑇𝑣‖ = ‖𝑇 (𝑢 − 𝑣)‖ ≤ ‖𝑇 ‖‖𝑢 − 𝑣‖ < ‖𝑇 ‖𝛿 < 𝜀.

Thus 𝑇  is uniformly continuous.

Exercise 7.F.24. Suppose 𝑇 ∈ ℒ(𝑉 ) is invertible. Prove that

‖𝑇 −1‖ = ‖𝑇 ‖−1 ⇔
𝑇

‖𝑇‖
is a unitary operator.

Solution. Let 𝑠1 ≥ ⋯ ≥ 𝑠𝑛 be the singular values of 𝑇 , so that ‖𝑇 ‖ = 𝑠1; note that each
singular value is strictly positive since 𝑇  is invertible. Note further that 𝑠−1

𝑛 ≥ ⋯ ≥ 𝑠−1
1  are
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the singular values of 𝑇 −1 by Exercise 7.E.10, which gives us ‖𝑇 −1‖ = 𝑠−1
𝑛 . Thus we wish to

prove that

𝑠−1
𝑛 = 𝑠−1

1 ⇔ 𝑠−1
1 𝑇 is a unitary operator.

Indeed,

𝑠−1
𝑛 = 𝑠−1

1 ⇔ 𝑠1 = 𝑠𝑛

⇔ each singular value of 𝑇 equals 𝑠1

⇔ each singular value of 𝑠−1
1 𝑇 equals 1

⇔ 𝑠−1
1 𝑇 is a unitary operator. (7.69)

Exercise 7.F.25. Fix 𝑢, 𝑥 ∈ 𝑉  with 𝑢 ≠ 0. Define 𝑇 ∈ ℒ(𝑉 ) by 𝑇𝑣 = ⟨𝑣, 𝑢⟩𝑥 for every
𝑣 ∈ 𝑉 . Prove that

√
𝑇 ∗𝑇𝑣 =

‖𝑥‖
‖𝑢‖

⟨𝑣, 𝑢⟩𝑢

for every 𝑣 ∈ 𝑉 .

Solution. Let 𝑅 ∈ ℒ(𝑉 ) be given by

𝑅𝑣 =
‖𝑥‖
‖𝑢‖

⟨𝑣, 𝑢⟩𝑢.

Our aim is to show that 𝑅 =
√

𝑇 ∗𝑇 . Using the formula 𝑇 ∗𝑣 = ⟨𝑣, 𝑥⟩𝑢, shown in example 7.3,
a routine calculation shows that

𝑅2𝑣 = ‖𝑥‖2⟨𝑣, 𝑢⟩𝑢 = 𝑇 ∗𝑇𝑣.

Furthermore, for any 𝑣 ∈ 𝑉 ,

⟨𝑅𝑣, 𝑣⟩ =
‖𝑥‖
‖𝑢‖

|⟨𝑣, 𝑢⟩|2 ≥ 0.

Thus 𝑅 is a positive square root of 𝑇 ∗𝑇 . It follows from uniqueness (7.39) that 𝑅 =
√

𝑇 ∗𝑇 .

Exercise 7.F.26. Suppose 𝑇 ∈ ℒ(𝑉 ). Prove that 𝑇  is invertible if and only if there
exists a unique unitary operator 𝑆 ∈ ℒ(𝑉 ) such that 𝑇 = 𝑆

√
𝑇 ∗𝑇 .

Solution. Suppose that 𝑇  is invertible. The polar decomposition (7.93) provides us with a
unitary operator 𝑆 ∈ ℒ(𝑉 ) such that 𝑇 = 𝑆

√
𝑇 ∗𝑇 . To see that 𝑆 is unique, note that 

√
𝑇 ∗𝑇

is invertible, since

null
√

𝑇 ∗𝑇 = null 𝑇 ∗𝑇 = null 𝑇 = {0},
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where the first equality follows from Exercise 7.C.16 and the second equality follows from
7.64(b). Thus 𝑆 is uniquely determined by the formula 𝑆 = 𝑇(

√
𝑇 ∗𝑇)−1.

Now suppose that 𝑇  is not invertible. Let 𝑠1, …, 𝑠𝑚 be the positive singular values of 𝑇 , let

𝑇𝑣 = 𝑠1⟨𝑣, 𝑒1⟩𝑓1 + ⋯ + 𝑠𝑚⟨𝑣, 𝑒𝑚⟩𝑓𝑚

be a singular value decomposition of 𝑇 , and extend 𝑒1, …, 𝑒𝑚 and 𝑓1, …, 𝑓𝑚 to orthonormal
bases 𝑒1, …, 𝑒𝑛 and 𝑓1, …, 𝑓𝑛 of 𝑉 . Because 𝑇  is not invertible, it must be the case that 𝑚 is
strictly less than 𝑛. Define 𝑅, 𝑆 ∈ ℒ(𝑉 ) by

𝑅𝑒𝑘 = 𝑆𝑒𝑘 = 𝑓𝑘 for 𝑘 < 𝑛, 𝑅𝑒𝑛 = 𝑓𝑛, and 𝑆𝑒𝑛 = −𝑓𝑛.

As in the proof of the polar decomposition (7.93), 𝑅 and 𝑆 are both unitary operators and
both satisfy 𝑇 = 𝑅

√
𝑇 ∗𝑇 = 𝑆

√
𝑇 ∗𝑇 , however 𝑅 ≠ 𝑆.

Exercise 7.F.27. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝑠1, …, 𝑠𝑛 are the singular values of 𝑇 . Let 
𝑒1, …, 𝑒𝑛 and 𝑓1, …, 𝑓𝑛 be orthonormal bases of 𝑉  such that

𝑇𝑣 = 𝑠1⟨𝑣, 𝑒1⟩𝑓1 + ⋯ + 𝑠𝑛⟨𝑣, 𝑒𝑛⟩𝑓𝑛

for all 𝑣 ∈ 𝑉 . Define 𝑆 ∈ ℒ(𝑉 ) by

𝑆𝑣 = ⟨𝑣, 𝑒1⟩𝑓1 + ⋯ + ⟨𝑣, 𝑒𝑛⟩𝑓𝑛.

(a) Show that 𝑆 is unitary and ‖𝑇 − 𝑆‖ = max{|𝑠1 − 1|, …, |𝑠𝑛 − 1|}.

(b) Show that if 𝐸 ∈ ℒ(𝑉 ) is unitary, then ‖𝑇 − 𝐸‖ ≥ ‖𝑇 − 𝑆‖.

This exercise finds a unitary operator 𝑆 that is as close as possible (among the unitary
operators) to a given operator 𝑇 .

Solution.

(a) 𝑆 was shown to be unitary in the proof of the polar decomposition (7.93). Suppose that
max{|𝑠1 − 1|, …, |𝑠𝑛 − 1|} = |𝑠𝑗 − 1|, where 𝑗 ∈ {1, …, 𝑛}. For any 𝑣 ∈ 𝑉 , observe that

‖(𝑇 − 𝑆)𝑣‖2 = |𝑠1 − 1|2|⟨𝑣, 𝑒1⟩|
2 + ⋯ + |𝑠𝑛 − 1|2|⟨𝑣, 𝑒𝑛⟩|2 ≤ |𝑠𝑗 − 1|2‖𝑣‖2.

Thus ‖𝑇 − 𝑆‖ ≤ |𝑠𝑗 − 1|. Since ‖(𝑇 − 𝑆)𝑒𝑗‖ = |𝑠𝑗 − 1|, we must have ‖𝑇 − 𝑆‖ = |𝑠𝑗 − 1|.

(b) Let 𝑘 ∈ {1, …, 𝑛} be given and note that, since 𝐸 is unitary, we must have
‖𝐸𝑒𝑘‖ = ‖𝑒𝑘‖ = 1. It follows from the reverse triangle inequality (see Exercise 6.A.20)
that

‖𝑇 − 𝐸‖ ≥ ‖(𝑇 − 𝐸)𝑒𝑘‖ ≥ |‖𝑇 𝑒𝑘‖ − ‖𝐸𝑒𝑘‖| = |‖𝑠𝑘𝑓𝑘‖ − 1| = |𝑠𝑘 − 1|.

Thus ‖𝑇 − 𝐸‖ ≥ max{|𝑠1 − 1|, …, |𝑠𝑛 − 1|} = ‖𝑇 − 𝑆‖.

Exercise 7.F.28. Suppose 𝑇 ∈ ℒ(𝑉 ). Prove that there exists a unitary operator
𝑆 ∈ ℒ(𝑉 ) such that 𝑇 =

√
𝑇𝑇 ∗𝑆.
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Solution. Let 𝑠1, …, 𝑠𝑚 be the positive singular values of 𝑇 , let

𝑇𝑣 = 𝑠1⟨𝑣, 𝑒1⟩𝑓1 + ⋯ + 𝑠𝑚⟨𝑣, 𝑒𝑚⟩𝑓𝑚

be a singular value decomposition of 𝑇 , and extend 𝑒1, …, 𝑒𝑚 and 𝑓1, …, 𝑓𝑚 to orthonormal
bases 𝑒1, …, 𝑒𝑛 and 𝑓1, …, 𝑓𝑛 of 𝑉 . Define the unitary operator 𝑆 ∈ ℒ(𝑉 ) as in the proof
of the polar decomposition (7.93). Using the formula for 𝑇𝑇 ∗ from Exercise 7.E.8 (e), we
see that

√
𝑇𝑇 ∗𝑣 = 𝑠1⟨𝑣, 𝑓1⟩𝑓1 + ⋯ + 𝑠𝑚⟨𝑣, 𝑓𝑚⟩𝑓𝑚

for every 𝑣 ∈ 𝑉 . For any 𝑘 ∈ {1, …, 𝑚} and any 𝑣 ∈ 𝑉 , notice that ⟨𝑆𝑣, 𝑓𝑘⟩ = ⟨𝑣, 𝑒𝑘⟩. It fol-
lows that

√
𝑇𝑇 ∗𝑆𝑣 = 𝑠1⟨𝑆𝑣, 𝑓1⟩𝑓1 + ⋯ + 𝑠𝑚⟨𝑆𝑣, 𝑓𝑚⟩𝑓𝑚 = 𝑠1⟨𝑣, 𝑒1⟩𝑓1 + ⋯ + 𝑠𝑚⟨𝑣, 𝑒𝑚⟩𝑓𝑚 = 𝑇𝑣.

Thus 𝑆 is a unitary operator satisfying 𝑇 =
√

𝑇𝑇 ∗𝑆.

Exercise 7.F.29. Suppose 𝑇 ∈ ℒ(𝑉 ).

(a) Use the polar decomposition to show that there exists a unitary operator 𝑆 ∈ ℒ(𝑉 )
such that 𝑇𝑇 ∗ = 𝑆𝑇 ∗𝑇𝑆∗.

(b) Show how (a) implies that 𝑇  and 𝑇 ∗ have the same singular values.

Solution.

(a) The polar decomposition (7.93) gives us a unitary operator 𝑆 ∈ ℒ(𝑉 ) satisfying
𝑇 = 𝑆

√
𝑇 ∗𝑇 ; as we showed in Exercise 7.F.28, 𝑆 also satisfies 𝑇 =

√
𝑇𝑇 ∗𝑆. It follows

that
√

𝑇𝑇 ∗𝑆 = 𝑆
√

𝑇 ∗𝑇 ⇒
√

𝑇𝑇 ∗ = 𝑆
√

𝑇 ∗𝑇𝑆∗

⇒ 𝑇𝑇 ∗ = 𝑆
√

𝑇 ∗𝑇𝑆∗𝑆
√

𝑇 ∗𝑇𝑆∗ = 𝑆𝑇 ∗𝑇𝑆∗.

(b) The identity 𝑇𝑇 ∗ = 𝑆𝑇 ∗𝑇𝑆∗ and Exercise 5.A.13 show that the list of eigenvalues of 
𝑇 ∗𝑇  is the same as the list of eigenvalues of 𝑇𝑇 ∗. It follows that the list of singular
values of 𝑇  is the same as the list of singular values of 𝑇 ∗.

Exercise 7.F.30. Suppose 𝑇 ∈ ℒ(𝑉 ), 𝑆 ∈ ℒ(𝑉 ) is a unitary operator, and 𝑅 ∈ ℒ(𝑉 )
is a positive operator such that 𝑇 = 𝑆𝑅. Prove that 𝑅 =

√
𝑇 ∗𝑇 .

This exercise shows that if we write 𝑇  as the product of a unitary operator and a pos-
itive operator (as in the polar decomposition 7.93), then the positive operator equals√

𝑇 ∗𝑇 .

Solution. Observe that

𝑇 ∗𝑇 = (𝑆𝑅)∗𝑆𝑅 = 𝑅∗𝑆∗𝑆𝑅 = 𝑅2,
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where we have used that 𝑅 is self-adjoint and that 𝑆 is unitary. Thus 𝑅 is a positive square
root of 𝑇 ∗𝑇 ; by uniqueness (7.39) we must have 𝑅 =

√
𝑇 ∗𝑇 .

Exercise 7.F.31. Suppose 𝐅 = 𝐂 and 𝑇 ∈ ℒ(𝑉 ) is normal. Prove that there exists a
unitary operator 𝑆 ∈ ℒ(𝑉 ) such that 𝑇 = 𝑆

√
𝑇 ∗𝑇  and such that 𝑆 and 

√
𝑇 ∗𝑇  both

have diagonal matrices with respect to the same orthonormal basis of 𝑉 .

Solution. As the polar decomposition (7.93) and Exercise 7.F.28 show, there exists a unitary
operator 𝑆 ∈ ℒ(𝑉 ) such that

𝑇 = 𝑆
√

𝑇 ∗𝑇 =
√

𝑇𝑇 ∗𝑆 =
√

𝑇 ∗𝑇𝑆,

where we have used that 𝑇  is normal for the last equality. Thus 𝑆 and 
√

𝑇 ∗𝑇  commute,
which by Exercise 7.B.16 is equivalent to the existence of an orthonormal basis of 𝑉  with
respect to which 𝑆 and 

√
𝑇 ∗𝑇  both have diagonal matrices.

Exercise 7.F.32. Suppose that 𝑇 ∈ ℒ(𝑉 , 𝑊) and 𝑇 ≠ 0. Let 𝑠1, …, 𝑠𝑚 denote the pos-
itive singular values of 𝑇 . Show that there exists an orthonormal basis 𝑒1, …, 𝑒𝑚 of 
(null 𝑇 )⟂ such that

𝑇(𝐸(
𝑒1
𝑠1

, …,
𝑒𝑚
𝑠𝑚

))

equals the ball in range 𝑇  of radius 1 centered at 0.

Solution. Let 𝐵 be the ball in range 𝑇  of radius 1 centered at 0 and let

𝑇𝑣 = 𝑠1⟨𝑣, 𝑒1⟩𝑓1 + ⋯ + 𝑠𝑚⟨𝑣, 𝑒𝑚⟩𝑓𝑚

be a singular value decomposition of 𝑇 ; as we showed in Exercise 7.E.8 (b), 𝑒1, …, 𝑒𝑚 is an
orthonormal basis of (null 𝑇 )⟂. Note that

𝑇𝑣 ∈ 𝐵 ⇔ ‖𝑇𝑣‖2 = 𝑠2
1|⟨𝑣, 𝑒1⟩|

2 + ⋯ + 𝑠2
𝑚|⟨𝑣, 𝑒𝑚⟩|2 ≤ 1.

Note further that

𝑇𝑣 ∈ 𝑇(𝐸(
𝑒1
𝑠1

, …,
𝑒𝑚
𝑠𝑚

)) ⇔ 𝑣 ∈ 𝐸(
𝑒1
𝑠1

, …,
𝑒𝑚
𝑠𝑚

)

⇔ 𝑠2
1|⟨𝑣, 𝑒1⟩|

2 + ⋯ + 𝑠2
𝑚|⟨𝑣, 𝑒𝑚⟩|2 ≤ 1.

Thus 𝑇(𝐸(𝑠−1
1 𝑒1, …, 𝑠−1

𝑚 𝑒𝑚)) = 𝐵.

304 / 366



Chapter 8. Operators on Complex Vector Spaces

8.A. Generalized Eigenvectors and Nilpotent Operators

Exercise 8.A.1. Suppose 𝑇 ∈ ℒ(𝑉 ). Prove that if dim null 𝑇 4 = 8 and dim null 𝑇 6 = 9,
then dim null 𝑇 𝑚 = 9 for all integers 𝑚 ≥ 5.

Solution. By 8.1 we have dim null 𝑇 5 ∈ {8, 9}. Notice that

dim null 𝑇 5 = 8 ⇒ null 𝑇 4 = null 𝑇 5 ⇒ null 𝑇 5 = null 𝑇 6 ⇒ dim null 𝑇 6 = 8,

where we have used 8.2 for the second implication. Since dim null 𝑇 6 = 9 it must then be the
case that dim null 𝑇 5 = 9, whence null 𝑇 5 = null 𝑇 6. It follows from 8.2 that, for all integers
𝑚 ≥ 5,

null 𝑇 𝑚 = null 𝑇 5 ⇒ dim null 𝑇 𝑚 = dim null 𝑇 5 = 9.

Exercise 8.A.2. Suppose 𝑇 ∈ ℒ(𝑉 ), 𝑚 is a positive integer, 𝑣 ∈ 𝑉 , and 𝑇 𝑚−1𝑣 ≠ 0 but
𝑇 𝑚𝑣 = 0. Prove that 𝑣, 𝑇 𝑣, 𝑇 2𝑣, …, 𝑇 𝑚−1𝑣 is linearly independent.

The result in this exercise is used in the proof of 8.45.

Solution. Suppose 𝑎0, …, 𝑎𝑚−1 are scalars such that

𝑎0𝑣 + 𝑎1𝑇𝑣 + ⋯ + 𝑎𝑚−1𝑇 𝑚−1𝑣 = 0.

Apply 𝑇 𝑚−1 to both sides of this equation to obtain 𝑎0𝑇 𝑚−1𝑣 = 0. Since 𝑇 𝑚−1𝑣 ≠ 0, it must
be the case that 𝑎0 = 0. Thus we have the equation

𝑎1𝑇𝑣 + ⋯ + 𝑎𝑚−1𝑇 𝑚−1𝑣 = 0.

Now apply 𝑇 𝑚−2 to both sides of this equation to obtain 𝑎1𝑇 𝑚−1𝑣 = 0, which implies 𝑎1 = 0.
By continuing in this manner, we see that each of the scalars 𝑎0, …, 𝑎𝑚−1 is zero. Thus 
𝑣, 𝑇 𝑣, …, 𝑇 𝑚−1𝑣 is linearly independent.

Exercise 8.A.3. Suppose 𝑇 ∈ ℒ(𝑉 ). Prove that

𝑉 = null 𝑇 ⊕ range 𝑇 ⇔ null 𝑇 2 = null 𝑇 .

Solution. By Exercise 5.D.4 it will suffice to show that

null 𝑇 ∩ range 𝑇 = {0} ⇔ null 𝑇 2 = null 𝑇 .

First suppose that null 𝑇 ∩ range 𝑇 = {0}. To show that null 𝑇 2 = null 𝑇 , it will suffice to
show that null 𝑇 2 ⊆ null 𝑇  (by 8.1). Suppose therefore that 𝑣 ∈ null 𝑇 2, so that 𝑇 2𝑣 = 0, and
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notice that 𝑇𝑣 ∈ null 𝑇 ∩ range 𝑇 = {0}. Hence 𝑇𝑣 = 0, i.e. 𝑣 ∈ null 𝑇 . Thus null 𝑇 2 ⊆ null 𝑇 ,
as desired.

Now suppose that null 𝑇 2 = null 𝑇  and suppose that 𝑣 ∈ null 𝑇 ∩ range 𝑇 , so that 𝑇𝑣 = 0
and 𝑣 = 𝑇𝑢 for some 𝑢 ∈ 𝑉 . It follows that

𝑇 2𝑢 = 𝑇𝑣 = 0 ⇒ 𝑢 ∈ null 𝑇 2 ⇒ 𝑢 ∈ null 𝑇 ⇒ 𝑇𝑢 = 𝑣 = 0.

Thus null 𝑇 ∩ range 𝑇 = {0}, as desired.

Exercise 8.A.4. Suppose 𝑇 ∈ ℒ(𝑉 ), 𝜆 ∈ 𝐅, and 𝑚 is a positive integer such that the
minimal polynomial of 𝑇  is a polynomial multiple of (𝑧 − 𝜆)𝑚. Prove that

dim null (𝑇 − 𝜆𝐼)𝑚 ≥ 𝑚.

Solution. Let 𝑝 be the minimal polynomial of 𝑇 ; by assumption we have 𝑝(𝑧) = (𝑧 − 𝜆)𝑚𝑞(𝑧)
for some polynomial 𝑞. Consider the chain of inclusions provided by 8.1:

{0} ⊆ null (𝑇 − 𝜆𝐼)1 ⊆ ⋯ ⊆ null (𝑇 − 𝜆𝐼)𝑚.

Notice that it will suffice to prove that each of these 𝑚 inclusions is strict, since this will
imply that the dimension increases by at least 1 at each inclusion. Suppose therefore, by way
of contradiction, that there is some inclusion in this chain which is not strict, i.e. there exists
some 𝑘 ∈ {0, …, 𝑚 − 1} such that

null (𝑇 − 𝜆𝐼)𝑘 = null (𝑇 − 𝜆𝐼)𝑘+1 ⇒ null (𝑇 − 𝜆𝐼)𝑘 = null (𝑇 − 𝜆𝐼)𝑚 (by 8.2).

Define 𝑟(𝑧) = (𝑧 − 𝜆)𝑘𝑞(𝑧) and note that deg 𝑟 < deg 𝑝. For any 𝑣 ∈ 𝑉  observe that, since
0 = 𝑝(𝑇 )𝑣 = (𝑇 − 𝜆𝐼)𝑚𝑞(𝑇 )𝑣,

𝑞(𝑇 )𝑣 ∈ null (𝑇 − 𝜆𝐼)𝑚 ⇒ 𝑞(𝑇 )𝑣 ∈ null (𝑇 − 𝜆𝐼)𝑘 ⇒ 𝑟(𝑇 )𝑣 = 0.

Thus 𝑟 is a polynomial of lesser degree than 𝑝 which annihilates 𝑇 , contradicting that 𝑝 is
the minimal polynomial of 𝑇 .

Exercise 8.A.5. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝑚 is a positive integer. Prove that

dim null 𝑇 𝑚 ≤ 𝑚 dim null 𝑇 .

Hint: Exercise 21 in Section 3B may be useful.

Solution. Exercise 3.B.22 shows that

dim null 𝑇 𝑚 ≤ dim null 𝑇 𝑚−1 + dim null 𝑇 ≤ dim null 𝑇 𝑚−2 + 2 dim null 𝑇

≤ ⋯ ≤ 𝑚 dim null 𝑇 .
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Exercise 8.A.6. Suppose 𝑇 ∈ ℒ(𝑉 ). Show that

𝑉 = range 𝑇 0 ⊇ range 𝑇 1 ⊇ ⋯ ⊇ range 𝑇 𝑘 ⊇ range 𝑇 𝑘+1 ⊇ ⋯.

Solution. Suppose 𝑘 is a non-negative integer and 𝑤 ∈ range 𝑇 𝑘+1, so that there is some 
𝑣 ∈ 𝑉  such that

𝑤 = 𝑇 𝑘+1𝑣 = 𝑇 𝑘(𝑇 𝑣) ∈ range 𝑇 𝑘.

Thus range 𝑇 𝑘+1 ⊆ range 𝑇 𝑘.

Exercise 8.A.7. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝑚 is a nonnegative integer such that

range 𝑇 𝑚 = range 𝑇 𝑚+1.

Prove that range 𝑇 𝑘 = range 𝑇 𝑚 for all 𝑘 > 𝑚.

Solution. It will suffice to prove that range 𝑇 𝑚+ℓ = range 𝑇 𝑚+ℓ+1 for all positive integers 
ℓ. By Exercise 8.A.6, this is equivalent to showing that range 𝑇 𝑚+ℓ ⊆ range 𝑇 𝑚+ℓ+1 for all
positive integers ℓ. Suppose therefore that ℓ is a positive integer and that 𝑤 ∈ range 𝑇 𝑚+ℓ,
so that 𝑤 = 𝑇 𝑚+ℓ𝑣 for some 𝑣 ∈ 𝑉 . It follows that

𝑇 𝑚𝑣 ∈ range 𝑇 𝑚 ⇒ 𝑇 𝑚𝑣 ∈ range 𝑇 𝑚+1 ⇒ 𝑇 𝑚𝑣 = 𝑇 𝑚+1𝑢 for some 𝑢 ∈ 𝑉 .

Thus 𝑤 = 𝑇 𝑚+ℓ+1𝑢 ∈ range 𝑇 𝑚+ℓ+1. Hence range 𝑇 𝑚+ℓ ⊆ range 𝑇 𝑚+ℓ+1, as desired.

Exercise 8.A.8. Suppose 𝑇 ∈ ℒ(𝑉 ). Prove that

range 𝑇 dim 𝑉 = range 𝑇 dim 𝑉 +1 = range 𝑇 dim 𝑉 +2 = ⋯.

Solution. The proof is similar to 8.3. By Exercise 8.A.7, we need only prove that

range 𝑇 dim 𝑉 = range 𝑇 dim 𝑉 +1.

Seeking a contradiction, suppose that this is not true. It then follows from Exercise 8.A.6
and Exercise 8.A.7 that

𝑉 = range 𝑇 0 ⊋ range 𝑇 1 ⊋ ⋯ ⊋ range 𝑇 dim 𝑉 ⊋ range 𝑇 dim 𝑉 +1.

At each of the strict inclusions in this chain, the dimension decreases by at least 1. Thus

dim range 𝑇 dim 𝑉 +1 ≤ −1,

which is a contradiction since the dimension of a vector space must be a non-negative integer.

Exercise 8.A.9. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝑚 is a nonnegative integer. Prove that

null 𝑇 𝑚 = null 𝑇 𝑚+1 ⇔ range 𝑇 𝑚 = range 𝑇 𝑚+1.
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Solution. Since null 𝑇 𝑚 is a subspace of null 𝑇 𝑚+1 and range 𝑇 𝑚+1 is a subspace of range 𝑇 𝑚

(see 8.1 and Exercise 8.A.6), it will suffice to show that

dim null 𝑇 𝑚 = dim null 𝑇 𝑚+1 ⇔ dim range 𝑇 𝑚 = dim range 𝑇 𝑚+1.

Indeed, by the fundamental theorem of linear maps (3.21), we have

dim null 𝑇 𝑚+1 − dim null 𝑇 𝑚 = dim range 𝑇 𝑚 − dim range 𝑇 𝑚+1.

Exercise 8.A.10. Define 𝑇 ∈ ℒ(𝐂2) by 𝑇 (𝑤, 𝑧) = (𝑧, 0). Find all generalized eigenvec-
tors of 𝑇 .

Solution. Observe that the matrix of 𝑇  with respect to the standard basis of 𝐂2 is

(0
0

1
0).

It follows that the only eigenvalue of 𝑇  is 0 and that 𝑇 2 = 0, so that every non-zero 𝑣 ∈ 𝐂2

is a generalized eigenvector of 𝑇  corresponding to the eigenvalue 0.

Exercise 8.A.11. Suppose that 𝑇 ∈ ℒ(𝑉 ). Prove that there is a basis of 𝑉  consist-
ing of generalized eigenvectors of 𝑇  if and only if the minimal polynomial of 𝑇  equals
(𝑧 − 𝜆1) ⋯ (𝑧 − 𝜆𝑚) for some 𝜆1, …, 𝜆𝑚 ∈ 𝐅.

Assume 𝐅 = 𝐑 because the case 𝐅 = 𝐂 follows from 5.27(b) and 8.9.

This exercise states that the condition for there to be a basis of V consisting of gener-
alized eigenvectors of 𝑇  is the same as the condition for there to be a basis with respect
to which 𝑇  has an upper-triangular matrix (see 5.44).

Caution: If 𝑇  has an upper-triangular matrix with respect to a basis 𝑣1, …, 𝑣𝑛 of 𝑉 ,
then 𝑣1 is an eigenvector of 𝑇  but it is not necessarily true that 𝑣2, …, 𝑣𝑛 are general-
ized eigenvectors of 𝑇 .

Solution. Suppose that there is a basis 𝑣1, …, 𝑣𝑚 of 𝑉  consisting of generalized eigenvectors
of 𝑇 , i.e. there exist scalars 𝜆1, …, 𝜆𝑚 ∈ 𝐅 and positive integers 𝑘1, …, 𝑘𝑚 such that

(𝑇 − 𝜆𝑛𝐼)𝑘𝑛𝑣𝑛 = 0

for each 𝑛 ∈ {1, …, 𝑚}. Let 𝑝 be the polynomial given by

𝑝(𝑧) = (𝑧 − 𝜆1)
𝑘1 ⋯ (𝑧 − 𝜆𝑚)𝑘𝑚

and notice that 𝑝 is a product of linear factors. Notice further that 𝑝(𝑇 ) annihilates each
of the basis vectors 𝑣1, …, 𝑣𝑚, so that 𝑝(𝑇 ) = 0. It follows from 5.29 that 𝑝 is a polynomial
multiple of the minimal polynomial of 𝑇 , from which it follows that the minimal polynomial
of 𝑇  is a product of linear factors.
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Conversely, if the minimal polynomial of 𝑇  splits into linear factors, then notice that 𝑇  has
an eigenvalue. The proof of 8.9 then shows that there is a basis of 𝑉  consisting of generalized
eigenvectors of 𝑇 .

Exercise 8.A.12. Suppose 𝑇 ∈ ℒ(𝑉 ) is such that every vector in 𝑉  is a generalized
eigenvector of 𝑇 . Prove that there exists 𝜆 ∈ 𝐅 such that 𝑇 − 𝜆𝐼 is nilpotent.

Solution. First let us prove the following lemma.

Lemma L.15. If 𝑇 ∈ ℒ(𝑉 ) is such that 𝑢, 𝑣, and 𝑢 + 𝑣 are generalized eigenvectors of
𝑇  then 𝑢 and 𝑣 correspond to the same eigenvalue.

Proof. Suppose that 𝑢, 𝑣, and 𝑢 + 𝑣 correspond to the eigenvalues 𝛼, 𝛽, and 𝛾 respec-
tively. Since the list 𝑢, 𝑣, 𝑢 + 𝑣 is linearly dependent, 8.12 implies that the eigenvalues
𝛼, 𝛽, and 𝛾 cannot be distinct, i.e. at least two of these eigenvalues are equal. If 𝛼 = 𝛽
then we are done, so suppose that 𝛽 = 𝛾; the case where 𝛼 = 𝛾 is handled similarly.
Observe that

𝛽 = 𝛾 ⇒ 𝑢 + 𝑣, 𝑣 ∈ null (𝑇 − 𝛽𝐼)dim 𝑉 ⇒ 𝑢 ∈ null (𝑇 − 𝛽𝐼)dim 𝑉 .

Thus 𝑢 corresponds to both 𝛼 and 𝛽; it follows from 8.11 that 𝛼 = 𝛽. □

Returning to the exercise, note that the desired result is clear if 𝑉 = {0}. Suppose therefore
that 𝑛 ≔ dim 𝑉 ≥ 1 and fix a non-zero 𝑢 ∈ 𝑉 . By assumption 𝑢 is a generalized eigenvector
of 𝑇  and thus corresponds to some eigenvalue 𝜆 ∈ 𝐅, i.e. (𝑇 − 𝜆𝐼)𝑛𝑢 = 0. Let 𝑣 ∈ 𝑉  be non-
zero. If 𝑢 + 𝑣 = 0 then

(𝑇 − 𝜆𝐼)𝑛𝑣 = −(𝑇 − 𝜆𝐼)𝑛𝑢 = 0,

and if 𝑢 + 𝑣 ≠ 0 then, by assumption, 𝑣 and 𝑢 + 𝑣 are generalized eigenvectors of 𝑇 . It follows
from Lemma L.15 that 𝑢 and 𝑣 correspond to the same eigenvalue, so that (𝑇 − 𝜆𝐼)𝑛𝑣 = 0.
Thus (𝑇 − 𝜆𝐼)𝑛 = 0, i.e. 𝑇 − 𝜆𝐼 is nilpotent.

Exercise 8.A.13. Suppose 𝑆, 𝑇 ∈ ℒ(𝑉 ) and 𝑆𝑇  is nilpotent. Prove that 𝑇𝑆 is nilpo-
tent.

Solution. There is an integer 𝑘 such that (𝑆𝑇 )𝑘 = 0, which implies

(𝑇𝑆)𝑘+1 = 𝑇(𝑆𝑇 )𝑘𝑆 = 0.

Thus 𝑇𝑆 is nilpotent.

Exercise 8.A.14. Suppose 𝑇 ∈ ℒ(𝑉 ) is nilpotent and 𝑇 ≠ 0. Prove 𝑇  is not diagonal-
izable.
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Solution. 8.18 shows that the minimal polynomial of 𝑇  is 𝑧𝑚 for some positive integer 𝑚;
since 𝑇 ≠ 0 we must have 𝑚 ≥ 2. It follows from 5.62 that 𝑇  is not diagonalizable.

Exercise 8.A.15. Suppose 𝐅 = 𝐂 and 𝑇 ∈ ℒ(𝑉 ). Prove that 𝑇  is diagonalizable if and
only if every generalized eigenvector of 𝑇  is an eigenvector of 𝑇 .

For 𝐅 = 𝐂, this exercise adds another equivalence to the list of conditions for diago-
nalizability in 5.55.

Solution. If every generalized eigenvector of 𝑇  is an eigenvector of 𝑇 , then the basis of 𝑉
consisting of generalized eigenvectors of 𝑇  provided by 8.9 is in fact a basis of 𝑉  consisting
of eigenvectors of 𝑇 . That is, 𝑇  is diagonalizable.

Now suppose that there is some 𝑣 ∈ 𝑉  such that 𝑣 is a generalized eigenvector of 𝑇  but 
𝑣 is not an eigenvector of 𝑇 , i.e. there exists 𝜆 ∈ 𝐅 (we need not require 𝐅 = 𝐂 for this
implication) such that

(𝑇 − 𝜆𝐼)𝑚𝑣 = 0 and (𝑇 − 𝜆𝐼)𝑣 ≠ 0

for some integer 𝑚 ≥ 2. Let 𝑝 be the minimal polynomial of 𝑇  and let 𝑝𝑣 be the unique monic
polynomial of smallest degree satisfying 𝑝𝑣(𝑇 )𝑣 = 0 (see Exercise 5.C.7.) A small modifica-
tion of 5.29 shows that 𝑝𝑣 must divide (𝑧 − 𝜆)𝑚, so that 𝑝𝑣 = (𝑧 − 𝜆)𝑘 for some non-negative
integer 𝑘. Since 𝑣 = (𝑇 − 𝜆𝐼)0𝑣 and (𝑇 − 𝜆𝐼)1𝑣 are both non-zero, it must be the case that
𝑘 ≥ 2. It then follows from Exercise 5.C.7 (b) that the minimal polynomial of 𝑇  has (𝑧 − 𝜆)𝑘

as a factor, where 𝑘 ≥ 2. We may use 5.62 to conclude that 𝑇  is not diagonalizable.

Exercise 8.A.16.

(a) Give an example of nilpotent operators 𝑆, 𝑇  on the same vector space such that
neither 𝑆 + 𝑇  nor 𝑆𝑇  is nilpotent.

(b) Suppose 𝑆, 𝑇 ∈ ℒ(𝑉 ) are nilpotent and 𝑆𝑇 = 𝑇𝑆. Prove that 𝑆 + 𝑇  and 𝑆𝑇  are
nilpotent.

Solution.

(a) Let 𝑆, 𝑇 ∈ ℒ(𝐅2) be the operators whose matrices with respect to the standard basis
of 𝐅2 are

ℳ(𝑆) = (0
1

0
0) and ℳ(𝑇) = (0

0
1
0).

Some straightforward calculations show that 𝑆2 = 𝑇 2 = 0, so that 𝑆 and 𝑇  are nilpo-
tent, and that (𝑆 + 𝑇)2 ≠ 0 and (𝑆𝑇 )2 ≠ 0, so that neither 𝑆 + 𝑇  nor 𝑆𝑇  is nilpotent
(by the contrapositive of 8.16).
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(b) By 8.16 we have 𝑆𝑛 = 𝑇 𝑛 = 0, where 𝑛 = dim 𝑉 . Using that 𝑆 and 𝑇  commute, we may
write (𝑆𝑇 )𝑛 = 𝑆𝑛𝑇 𝑛 = 0. Thus 𝑆𝑇  is nilpotent. Furthermore, since 𝑆 and 𝑇  commute,
we may apply the binomial theorem:

(𝑆 + 𝑇)2𝑛 = ∑
2𝑛

𝑘=0
(

2𝑛
𝑘

)𝑆2𝑛−𝑘𝑇 𝑘.

Notice that 𝑆2𝑛−𝑘 = 0 for 0 ≤ 𝑘 ≤ 𝑛 and 𝑇 𝑘 = 0 for 𝑛 ≤ 𝑘 ≤ 2𝑛. It follows that each
term in the sum above is zero, so that (𝑆 + 𝑇)2𝑛 = 0. Thus 𝑆 + 𝑇  is nilpotent.

Exercise 8.A.17. Suppose 𝑇 ∈ ℒ(𝑉 ) is nilpotent and 𝑚 is a positive integer such that
𝑇 𝑚 = 0.

(a) Prove that 𝐼 − 𝑇  is invertible and that (𝐼 − 𝑇 )−1 = 𝐼 + 𝑇 + ⋯ + 𝑇 𝑚−1.

(b) Explain how you would guess the formula above.

Solution.

(a) A calculation shows that

(𝐼 − 𝑇 )(𝐼 + 𝑇 + ⋯ + 𝑇 𝑚−1) = 𝐼 − 𝑇 𝑚 = 𝐼.

(b) We might guess this formula by analogy with the formula

(1 − 𝑧)(1 + 𝑧 + ⋯ + 𝑧𝑚−1) = 1 − 𝑧𝑚

for 𝑧 ∈ 𝐅.

Exercise 8.A.18. Suppose 𝑇 ∈ ℒ(𝑉 ) is nilpotent. Prove that 𝑇 1+ dim range 𝑇 = 0.

If dim range 𝑇 < dim 𝑉 − 1, then this exercise improves 8.16.

Solution. Let dim range 𝑇 = 𝑘 and, seeking a contradiction, suppose that 𝑇 𝑘+1 ≠ 0. By 8.16
we have 𝑇 dim 𝑉 = 0 and thus we can let 𝑚 be the smallest integer such that 𝑇 𝑚 = 0 and 
𝑇 𝑚−1 ≠ 0; note that 𝑘 + 2 ≤ 𝑚 ≤ 𝑛. Let 𝑣 ∈ 𝑉  be such that 𝑇 𝑚−1𝑣 ≠ 0 and 𝑇 𝑚𝑣 = 0. It
then follows from Exercise 8.A.2 that the list

𝑣, 𝑇 𝑣, …, 𝑇 𝑚−1𝑣

is linearly independent, from which it follows that 𝑘 ≥ 𝑚 − 1 ≥ 𝑘 + 1—a contradiction.

Exercise 8.A.19. Suppose 𝑇 ∈ ℒ(𝑉 ) is not nilpotent. Show that

𝑉 = null 𝑇 dim 𝑉 −1 ⊕ range 𝑇 dim 𝑉 −1.

For operators that are not nilpotent, this exercise improves 8.4.

Solution. Observe that

𝑇 is not nilpotent ⇒ null 𝑇 dim 𝑉 −1 = null 𝑇 dim 𝑉
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⇒ null 𝑇 2(dim 𝑉 −1) = null 𝑇 dim 𝑉 −1 ⇒ 𝑉 = null 𝑇 dim 𝑉 −1 ⊕ range 𝑇 dim 𝑉 −1,

where we have used Exercise 8.A.21 for the first implication, 8.3 for the second implication,
and Exercise 8.A.3 for the third implication.

Exercise 8.A.20. Suppose 𝑉  is an inner product space and 𝑇 ∈ ℒ(𝑉 ) is normal and
nilpotent. Prove that 𝑇 = 0.

Solution. Observe that

𝑇 dim 𝑉 = 0 ⇔ null 𝑇 dim 𝑉 = 𝑉 ⇔ null 𝑇 = 𝑉 ⇔ 𝑇 = 0,

where we have used Exercise 7.A.27 for the second equivalence.

Exercise 8.A.21. Suppose 𝑇 ∈ ℒ(𝑉 ) is such that null 𝑇 dim 𝑉 −1 ≠ null 𝑇 dim 𝑉 . Prove
that 𝑇  is nilpotent and that dim null 𝑇 𝑘 = 𝑘 for every integer 𝑘 with 0 ≤ 𝑘 ≤ dim 𝑉 .

Solution. Consider the chain of inclusions provided by 8.1:

{0} = null 𝑇 0 ⊆ null 𝑇 1 ⊆ ⋯ ⊆ null 𝑇 dim 𝑉 −1 ⊆ null 𝑇 dim 𝑉 .

Since null 𝑇 dim 𝑉 −1 ≠ null 𝑇 dim 𝑉 , 8.2 shows that each of these inclusions must be strict. Note
that if the dimension increased by more than 1 at some inclusion in this chain then we
would have null 𝑇 dim 𝑉 > dim 𝑉 , which cannot happen. Hence it must be the case that the
dimension increases by exactly 1 at each inclusion in this chain, whence dim null 𝑇 𝑘 = 𝑘 for
every integer 𝑘 ∈ {0, …, dim 𝑉 }. It follows from this that 𝑇 dim 𝑉 = 0, so that 𝑇  is nilpotent.

Exercise 8.A.22. Suppose 𝑇 ∈ ℒ(𝐂5) is such that range 𝑇 4 ≠ range 𝑇 5. Prove that 𝑇
is nilpotent.

Solution. Exercise 8.A.9 shows that null 𝑇 4 ≠ null 𝑇 5. It then follows from Exercise 8.A.21
that 𝑇  is nilpotent.

Exercise 8.A.23. Give an example of an operator 𝑇  on a finite-dimensional real vector
space such that 0 is the only eigenvalue of 𝑇  but 𝑇  is not nilpotent.

This exercise shows that the implication (b) ⇒ (a) in 8.17 does not hold without the
hypothesis that 𝐅 = 𝐂.

Solution. Let 𝑇 ∈ ℒ(𝐑3) be the operator whose matrix with respect to the standard basis
of 𝐑3 is

ℳ(𝑇) =
⎝
⎜⎛

0
1
0

−1
0
0

0
0
0⎠
⎟⎞.
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A straightforward calculation reveals that 0 is the only eigenvalue of 𝑇  and that 𝑇 3 ≠ 0; it
follows from 8.16 that 𝑇  is not nilpotent.

Exercise 8.A.24. For each item in Example 8.15, find a basis of the domain vector
space such that the matrix of the nilpotent operator with respect to that basis has the
upper-triangular form promised by 8.18(c).

Solution.

(a) If 𝑒1, 𝑒2, 𝑒3, 𝑒4 is the standard basis of 𝐅4 then observe that the matrix of 𝑇  with respect
to the basis 𝑒3, 𝑒4, 𝑒1, 𝑒2 is

⎝
⎜⎜
⎜⎜
⎛0

0
0
0

0
0
0
0

1
0
0
0

0
1
0
0⎠
⎟⎟
⎟⎟
⎞

.

(b) Let 𝑣1 = (1, 1
3 , 2

3), 𝑣2 = (1
6 , 1

6 , 0), and 𝑣3 = (0, 1
54 , 0). Routine calculations show that 

𝑣1, 𝑣2, 𝑣3 is a basis of 𝐅3 and that the matrix of the nilpotent operator in part (b) with
respect to this basis is

⎝
⎜⎛

0
0
0

1
0
0

0
1
0⎠
⎟⎞.

(c) Observe that the matrix of the differentiation operator on 𝒫𝑚(𝐑) with respect to the
basis 1, 𝑥, …, 𝑥𝑚 is

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎛

0
0
0
⋮
0
0

1
0
0
⋮
0
0

0
2
0
⋮
0
0

⋯
⋯
⋯
⋱
⋯
⋯

0
0
0
⋮
0
0

0
0
0
⋮
𝑚
0 ⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎞

.

Exercise 8.A.25. Suppose that 𝑉  is an inner product space and 𝑇 ∈ ℒ(𝑉 ) is nilpotent.
Show that there is an orthonormal basis of 𝑉  with respect to which the matrix of 𝑇  has
the upper-triangular form promised by 8.18(c).

Solution. Combining 8.18(b) with 6.37, we see that 𝑇  has an upper-triangular matrix with
respect to some orthonormal basis of 𝑉 , and combining 5.41 with 8.17(a) shows that the
diagonal entries of this matrix are zero.
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8.B. Generalized Eigenspace Decomposition

Exercise 8.B.1. Define 𝑇 ∈ ℒ(𝐂2) by 𝑇 (𝑤, 𝑧) = (−𝑧, 𝑤). Find the generalized eigen-
spaces corresponding to the distinct eigenvalues of 𝑇 .

Solution. As example 5.9 shows, 𝑇  has the two distinct eigenvalues ±𝑖 with corresponding
eigenspaces

𝐸(−𝑖, 𝑇 ) = span((1, 𝑖)) and 𝐸(𝑖, 𝑇 ) = span((1, −𝑖)).

Since dim 𝐂2 = 2, 8.12 shows that there can be no other generalized eigenvectors linearly
independent from the two above. Thus

𝐺(−𝑖, 𝑇 ) = 𝐸(−𝑖, 𝑇 ) = span((1, 𝑖)) and 𝐺(𝑖, 𝑇 ) = 𝐸(𝑖, 𝑇 ) = span((1, −𝑖)).

Exercise 8.B.2. Suppose 𝑇 ∈ ℒ(𝑉 ) is invertible. Prove that 𝐺(𝜆, 𝑇 ) = 𝐺( 1
𝜆 , 𝑇 −1) for

every 𝜆 ∈ 𝐅 with 𝜆 ≠ 0.

Solution. By 8.20 it will suffice to show that

null (𝑇 − 𝜆𝐼)𝑛 = null (𝑇 −1 − 𝜆−1𝐼)𝑛,

where 𝑛 = dim 𝑉 . Suppose therefore that 𝑣 ∈ null (𝑇 − 𝜆𝐼)𝑛, i.e.

0 = (𝑇 − 𝜆𝐼)𝑛𝑣 = ∑
𝑛

𝑘=0
(−1)𝑘𝜆𝑘(

𝑛
𝑘

)𝑇 𝑛−𝑘𝑣.

Applying the operator (−1)−𝑛𝜆−𝑛𝑇 −𝑛 to both sides of this equation and using that 
(−1)𝑘−𝑛 = (−1)𝑛−𝑘 for any 𝑘 ∈ {0, …, 𝑛}, we find that

0 = ∑
𝑛

𝑘=0
(−1)𝑛−𝑘(𝜆−1)𝑛−𝑘(

𝑛
𝑘

)𝑇 −𝑘𝑣 = (𝑇 −1 − 𝜆−1𝐼)𝑛𝑣.

Thus 𝑣 ∈ null (𝑇 −1 − 𝜆−1𝐼)𝑛 and it follows that null (𝑇 − 𝜆𝐼)𝑛 ⊆ null (𝑇 −1 − 𝜆−1𝐼)𝑛. Re-
placing 𝑇  with 𝑇 −1 and 𝜆 with 𝜆−1 in this inclusion gives us the desired result.

Exercise 8.B.3. Suppose 𝑇 ∈ ℒ(𝑉 ). Suppose 𝑆 ∈ ℒ(𝑉 ) is invertible. Prove that 𝑇  and
𝑆−1𝑇𝑆 have the same eigenvalues with the same multiplicities.

Solution. We showed in Exercise 5.A.13 (a) that 𝑇  and 𝑆−1𝑇𝑆 have the same eigenvalues.
Suppose that 𝜆 ∈ 𝐅 is an eigenvalue of 𝑇  and 𝑆−1𝑇𝑆. Using the identity 𝑝(𝑇 ) = 𝑝(𝑆−1𝑇𝑆)
for a polynomial 𝑝, observe that

𝑆−1(𝑇 − 𝜆𝐼)𝑛𝑆 = (𝑆−1𝑇𝑆 − 𝜆𝐼)𝑛,

where dim 𝑉 = 𝑛. It now follows from Exercise 3.D.8 that

314 / 366



dim null (𝑇 − 𝜆𝐼)𝑛 = dim null (𝑆−1𝑇𝑆 − 𝜆𝐼)𝑛,

i.e. the multiplicity of 𝜆 as an eigenvalue of 𝑇  equals the multiplicity of 𝜆 as an eigenvalue
of 𝑆−1𝑇𝑆.

Exercise 8.B.4. Suppose dim 𝑉 ≥ 2 and 𝑇 ∈ ℒ(𝑉 ) is such that

null 𝑇 dim 𝑉 −2 ≠ null 𝑇 dim 𝑉 −1.

Prove that 𝑇  has at most two distinct eigenvalues.

Solution. Let dim 𝑉 = 𝑛 ≥ 2 and note that our hypothesis implies dim null 𝑇 𝑛−1 ≥ 𝑛 − 1.
There are then two cases.

Case 1. If dim null 𝑇 𝑛−1 = 𝑛 then 𝑇 𝑛−1 = 0 and it follows from 8.17(a) that 0 is the only
eigenvalue of 𝑇 .

Case 2. Suppose that dim null 𝑇 𝑛−1 = 𝑛 − 1, so that we can find 𝑛 − 1 linearly independent
generalized eigenvectors of 𝑇  corresponding to the eigenvalue 0. It follows from 8.12 that 𝑇
can have at most one non-zero eigenvalue (otherwise we would have at least 𝑛 + 1 linearly
independent vectors in a vector space of dimension 𝑛).

In either case, 𝑇  has at most two distinct eigenvalues.

Exercise 8.B.5. Suppose 𝑇 ∈ ℒ(𝑉 ) and 3 and 8 are eigenvalues of 𝑇 . Let 𝑛 = dim 𝑉 .
Prove that 𝑉 = (null 𝑇 𝑛−2) ⊕ (range 𝑇 𝑛−2).

Solution. If 0 is not an eigenvalue of 𝑇 , i.e. 𝑇  is injective, then null 𝑇 𝑛−2 = {0} and the
desired result follows from Exercise 5.D.4.

If 0 is an eigenvalue of 𝑇  then 𝑇  has at least three distinct eigenvalues and it follows from
Exercise 8.B.4 and 8.2 that

null 𝑇 𝑛−2 = null 𝑇 𝑛−1 = null 𝑇 2(𝑛−2).

Thus, by Exercise 8.A.3, 𝑉 = (null 𝑇 𝑛−2) ⊕ (range 𝑇 𝑛−2).

Exercise 8.B.6. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝜆 is an eigenvalue of 𝑇 . Explain why the expo-
nent of 𝑧 − 𝜆 in the factorization of the minimal polynomial of 𝑇  is the smallest positive
integer 𝑚 such that (𝑇 − 𝜆𝐼)𝑚|𝐺(𝜆,𝑇) = 0.

Solution. Let 𝑝 be the minimal polynomial of 𝑇  and let 𝑚 be the exponent of 𝑧 − 𝜆 in the
factorization of 𝑝, i.e. 𝑝(𝑧) = (𝑧 − 𝜆)𝑚𝑞(𝑧) for some polynomial 𝑞 with 𝑞(𝜆) ≠ 0.

We claim that null (𝑇 − 𝜆𝐼)𝑚 = null (𝑇 − 𝜆𝐼)𝑚+1. By 8.1 it will suffice to prove the in-
clusion null (𝑇 − 𝜆𝐼)𝑚+1 ⊆ null (𝑇 − 𝜆𝐼)𝑚, so suppose that 𝑣 ∈ null (𝑇 − 𝜆𝐼)𝑚+1, define
𝑤 = (𝑇 − 𝜆𝐼)𝑚𝑣, and notice that 𝑇𝑤 = 𝜆𝑤. Now observe that
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0 = 𝑝(𝑇 )𝑣 = 𝑞(𝑇 )(𝑇 − 𝜆𝐼)𝑚𝑣 = 𝑞(𝑇 )𝑤 = 𝑞(𝜆)𝑤,

where we have used that 𝑇𝑤 = 𝜆𝑤 for the last equality. Since 𝑞(𝜆) ≠ 0 it must be the case
that 𝑤 = 0, i.e. 𝑣 ∈ null (𝑇 − 𝜆𝐼)𝑚. Thus null (𝑇 − 𝜆𝐼)𝑚+1 ⊆ null (𝑇 − 𝜆𝐼)𝑚, as desired.

It now follows from 8.2 that null (𝑇 − 𝜆𝐼)𝑚 = null(𝑇 − 𝜆𝐼)dim 𝑉 = 𝐺(𝜆, 𝑇 ), from which it is
clear that (𝑇 − 𝜆𝐼)𝑚|𝐺(𝜆,𝑇) = 0. To see that 𝑚 is minimal, let 𝑘 be any positive integer such
that (𝑇 − 𝜆𝐼)𝑘|𝐺(𝜆,𝑇) = 0 and let 𝑠(𝑧) = (𝑧 − 𝜆)𝑘𝑞(𝑧). The equation (𝑇 − 𝜆𝐼)𝑘|𝐺(𝜆,𝑇) = 0
implies that

null (𝑇 − 𝜆𝐼)𝑘 = 𝐺(𝜆, 𝑇 ) = null (𝑇 − 𝜆𝐼)𝑚.

Let 𝑣 ∈ 𝑉  be given. Since 0 = 𝑝(𝑇 )𝑣 = (𝑇 − 𝜆𝐼)𝑚𝑞(𝑇 )𝑣, we either have 𝑞(𝑇 )𝑣 = 0, in which
case 𝑠(𝑇 )𝑣 = 0, or

𝑞(𝑇 )𝑣 ∈ null (𝑇 − 𝜆𝐼)𝑚 = null (𝑇 − 𝜆𝐼)𝑘,

in which case 𝑠(𝑇 )𝑣 = 0 also. Thus 𝑠(𝑇 ) = 0 and the minimality of the degree of 𝑝 implies
that deg 𝑝 ≤ deg 𝑠, from which it follows that 𝑚 ≤ 𝑘.

Exercise 8.B.7. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝜆 is an eigenvalue of 𝑇  with multiplicity 𝑑.
Prove that 𝐺(𝜆, 𝑇 ) = null (𝑇 − 𝜆𝐼)𝑑.

If 𝑑 < dim 𝑉 , then this exercise improves 8.20.

Solution. Let 𝑝 be the minimal polynomial of 𝑇  and let 𝑚 be the positive integer such that
𝑝(𝑧) = (𝑧 − 𝜆)𝑚𝑞(𝑧) with 𝑞(𝜆) ≠ 0. As we showed in Exercise 8.B.6,

𝐺(𝜆, 𝑇 ) = null (𝑇 − 𝜆𝐼)𝑚 = null (𝑇 − 𝜆𝐼)𝑚+1.

It then follows from Exercise 8.A.4 and 8.2 that

𝑑 = dim 𝐺(𝜆, 𝑇 ) = dim null (𝑇 − 𝜆𝐼)𝑚 ≥ 𝑚

⇒ null (𝑇 − 𝜆𝐼)𝑑 = null (𝑇 − 𝜆𝐼)𝑚 = 𝐺(𝜆, 𝑇 ).

Exercise 8.B.8. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝜆1, …, 𝜆𝑚 are the distinct eigenvalues of 𝑇 .
Prove that

𝑉 = 𝐺(𝜆1, 𝑇 ) ⊕ ⋯ ⊕ 𝐺(𝜆𝑚, 𝑇 )

if and only if the minimal polynomial of 𝑇  equals (𝑧 − 𝜆1)
𝑘1 ⋯ (𝑧 − 𝜆𝑚)𝑘𝑚 for some

positive integers 𝑘1, …, 𝑘𝑚.

The case 𝐅 = 𝐂 follows immediately from 5.27(b) and the generalized eigenspace de-
composition (8.22); thus this exercise is interesting only when 𝐅 = 𝐑.

Solution. Suppose that

𝑉 = 𝐺(𝜆1, 𝑇 ) ⊕ ⋯ ⊕ 𝐺(𝜆𝑚, 𝑇 ).
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For each 𝑖 ∈ {1, …, 𝑚} let 𝑑𝑖 = dim 𝐺(𝜆𝑖, 𝑇 ) and let 𝑞(𝑧) = (𝑧 − 𝜆1)
𝑑1 ⋯ (𝑧 − 𝜆𝑚)𝑑𝑚 . For any

𝑣 ∈ 𝑉  we have 𝑣 = 𝑣1 + ⋯ + 𝑣𝑚, where each 𝑣𝑖 ∈ 𝐺(𝜆𝑖, 𝑇 ). Fix 𝑖 ∈ {1, …, 𝑚} and note that 
𝐺(𝜆𝑖, 𝑇 ) = null (𝑇 − 𝜆𝑖𝐼)𝑑𝑖 by Exercise 8.B.7; it follows that

𝑞(𝑇 )𝑣𝑖 = (∏
𝑗≠𝑖

(𝑇 − 𝜆𝑗𝐼)𝑑𝑗)(𝑇 − 𝜆𝑖𝐼)𝑑𝑖𝑣𝑖 = 0.

Thus 𝑞(𝑇 )𝑣 = 0, whence 𝑞(𝑇 ) = 0. It now follows from 5.29 that the minimal polynomial
of 𝑇  is a factor of 𝑞 and hence must be of the form (𝑧 − 𝜆1)

𝑘1 ⋯ (𝑧 − 𝜆𝑚)𝑘𝑚 for some non-
negative integers 𝑘1, …, 𝑘𝑚. In fact each 𝑘𝑖 must be positive since each 𝜆𝑖 is an eigenvalue of
𝑇  and the eigenvalues of 𝑇  are precisely the zeros of the minimal polynomial (by 5.27(a)).

Now suppose that the minimal polynomial of 𝑇  equals (𝑧 − 𝜆1)
𝑘1 ⋯ (𝑧 − 𝜆𝑚)𝑘𝑚 for some

positive integers 𝑘1, …, 𝑘𝑚. The proof of 8.22(c) shows that the sum

𝐺(𝜆1, 𝑇 ) ⊕ ⋯ ⊕ 𝐺(𝜆𝑚, 𝑇 )

is direct and Exercise 8.A.11 shows that any vector in 𝑉  can be expressed as a linear com-
bination of generalized eigenvectors of 𝑇 . Thus

𝑉 = 𝐺(𝜆1, 𝑇 ) ⊕ ⋯ ⊕ 𝐺(𝜆𝑚, 𝑇 ).

Exercise 8.B.9. Suppose 𝐅 = 𝐂 and 𝑇 ∈ ℒ(𝑉 ). Prove that there exist 𝐷, 𝑁 ∈ ℒ(𝑉 )
such that 𝑇 = 𝐷 + 𝑁 , the operator 𝐷 is diagonalizable, 𝑁  is nilpotent, and 𝐷𝑁 = 𝑁𝐷.

Solution. Let 𝜆1, …, 𝜆𝑚 be the distinct eigenvalues of 𝑇  and let

𝑉 = 𝐺(𝜆1, 𝑇 ) ⊕ ⋯ ⊕ 𝐺(𝜆𝑚, 𝑇 )

be the generalized eigenspace decomposition of 𝑉 . For any 𝑣 ∈ 𝑉  we have 𝑣 = 𝑣1 + ⋯ + 𝑣𝑚,
where each 𝑣𝑘 ∈ 𝐺(𝜆𝑘, 𝑇 ). Define 𝐷 ∈ ℒ(𝑉 ) by 𝐷𝑣𝑘 = 𝜆𝑘𝑣𝑘, so that 𝐷|𝐺(𝜆𝑘,𝑇 ) = 𝜆𝑘𝐼 , and
let 𝑁 = 𝑇 − 𝐷. Certainly 𝐷 is diagonalizable. Furthermore, for any 𝑘 ∈ {1, …, 𝑚},

𝑁|𝐺(𝜆𝑘,𝑇 ) = (𝑇 − 𝐷)|𝐺(𝜆𝑘,𝑇 ) = (𝑇 − 𝜆𝑘𝐼)|𝐺(𝜆𝑘,𝑇 )

is nilpotent by 8.22(b). It follows that

𝑁dim 𝑉 𝑣 = 𝑁dim 𝑉 𝑣1 + ⋯ + 𝑁dim 𝑉 𝑣𝑚 = 0

for any 𝑣 = 𝑣1 + ⋯ + 𝑣𝑚 ∈ 𝑉 = 𝐺(𝜆1, 𝑇 ) ⊕ ⋯ ⊕ 𝐺(𝜆𝑚, 𝑇 ). Thus 𝑁  is nilpotent. Now, since 
𝐷𝑁 = 𝐷𝑇 − 𝐷2 and 𝑁𝐷 = 𝑇𝐷 − 𝐷2, to show that 𝐷 and 𝑁  commute it will suffice to show
that 𝐷 and 𝑇  commute. Indeed, for any 𝑘 ∈ {1, …, 𝑚} and 𝑣𝑘 ∈ 𝐺(𝜆𝑘, 𝑇 ),

𝑇𝐷𝑣𝑘 = 𝜆𝑘𝑇𝑣𝑘 = 𝐷𝑇𝑣𝑘,

where we have used that 𝐷|𝐺(𝜆𝑘,𝑇 ) = 𝜆𝑘𝐼 and that 𝐺(𝜆𝑘, 𝑇 ) is invariant under 𝑇  (by 8.22(a)).
It follows that 𝑇𝐷𝑣 = 𝐷𝑇𝑣 for any 𝑣 = 𝑣1 + ⋯ + 𝑣𝑚 ∈ 𝑉 = 𝐺(𝜆1, 𝑇 ) ⊕ ⋯ ⊕ 𝐺(𝜆𝑚, 𝑇 ). Thus
𝑇  and 𝐷 commute.
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Exercise 8.B.10. Suppose 𝑉  is a complex inner product space, 𝑒1, …, 𝑒𝑛 is an ortho-
normal basis of 𝑇 , and 𝑇 ∈ ℒ(𝑉 ). Let 𝜆1, …, 𝜆𝑛 be the eigenvalues of 𝑇 , each included
as many times as its multiplicity. Prove that

|𝜆1|
2 + ⋯ + |𝜆𝑛|2 ≤ ‖𝑇𝑒1‖

2 + ⋯ + ‖𝑇𝑒𝑛‖2.

See the comment after Exercise 5 in Section 7A.

Solution. Let 𝜆 ∈ 𝐂 be an eigenvalue of 𝑇 , let 𝑑 = dim 𝐺(𝜆, 𝑇 ), and consider the restriction
operator 𝑅 ≔ 𝑇 |𝐺(𝜆,𝑇). Certainly 𝜆 is an eigenvalue of 𝑅 and 𝑅 has no other eigenvalues.
By Schur’s theorem (6.38) there is an orthonormal basis 𝑓1, …, 𝑓𝑑 of 𝐺(𝜆, 𝑇 ) with respect to
which the matrix 𝐴 ≔ ℳ(𝑅) is upper-triangular. For any 𝑘 ∈ {1, …, 𝑑} it then follows that
|𝜆|2 = ‖𝜆𝑓𝑘‖2 ≤ ‖𝑇𝑓𝑘‖2, whence

𝑑|𝜆|2 ≤ ‖𝑇𝑓1‖
2 + ⋯ + ‖𝑇𝑓𝑑‖2.

Summing this inequality over the finitely many distinct eigenvalues of 𝑇  shows that

|𝜆1|
2 + ⋯ + |𝜆𝑛|2 ≤ ‖𝑇𝑔1‖

2 + ⋯ + ‖𝑇𝑔𝑛‖2,

where 𝑔1, …, 𝑔𝑛 is the orthonormal basis of 𝑉  obtained by combining the orthonormal bases
of the generalized eigenspaces of 𝑇  found in the previous discussion (the generalized eigen-
space decomposition (8.22) shows that this provides an orthonormal basis for all of 𝑉 ). As
we showed in Exercise 7.A.5, the quantity ‖𝑇 𝑒1‖

2 + ⋯ + ‖𝑇𝑒𝑛‖2 does not depend on which
orthonormal basis of 𝑉  is used and thus

|𝜆1|
2 + ⋯ + |𝜆𝑛|2 ≤ ‖𝑇𝑒1‖

2 + ⋯ + ‖𝑇𝑒𝑛‖2.

Exercise 8.B.11. Give an example of an operator on 𝐂4 whose characteristic polyno-
mial equals (𝑧 − 7)2(𝑧 − 8)2.

Solution. Let 𝑇 ∈ ℒ(𝐂4) be the operator whose matrix with respect to the standard basis
𝑒1, 𝑒2, 𝑒3, 𝑒4 of 𝐂4 is

⎝
⎜⎜
⎜⎜
⎛7

0
0
0

0
7
0
0

0
0
8
0

0
0
0
8⎠
⎟⎟
⎟⎟
⎞

.

A straightforward calculation shows that 7 and 8 are the only eigenvalues of 𝑇  and that

𝐸(7, 𝑇 ) = 𝐺(7, 𝑇 ) = span(𝑒1, 𝑒2) and 𝐸(8, 𝑇 ) = 𝐺(8, 𝑇 ) = span(𝑒3, 𝑒4).

Thus the multiplicities of the eigenvalues 7 and 8 both equal 2, from which it follows that
the characteristic polynomial of 𝑇  is (𝑧 − 7)2(𝑧 − 8)2.
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Exercise 8.B.12. Give an example of an operator on 𝐂4 whose characteristic polyno-
mial equals (𝑧 − 1)(𝑧 − 5)3 and whose minimal polynomial equals (𝑧 − 1)(𝑧 − 5)2.

Solution. Let 𝑇 ∈ ℒ(𝐂4) be the operator whose matrix with respect to the standard basis
𝑒1, 𝑒2, 𝑒3, 𝑒4 of 𝐂4 is

⎝
⎜⎜
⎜⎜
⎛1

0
0
0

0
5
0
0

0
1
5
0

0
0
0
5⎠
⎟⎟
⎟⎟
⎞

.

A straightforward calculation shows that 1 and 5 are the only eigenvalues of 𝑇  and that

𝐸(1, 𝑇 ) = 𝐺(1, 𝑇 ) = span(𝑒1) and 𝐺(5, 𝑇 ) = span(𝑒2, 𝑒3, 𝑒4).

Thus the multiplicity of the eigenvalue 1 equals 1 and the multiplicity of the eigenvalue 
5 equals 3, from which it follows that the characteristic polynomial of 𝑇  is (𝑧 − 1)(𝑧 − 5)3.
Another calculation shows that (𝑇 − 𝐼)(𝑇 − 5𝐼) ≠ 0 and that (𝑇 − 𝐼)(𝑇 − 5𝐼)2 = 0. Thus
the minimal polynomial of 𝑇  is (𝑧 − 1)(𝑧 − 5)2.

Exercise 8.B.13. Give an example of an operator on 𝐂4 whose characteristic and
minimal polynomials both equal 𝑧(𝑧 − 1)2(𝑧 − 3).

Solution. Let 𝑇 ∈ ℒ(𝐂4) be the operator whose matrix with respect to the standard basis
𝑒1, 𝑒2, 𝑒3, 𝑒4 of 𝐂4 is

⎝
⎜⎜
⎜⎜
⎛0

0
0
0

0
1
0
0

0
1
1
0

0
0
0
3⎠
⎟⎟
⎟⎟
⎞

.

A straightforward calculation shows that 0, 1, and 3 are the only eigenvalues of 𝑇  and that

𝐸(0, 𝑇 ) = 𝐺(0, 𝑇 ) = span(𝑒1), 𝐸(3, 𝑇 ) = 𝐺(3, 𝑇 ) = span(𝑒4),

and 𝐺(1, 𝑇 ) = span(𝑒2, 𝑒3).

Thus the multiplicities of the eigenvalues 0 and 3 both equal 1 and the multiplicity of the
eigenvalue 1 equals 2, from which it follows that the characteristic polynomial of 𝑇  is 
𝑧(𝑧 − 1)2(𝑧 − 3). Another calculation shows that

𝑇 (𝑇 − 𝐼)(𝑇 − 3𝐼) ≠ 0 and 𝑇 (𝑇 − 𝐼)2(𝑇 − 3𝐼) = 0.

Thus the minimal polynomial of 𝑇  is 𝑧(𝑧 − 1)2(𝑧 − 3).

Exercise 8.B.14. Give an example of an operator on 𝐂4 whose characteristic polyno-
mial equals 𝑧(𝑧 − 1)2(𝑧 − 3) and whose minimal polynomial equals 𝑧(𝑧 − 1)(𝑧 − 3).
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Solution. Let 𝑇 ∈ ℒ(𝐂4) be the operator whose matrix with respect to the standard basis
𝑒1, 𝑒2, 𝑒3, 𝑒4 of 𝐂4 is

⎝
⎜⎜
⎜⎜
⎛0

0
0
0

0
1
0
0

0
0
1
0

0
0
0
3⎠
⎟⎟
⎟⎟
⎞

.

A straightforward calculation shows that 0, 1, and 3 are the only eigenvalues of 𝑇  and that

𝐸(0, 𝑇 ) = 𝐺(0, 𝑇 ) = span(𝑒1), 𝐸(3, 𝑇 ) = 𝐺(3, 𝑇 ) = span(𝑒4),

and 𝐸(1, 𝑇 ) = 𝐺(1, 𝑇 ) = span(𝑒2, 𝑒3).

Thus the multiplicities of the eigenvalues 0 and 3 both equal 1 and the multiplicity of the
eigenvalue 1 equals 2, from which it follows that the characteristic polynomial of 𝑇  is 
𝑧(𝑧 − 1)2(𝑧 − 3). Another calculation shows that 𝑇 (𝑇 − 𝐼)(𝑇 − 3𝐼) = 0. Thus the minimal
polynomial of 𝑇  is 𝑧(𝑧 − 1)(𝑧 − 3).

Exercise 8.B.15. Let 𝑇  be the operator on 𝐂4 defined by

𝑇 (𝑧1, 𝑧2, 𝑧3, 𝑧4) = (0, 𝑧1, 𝑧2, 𝑧3).

Find the characteristic polynomial and the minimal polynomial of 𝑇 .

Solution. Let 𝑒1, 𝑒2, 𝑒3, 𝑒4 be the standard basis of 𝐂4. The matrix of 𝑇  with respect to the
basis 𝑒4, 𝑒3, 𝑒2, 𝑒1 is

⎝
⎜⎜
⎜⎜
⎛0

0
0
0

1
0
0
0

0
1
0
0

0
0
1
0⎠
⎟⎟
⎟⎟
⎞

.

Thus 0 is the only eigenvalue of 𝑇  and it then follows from 8.28 that the characteristic
polynomial of 𝑇  is 𝑧4. Since 𝑇 3 ≠ 0 it must be the case that the minimal polynomial of 𝑇  is
also 𝑧4.

Exercise 8.B.16. Let 𝑇  be the operator on 𝐂6 defined by

𝑇 (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6) = (0, 𝑧1, 𝑧2, 0, 𝑧4, 0).

Find the characteristic polynomial and the minimal polynomial of 𝑇 .

Solution. Let 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6 be the standard basis of 𝐂4. The matrix of 𝑇  with respect
to the basis 𝑒3, 𝑒2, 𝑒1, 𝑒5, 𝑒4, 𝑒6 is
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⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛0

0
0
0
0
0

1
0
0
0
0
0

0
1
0
0
0
0

0
0
0
0
0
0

0
0
0
1
0
0

0
0
0
0
0
0⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

.

Thus 0 is the only eigenvalue of 𝑇  and it then follows from 8.28 that the characteristic
polynomial of 𝑇  is 𝑧6. A straightforward calculation shows that 𝑇 2 ≠ 0 and 𝑇 3 = 0. Thus
the minimal polynomial of 𝑇  is 𝑧3.

Exercise 8.B.17. Suppose 𝐅 = 𝐂 and 𝑃 ∈ ℒ(𝑉 ) is such that 𝑃 2 = 𝑃 . Prove
that the characteristic polynomial of 𝑃  is 𝑧𝑚(𝑧 − 1)𝑛, where 𝑚 = dim null 𝑃  and
𝑛 = dim range 𝑃 .

Solution. Exercise 5.A.8 shows that the only possible eigenvalues of 𝑃  are 0 and 1. It follows
from 8.28 that the characteristic polynomial of 𝑃  is of the form 𝑧ℓ(𝑧 − 1)𝑘, where

ℓ = dim 𝐺(0, 𝑃 ) and 𝑘 = dim 𝑉 − ℓ.

Since null 𝑃 2 = null 𝑃 , 8.2 shows that

𝐺(0, 𝑃 ) = null 𝑃 dim 𝑉 = null 𝑃 ⇒ ℓ = dim 𝐺(0, 𝑃 ) = dim null 𝑃 = 𝑚.

It now follows from the fundamental theorem of linear maps that

𝑘 = dim 𝑉 − ℓ = dim 𝑉 − dim null 𝑃 = dim range 𝑇 = 𝑛.

Exercise 8.B.18. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝜆 is an eigenvalue of 𝑇 . Explain why the
following four numbers equal each other.

(a) The exponent of 𝑧 − 𝜆 in the factorization of the minimal polynomial of 𝑇 .

(b) The smallest positive integer 𝑚 such that (𝑇 − 𝜆𝐼)𝑚|𝐺(𝜆,𝑇) = 0.

(c) The smallest positive integer 𝑚 such that

null (𝑇 − 𝜆𝐼)𝑚 = null (𝑇 − 𝜆𝐼)𝑚+1.

(d) The smallest positive integer 𝑚 such that

range (𝑇 − 𝜆𝐼)𝑚 = range (𝑇 − 𝜆𝐼)𝑚+1.

Solution. We showed that (a) and (b) are equal in Exercise 8.B.6, and a very small modi-
fication of that argument shows that (a) and (c) are also equal. Finally, the fact that (c) and
(d) are equal follows from Exercise 8.A.9.

Exercise 8.B.19. Suppose 𝐅 = 𝐂 and 𝑆 ∈ ℒ(𝑉 ) is a unitary operator. Prove that the
constant term in the characteristic polynomial of 𝑆 has absolute value 1.
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Solution. Suppose (𝑧 − 𝜆1)
𝑑1⋯ (𝑧 − 𝜆𝑚)𝑑𝑚 is the characteristic polynomial of 𝑆 and note

that the constant term of this polynomial is ±𝜆𝑑1
1 ⋯ 𝜆𝑑𝑚𝑚 . Note further that |𝜆𝑘| = 1 for each

𝑘 ∈ {1, …, 𝑚} by 7.54. It follows that

|±𝜆𝑑1
1 ⋯ 𝜆𝑑𝑚𝑚 | = |𝜆1|

𝑑1⋯ |𝜆𝑚|𝑑𝑚 = 1.

Exercise 8.B.20. Suppose that 𝐅 = 𝐂 and 𝑉1, …, 𝑉𝑚 are nonzero subspaces of 𝑉  such
that

𝑉 = 𝑉1 ⊕ ⋯ ⊕ 𝑉𝑚.

Suppose 𝑇 ∈ ℒ(𝑉 ) and each 𝑉𝑘 is invariant under 𝑇 . For each 𝑘, let 𝑝𝑘 denote the
characteristic polynomial of 𝑇 |𝑉𝑘

. Prove that the characteristic polynomial of 𝑇  equals
𝑝1⋯ 𝑝𝑚.

Solution. It will suffice to prove the case where 𝑚 = 2; a straightforward induction argu-
ment will then prove the general statement. Suppose therefore that 𝑉 = 𝑈 ⊕ 𝑊 , where 𝑈
and 𝑊  are non-zero subspaces of 𝑉  invariant under 𝑇 .

Let 𝐸(𝑇 ) be the collection of eigenvalues of 𝑇  and define 𝐸(𝑇 |𝑈) and 𝐸(𝑇 |𝑊 ) similarly. We
claim that 𝐸(𝑇 ) = 𝐸(𝑇 |𝑈) ∪ 𝐸(𝑇 |𝑊 ). Certainly any eigenvalue of 𝑇 |𝑈  or of 𝑇 |𝑊  must also
be an eigenvalue of 𝑇 , so that 𝐸(𝑇 |𝑈) ∪ 𝐸(𝑇 |𝑊 ) ⊆ 𝐸(𝑇 ). For the reverse inclusion, suppose
that 𝜆 ∈ 𝐂 is an eigenvalue of 𝑇 , so that 𝑇𝑣 = 𝜆𝑣 for some non-zero 𝑣 ∈ 𝑉 . Let 𝑢 ∈ 𝑈  and
𝑤 ∈ 𝑊  be such that 𝑣 = 𝑢 + 𝑤 and observe that

𝑇𝑢 − 𝜆𝑢 = 𝜆𝑤 − 𝑇𝑤.

Since 𝑈  and 𝑊  are invariant under 𝑇  we have 𝑇𝑢 − 𝜆𝑢 ∈ 𝑈  and 𝜆𝑤 − 𝑇𝑤 ∈ 𝑊 , whence

𝑇𝑢 − 𝜆𝑢 = 𝜆𝑤 − 𝑇𝑤 ∈ 𝑈 ∩ 𝑊 = {0}.

Thus 𝑇𝑢 = 𝜆𝑢 and 𝑇𝑤 = 𝜆𝑤. Note that at least one of 𝑢 and 𝑤 must be non-zero, since 𝑣
is non-zero. It follows that 𝜆 ∈ 𝐸(𝑇 |𝑈) ∪ 𝐸(𝑇 |𝑊 ) and we may conclude that

𝐸(𝑇 ) = 𝐸(𝑇 |𝑈) ∪ 𝐸(𝑇 |𝑊 ),

as claimed.

Next we claim that 𝐺(𝜆, 𝑇 ) = 𝐺(𝜆, 𝑇 |𝑈) ⊕ 𝐺(𝜆, 𝑇 |𝑊 ) for any 𝜆 ∈ 𝐂. First, note that

𝐺(𝜆, 𝑇 |𝑈) ⊆ 𝑈 and 𝐺(𝜆, 𝑇 |𝑊 ) ⊆ 𝑊.

Since 𝑈 ∩ 𝑊 = {0}, it follows that 𝐺(𝜆, 𝑇 |𝑈) ∩ 𝐺(𝜆, 𝑇 |𝑊 ) = {0}. Thus the sum

𝐺(𝜆, 𝑇 |𝑈) ⊕ 𝐺(𝜆, 𝑇 |𝑊 )

is indeed direct.

322 / 366



Now suppose that

𝑢 + 𝑤 ∈ 𝐺(𝜆, 𝑇 |𝑈) ⊕ 𝐺(𝜆, 𝑇 |𝑊 ),

i.e. 𝑢 ∈ 𝑈 and (𝑇 |𝑈 − 𝜆𝐼)dim 𝑈𝑢 = 0, 𝑤 ∈ 𝑊 and (𝑇 |𝑊 − 𝜆𝐼)dim 𝑊 𝑤 = 0.

It follows that (𝑇 − 𝜆𝐼)dim 𝑉 𝑢 = (𝑇 − 𝜆𝐼)dim 𝑉 𝑤 = 0 and thus 𝑢 + 𝑤 ∈ 𝐺(𝜆, 𝑇 ). Hence

𝐺(𝜆, 𝑇 |𝑈) ⊕ 𝐺(𝜆, 𝑇 |𝑊 ) ⊆ 𝐺(𝜆, 𝑇 ).

Now suppose that 𝑣 ∈ 𝐺(𝜆, 𝑇 ), i.e. (𝑇 − 𝜆𝐼)dim 𝑉 𝑣 = 0, and let 𝑢 ∈ 𝑈  and 𝑤 ∈ 𝑊  be such
that 𝑣 = 𝑢 + 𝑤. Observe that

(𝑇 − 𝜆𝐼)dim 𝑉 (𝑢 + 𝑤) = 0 ⇔ (𝑇 − 𝜆𝐼)dim 𝑉 𝑢 = −(𝑇 − 𝜆𝐼)dim 𝑉 𝑤.

Since 𝑈  and 𝑊  are invariant under 𝑇  we have (𝑇 − 𝜆𝐼)dim 𝑉 𝑢 ∈ 𝑈  and (𝑇 − 𝜆𝐼)dim 𝑉 𝑤 ∈ 𝑊 ,
whence

(𝑇 − 𝜆𝐼)dim 𝑉 𝑢 = −(𝑇 − 𝜆𝐼)dim 𝑉 𝑤 ∈ 𝑈 ∩ 𝑊 = {0}.

Thus

(𝑇 − 𝜆𝐼)dim 𝑉 𝑢 = 0 ⇒ (𝑇 |𝑈 − 𝜆𝐼)dim 𝑉 𝑢 = 0 ⇒ (𝑇 |𝑈 − 𝜆𝐼)dim 𝑈𝑢 = 0,

where we have used 8.3 for the last implication. It follows that 𝑢 ∈ 𝐺(𝜆, 𝑇 |𝑈) and we can
similarly show that 𝑤 ∈ 𝐺(𝜆, 𝑇 |𝑊 ). Hence 𝑣 = 𝑢 + 𝑤 ∈ 𝐺(𝜆, 𝑇 |𝑈) ⊕ 𝐺(𝜆, 𝑇 |𝑊 ) and we may
conclude that

𝐺(𝜆, 𝑇 ) = 𝐺(𝜆, 𝑇 |𝑈) ⊕ 𝐺(𝜆, 𝑇 |𝑊 ),

as claimed.

We have now proved the following:

(i) 𝐸(𝑇 ) = 𝐸(𝑇 |𝑈) ∪ 𝐸(𝑇 |𝑊 );

(ii) 𝐺(𝜆, 𝑇 ) = 𝐺(𝜆, 𝑇 |𝑈) ⊕ 𝐺(𝜆, 𝑇 |𝑊 ) for any 𝜆 ∈ 𝐂.

Let 𝜆1, …, 𝜆𝑛 denote the distinct eigenvalues of 𝑇 , let

𝑚𝑖 = dim 𝐺(𝜆𝑖, 𝑇 ), 𝑘𝑖 = dim 𝐺(𝜆𝑖, 𝑇 |𝑈), and ℓ𝑖 = dim 𝐺(𝜆𝑖, 𝑇 |𝑊 ),

and let 𝑟, 𝑝, and 𝑞 be the characteristic polynomials of 𝑇 , 𝑇 |𝑈 , and 𝑇 |𝑊  respectively; by
definition we have 𝑟(𝑧) = (𝑧 − 𝜆1)

𝑚1⋯ (𝑧 − 𝜆𝑛)𝑚𝑛 . It follows from (i) that

𝑝(𝑧) = (𝑧 − 𝜆1)
𝑘1⋯ (𝑧 − 𝜆𝑛)𝑘𝑛 and 𝑞(𝑧) = (𝑧 − 𝜆1)

ℓ1⋯ (𝑧 − 𝜆𝑛)ℓ𝑛 ,

and it follows from (ii) that 𝑘𝑖 + ℓ𝑖 = 𝑚𝑖 for each 𝑖 ∈ {1, …, 𝑛}. Thus

𝑝(𝑧)𝑞(𝑧) = (𝑧 − 𝜆1)
𝑘1+ℓ1⋯ (𝑧 − 𝜆𝑛)𝑘𝑛+ℓ𝑛 = (𝑧 − 𝜆1)

𝑚1⋯ (𝑧 − 𝜆𝑛)𝑚𝑛 = 𝑟(𝑧),

as desired.
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Exercise 8.B.21. Suppose 𝑝, 𝑞 ∈ 𝒫(𝐂) are monic polynomials with the same zeros and
𝑞 is a polynomial multiple of 𝑝. Prove that there exists 𝑇 ∈ ℒ(𝐂deg 𝑞) such that the
characteristic polynomial of 𝑇  is 𝑞 and the minimal polynomial of 𝑇  is 𝑝.

This exercise implies that every monic polynomial is the characteristic polynomial of
some operator.

Solution. Let 𝜆1, …, 𝜆𝑚 be the distinct zeros of 𝑝 and 𝑞 and suppose that

𝑝(𝑧) = (𝑧 − 𝜆1)
𝑘1⋯ (𝑧 − 𝜆𝑚)𝑘𝑚 and 𝑞(𝑧) = (𝑧 − 𝜆1)

ℓ1⋯ (𝑧 − 𝜆𝑚)ℓ𝑚

for some positive integers 𝑘1, …, 𝑘𝑚, ℓ1, …, ℓ𝑚; note that 𝑘𝑖 ≤ ℓ𝑖 for each 𝑖 ∈ {1, …, 𝑚} since 𝑞
is a polynomial multiple of 𝑝. Fix 𝑖 ∈ {1, …, 𝑚}. If 𝑘𝑖 = 1 then let 𝐴𝑖 be the ℓ𝑖 × ℓ𝑖 diagonal
matrix with diagonal entries equal to 𝜆𝑖. If 𝑘𝑖 > 1 and 𝑘𝑖 = ℓ𝑖 then let 𝐴𝑖 be the ℓ𝑖 × ℓ𝑖

matrix with diagonal entries equal to 𝜆𝑖 and entries directly above the diagonal equal to 
1, i.e.

𝐴𝑖 =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛𝜆𝑖

0
0
⋮
0
0

1
𝜆𝑖

0
⋮
0
0

0
1
𝜆𝑖
⋮
0
0

⋯
⋯
⋯
⋱
⋯
⋯

0
0
0
⋮

𝜆𝑖

0

0
0
0
⋮
1
𝜆𝑖⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

.

If 1 < 𝑘𝑖 < ℓ𝑖 then let 𝐵𝑖 be the (ℓ𝑖 − 𝑘𝑖) × (ℓ𝑖 − 𝑘𝑖) diagonal matrix with diagonal entries
equal to 𝜆𝑖, let 𝐶𝑖 be the 𝑘𝑖 × 𝑘𝑖 matrix with diagonal entries equal to 𝜆𝑖 and entries directly
above the diagonal equal to 1, and let 𝐴𝑖 be the block diagonal matrix

(
𝐵𝑖

0
0
𝐶𝑖

).

Now let 𝑇 ∈ ℒ(𝐂𝑛), where 𝑛 = deg 𝑞, be the operator whose matrix with respect to the
standard basis is the block diagonal matrix

𝐴 ≔

⎝
⎜⎜⎜
⎛𝐴1

⋮
0

⋯
⋱
⋯

0
⋮

𝐴𝑚⎠
⎟⎟⎟
⎞

.

It follows that the distinct eigenvalues of 𝑇  are 𝜆1, …, 𝜆𝑚, since these are precisely the dis-
tinct diagonal elements of 𝐴. Fix 𝑖 ∈ {1, …, 𝑚}. For any positive integer 𝑑, a calculation (see
Exercise 8.B.22) shows that
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(𝐴 − 𝜆𝑖𝐼𝑛)𝑑 =

⎝
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎛(𝐴1 − 𝜆𝑖𝐼ℓ1)

𝑑

⋮

0
⋮
0

⋯
⋱

⋯
⋱
⋯

0
⋮

(𝐴𝑖 − 𝜆𝑖𝐼ℓ𝑖)
𝑑

⋮
0

⋯
⋱

⋯
⋱
⋯

0
⋮

0
⋮

(𝐴𝑚 − 𝜆𝑖𝐼ℓ𝑚)
𝑛

⎠
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎞

,

where 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix and 𝐼ℓ𝑗 is the ℓ𝑗 × ℓ𝑗 identity matrix. For 𝑗 ≠ 𝑖, note
that the upper-triangular matrix 𝐴𝑗 − 𝜆𝑖𝐼ℓ𝑗 has non-zero diagonal entries since 𝜆𝑗 ≠ 𝜆𝑖; it
follows that the upper-triangular matrix (𝐴𝑗 − 𝜆𝑖𝐼ℓ𝑗)

𝑑 also has non-zero diagonal entries and
hence is injective. Another calculation shows that (𝐴𝑖 − 𝜆𝑖𝐼ℓ𝑖)

ℓ𝑖 is the ℓ𝑖 × ℓ𝑖 zero matrix. It
follows from this discussion that

dim 𝐺(𝜆𝑖, 𝑇 ) = dim null (𝐴 − 𝜆𝑖𝐼𝑛)𝑛 = dim null (𝐴𝑖 − 𝜆𝑖𝐼ℓ𝑖)
𝑛 = ℓ𝑖.

Hence 𝑞 is the characteristic polynomial of 𝑇 . It also follows from this discussion that the
matrix of (𝑇 − 𝜆𝑖𝐼)|𝐺(𝜆𝑖,𝑇 ) with respect to the standard basis is 𝐴𝑖 − 𝜆𝑖𝐼ℓ𝑖 . A final calcula-
tion shows that 𝑘𝑖 is the least integer 𝑘 such that (𝐴𝑖 − 𝜆𝑖𝐼ℓ𝑖)

𝑘 = 0 and thus, by Exercise
8.B.18, 𝑘𝑖 must be the exponent of 𝑧 − 𝜆𝑖 in the factorization of the minimal polynomial of
𝑇 . Hence 𝑝 is the minimal polynomial of 𝑇 .

Exercise 8.B.22. Suppose 𝐴 and 𝐵 are block diagonal matrices of the form

𝐴 =
⎝
⎜⎜
⎛𝐴1

0
⋱

0

𝐴𝑚⎠
⎟⎟
⎞, 𝐵 =

⎝
⎜⎜
⎛𝐵1

0
⋱

0

𝐵𝑚⎠
⎟⎟
⎞,

where 𝐴𝑘 and 𝐵𝑘 are square matrices of the same size for each 𝑘 = 1, …, 𝑚. Show that
𝐴𝐵 is a block diagonal matrix of the form

𝐴𝐵 =
⎝
⎜⎜
⎛𝐴1𝐵1

0
⋱

0

𝐴𝑚𝐵𝑚⎠
⎟⎟
⎞.

Solution. For each 𝑘 ∈ {1, …, 𝑚} suppose that 𝐴𝑘 and 𝐵𝑘 are ℓ𝑘 × ℓ𝑘 matrices and let
𝑛 = ℓ1 + ⋯ + ℓ𝑚, so that 𝐴 and 𝐵 are 𝑛 × 𝑛 matrices. Let 𝑆, 𝑇 ∈ ℒ(𝐅𝑛) be the operators
whose matrices with respect to the standard basis 𝑒1, …, 𝑒𝑛 are ℳ(𝑆) = 𝐴 and ℳ(𝑇) = 𝐵,
so that ℳ(𝑆𝑇) = 𝐴𝐵. Let 𝐸1 be the list 𝑒1, …, 𝑒ℓ1 and, if 𝑚 ≥ 2, for each 𝑘 ∈ {2, …, 𝑚} let
𝐸𝑘 be the list

𝑒ℓ1+⋯+ℓ𝑘−1+1, …, 𝑒ℓ1+⋯+ℓ𝑘
.

Now let 𝑈𝑘 = span 𝐸𝑘 for each 𝑘 ∈ {1, …, 𝑚} and note that 𝐸𝑘 is a basis of 𝑈𝑘. Note further
that each 𝑈𝑘 is invariant under both 𝑆 and 𝑇  and that the matrices of 𝑆|𝑈𝑘

 and 𝑇 |𝑈𝑘
 with

respect to 𝐸𝑘 are 𝐴𝑘 and 𝐵𝑘 respectively. It follows that each 𝑈𝑘 is invariant under 𝑆𝑇  and
that the matrix of (𝑆𝑇 )|𝑈𝑘

 with respect to the basis 𝐸𝑘 is 𝐴𝑘𝐵𝑘. Thus the 𝑘th block on the
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diagonal of 𝐴𝐵 equals 𝐴𝑘𝐵𝑘, and all entries of 𝐴𝐵 off the “block diagonal” must be zero
(otherwise 𝑈𝑘 would not be invariant under 𝑆𝑇 ).

Exercise 8.B.23. Suppose 𝐅 = 𝐑, 𝑇 ∈ ℒ(𝑉 ), and 𝜆 ∈ 𝐂.

(a) Show that 𝑢 + 𝑖𝑣 ∈ 𝐺(𝜆, 𝑇𝐂) if and only if 𝑢 − 𝑖𝑣 ∈ 𝐺(𝜆, 𝑇𝐂).

(b) Show that the multiplicity of 𝜆 as an eigenvalue of 𝑇𝐂 equals the multiplicity of 
𝜆 as an eigenvalue of 𝑇𝐂.

(c) Use (b) and the result about the sum of multiplicities (8.25) to show that if dim 𝑉
is an odd number, then 𝑇𝐂 has a real eigenvalue.

(d) Use (c) and the result about real eigenvalues of 𝑇𝐂 (Exercise 17 in Section 5A) to
show that if dim 𝑉  is an odd number, then 𝑇  has an eigenvalue (thus giving an
alternative proof of 5.34).

See Exercise 33 in Section 3B for the definition of the complexification 𝑇𝐂.

Solution.

(a) Analogously to complex conjugation, for 𝑢, 𝑣 ∈ 𝑉  let us define 𝑢 + 𝑖𝑣 = 𝑢 − 𝑖𝑣. This
operation has the properties we would expect of it, such as

(𝑢 + 𝑖𝑣) + (𝑥 + 𝑖𝑦) = 𝑢 + 𝑖𝑣 + 𝑥 + 𝑖𝑦 and 𝛼(𝑢 + 𝑖𝑣) = 𝛼 𝑢 + 𝑖𝑣 for 𝛼 ∈ 𝐂.

Furthermore, observe that

𝑇𝐂(𝑢 + 𝑖𝑣) = 𝑇𝑢 + 𝑖𝑇𝑣 = 𝑇𝑢 − 𝑖𝑇𝑣 = 𝑇𝐂(𝑢 − 𝑖𝑣) = 𝑇𝐂(𝑢 + 𝑖𝑣).

It follows from these algebraic properties that, for a non-negative integer 𝑚,

(𝑇𝐂 − 𝜆𝐼)𝑚(𝑢 + 𝑖𝑣) = (𝑇𝐂 − 𝜆𝐼)𝑚(𝑢 − 𝑖𝑣).

Combining this identity with the obvious equation 0 = 0 (where 0 is the zero vector in
𝑉𝐂) shows that 𝑢 + 𝑖𝑣 ∈ 𝐺(𝜆, 𝑇𝐂) if and only if 𝑢 − 𝑖𝑣 ∈ 𝐺(𝜆, 𝑇𝐂).

(b) Let 𝑢1 + 𝑖𝑣1, …, 𝑢𝑚 + 𝑖𝑣𝑚 be a basis of 𝐺(𝜆, 𝑇𝐂); we claim that 𝑢1 − 𝑖𝑣1, …, 𝑢1 − 𝑖𝑣𝑚

is a basis of 𝐺(𝜆, 𝑇𝐂). Part (a) shows that each 𝑢𝑘 − 𝑖𝑣𝑘 indeed belongs to 𝐺(𝜆, 𝑇𝐂).
Suppose that 𝛼1, …, 𝛼𝑚 ∈ 𝐂 are such that

𝛼1(𝑢1 − 𝑖𝑣1) + ⋯ + 𝛼𝑚(𝑢𝑚 − 𝑖𝑣𝑚) = 0.

Taking the complex conjugate of both sides (see part (a)) shows that

𝛼1(𝑢1 + 𝑖𝑣1) + ⋯ + 𝛼𝑚(𝑢𝑚 + 𝑖𝑣𝑚) = 0.

The linear independence of the list 𝑢1 + 𝑖𝑣1, …, 𝑢𝑚 + 𝑖𝑣𝑚 now shows that

𝛼1 = ⋯ = 𝛼𝑚 = 0 ⇒ 𝛼1 = ⋯ = 𝛼𝑚 = 0.
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Thus the list 𝑢1 − 𝑖𝑣1, …, 𝑢1 − 𝑖𝑣𝑚 is linearly independent. Now let 𝑢 + 𝑖𝑣 ∈ 𝐺(𝜆, 𝑇𝐂) be
given. By part (a) we have 𝑢 − 𝑖𝑣 ∈ 𝐺(𝜆, 𝑇 ) and thus there exist scalars 𝛼1, …, 𝛼𝑚 ∈ 𝐂
such that

𝑢 − 𝑖𝑣 = 𝛼1(𝑢1 + 𝑖𝑣1) + ⋯ + 𝛼𝑚(𝑢𝑚 + 𝑖𝑣𝑚).

Taking the complex conjugate of both sides shows that

𝑢 + 𝑖𝑣 = 𝛼1(𝑢 − 𝑖𝑣1) + ⋯ + 𝛼𝑚(𝑢𝑚 − 𝑖𝑣𝑚).

Thus 𝑢1 − 𝑖𝑣1, …, 𝑢𝑚 − 𝑖𝑣𝑚 spans 𝐺(𝜆, 𝑇𝐂). Hence 𝑢1 − 𝑖𝑣1, …, 𝑢𝑚 − 𝑖𝑣𝑚 is a basis of 
𝐺(𝜆, 𝑇𝐂), as claimed. It follows that dim 𝐺(𝜆, 𝑇𝐂) = dim 𝐺(𝜆, 𝑇𝐂), i.e. the multiplicity
of 𝜆 as an eigenvalue of 𝑇𝐂 equals the multiplicity of 𝜆 as an eigenvalue of 𝑇𝐂.

(c) We will prove the contrapositive. Suppose that 𝑇𝐂 has no real eigenvalues. Since non-
real eigenvalues of 𝑇𝐂 come in pairs (by part (a)) and both eigenvalues of this pair have
the same multiplicity (by part (b)), the sum of the multiplicities of all the eigenvalues
of 𝑇𝐂 must be an even number. Thus, by 8.25, dim 𝑉  is an even number.

(d) This is immediate from part (c) and Exercise 5.A.17.
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8.C. Consequences of Generalized Eigenspace Decomposi-
tion

Exercise 8.C.1. Suppose 𝑇 ∈ ℒ(𝐂3) is the operator defined by

𝑇 (𝑧1, 𝑧2, 𝑧3) = (𝑧2, 𝑧3, 0).

Prove that 𝑇  does not have a square root.

Solution. Notice that 𝑇  is nilpotent. Thus, if 𝑆 ∈ ℒ(𝐂3) satisfies 𝑆2 = 𝑇 , then 𝑆 must also
be nilpotent. It follows from 8.16 that 𝑆3 = 0. However, note that

0 ≠ 𝑇 2(0, 0, 1) = 𝑆4(0, 0, 1).

Thus there can be no 𝑆 ∈ ℒ(𝐂3) satisfying 𝑆2 = 𝑇 .

Exercise 8.C.2. Define 𝑇 ∈ ℒ(𝐅5) by 𝑇 (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (2𝑥2, 3𝑥3, −𝑥4, 4𝑥5, 0).

(a) Show that 𝑇  is nilpotent.

(b) Find a square root of 𝐼 + 𝑇 .

Solution.

(a) Notice that the matrix of 𝑇  with respect to the standard basis of 𝐅5 is

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛

0
0
0
0
0

2
0
0
0
0

0
3
0
0
0

0
0

−1
0
0

0
0
0
4
0⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎞

.

It follows from 8.18 that 𝑇  is nilpotent.

(b) Note that 𝑇 4 ≠ 0 and 𝑇 5 = 0. Following the strategy outlined in the proof of 8.39, we
should attempt to solve the equation

(𝐼 + 𝑎1𝑇 + 𝑎2𝑇 2 + 𝑎3𝑇 3 + 𝑎4𝑇 4)2 = 𝐼 + 𝑇

for the coefficients 𝑎1, 𝑎2, 𝑎3, 𝑎4. After calculating, we find that

𝑎1 = 1
2 , 𝑎2 = −1

8 , 𝑎3 = 1
16 , 𝑎4 = − 5

128 .

Thus the operator 1
128(128𝐼 + 64𝑇 − 16𝑇 2 + 8𝑇 3 − 5𝑇 4) is a square root of 𝐼 + 𝑇  (a

matrix calculation, by hand or otherwise, verifies this).

Exercise 8.C.3. Suppose 𝑉  is a complex vector space. Prove that every invertible op-
erator on 𝑉  has a cube root.

328 / 366



Solution. The proof is almost identical to the proof of 8.41, replacing “square root” with
“cube root” where applicable. The crux of the argument is the existence of cube roots for
operators of the form 𝐼 + 𝑇 , where 𝑇  is nilpotent. As in the proof of 8.39, proving this
existence amounts to showing that we can always solve the equation

(𝐼 + 𝑎1𝑇 + 𝑎2𝑇 2 + ⋯ + 𝑎𝑚−1𝑇 𝑚−1)3 = 𝐼 + 𝑇

for 𝑎1, 𝑎2, …, 𝑎𝑚−1, where 𝑚 is some positive integer. By multiplying out the left-hand side,
we notice that the coefficient of 𝑇 𝑘 is always a degree 1 polynomial in 𝑎𝑘 with constant term
involving sums and products of 𝑎1, …, 𝑎𝑘−1. Thus, having found 𝑎1, …, 𝑎𝑘−1, we can always
solve for 𝑎𝑘.

Exercise 8.C.4. Suppose 𝑉  is a real vector space. Prove that the operator −𝐼 on 𝑉
has a square root if and only if dim 𝑉  is an even number.

Solution. Suppose that dim 𝑉  is an even number and let 𝑣1, …, 𝑣2𝑛 be a basis of 𝑉 . Define
𝑅 ∈ ℒ(𝑉 ) by

𝑅𝑒2𝑘−1 = −𝑒2𝑘 and 𝑅𝑒2𝑘 = 𝑒2𝑘−1

for each 𝑘 ∈ {1, …, 𝑛}. It follows that

𝑅2𝑒2𝑘−1 = −𝑒2𝑘−1 and 𝑅2𝑒2𝑘 = −𝑒2𝑘

for each 𝑘 ∈ {1, …, 𝑛}, so that 𝑅2 = −𝐼 , i.e. 𝑅 is a square root of −𝐼 .

Now suppose that dim 𝑉  is an odd number and let 𝑇 ∈ ℒ(𝑉 ) be given. By 5.34, there exists
an eigenvalue 𝜆 ∈ 𝐑 of 𝑇 , say 𝑇𝑣 = 𝜆𝑣 for some non-zero 𝑣 ∈ 𝑉 . It follows that 𝑇 2𝑣 = 𝜆2𝑣
and hence that 𝑇 2𝑣 ≠ −𝑣, since 𝜆2 ≥ 0. Thus no operator 𝑇 ∈ ℒ(𝑉 ) satisfies 𝑇 2 = −𝐼 .

Exercise 8.C.5. Suppose 𝑇 ∈ ℒ(𝐂2) is the operator defined by

𝑇 (𝑤, 𝑧) = (−𝑤 − 𝑧, 9𝑤 + 5𝑧).

Find a Jordan basis for 𝑇 .

Solution. The matrix of 𝑇  with respect to the basis (1, −3), (1, −2) is

(2
0

1
2).

Thus (1, −3), (1, −2) is a Jordan basis for 𝑇 .

Exercise 8.C.6. Find a basis of 𝒫4(𝐑) that is a Jordan basis for the differentiation
operator 𝐷 on 𝒫4(𝐑) defined by 𝐷𝑝 = 𝑝′.

Solution. The matrix of 𝐷 with respect to the basis 1, 𝑥, 1
2𝑥2, 1

3𝑥3, 1
4𝑥4 is
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⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛

0
0
0
0
0

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0

0
0
0
1
0⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎞

.

Thus 1, 𝑥, 1
2𝑥2, 1

3𝑥3, 1
4𝑥4 is a Jordan basis for 𝐷.

Exercise 8.C.7. Suppose 𝑇 ∈ ℒ(𝑉 ) is nilpotent and 𝑣1, …, 𝑣𝑛 is a Jordan basis for 𝑇 .
Prove that the minimal polynomial of 𝑇  is 𝑧𝑚+1, where 𝑚 is the length of the longest
consecutive string of 1’s that appears on the line directly above the diagonal in the
matrix of 𝑇  with respect to 𝑣1, …, 𝑣𝑛.

Solution. The matrix of 𝑇  with respect to 𝑣1, …, 𝑣𝑛 is a block diagonal matrix of the form

𝐴 =

⎝
⎜⎜
⎜⎛

𝐴1
⋮
0

⋯
⋱
⋯

0
⋮

𝐴𝑝⎠
⎟⎟
⎟⎞,

where each 𝐴𝑘 is a 𝑑𝑘 × 𝑑𝑘 matrix of the form

𝐴𝑘 =

⎝
⎜⎜
⎜⎜
⎛0

0

1
⋱ ⋱

⋱

0

1
0⎠
⎟⎟
⎟⎟
⎞

;

the diagonal entries are zero as 𝑇 , being nilpotent, has only zero as an eigenvalue. A calcu-
lation shows that 𝐴𝑑𝑘−1

𝑘 ≠ 0 and 𝐴𝑑𝑘
𝑘 = 0. Note that the length of the string of 1’s appearing

on the line directly above the diagonal of 𝐴𝑘 is exactly 𝑑𝑘 − 1. It follows that 𝑑𝑘 ≤ 𝑚 + 1
for each 𝑘 ∈ {1, …, 𝑛}, so that 𝐴𝑚+1

𝑘 = 0, and 𝑑ℓ = 𝑚 + 1 for some ℓ ∈ {1, …, 𝑛}, so that
𝐴𝑚

ℓ ≠ 0. Thus, by Exercise 8.A.22,

𝐴𝑚+1 =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛𝐴𝑚+1

1
⋮
0
⋮
0

⋯
⋱
⋯
⋱
⋯

0
⋮

𝐴𝑚+1
ℓ
⋮
0

⋯
⋱
⋯
⋱
⋯

0
⋮
0
⋮

𝐴𝑚+1
𝑝 ⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

=

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎛

0
⋮
0
⋮
0

⋯
⋱
⋯
⋱
⋯

0
⋮
0
⋮
0

⋯
⋱
⋯
⋱
⋯

0
⋮
0
⋮
0⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎞

= 0,

𝐴𝑚 =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎛

𝐴𝑚
1
⋮
0
⋮
0

⋯
⋱
⋯
⋱
⋯

0
⋮

𝐴𝑚
ℓ
⋮
0

⋯
⋱
⋯
⋱
⋯

0
⋮
0
⋮

𝐴𝑚
𝑝 ⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎞

≠ 0.

Hence 𝑇 𝑚+1 = 0 and 𝑇 𝑚 ≠ 0. Furthermore, zero is the only eigenvalue of 𝑇  and hence the
only root of the minimal polynomial of 𝑇 . We may conclude that the minimal polynomial
of 𝑇  is 𝑧𝑚+1.
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Exercise 8.C.8. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝑣1, …, 𝑣𝑛 is a basis of 𝑉  that is a Jordan basis
for 𝑇 . Describe the matrix of 𝑇 2 with respect to this basis.

Solution. The matrix of 𝑇  with respect to 𝑣1, …, 𝑣𝑛 is a block diagonal matrix of the form

𝐴 =

⎝
⎜⎜
⎜⎛

𝐴1
⋮
0

⋯
⋱
⋯

0
⋮

𝐴𝑝⎠
⎟⎟
⎟⎞, where 𝐴𝑘 =

⎝
⎜⎜
⎜⎜
⎜⎛

𝜆𝑘

0

1
⋱ ⋱

⋱

0

1
𝜆𝑘⎠

⎟⎟
⎟⎟
⎟⎞

.

A calculation shows that

𝐴2
𝑘 =

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎛

𝜆2
𝑘

0

2𝜆𝑘
⋱

1
⋱
⋱

⋱
⋱
⋱

0

1
2𝜆𝑘

𝜆2
𝑘 ⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎞

.

Thus, by Exercise 8.A.22, the matrix of 𝑇 2 with respect to 𝑣1, …, 𝑣𝑛 is

𝐴2 =

⎝
⎜⎜
⎜⎛

𝐴2
1
⋮
0

⋯
⋱
⋯

0
⋮

𝐴2
𝑝⎠
⎟⎟
⎟⎞.

Exercise 8.C.9. Suppose 𝑇 ∈ ℒ(𝑉 ) is nilpotent. Explain why there exist 𝑣1, …, 𝑣𝑛 ∈ 𝑉
and non-negative integers 𝑚1, …, 𝑚𝑛 such that (a) and (b) below both hold.

(a) 𝑇 𝑚1𝑣1, …, 𝑇 𝑣1, 𝑣1, …, 𝑇 𝑚𝑛𝑣𝑛, …, 𝑇 𝑣𝑛, 𝑣𝑛 is a basis of 𝑉 .

(b) 𝑇 𝑚1+1𝑣1 = ⋯ = 𝑇 𝑚𝑛+1𝑣𝑛 = 0.

Solution. By 8.45 there exists a Jordan basis for 𝑇 , i.e. a basis with respect to which the
matrix of 𝑇  is of the form

𝐴 =

⎝
⎜⎜⎜
⎛𝐴1

⋮
0

⋯
⋱
⋯

0
⋮

𝐴𝑛⎠
⎟⎟⎟
⎞

, where 𝐴𝑘 =

⎝
⎜⎜
⎜⎜
⎛0

0

1
⋱ ⋱

⋱

0

1
0⎠
⎟⎟
⎟⎟
⎞

;

the diagonal entries of each 𝐴𝑘 are zero as 𝑇 , being nilpotent, has only zero as an eigenvalue.
Fix 𝑘 ∈ {1, …, 𝑛} and suppose that 𝐴𝑘 is an (𝑚𝑘 + 1) × (𝑚𝑘 + 1) matrix, where 𝑚𝑘 is some
non-negative integer. Suppose that the sub-list of the Jordan basis corresponding to the 𝐴𝑘

block on the block diagonal of 𝐴 is 𝑢𝑚𝑘+1, 𝑢𝑚𝑘 , …, 𝑢3, 𝑢2, 𝑢1. The form of 𝐴𝑘 shows that

𝑇𝑢1 = 𝑢2, 𝑇 2𝑢1 = 𝑇𝑢2 = 𝑢3, …, 𝑇 𝑚𝑘𝑢1 = 𝑢𝑚𝑘+1, 𝑇 𝑚𝑘+1𝑢1 = 0.

Thus we can take 𝑣𝑘 = 𝑢𝑘 for each 𝑘 ∈ {1, …, 𝑛} and (a) and (b) will both hold.
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Exercise 8.C.10. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝑣1, …, 𝑣𝑛 is a basis of 𝑉  that is a Jordan basis
for 𝑇 . Describe the matrix of 𝑇  with respect to the basis 𝑣𝑛, …, 𝑣1 obtained by reversing
the order of the 𝑣’s.

Solution. The matrix of 𝑇  with respect to 𝑣1, …, 𝑣𝑛 is a block diagonal matrix of the form

𝐴 =

⎝
⎜⎜
⎜⎛

𝐴1
⋮
0

⋯
⋱
⋯

0
⋮

𝐴𝑝⎠
⎟⎟
⎟⎞, where 𝐴𝑘 =

⎝
⎜⎜
⎜⎜
⎜⎛

𝜆𝑘

0

1
⋱ ⋱

⋱

0

1
𝜆𝑘⎠

⎟⎟
⎟⎟
⎟⎞

.

Reversing the order of the sub-list of 𝑣1, …, 𝑣𝑛 corresponding to 𝐴𝑘 has the effect of trans-
posing 𝐴𝑘, and reversing the order of the entire basis 𝑣1, …, 𝑣𝑛 has the effect of reversing the
order of the blocks on the block diagonal of 𝐴. Thus the matrix of 𝑇  with respect to the
basis 𝑣𝑛, …, 𝑣1 is

⎝
⎜⎜
⎜⎛

𝐴t
𝑝

⋮
0

⋯
⋱
⋯

0
⋮

𝐴t
1⎠
⎟⎟
⎟⎞.

Exercise 8.C.11. Suppose 𝑇 ∈ ℒ(𝑉 ). Explain why every vector in each Jordan basis
for 𝑇  is a generalized eigenvector of 𝑇 .

Solution. Suppose that 𝑣1, …, 𝑣𝑛 is a Jordan basis for 𝑇 , i.e. the matrix of 𝑇  with respect
to 𝑣1, …, 𝑣𝑛 is of the form

𝐴 =

⎝
⎜⎜
⎜⎛

𝐴1
⋮
0

⋯
⋱
⋯

0
⋮

𝐴𝑝⎠
⎟⎟
⎟⎞, where 𝐴𝑘 =

⎝
⎜⎜
⎜⎜
⎜⎛

𝜆𝑘

0

1
⋱ ⋱

⋱

0

1
𝜆𝑘⎠

⎟⎟
⎟⎟
⎟⎞

.

Let 𝑣𝑚 be a vector in the Jordan basis 𝑣1, …, 𝑣𝑛. The form of 𝐴 above shows that there is a
𝑘 ∈ {1, …, 𝑝} such that either (𝑇 − 𝜆𝑘𝐼)𝑣𝑚 = 0 or

𝑇𝑣𝑚 = 𝜆𝑘𝑣𝑚 + 𝑣𝑚−1 ⇒ (𝑇 − 𝜆𝑘𝐼)𝑣𝑚 = 𝑣𝑚−1.

Similarly, either (𝑇 − 𝜆𝑘𝐼)𝑣𝑚−1 = 0, which gives us (𝑇 − 𝜆𝑘𝐼)2𝑣𝑚 = 0, or

𝑇𝑣𝑚−1 = 𝜆𝑘𝑣𝑚−1 + 𝑣𝑚−2 ⇒ (𝑇 − 𝜆𝑘𝐼)𝑣𝑚−1 = (𝑇 − 𝜆𝑘𝐼)2𝑣𝑚 = 𝑣𝑚−2.

Continuing in this fashion, we find a positive integer ℓ, no greater than the size of 𝐴𝑘, such
that (𝑇 − 𝜆𝑘𝐼)ℓ𝑣𝑚 = 0. Thus 𝑣𝑚 is a generalized eigenvector of 𝑇 .

Exercise 8.C.12. Suppose 𝑇 ∈ ℒ(𝑉 ) is diagonalizable. Show that ℳ(𝑇) is a diagonal
matrix with respect to every Jordan basis for 𝑇 .
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Solution. Let 𝑣1, …, 𝑣𝑛 be a Jordan basis for 𝑇 . It follows from Exercise 8.C.11 that 𝑣1, …, 𝑣𝑛

is a basis of 𝑉  consisting of generalized eigenvectors of 𝑇 . Because 𝑇  is diagonalizable, every
generalized eigenvector of 𝑇  is an eigenvector of 𝑇  (as we showed in Exercise 8.A.15; note
that the proof of this implication does not use the hypothesis of Exercise 8.A.15 that 𝐅 = 𝐂).
Thus 𝑣1, …, 𝑣𝑛 is a basis of 𝑉  consisting of eigenvectors of 𝑇  and hence the matrix of 𝑇  with
respect to this basis is diagonal.

Exercise 8.C.13. Suppose 𝑇 ∈ ℒ(𝑉 ) is nilpotent. Prove that if 𝑣1, …, 𝑣𝑛 are vectors in
𝑉  and 𝑚1, …, 𝑚𝑛 are nonnegative integers such that

𝑇 𝑚1𝑣1, …, 𝑇 𝑣1, 𝑣1, …, 𝑇 𝑚𝑛𝑣𝑛, …, 𝑇 𝑣𝑛, 𝑣𝑛 is a basis of 𝑉

and

𝑇 𝑚1+1𝑣1 = ⋯ = 𝑇 𝑚𝑛+1𝑣𝑛 = 0,

then 𝑇 𝑚1𝑣1, …, 𝑇 𝑚𝑛𝑣𝑛 is a basis of null 𝑇 .

This exercise shows that 𝑛 = dim null 𝑇 . Thus the positive integer 𝑛 that appears
above depends only on 𝑇  and not on the specific Jordan basis chosen for 𝑇 .

Solution. The linear independence of the basis

𝑇 𝑚1𝑣1, …, 𝑇 𝑣1, 𝑣1, …, 𝑇 𝑚𝑛𝑣𝑛, …, 𝑇 𝑣𝑛, 𝑣𝑛

gives us the linear independence of the list 𝑇 𝑚1𝑣1, …, 𝑇 𝑚𝑛𝑣𝑛. The condition

𝑇 𝑚1+1𝑣1 = ⋯ = 𝑇 𝑚𝑛+1𝑣𝑛 = 0

shows that each of the vectors 𝑇 𝑚1𝑣1, …, 𝑇 𝑚𝑛𝑣𝑛 belongs to null 𝑇 . Suppose that 𝑣 ∈ null 𝑇 .
There are scalars 𝑎𝑗,𝑘 such that

𝑣 = ∑
𝑛

𝑗=1
∑
𝑚𝑗

𝑘=0
𝑎𝑗,𝑘𝑇 𝑘𝑣𝑗 ⇒ 0 = 𝑇𝑣 = ∑

𝑛

𝑗=1
∑
𝑚𝑗

𝑘=0
𝑎𝑗,𝑘𝑇 𝑘+1𝑣𝑗 = ∑

𝑛

𝑗=1
𝑚𝑗≠0

∑
𝑚𝑗−1

𝑘=0
𝑎𝑗,𝑘𝑇 𝑘+1𝑣𝑗,

where we have used that 𝑇 𝑚1+1𝑣1 = ⋯ = 𝑇 𝑚𝑛+1𝑣𝑛 = 0 for the last equality. It follows from
the linear independence of the basis

𝑇 𝑚1𝑣1, …, 𝑇 𝑣1, 𝑣1, …, 𝑇 𝑚𝑛𝑣𝑛, …, 𝑇 𝑣𝑛, 𝑣𝑛

that 𝑎𝑗,𝑘 = 0 for all 𝑗 ∈ {1, …, 𝑛} such that 𝑚𝑗 ≥ 1 and all 𝑘 ∈ {0, …, 𝑚𝑗 − 1}. Thus

𝑣 = 𝑎1,𝑚1
𝑇 𝑚1𝑣1 + ⋯ + 𝑎𝑛,𝑚𝑛

𝑇 𝑚𝑛𝑣𝑛.

Hence 𝑇 𝑚1𝑣1, …, 𝑇 𝑚𝑛𝑣𝑛 spans null 𝑇  and we may conclude that this list is a basis of null 𝑇 .

Exercise 8.C.14. Suppose 𝐅 = 𝐂 and 𝑇 ∈ ℒ(𝑉 ). Prove that there does not exist a
direct sum decomposition of 𝑉  into two nonzero subspaces invariant under 𝑇  if and only
if the minimal polynomial of 𝑇  is of the form (𝑧 − 𝜆)dim 𝑉  for some 𝜆 ∈ 𝐂.
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Solution. First suppose that there exist non-zero subspaces 𝑈  and 𝑊  which are invariant
under 𝑇  and satisfy 𝑉 = 𝑈 ⊕ 𝑊 . If the union of the set of eigenvalues of 𝑇 |𝑈  and the set
of eigenvalues of 𝑇 |𝑊  contains at least two complex numbers then 𝑇  has at least two eigen-
values. It follows that the minimal polynomial of 𝑇  has at least two roots and hence is
not of the form (𝑧 − 𝜆)dim 𝑉  for any 𝜆 ∈ 𝐂. Suppose therefore that 𝑇 |𝑈  and 𝑇 |𝑊  both have
a single eigenvalue 𝜇 ∈ 𝐂. As we argued in Exercise 8.B.20, it follows that 𝜇 is the only
eigenvalue of 𝑇  and hence that the minimal polynomial of 𝑇  is of the form (𝑧 − 𝜇)ℓ for some
positive integer ℓ ≤ dim 𝑉 . Let 𝑚 = max{dim 𝑈, dim 𝑊} and notice that 𝑚 < dim 𝑉  since
𝑈  and 𝑊  are proper subspaces of 𝑉 . Notice further that 𝑉 = 𝐺(𝜇, 𝑇 ), 𝑈 = 𝐺(𝜇, 𝑇 |𝑈), and
𝑊 = 𝐺(𝜇, 𝑇 |𝑊 ) by 8.22(c). It follows from 8.22(b) and 8.16 that

(𝑇 |𝑈 − 𝜇𝐼)𝑚 = (𝑇 |𝑊 − 𝜇𝐼)𝑚 = 0.

Let 𝑣 = 𝑢 + 𝑤 ∈ 𝑉 = 𝑈 ⊕ 𝑊  be given and observe that

(𝑇 − 𝜇𝐼)𝑚|𝐺(𝜇,𝑇) 𝑣 = (𝑇 − 𝜇𝐼)𝑚(𝑢 + 𝑤) = (𝑇 |𝑈 − 𝜇𝐼)𝑚𝑢 + (𝑇 |𝑊 − 𝜇𝐼)𝑚𝑤 = 0.

Thus (𝑇 − 𝜇𝐼)𝑚|𝐺(𝜇,𝑇) = 0. Hence, by Exercise 8.B.6, we must have ℓ ≤ 𝑚 < dim 𝑉 . It fol-
lows that the minimal polynomial of 𝑇  is not of the form (𝑧 − 𝜆)dim 𝑉  for any 𝜆 ∈ 𝐂.

Now suppose that the minimal polynomial of 𝑇  is not of the form (𝑧 − 𝜆)dim 𝑉  for any 𝜆 ∈ 𝐂
and let 𝜆1, …, 𝜆𝑚 be the distinct eigenvalues of 𝑇 . If 𝑚 ≥ 2 then, by 8.22(c),

𝑉 = 𝐺(𝜆1, 𝑇 ) ⊕ [𝐺(𝜆2, 𝑇 ) ⊕ ⋯ ⊕ 𝐺(𝜆𝑚, 𝑇 )]

is a direct sum decomposition of 𝑉  into two non-zero subspaces of 𝑉  invariant under 𝑇 . If
𝑚 = 1 then the minimal polynomial of 𝑇  must be of the form (𝑧 − 𝜆1)

ℓ where ℓ is a positive
integer satisfying ℓ < dim 𝑉 . By 8.46 there exists a Jordan basis 𝑣1, …, 𝑣dim 𝑉  for 𝑇 , so that
the matrix of 𝑇  with respect to this basis is of the form

𝐴 =

⎝
⎜⎜
⎜⎛

𝐴1
⋮
0

⋯
⋱
⋯

0
⋮

𝐴𝑝⎠
⎟⎟
⎟⎞, where 𝐴𝑘 =

⎝
⎜⎜
⎜⎜
⎜⎛

𝜆1

0

1
⋱ ⋱

⋱

0

1
𝜆1⎠

⎟⎟
⎟⎟
⎟⎞

.

Note that if 𝑝 = 1, so that 𝐴 = 𝐴1 is a (dim 𝑉 ) × (dim 𝑉 ) matrix, then (𝐴 − 𝜆1𝐼)ℓ ≠ 0, con-
tradicting that (𝑧 − 𝜆1)

ℓ is the minimal polynomial of 𝑇 . Thus 𝑝 ≥ 2. Suppose that 𝐴1 is a
𝑑 × 𝑑 matrix; since 𝑝 ≥ 2 we must have 𝑑 < dim 𝑉 . Let

𝑈 = span(𝑣1, …, 𝑣𝑑) and 𝑊 = span(𝑣𝑑+1, …, 𝑣dim 𝑉 ).

Then 𝑈  and 𝑊  are non-zero, invariant under 𝑇  (since 𝐴 is block diagonal), and decompose
𝑉  as the direct sum 𝑉 = 𝑈 ⊕ 𝑊 .
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8.D. Trace: A Connection Between Matrices and Operators

Exercise 8.D.1. Suppose 𝑉  is an inner product space and 𝑣, 𝑤 ∈ 𝑉 . Define an operator
𝑇 ∈ ℒ(𝑉 ) by 𝑇𝑢 = ⟨𝑢, 𝑣⟩𝑤. Find a formula for tr 𝑇 .

Solution. Let 𝑒1, …, 𝑒𝑛 be an orthonormal basis of 𝑉  and suppose that

𝑣 = 𝑎1𝑒1 + ⋯ + 𝑎𝑛𝑒𝑛 and 𝑤 = 𝑏1𝑒1 + ⋯ + 𝑏𝑛𝑒𝑛.

Observe that ⟨𝑇 𝑒𝑘, 𝑒𝑘⟩ = ⟨⟨𝑒𝑘, 𝑣⟩𝑤, 𝑒𝑘⟩ = 𝑎𝑘𝑏𝑘 for each 𝑘 ∈ {1, …, 𝑛}. It follows from 8.55 that

tr 𝑇 = ∑
𝑛

𝑘=1
𝑎𝑘𝑏𝑘 = ⟨𝑤, 𝑣⟩.

Exercise 8.D.2. Suppose 𝑃 ∈ ℒ(𝑉 ) satisfies 𝑃 2 = 𝑃 . Prove that

tr 𝑃 = dim range 𝑃 .

Solution. Since 𝑃(𝑃 − 1) = 0, the minimal polynomial of 𝑃  is either 𝑧, 𝑧 − 1, or 𝑧(𝑧 − 1). In
any case, the minimal polynomial of 𝑃  splits into distinct linear factors and hence 𝑃  is di-
agonalizable by 5.62. Thus there is a basis of 𝑉  with respect to which the matrix 𝐴 ≔ ℳ(𝑇)
is diagonal. Since the only possible eigenvalues of 𝑃  are 0 or 1, each diagonal entry of 𝐴 is
either 0 or 1. It follows that tr 𝑃  is the number of diagonal entries of 𝐴 equal to 1; denoting
this number by 𝑚, it is clear from the form of 𝐴 that dim range 𝑃 = rank 𝐴 = 𝑚.

Exercise 8.D.3. Suppose 𝑇 ∈ ℒ(𝑉 ) and 𝑇 5 = 𝑇 . Prove that the real and imaginary
parts of tr 𝑇  are both integers.

Solution. First suppose that 𝐅 = 𝐂. The equation 𝑇 5 = 𝑇  is equivalent to

𝑇 (𝑇 − 𝐼)(𝑇 + 𝐼)(𝑇 − 𝑖𝐼)(𝑇 + 𝑖𝐼) = 0.

Thus the eigenvalues of 𝑇  are contained in the set {0, ±1, ±𝑖}. It then follows from 8.52 that
the real and imaginary parts of tr 𝑇  are both integers.

Before we proceed, let us prove the following lemma.

Lemma L.16. Let 𝑉  be a real vector space and suppose 𝑇 ∈ ℒ(𝑉 ). Then tr 𝑇𝐂 = tr 𝑇 .

Proof. Let 𝑣1, …, 𝑣𝑛 be a basis of 𝑉 . As we showed in Exercise 2.B.11, 𝑣1, …, 𝑣𝑛 is also
a basis of 𝑉𝐂. Observe that 𝑇𝐂𝑣𝑘 = 𝑇𝑣𝑘 for each 𝑘 ∈ {1, …, 𝑛}. Thus

ℳ(𝑇𝐂, (𝑣1, …, 𝑣𝑛)) = ℳ(𝑇 , (𝑣1, …, 𝑣𝑛)).

It is now immediate that tr 𝑇𝐂 = tr 𝑇 . □
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Now suppose that 𝐅 = 𝐑. Since 𝑇 5 = 𝑇  we also have 𝑇 5
𝐂 = 𝑇𝐂 and it follows from our previ-

ous discussion that the real and imaginary parts of tr 𝑇𝐂 are integers. Thus, by Lemma L.16,
tr 𝑇  is an integer.

Exercise 8.D.4. Suppose 𝑉  is an inner product space and 𝑇 ∈ ℒ(𝑉 ). Prove that

tr 𝑇 ∗ = tr 𝑇 .

Solution. Let 𝑒1, …, 𝑒𝑛 be an orthonormal basis of 𝑉  and let 𝐴 be the matrix of 𝑇  with
respect to 𝑒1, …, 𝑒𝑛. It follows from 7.9 that the matrix of 𝑇 ∗ with respect to 𝑒1, …, 𝑒𝑛 is 𝐴∗.
Since the diagonal entries of 𝐴∗ are the complex conjugates of the diagonal entries of 𝐴, we
obtain the equation tr 𝑇 ∗ = tr 𝑇 .

Exercise 8.D.5. Suppose 𝑉  is an inner product space. Suppose 𝑇 ∈ ℒ(𝑉 ) is a positive
operator and tr 𝑇 = 0. Prove that 𝑇 = 0.

Solution. By 7.38(c) there is an orthonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉  with respect to which
the matrix of 𝑇  is diagonal with only non-negative numbers on the diagonal. Since tr 𝑇 = 0
the sum of these non-negative diagonal entries is zero, which can be the case only if each
diagonal entry is zero. Thus the matrix of 𝑇  with respect to 𝑒1, …, 𝑒𝑛 is the zero matrix.
Hence 𝑇 = 0.

Exercise 8.D.6. Suppose 𝑉  is an inner product space and 𝑃 , 𝑄 ∈ ℒ(𝑉 ) are orthogonal
projections. Prove that tr(𝑃𝑄) ≥ 0.

Solution. Suppose that 𝑃  and 𝑄 are orthogonal projections onto subspaces 𝑈  and 𝑊  re-
spectively. Let 𝑒1, …, 𝑒𝑚 be an orthonormal basis of 𝑊  and let 𝑓1, …, 𝑓𝑛 be an orthonormal
basis of 𝑊⟂, so that 𝑒1, …, 𝑒𝑚, 𝑓1, …, 𝑓𝑛 is an orthonormal basis of 𝑉 . It follows from 8.55
that

tr(𝑃𝑄) = ⟨𝑃𝑄𝑒1, 𝑒1⟩ + ⋯ + ⟨𝑃𝑄𝑒𝑚, 𝑒𝑚⟩ + ⟨𝑃𝑄𝑓1, 𝑓1⟩ + ⋯ + ⟨𝑃𝑄𝑓𝑛, 𝑓𝑛⟩

= ⟨𝑃𝑒1, 𝑒1⟩ + ⋯ + ⟨𝑃𝑒𝑚, 𝑒𝑚⟩,

where we have used that 𝑄|𝑊 = 𝐼 and 𝑄|𝑊⟂ = 0. As noted in 7.35(b), orthogonal projections
are positive operators. It follows that

tr(𝑃𝑄) = ⟨𝑃𝑒1, 𝑒1⟩ + ⋯ + ⟨𝑃𝑒𝑚, 𝑒𝑚⟩ ≥ 0.
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Exercise 8.D.7. Suppose 𝑇 ∈ ℒ(𝐂3) is the operator whose matrix is

⎝
⎜⎛

51
60
57

−12
−40
−68

−21
−28
1 ⎠

⎟⎞.

Someone tells you (accurately) that −48 and 24 are eigenvalues of 𝑇 . Without using a
computer or writing anything down, find the third eigenvalue of 𝑇 .

Solution. On one hand, the trace of the matrix above is 51 − 40 + 1 = 12. On the other
hand, by 8.52, the trace of this matrix is the sum of the eigenvalues of 𝑇 . Letting 𝑥 be the
third eigenvalue of 𝑇 , it follows that

12 = −48 + 24 + 𝑥 ⇒ 𝑥 = 36.

Exercise 8.D.8. Prove or give a counterexample: If 𝑆, 𝑇 ∈ ℒ(𝑉 ), then
tr(𝑆𝑇 ) = (tr 𝑆)(tr 𝑇 ).

Solution. This is false. For a counterexample, let 𝑆 and 𝑇  be the operators on 𝐅2 whose
matrices with respect to the standard basis are

ℳ(𝑆) = (1
0

0
0) and ℳ(𝑇) = (0

0
0
1) ⇒ ℳ(𝑆𝑇) = (0

0
0
0).

Then tr 𝑆 = tr 𝑇 = 1 but tr(𝑆𝑇 ) = 0. Thus tr(𝑆𝑇 ) ≠ (tr 𝑆)(tr 𝑇 ).

Exercise 8.D.9. Suppose 𝑇 ∈ ℒ(𝑉 ) is such that tr(𝑆𝑇 ) = 0 for all 𝑆 ∈ ℒ(𝑉 ). Prove
that 𝑇 = 0.

Solution. We will prove the contrapositive. Suppose that 𝑇 ≠ 0, so that there exists some 
𝑣1 ∈ 𝑉  such that 𝑇𝑣1 ≠ 0. Extend 𝑣1 to a basis 𝑣1, …, 𝑣𝑛 of 𝑉 . Suppose that

𝑇𝑣1 = 𝐴1,1𝑣1 + ⋯ + 𝐴𝑛,1𝑣𝑛.

Since 𝑇𝑣1 ≠ 0 there must exist some 𝑖 ∈ {1, …, 𝑛} such that 𝐴𝑖,1 ≠ 0. Define 𝑆 ∈ ℒ(𝑉 ) by 
𝑆𝑣𝑖 = 𝑣1 and 𝑆𝑣𝑘 = 0 for 𝑘 ≠ 𝑖. Now observe that the matrix of 𝑆𝑇  with respect to 𝑣1, …, 𝑣𝑛

is

⎝
⎜⎜
⎜⎜
⎜⎛

𝐴𝑖,1

0
⋮
0

𝐴𝑖,2

0
⋮
0

⋯
⋯
⋱
⋯

𝐴𝑖,𝑛

0
⋮
0 ⎠

⎟⎟
⎟⎟
⎟⎞

.

Thus tr(𝑆𝑇 ) = 𝐴𝑖,1 ≠ 0.
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Exercise 8.D.10. Prove that the trace is the only linear functional 𝜏 : ℒ(𝑉 ) → 𝐅 such
that

𝜏(𝑆𝑇 ) = 𝜏(𝑇𝑆)

for all 𝑆, 𝑇 ∈ ℒ(𝑉 ) and 𝜏(𝐼) = dim 𝑉 .

Hint: Suppose that 𝑣1, …, 𝑣𝑛 is a basis of 𝑉 . For 𝑗, 𝑘 ∈ {1, …, 𝑛}, define 𝑃𝑗,𝑘 ∈ ℒ(𝑉 )
by 𝑃𝑗,𝑘(𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛) = 𝑎𝑘𝑣𝑗. Prove that

𝜏(𝑃𝑗,𝑘) = {
1 if 𝑗 = 𝑘,
0 if 𝑗 ≠ 𝑘.

Then for 𝑇 ∈ ℒ(𝑉 ), use the equation 𝑇 = ∑𝑛
𝑘=1 ∑𝑛

𝑗=1 ℳ(𝑇)𝑗,𝑘𝑃𝑗,𝑘 to show that 
𝜏(𝑇 ) = tr 𝑇 .

Solution. Let 𝑣1, …, 𝑣𝑛 be a basis of 𝑉  and for 𝑗, 𝑘 ∈ {1, …, 𝑛} define 𝑃𝑗,𝑘 ∈ ℒ(𝑉 ) as in the
hint. For any 𝑗, 𝑘 ∈ {1, …, 𝑛} observe that

𝑃𝑗,𝑘𝑃𝑘,𝑗(𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛) = 𝑃𝑗,𝑘(𝑎𝑗𝑣𝑘) = 𝑎𝑗𝑣𝑗 = 𝑃𝑗,𝑗(𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛).

Thus 𝑃𝑗,𝑘𝑃𝑘,𝑗 = 𝑃𝑗,𝑗. It follows that

𝜏(𝑃𝑗,𝑗) = 𝜏(𝑃𝑗,𝑘𝑃𝑘,𝑗) = 𝜏(𝑃𝑘,𝑗𝑃𝑗,𝑘) = 𝜏(𝑃𝑘,𝑘),

which implies

𝑛 = 𝜏(𝐼) = 𝜏(𝑃1,1 + ⋯ + 𝑃𝑛,𝑛) = 𝜏(𝑃1,1) + ⋯ + 𝜏(𝑃𝑛,𝑛) = 𝑛𝜏(𝑃1,1).

Thus 𝜏(𝑃1,1) = ⋯ = 𝜏(𝑃𝑛,𝑛) = 1. Now observe that, for 𝑗 ≠ 𝑘,

𝑃𝑘,𝑘𝑃𝑗,𝑘(𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛) = 𝑃𝑘,𝑘(𝑎𝑘𝑣𝑗) = 0,

and 𝑃𝑗,𝑘𝑃𝑘,𝑘(𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛) = 𝑃𝑗,𝑘(𝑎𝑘𝑣𝑘) = 𝑎𝑘𝑣𝑗 = 𝑃𝑗,𝑘(𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛).

Thus 𝑃𝑘,𝑘𝑃𝑗,𝑘 = 0 and 𝑃𝑗,𝑘𝑃𝑘,𝑘 = 𝑃𝑗,𝑘. It follows that

𝜏(𝑃𝑗,𝑘) = 𝜏(𝑃𝑗,𝑘𝑃𝑘,𝑘) = 𝜏(𝑃𝑘,𝑘𝑃𝑗,𝑘) = 𝜏(0) = 0.

We have now shown that

𝜏(𝑃𝑗,𝑘) = {
1 if 𝑗 = 𝑘,
0 if 𝑗 ≠ 𝑘.

For any 𝑇 ∈ ℒ(𝑉 ), it follows that

𝜏(𝑇 ) = 𝜏(∑
𝑛

𝑘=1
∑

𝑛

𝑗=1
ℳ(𝑇)𝑗,𝑘𝑃𝑗,𝑘) = ∑

𝑛

𝑘=1
∑

𝑛

𝑗=1
ℳ(𝑇)𝑗,𝑘𝜏(𝑃𝑗,𝑘) = ∑

𝑛

𝑘=1
ℳ(𝑇)𝑘,𝑘 = tr 𝑇 .
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Exercise 8.D.11. Suppose 𝑉  and 𝑊  are inner product spaces and 𝑇 ∈ ℒ(𝑉 , 𝑊). Prove
that if 𝑒1, …, 𝑒𝑛 is an orthonormal basis of 𝑉  and 𝑓1, …, 𝑓𝑚 is an orthonormal basis of 
𝑊 , then

tr(𝑇 ∗𝑇 ) = ∑
𝑛

𝑘=1
∑
𝑚

𝑗=1
|⟨𝑇 𝑒𝑘, 𝑓𝑗⟩|

2.

The numbers ⟨𝑇𝑒𝑘, 𝑓𝑗⟩ are the entries of the matrix of 𝑇  with respect to the orthonor-
mal bases 𝑒1, …, 𝑒𝑛 and 𝑓1, …, 𝑓𝑚. These numbers depend on the bases, but tr(𝑇 ∗𝑇 )
does not depend on a choice of bases. Thus this exercise shows that the sum of the
squares of the absolute values of the matrix entries does not depend on which ortho-
normal bases are used.

Solution. The matrix of 𝑇  with respect to 𝑒1, …, 𝑒𝑛 and 𝑓1, …, 𝑓𝑚 is

⎝
⎜⎜
⎜⎜
⎜⎜
⎛⟨𝑇𝑒1, 𝑓1⟩

⟨𝑇 𝑒1, 𝑓2⟩
⋮

⟨𝑇 𝑒1, 𝑓𝑚⟩

⟨𝑇 𝑒2, 𝑓1⟩
⟨𝑇 𝑒2, 𝑓2⟩

⋮
⟨𝑇 𝑒2, 𝑓𝑚⟩

⋯
⋯
⋱
⋯

⟨𝑇𝑒𝑛, 𝑓1⟩
⟨𝑇 𝑒𝑛, 𝑓2⟩

⋮
⟨𝑇 𝑒𝑛, 𝑓𝑚⟩⎠

⎟⎟
⎟⎟
⎟⎟
⎞

and thus by 7.9 the matrix of 𝑇 ∗ with respect to 𝑓1, …, 𝑓𝑚 and 𝑒1, …, 𝑒𝑛 is

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛⟨𝑇𝑒1, 𝑓1⟩

⟨𝑇 𝑒2, 𝑓1⟩
⋮

⟨𝑇 𝑒𝑛, 𝑓1⟩

⟨𝑇 𝑒1, 𝑓2⟩

⟨𝑇 𝑒2, 𝑓2⟩
⋮

⟨𝑇 𝑒𝑛, 𝑓2⟩

⋯

⋯
⋱
⋯

⟨𝑇𝑒1, 𝑓𝑚⟩

⟨𝑇 𝑒2, 𝑓𝑚⟩
⋮

⟨𝑇 𝑒𝑛, 𝑓𝑚⟩⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

.

It follows that the 𝑘th diagonal entry of the matrix of 𝑇 ∗𝑇  with respect to 𝑒1, …, 𝑒𝑛 is

∑
𝑚

𝑗=1
|⟨𝑇 𝑒𝑘, 𝑓𝑗⟩|

2,

from which we obtain the desired formula.
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Exercise 8.D.12. Suppose 𝑉  and 𝑊  are finite-dimensional inner product spaces.

(a) Prove that ⟨𝑆, 𝑇 ⟩ = tr(𝑇 ∗𝑆) defines an inner product on ℒ(𝑉 , 𝑊).

(b) Suppose 𝑒1, …, 𝑒𝑛 is an orthonormal basis of 𝑉  and 𝑓1, …, 𝑓𝑚 is an orthonormal
basis of 𝑊 . Show that the inner product on ℒ(𝑉 , 𝑊) from (a) is the same as the
standard inner product on 𝐅𝑚𝑛, where we identify each element of ℒ(𝑉 , 𝑊) with
its matrix (with respect to the bases just mentioned) and then with an element of
𝐅𝑚𝑛.

Caution: The norm of a linear map 𝑇 ∈ ℒ(𝑉 , 𝑊) as defined by 7.86 is not the same
as the norm that comes from the inner product in (a) above. Unless explicitly stated
otherwise, always assume that ‖𝑇 ‖ refers to the norm as defined by 7.86. The norm
that comes from the inner product in (a) is called the Frobenius norm or the Hilbert-
Schmidt norm.

Solution.

(a) We shall verify each property in definition 6.2.

Positivity. For any 𝑇 ∈ ℒ(𝑉 ), Exercise 8.D.11 shows that ⟨𝑇 , 𝑇 ⟩ = tr(𝑇 ∗𝑇 ) is non-
negative.

Definiteness. Certainly ⟨0, 0⟩ = 0. Suppose that 𝑇 ∈ ℒ(𝑉 ) is such that ⟨𝑇 , 𝑇 ⟩ = 0, i.e.
tr(𝑇 ∗𝑇 ) = 0. Since 𝑇 ∗𝑇  is a positive operator, Exercise 8.D.5 shows that 𝑇 ∗𝑇 = 0 and
Exercise 7.A.2 then gives us 𝑇 = 0.

Additivity/homogeneity in first slot. These properties follow from the linearity of
the trace (see 8.56).

Conjugate symmetry. Let 𝑆, 𝑇 ∈ ℒ(𝑉 ) be given and observe that

⟨𝑆, 𝑇 ⟩ = tr(𝑇 ∗𝑆) = tr((𝑆∗𝑇 )∗) = tr(𝑆∗𝑇 ) = ⟨𝑇 , 𝑆⟩,

where we have used Exercise 8.D.4 for the third equality.

(b) As we showed in Exercise 8.D.11, the matrix of 𝑇 ∗ with respect to 𝑓1, …, 𝑓𝑚 and 
𝑒1, …, 𝑒𝑛 is

⎝
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎛⟨𝑇𝑒1, 𝑓1⟩

⟨𝑇 𝑒2, 𝑓1⟩
⋮

⟨𝑇 𝑒𝑛, 𝑓1⟩

⟨𝑇 𝑒1, 𝑓2⟩

⟨𝑇 𝑒2, 𝑓2⟩
⋮

⟨𝑇 𝑒𝑛, 𝑓2⟩

⋯

⋯
⋱
⋯

⟨𝑇𝑒1, 𝑓𝑚⟩

⟨𝑇 𝑒2, 𝑓𝑚⟩
⋮

⟨𝑇 𝑒𝑛, 𝑓𝑚⟩⎠
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎞

.

The matrix of 𝑆 with respect to 𝑒1, …, 𝑒𝑛 and 𝑓1, …, 𝑓𝑚 is
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⎝
⎜⎜
⎜⎜
⎜⎜
⎛⟨𝑆𝑒1, 𝑓1⟩

⟨𝑆𝑒1, 𝑓2⟩
⋮

⟨𝑆𝑒1, 𝑓𝑚⟩

⟨𝑆𝑒2, 𝑓1⟩
⟨𝑆𝑒2, 𝑓2⟩

⋮
⟨𝑆𝑒2, 𝑓𝑚⟩

⋯
⋯
⋱
⋯

⟨𝑆𝑒𝑛, 𝑓1⟩
⟨𝑆𝑒𝑛, 𝑓2⟩

⋮
⟨𝑆𝑒𝑛, 𝑓𝑚⟩⎠

⎟⎟
⎟⎟
⎟⎟
⎞

.

It follows that the 𝑘th diagonal entry of the matrix of 𝑇 ∗𝑆 with respect to 𝑒1, …, 𝑒𝑛 is 
∑𝑚

𝑗=1⟨𝑆𝑒𝑘, 𝑓𝑗⟩⟨𝑇𝑒𝑘, 𝑓𝑗⟩, from which we obtain the desired formula

⟨𝑆, 𝑇 ⟩ = tr(𝑇 ∗𝑆) = ∑
𝑛

𝑘=1
∑
𝑚

𝑗=1
⟨𝑆𝑒𝑘, 𝑓𝑗⟩⟨𝑇𝑒𝑘, 𝑓𝑗⟩.

Exercise 8.D.13. Find 𝑆, 𝑇 ∈ ℒ(𝒫(𝐅)) such that 𝑆𝑇 − 𝑇𝑆 = 𝐼 .

Hint: Make an appropriate modification of the operators in Example 3.9.

This exercise shows that additional hypotheses are needed on 𝑆 and 𝑇  to extend 8.57
to the setting of infinite-dimensional vector spaces.

Solution. Let 𝑆 ∈ ℒ(𝒫(𝐅)) be the differentiation operator, i.e. 𝑆𝑝 = 𝑝′, and let
𝑇 ∈ ℒ(𝒫(𝐅)) be the multiplication by 𝑥 operator, i.e. (𝑇𝑝)(𝑥) = 𝑥𝑝(𝑥). Observe that

((𝑆𝑇 − 𝑇𝑆)𝑝)(𝑥) = [𝑝(𝑥) + 𝑥𝑝′(𝑥)] − 𝑥𝑝′(𝑥) = 𝑝(𝑥).

Thus 𝑆𝑇 − 𝑇𝑆 = 𝐼 .
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Chapter 9. Multilinear Algebra and Determi-
nants

9.A. Bilinear Forms and Quadratic Forms

Exercise 9.A.1. Prove that if 𝛽 is a bilinear form on 𝐅, then there exists 𝑐 ∈ 𝐅 such
that

𝛽(𝑥, 𝑦) = 𝑐𝑥𝑦

for all 𝑥, 𝑦 ∈ 𝐅.

Solution. Using the linearity of 𝛽 in each slot, we have

𝛽(𝑥, 𝑦) = 𝛽(𝑥 ⋅ 1, 𝑦 ⋅ 1) = 𝑥𝑦𝛽(1, 1)

for all 𝑥, 𝑦 ∈ 𝐅. Thus we can take 𝑐 = 𝛽(1, 1).

Exercise 9.A.2. Let 𝑛 = dim 𝑉 . Suppose 𝛽 is a bilinear form on 𝑉 . Prove that there
exist 𝜑1, …, 𝜑𝑛, 𝜏1, …, 𝜏𝑛 ∈ 𝑉 ′ such that

𝛽(𝑢, 𝑣) = 𝜑1(𝑢) ⋅ 𝜏1(𝑣) + ⋯ + 𝜑𝑛(𝑢) ⋅ 𝜏𝑛(𝑣)

for all 𝑢, 𝑣 ∈ 𝑉 .

This exercise shows that if 𝑛 = dim 𝑉 , then every bilinear form on 𝑉  is of the form
given by the last bullet point of Example 9.2.

Solution. Let 𝑒1, …, 𝑒𝑛 be a basis of 𝑉  and for 𝑗 ∈ {1, …, 𝑛} define 𝜑𝑗, 𝜏𝑗 ∈ 𝑉 ′ by

𝜑𝑗(∑
𝑛

𝑘=1
𝑎𝑘𝑒𝑘) = 𝑎𝑗 and 𝜏𝑗(∑

𝑛

𝑘=1
𝑏𝑘𝑒𝑘) = ∑

𝑛

𝑘=1
𝑏𝑘𝛽(𝑒𝑗, 𝑒𝑘).

For any 𝑢 = ∑𝑛
𝑘=1 𝑎𝑘𝑒𝑘, 𝑣 = ∑𝑛

𝑘=1 𝑏𝑘𝑒𝑘 ∈ 𝑉 , observe that

∑
𝑛

𝑗=1
𝜑𝑗(𝑢)𝜏𝑗(𝑣) = ∑

𝑛

𝑗=1
∑

𝑛

𝑘=1
𝑎𝑗𝑏𝑘𝛽(𝑒𝑗, 𝑒𝑘) = 𝛽(∑

𝑛

𝑗=1
𝑎𝑗𝑒𝑗, ∑

𝑛

𝑘=1
𝑏𝑘𝑒𝑘) = 𝛽(𝑢, 𝑣).

Thus 𝜑1, …, 𝜑𝑛, 𝜏1, …, 𝜏𝑛 are the desired linear functionals.

Exercise 9.A.3. Suppose 𝛽 : 𝑉 × 𝑉 → 𝐅 is a bilinear form on 𝑉  and also is a linear
functional on 𝑉 × 𝑉 . Prove that 𝛽 = 0.
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Solution. Let 𝑢, 𝑣 ∈ 𝑉  be given. On one hand, since 𝛽 is a linear functional on 𝑉 × 𝑉  we
must have 2𝛽(𝑢, 𝑣) = 𝛽(2𝑢, 2𝑣). On the other hand, since 𝛽 is a bilinear form on 𝑉  we must
have 2𝛽(𝑢, 𝑣) = 𝛽(𝑢, 2𝑣). Thus

0 = 𝛽(2𝑢, 2𝑣) − 𝛽(𝑢, 2𝑣) = 𝛽(𝑢, 0),

where we have used that 𝛽 ∈ (𝑉 × 𝑉 )′ for the last equality. Similarly, we can show that
𝛽(0, 𝑣) = 0. The linearity of 𝛽 as a map 𝑉 × 𝑉 → 𝐅 then implies that

0 = 𝛽(𝑢, 0) + 𝛽(0, 𝑣) = 𝛽(𝑢, 𝑣).

Thus 𝛽 = 0.

Exercise 9.A.4. Suppose 𝑉  is a real inner product space and 𝛽 is a bilinear form on 
𝑉 . Show that there exists a unique operator 𝑇 ∈ ℒ(𝑉 ) such that

𝛽(𝑢, 𝑣) = ⟨𝑢, 𝑇 𝑣⟩

for all 𝑢, 𝑣 ∈ 𝑉 .

This exercise states that if 𝑉  is a real inner product space, then every bilinear form on
𝑉  is of the form given by the third bullet point in 9.2.

Solution. Let 𝑒1, …, 𝑒𝑛 be an orthonormal basis of 𝑉  and define 𝑇 ∈ ℒ(𝑉 ) by

𝑇𝑒𝑘 = 𝛽(𝑒1, 𝑒𝑘)𝑒1 + ⋯ + 𝛽(𝑒𝑛, 𝑒𝑘)𝑒𝑛

for 𝑘 ∈ {1, …, 𝑛}. Observe that ⟨𝑒𝑗, 𝑇 𝑒𝑘⟩ = 𝛽(𝑒𝑗, 𝑒𝑘) for any 𝑗, 𝑘 ∈ {1, …, 𝑛}. It follows that,
for any 𝑢 = ∑𝑛

𝑘=1 𝑎𝑘𝑒𝑘, 𝑣 = ∑𝑛
𝑘=1 𝑏𝑘𝑒𝑘 ∈ 𝑉 ,

⟨𝑢, 𝑇 𝑣⟩ = ∑
𝑛

𝑗=1
∑

𝑛

𝑘=1
𝑎𝑗𝑏𝑘⟨𝑒𝑗, 𝑇 𝑒𝑘⟩ = ∑

𝑛

𝑗=1
∑

𝑛

𝑘=1
𝑎𝑗𝑏𝑘𝛽(𝑒𝑗, 𝑒𝑘) = 𝛽(𝑢, 𝑣).

Thus 𝑇  is the desired operator.

Exercise 9.A.5. Suppose 𝛽 is a bilinear form on a real inner product space 𝑉  and 𝑇
is the unique operator on 𝑉  such that 𝛽(𝑢, 𝑣) = ⟨𝑢, 𝑇 𝑣⟩ for all 𝑢, 𝑣 ∈ 𝑉  (see Exercise 4).
Show that 𝛽 is an inner product on 𝑉  if and only if 𝑇  is an invertible positive operator
on 𝑉 .

Solution. First suppose that 𝑇  is an invertible positive operator. To show that 𝛽 is an inner
product on 𝑉 , we must verify each property in definition 6.2.

Positivity/definiteness. 7.61 shows that 𝛽(𝑣, 𝑣) = ⟨𝑣, 𝑇 𝑣⟩ = ⟨𝑇𝑣, 𝑣⟩ > 0 for all non-zero
𝑣 ∈ 𝑉  and certainly 𝛽(0, 0) = 0.

Additivity/homogeneity in first slot/symmetry. These properties are immediate from
the corresponding properties of ⟨⋅, ⋅⟩.

Now suppose that 𝛽 is an inner product on 𝑉 . The symmetry of 𝛽 and ⟨⋅, ⋅⟩ gives us
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⟨𝑇𝑢, 𝑣⟩ = ⟨𝑣, 𝑇𝑢⟩ = 𝛽(𝑣, 𝑢) = 𝛽(𝑢, 𝑣) = ⟨𝑢, 𝑇 𝑣⟩.

Thus 𝑇  is self-adjoint. Now let 𝑣 ∈ 𝑉  be non-zero and observe that, by the positive-definite-
ness of 𝛽,

⟨𝑇 𝑣, 𝑣⟩ = ⟨𝑣, 𝑇 𝑣⟩ = 𝛽(𝑣, 𝑣) > 0.

7.61 allows us to conclude that 𝑇  is a positive invertible operator.

Exercise 9.A.6. Prove or give a counterexample: If 𝜌 is a symmetric bilinear form on
𝑉 , then

{𝑣 ∈ 𝑉 : 𝜌(𝑣, 𝑣) = 0}

is a subspace of 𝑉 .

Solution. This is false. Let 𝜌 be the symmetric bilinear form on 𝐅2 given by

𝜌((𝑥1, 𝑥2), (𝑦1, 𝑦2)) = 𝑥1𝑦1 − 𝑥2𝑦2.

Observe that

𝜌((1, 1), (1, 1)) = 𝜌((1, −1), (1, −1)) = 0 ≠ 𝜌((2, 0), (2, 0)).

Thus {𝑣 ∈ 𝑉 : 𝜌(𝑣, 𝑣) = 0} is not a subspace of 𝐅2.

Exercise 9.A.7. Explain why the proof of 9.13 (diagonalization of symmetric bilinear
form by an orthonormal basis on a real inner product space) fails if the hypothesis that
𝐅 = 𝐑 is dropped.

Solution. Define 𝐵 and 𝑇  as in the proof of 9.13. Note that a symmetric matrix with com-
plex entries need not equal its own conjugate transpose nor commute with its own conjugate
transpose, e.g.

𝐴 = (1
𝑖

𝑖
−1)

satisfies 𝐴t = 𝐴, 𝐴 ≠ 𝐴∗, and 𝐴𝐴∗ ≠ 𝐴∗𝐴. Thus we cannot necessarily claim that 𝑇  is self-
adjoint or normal and hence cannot necessarily apply the complex spectral theorem.

Exercise 9.A.8. Find formulas for dim 𝑉 (2)
sym and dim 𝑉 (2)

alt  in terms of dim 𝑉 .

Solution. Let 𝑒1, …, 𝑒𝑛 be a basis of 𝑉 . As 9.5 shows, the map 𝛽 ↦ ℳ(𝛽) is an isomorphism
of 𝑉 (2) onto 𝐅𝑛,𝑛. Furthermore, by 9.12, under this isomorphism the symmetric bilinear forms
in 𝑉 (2) correspond exactly to the symmetric matrices in 𝐅𝑛,𝑛. Thus to calculate dim 𝑉 (2)

sym

it will suffice to find the dimension of the subspace of 𝐅𝑛,𝑛 consisting of the symmetric
matrices; as we showed in Exercise 7.A.16 (b), this subspace has dimension 𝑛(𝑛 + 1)/2. It
now follows from 9.17 that

344 / 366



dim 𝑉 (2)
alt = dim 𝑉 (2) − dim 𝑉 (2)

sym = 𝑛2 −
𝑛(𝑛 + 1)

2
=

𝑛(𝑛 − 1)
2

.

Exercise 9.A.9. Suppose that 𝑛 is a positive integer and

𝑉 = {𝑝 ∈ 𝒫𝑛(𝐑) : 𝑝(0) = 𝑝(1)}.

Define 𝛼 : 𝑉 × 𝑉 → 𝐑 by

𝛼(𝑝, 𝑞) = ∫
1

0
𝑝𝑞′.

Show that 𝛼 is an alternating bilinear form on 𝑉 .

Solution. The bilinearity of 𝛼 follows from the linearity of differentiation and of integration.
For any 𝑝 ∈ 𝑉 , observe that

∫
1

0
𝑝𝑝′ = 1

2 ∫
1

0
(𝑝2)′ = 1

2[(𝑝(1))2 − (𝑝(0))2] = 0.

Thus 𝛼 is alternating.

Exercise 9.A.10. Suppose that 𝑛 is a positive integer and

𝑉 = {𝑝 ∈ 𝒫𝑛(𝐑) : 𝑝(0) = 𝑝(1) and 𝑝′(0) = 𝑝′(1)}.

Define 𝜌 : 𝑉 × 𝑉 → 𝐑 by

𝜌(𝑝, 𝑞) = ∫
1

0
𝑝𝑞″.

Show that 𝜌 is a symmetric bilinear form on 𝑉 .

Solution. The bilinearity of 𝜌 follows from the linearity of differentiation and of integration.
For any 𝑝, 𝑞 ∈ 𝑉 , observe that

∫
1

0
𝑝𝑞″ − 𝑞𝑝″ = ∫

1

0
[𝑝𝑞′]′ − [𝑞𝑝′]′ = [𝑝(1)𝑞′(1) − 𝑝(0)𝑞′(0)] − [𝑞(1)𝑝′(1) − 𝑞(0)𝑝′(0)] = 0.

Thus 𝜌 is symmetric.
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9.B. Alternating Multilinear Forms

Exercise 9.B.1. Suppose 𝑚 is a positive integer. Show that dim 𝑉 (𝑚) = (dim 𝑉 )𝑚.

Solution. Let 𝑒1, …, 𝑒𝑛 be a basis of 𝑉  and let 𝜑1, …, 𝜑𝑛 be the corresponding dual basis of
𝑉 ′, so that for any 𝑣 ∈ 𝑉  we have, by 3.114,

𝑣 = 𝜑1(𝑣)𝑒1 + ⋯ + 𝜑𝑛(𝑣)𝑒𝑛.

For each (𝑖1, …, 𝑖𝑚) ∈ {1, …, 𝑛}𝑚 define an 𝑚-linear form 𝛼𝑖1,…,𝑖𝑚
 by

𝛼𝑖1,…,𝑖𝑚
(𝑣1, …, 𝑣𝑚) = 𝜑𝑖1

(𝑣1) ⋯ 𝜑𝑖𝑚
(𝑣𝑚).

Let ℬ be the list of all such 𝛼𝑖1,…,𝑖𝑚
; we claim that ℬ is a basis of 𝑉 (𝑚). For any 𝛼 ∈ 𝑉 (𝑚),

observe that

𝛼(𝑣1, …, 𝑣𝑚) = 𝛼(∑
𝑛

𝑖1=1
𝜑𝑖1

(𝑣1)𝑒𝑖1
, …, ∑

𝑛

𝑖𝑚=1
𝜑𝑖𝑚

(𝑣𝑚)𝑒𝑖𝑚
)

= ∑
𝑛

𝑖1=1
⋯ ∑

𝑛

𝑖𝑚=1
𝛼(𝑒𝑖1

, …, 𝑒𝑖𝑚
) 𝜑𝑖1

(𝑣1) ⋯ 𝜑𝑖𝑚
(𝑣𝑚)

= ∑
𝑛

𝑖1=1
⋯ ∑

𝑛

𝑖𝑚=1
𝛼(𝑒𝑖1

, …, 𝑒𝑖𝑚
) 𝛼𝑖1,…,𝑖𝑚

(𝑣1, …, 𝑣𝑚).

Thus 𝛼 ∈ span ℬ and it follows that 𝑉 (𝑚) = span ℬ. Now suppose that a linear combination
of ℬ is zero:

∑
𝑛

𝑖1=1
⋯ ∑

𝑛

𝑖𝑚=1
𝑐𝑖1,…,𝑖𝑚

𝛼𝑖1,…,𝑖𝑚
(𝑣1, …, 𝑣𝑚) = 0 for all 𝑣1, …, 𝑣𝑚 ∈ 𝑉 .

For any (𝑘1, …, 𝑘𝑚) ∈ {1, …, 𝑛}𝑚, note that

𝛼𝑖1,…,𝑖𝑚
(𝑒𝑘1

, …, 𝑒𝑘𝑚
) = {1 if 𝑖1 = 𝑘1, …, 𝑖𝑚 = 𝑘𝑚,

0 otherwise.

Thus

0 = ∑
𝑛

𝑖1=1
⋯ ∑

𝑛

𝑖𝑚=1
𝑐𝑖1,…,𝑖𝑚

𝛼𝑖1,…,𝑖𝑚
(𝑒𝑘1

, …, 𝑒𝑘𝑚
) = 𝑐𝑘1,…,𝑘𝑚

.

Hence ℬ is linearly independent and it follows that ℬ is a basis of 𝑉 (𝑚), as claimed.

Now observe that ℬ is a list of length 𝑛𝑚, since the set {1, …, 𝑛}𝑚 contains 𝑛𝑚 elements.
Thus dim 𝑉 (𝑚) = 𝑛𝑚 = (dim 𝑉 )𝑚.
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Exercise 9.B.2. Suppose 𝑛 ≥ 3 and 𝛼 : 𝐅𝑛 × 𝐅𝑛 × 𝐅𝑛 → 𝐅 is defined by

𝛼((𝑥1, …, 𝑥𝑛), (𝑦1, …, 𝑦𝑛), (𝑧1, …, 𝑧𝑛))

= 𝑥1𝑦2𝑧3 − 𝑥2𝑦1𝑧3 − 𝑥3𝑦2𝑧1 − 𝑥1𝑦3𝑧2 + 𝑥3𝑦1𝑧2 + 𝑥2𝑦3𝑧1.

Show that 𝛼 is an alternating 3-linear form on 𝐅𝑛.

Solution. A straightforward calculation shows that 𝛼 is 3-linear. To see that 𝛼 is alternating,
let 𝑥 = (𝑥1, …, 𝑥𝑛), 𝑦 = (𝑦1, …, 𝑦𝑛), and 𝑧 = (𝑧1, …, 𝑧𝑛). Observe that

𝛼(𝑥, 𝑥, 𝑧) = 𝑥1𝑥2𝑧3 − 𝑥2𝑥1𝑧3 − 𝑥3𝑥2𝑧1 − 𝑥1𝑥3𝑧2 + 𝑥3𝑥1𝑧2 + 𝑥2𝑥3𝑧1 = 0.

We can similarly show that 𝛼(𝑥, 𝑦, 𝑥) = 𝛼(𝑥, 𝑦, 𝑦) = 0. Thus 𝛼 is alternating.

Exercise 9.B.3. Suppose 𝑚 is a positive integer and 𝛼 is an 𝑚-linear form on 𝑉  such
that 𝛼(𝑣1, …, 𝑣𝑚) = 0 whenever 𝑣1, …, 𝑣𝑚 is a list of vectors in 𝑉  with 𝑣𝑗 = 𝑣𝑗+1 for some
𝑗 ∈ {1, …, 𝑚 − 1}. Prove that 𝛼 is an alternating 𝑚-linear form on 𝑉 .

Solution. For any 𝑘 ∈ {1, …, 𝑚 − 1}, observe that

0 = 𝛼(𝑣1, …, 𝑣𝑘 + 𝑣𝑘+1, 𝑣𝑘 + 𝑣𝑘+1, …, 𝑣𝑚)

= 𝛼(𝑣1, …, 𝑣𝑘, 𝑣𝑘, …, 𝑣𝑚) + 𝛼(𝑣1, …, 𝑣𝑘+1, 𝑣𝑘+1, …, 𝑣𝑚)

+ 𝛼(𝑣1, …, 𝑣𝑘, 𝑣𝑘+1, …, 𝑣𝑚) + 𝛼(𝑣1, …, 𝑣𝑘+1, 𝑣𝑘, …, 𝑣𝑚)

= 𝛼(𝑣1, …, 𝑣𝑘, 𝑣𝑘+1, …, 𝑣𝑚) + 𝛼(𝑣1, …, 𝑣𝑘+1, 𝑣𝑘, …, 𝑣𝑚).

Thus swapping the vectors in any two consecutive slots of 𝛼(𝑣1, …, 𝑣𝑚) changes the value of
𝛼 by a factor of −1. Now suppose that 𝑣1, …, 𝑣𝑚 is a list of vectors in 𝑉  with 𝑣𝑗 = 𝑣𝑘 for some
1 ≤ 𝑗 < 𝑘 ≤ 𝑚. By performing consecutive swaps in the slots of 𝛼(𝑣1, …, 𝑣𝑚) if necessary,
which only changes the sign of 𝛼, we can ensure that 𝑣𝑘 appears directly after 𝑣𝑗:

𝛼(𝑣1, …, 𝑣𝑗, …, 𝑣𝑘, …, 𝑣𝑚) = ±𝛼(𝑣1, …, 𝑣𝑗, 𝑣𝑘, …, 𝑣𝑚) = 0.

Thus 𝛼 is alternating.

Exercise 9.B.4. Prove or give a counterexample: If 𝛼 ∈ 𝑉 (4)
alt , then

{(𝑣1, 𝑣2, 𝑣3, 𝑣4) ∈ 𝑉 4 : 𝛼(𝑣1, 𝑣2, 𝑣3, 𝑣4) = 0}

is a subspace of 𝑉 4.

Solution. This is false. For a counterexample, consider 𝑉 = 𝐑4. By 9.37 there exists a non-
zero alternating 4-linear form 𝛼 on 𝐑4. Let 𝑒1, 𝑒2, 𝑒3, 𝑒4 be the standard basis of 𝐑4 and
observe that 𝛼(𝑒1, 𝑒2, 0, 0) = 𝛼(0, 0, 𝑒3, 𝑒4) = 0. However, 𝛼(𝑒1, 𝑒2, 𝑒3, 𝑒4) ≠ 0 by 9.39.
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Exercise 9.B.5. Suppose 𝑚 is a positive integer and 𝛽 is an 𝑚-linear form on 𝑉 . Define
an 𝑚-linear form 𝛼 on 𝑉  by

𝛼(𝑣1, …, 𝑣𝑚) = ∑
(𝑗1,…,𝑗𝑚)∈ perm 𝑚

(sign(𝑗1, …, 𝑗𝑚))𝛽(𝑣𝑗1
, …, 𝑣𝑗𝑚

)

for 𝑣1, …, 𝑣𝑚 ∈ 𝑉 . Explain why 𝛼 ∈ 𝑉 (𝑚)
alt .

Solution. Suppose that 𝑣𝑘 = 𝑣ℓ for some 1 ≤ 𝑘 < ℓ ≤ 𝑚. We will show that

𝛼(𝑣1, …, 𝑣𝑘, …, 𝑣ℓ, …, 𝑣𝑚) = 0.

Let 𝐺 ⊆ perm 𝑚 consist of those permutations with 𝑘 and ℓ in the correct order and let
𝐻 = (perm 𝑚) ∖ 𝐺 consist of those permutations with 𝑘 and ℓ in reverse order. Notice that
the map Φ : 𝐺 → 𝐻 which swaps the position of 𝑘 and ℓ is a bĳection: it is its own inverse.
Thus each permutation in 𝐻 corresponds via Φ to exactly one permutation in 𝐺. Notice
further that sign(Φ(𝑗1, …, 𝑗𝑚)) = − sign(𝑗1, …, 𝑗𝑚) by 9.34 and, because 𝑣𝑘 = 𝑣ℓ,

𝛽(𝑣𝑗1
, …, 𝑣𝑗𝑚

) = 𝛽(𝑣𝑖1
, …, 𝑣𝑖𝑚

) where (𝑖1, …, 𝑖𝑚) = Φ(𝑗1, …, 𝑗𝑚).

To summarize, for each (𝑖1, …, 𝑖𝑚) ∈ 𝐻 we have (𝑖1, …, 𝑖𝑚) = Φ(𝑗1, …, 𝑗𝑚) for a unique 
(𝑗1, …, 𝑗𝑚) ∈ 𝐺 such that

sign(𝑖1, …, 𝑖𝑚) = − sign(𝑗1, …, 𝑗𝑚) and 𝛽(𝑣𝑖1
, …, 𝑣𝑖𝑚

) = 𝛽(𝑣𝑗1
, …, 𝑣𝑗𝑚

).

It follows that

∑
(𝑖1,…,𝑖𝑚)∈𝐻

(sign(𝑖1, …, 𝑖𝑚))𝛽(𝑣𝑖1
, …, 𝑣𝑖𝑚

) = − ∑
(𝑗1,…,𝑗𝑚)∈𝐺

sign(𝑗1, …, 𝑗𝑚)𝛽(𝑣𝑗1
, …, 𝑣𝑗𝑚

).

Thus

𝛼(𝑣1, …, 𝑣𝑚) = ∑
(𝑗1,…,𝑗𝑚)∈ perm 𝑚

(sign(𝑗1, …, 𝑗𝑚))𝛽(𝑣𝑗1
, …, 𝑣𝑗𝑚

)

= ∑
(𝑗1,…,𝑗𝑚)∈𝐺

sign(𝑗1, …, 𝑗𝑚)𝛽(𝑣𝑗1
, …, 𝑣𝑗𝑚

)

+ ∑
(𝑖1,…,𝑖𝑚)∈𝐻

(sign(𝑖1, …, 𝑖𝑚))𝛽(𝑣𝑖1
, …, 𝑣𝑖𝑚

)

= ∑
(𝑗1,…,𝑗𝑚)∈𝐺

sign(𝑗1, …, 𝑗𝑚)𝛽(𝑣𝑗1
, …, 𝑣𝑗𝑚

)

− ∑
(𝑗1,…,𝑗𝑚)∈𝐺

sign(𝑗1, …, 𝑗𝑚)𝛽(𝑣𝑗1
, …, 𝑣𝑗𝑚

)

= 0.
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Exercise 9.B.6. Suppose 𝑚 is a positive integer and 𝛽 is an 𝑚-linear form on 𝑉 . Define
an 𝑚-linear form 𝛼 on 𝑉  by

𝛼(𝑣1, …, 𝑣𝑚) = ∑
(𝑗1,…,𝑗𝑚)∈ perm 𝑚

𝛽(𝑣𝑗1
, …, 𝑣𝑗𝑚

)

for 𝑣1, …, 𝑣𝑚 ∈ 𝑉 . Explain why

𝛼(𝑣𝑘1
, …, 𝑣𝑘𝑚

) = 𝛼(𝑣1, …, 𝑣𝑚)

for all 𝑣1, …, 𝑣𝑚 ∈ 𝑉  and all (𝑘1, …, 𝑘𝑚) ∈ perm 𝑚.

Solution. The set of all permutations of (1, …, 𝑚) is exactly the same as the set of all per-
mutations of (𝑘1, …, 𝑘𝑚).

Exercise 9.B.7. Give an example of a nonzero alternating 2-linear form 𝛼 on 𝐑3 and
a linearly independent list 𝑣1, 𝑣2 ∈ 𝐑3 such that 𝛼(𝑣1, 𝑣2) = 0.

This exercise shows that 9.39 can fail if the hypothesis that 𝑛 = dim 𝑉  is deleted.

Solution. We can take

𝛼((𝑥1, 𝑥2, 𝑥3), (𝑦1, 𝑦2, 𝑦3)) = 𝑥1𝑦2 − 𝑥2𝑦1, 𝑣1 = (1, 0, 0), and 𝑣2 = (0, 0, 1).
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9.C. Determinants

Exercise 9.C.1. Prove or give a counterexample:

𝑆, 𝑇 ∈ ℒ(𝑉 ) ⇒ det(𝑆 + 𝑇) = det 𝑆 + det 𝑇 .

Solution. This is false. Let 𝑆, 𝑇 ∈ ℒ(𝐑2) be the operators whose matrices with respect to
the standard basis are

ℳ(𝑆) = (1
0

0
0) and ℳ(𝑇) = (0

0
0
1) ⇒ ℳ(𝑆 + 𝑇) = (1

0
0
1).

It follows from 9.48 and 9.53 that

det 𝑆 + det 𝑇 = 0 ≠ 1 = det(𝑆 + 𝑇).

Exercise 9.C.2. Suppose the first column of a square matrix 𝐴 consists of all zeros
except possibly the first entry 𝐴1,1. Let 𝐵 be the matrix obtained from 𝐴 by deleting
the first row and the first column of 𝐴. Show that det 𝐴 = 𝐴1,1 det 𝐵.

Solution 1. Suppose that 𝐴 is an 𝑛 × 𝑛 matrix; we may as well suppose that 𝑛 ≥ 2. Let 𝑇
be the operator on 𝐅𝑛 whose matrix with respect to the standard basis 𝑒1, …, 𝑒𝑛 is 𝐴t. Let
𝑈 = span(𝑒2, …, 𝑒𝑛) and notice that 𝑈  is invariant under 𝑇  since all entries of the first row of
𝐴t are zero, except possibly the first entry. Notice further that the matrix of 𝑇 |𝑈  with respect
to 𝑒2, …, 𝑒𝑛 is 𝐵t. Let 𝛼 be an alternating 𝑛-linear form on 𝐅𝑛 such that 𝛼(𝑒1, …, 𝑒𝑛) = 1;
see 9.37 for the existence of such an 𝛼. If we define 𝛽 by 𝛽(𝑣2, …, 𝑣𝑛) = 𝛼(𝑇𝑒1, 𝑣2, …, 𝑣𝑛),
then 𝛽 is an alternating (𝑛 − 1)-linear form on 𝑈 . Using 9.56(a), observe that

det 𝐴 = det 𝐴t = det 𝑇

= (det 𝑇 ) 𝛼(𝑒1, 𝑒2, …, 𝑒𝑛)

= 𝛼(𝑇𝑒1, 𝑇 𝑒2, …, 𝑇 𝑒𝑛)

= 𝛽(𝑇𝑒2, …, 𝑇 𝑒𝑛)

= (det 𝑇 |𝑈) 𝛽(𝑒2, …, 𝑒𝑛)

= (det 𝐵t) 𝛼(𝑇 𝑒1, 𝑒2, …, 𝑒𝑛)

= (det 𝐵) 𝛼(𝐴1,1𝑒1 + ⋯ + 𝐴1,𝑛𝑒𝑛, 𝑒2, …, 𝑒𝑛)

= 𝐴1,1(det 𝐵) 𝛼(𝑒1, …, 𝑒𝑛)

= 𝐴1,1 det 𝐵.

Solution 2. Suppose that 𝐴 is an 𝑛 × 𝑛 matrix; we may as well suppose that 𝑛 ≥ 2. Consider
the formula for det 𝐴 given by 9.46:
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det 𝐴 = ∑
(𝑗1,…,𝑗𝑛)∈ perm 𝑛

(sign(𝑗1, …, 𝑗𝑛))𝐴𝑗1,1 ⋯ 𝐴𝑗𝑛,𝑛.

By assumption we have 𝐴𝑗1,1 = 0 if 𝑗1 ≠ 1 and thus

det 𝐴 = 𝐴1,1 ∑
(1,𝑗2,…,𝑗𝑛)∈ perm 𝑛

(sign(1, 𝑗2, …, 𝑗𝑛))𝐴𝑗2,2 ⋯ 𝐴𝑗𝑛,𝑛.

For (1, 𝑗2, …, 𝑗𝑛) ∈ perm 𝑛 notice that 𝑗𝑘 ≥ 2 for each 𝑘 ∈ {2, …, 𝑛}. Thus if we define
𝑖𝑘 = 𝑗𝑘+1 − 1 for 𝑘 ∈ {1, …, 𝑛 − 1}, then (𝑖1, …, 𝑖𝑛−1) ∈ perm(𝑛 − 1). Observe that:

• the map sending (1, 𝑗2, …, 𝑗𝑛) ↦ (𝑖1, …, 𝑖𝑛−1) is a bĳection between the set of all permu-
tations (𝑗1, 𝑗2, …, 𝑗𝑛) ∈ perm 𝑛 satisfying 𝑗1 = 1 and perm(𝑛 − 1);

• 𝐵𝑖𝑘,𝑘 = 𝐴𝑗𝑘+1−1,𝑘+1 for each 𝑘 ∈ {1, …, 𝑛 − 1};

• sign(𝑖1, …, 𝑖𝑛−1) = sign(1, 𝑗2, …, 𝑗𝑛) since 1 is in its natural position in the permutation 
(1, 𝑗2, …, 𝑗𝑛) and 𝑖𝑘 < 𝑖ℓ if and only if 𝑗𝑘+1 < 𝑗ℓ+1.

It follows that

det 𝐴 = 𝐴1,1 ∑
(1,𝑗2,…,𝑗𝑛)∈ perm 𝑛

(sign(1, 𝑗2, …, 𝑗𝑛))𝐴𝑗2,2 ⋯ 𝐴𝑗𝑛,𝑛

= 𝐴1,1 ∑
(𝑖1,…,𝑖𝑛−1)∈ perm(𝑛−1)

(sign(𝑖1, …, 𝑖𝑛−1))𝐵𝑖1,1 ⋯ 𝐵𝑖𝑛−1,𝑛−1 = 𝐴1,1 det 𝐵.

Exercise 9.C.3. Suppose 𝑇 ∈ ℒ(𝑉 ) is nilpotent. Prove that det(𝐼 + 𝑇 ) = 1.

Solution. By 8.18 there is a basis 𝑒1, …, 𝑒𝑛 of 𝑉  such that the matrix of 𝑇  with respect
to 𝑒1, …, 𝑒𝑛 is upper-triangular with each diagonal entry equal to zero. It follows that the
matrix of 𝐼 + 𝑇  with respect to 𝑒1, …, 𝑒𝑛 is upper-triangular with each diagonal entry equal
to one. 9.48 and 9.53 allow us to conclude that det(𝐼 + 𝑇 ) = 1.

Exercise 9.C.4. Suppose 𝑆 ∈ ℒ(𝑉 ). Prove that 𝑆 is unitary if and only if

|det 𝑆| = ‖𝑆‖ = 1.

Solution. If 𝑆 is unitary then |det 𝑆| = 1 by 9.58 and ‖𝑆‖ = 1 since ‖𝑆𝑣‖ = ‖𝑣‖ for every 
𝑣 ∈ 𝑉 .

Conversely, suppose that |det 𝑆| = ‖𝑆‖ = 1. Let 𝑠1 ≥ ⋯ ≥ 𝑠𝑛 ≥ 0 be the singular values of 
𝑆, so that 𝑠1 = ‖𝑆‖ = 1. Observe that, by 9.60,

1 = |det 𝑆| = 𝑠1⋯ 𝑠𝑛.

It follows that 𝑠1 = ⋯ = 𝑠𝑛 = 1, otherwise the right-hand side of the equation above would
be strictly less than 1. Thus 𝑆 is unitary by 7.69.

351 / 366



Exercise 9.C.5. Suppose 𝐴 is a block upper-triangular matrix

𝐴 =
⎝
⎜⎜
⎛𝐴1

0
⋱

∗

𝐴𝑚⎠
⎟⎟
⎞,

where each 𝐴𝑘 along the diagonal is a square matrix. Prove that

det 𝐴 = (det 𝐴1) ⋯ (det 𝐴𝑚).

Solution. It will suffice to prove the case where 𝑚 = 2. A straightforward induction argu-
ment will then prove the general case. Suppose therefore that 𝐴 is a block upper-triangular
matrix of the form

𝐴 = (𝐵
0

𝐷
𝐶),

where 𝐵 is a 𝑘 × 𝑘 matrix and 𝐶 is an ℓ × ℓ matrix, so that 𝐴 is a (𝑘 + ℓ) × (𝑘 + ℓ) matrix
and 𝐷 is a 𝑘 × ℓ matrix. Let 𝑒1, …, 𝑒𝑘+ℓ be the standard basis of 𝐅𝑘+ℓ, let

𝑈 = span(𝑒1, …, 𝑒𝑘), 𝑊 = span(𝑒𝑘+1, …, 𝑒ℓ),

and let 𝑇 ∈ ℒ(𝑉 ) and 𝑆 ∈ ℒ(𝑊) be such that

ℳ(𝑇 , (𝑒1, …, 𝑒𝑘+ℓ)) = 𝐴 and ℳ(𝑆, (𝑒𝑘+1, …, 𝑒𝑘+ℓ)) = 𝐶.

Notice that 𝑈  is invariant under 𝑇  and ℳ(𝑇 |𝑈 , (𝑒1, …, 𝑒𝑘)) = 𝐵. Let 𝛼 be a (𝑘 + ℓ)-linear
form on 𝐅𝑘+ℓ satisfying 𝛼(𝑒1, …, 𝑒𝑘+ℓ) = 1; see 9.37 for the existence of such an 𝛼. If we
define 𝛽 : 𝑈 → 𝐅 and 𝛾 : 𝑊 → 𝐅 by

𝛽(𝑣1, …, 𝑣𝑘) = 𝛼(𝑣1, …, 𝑣𝑘, 𝑇 𝑒𝑘+1, …, 𝑇 𝑒𝑘+ℓ),

𝛾(𝑣𝑘+1, …, 𝑣𝑘+ℓ) = 𝛼(𝑒1, …, 𝑒𝑘, 𝑣𝑘+1, …, 𝑣𝑘+ℓ),

then 𝛽 is an alternating 𝑘-form on 𝑈  and 𝛾 is an alternating ℓ-form on 𝑊 . Now observe that

𝛼(𝑒1, …, 𝑒𝑘, 𝑇 𝑒𝑘+1, …, 𝑇 𝑒𝑘+ℓ) = 𝛼(𝑒1, …, 𝑒𝑘, ∑
𝑘

𝑖1=1
𝐷𝑖1,1𝑒𝑖1

+ ∑
ℓ

𝑖1=1
𝐶𝑖1,1𝑒𝑘+𝑖1

,

…, ∑
𝑘

𝑖ℓ=1
𝐷𝑖ℓ,ℓ𝑒𝑖ℓ

+ ∑
ℓ

𝑖ℓ=1
𝐶𝑖ℓ,ℓ𝑒𝑘+𝑖ℓ

)

= ∑
𝑘

𝑖1=1
⋯ ∑

𝑘

𝑖ℓ=1
𝐷𝑖1,1⋯𝐷𝑖ℓ,ℓ 𝛼(𝑒1, …, 𝑒𝑘, 𝑒𝑖1

, …, 𝑒𝑖ℓ
)

+ ∑
𝑘

𝑖1=1
⋯ ∑

𝑘

𝑖ℓ=1
𝐶𝑖1,1⋯ 𝐶𝑖ℓ,ℓ 𝛼(𝑒1, …, 𝑒𝑘, 𝑒𝑘+𝑖1

, …, 𝑒𝑘+𝑖ℓ
)

= ∑
𝑘

𝑖1=1
⋯ ∑

𝑘

𝑖ℓ=1
𝐶𝑖1,1⋯ 𝐶𝑖ℓ,ℓ 𝛼(𝑒1, …, 𝑒𝑘, 𝑒𝑘+𝑖1

, …, 𝑒𝑘+𝑖ℓ
);
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this last line holds since 𝛼(𝑒1, …, 𝑒𝑘, 𝑒𝑖1
, …, 𝑒𝑖ℓ

) = 0 for any (𝑖1, …, 𝑖ℓ) ∈ {1, …, 𝑘}ℓ (because 
𝛼 is alternating). It follows that

𝛼(𝑒1, …, 𝑒𝑘, 𝑇 𝑒𝑘+1, …, 𝑇 𝑒𝑘+ℓ) = ∑
𝑘

𝑖1=1
⋯ ∑

𝑘

𝑖ℓ=1
𝐶𝑖1,1⋯ 𝐶𝑖ℓ,ℓ 𝛼(𝑒1, …, 𝑒𝑘, 𝑒𝑘+𝑖1

, …, 𝑒𝑘+𝑖ℓ
)

= 𝛼(𝑒1, …, 𝑒𝑘, ∑
ℓ

𝑖1=1
𝐶𝑖1,1𝑒𝑘+𝑖1

, …, ∑
ℓ

𝑖ℓ=1
𝐶𝑖ℓ,ℓ𝑒𝑘+𝑖ℓ

)

= 𝛼(𝑒1, …, 𝑒𝑘, 𝑆𝑒𝑘+1, …, 𝑆𝑒𝑘+ℓ).

Now observe that

det 𝐴 = det 𝑇

= (det 𝑇 ) 𝛼(𝑒1, …, 𝑒𝑘, 𝑒𝑘+1, …, 𝑒𝑘+ℓ)

= 𝛼(𝑇𝑒1, …, 𝑇 𝑒𝑘, 𝑇 𝑒𝑘+1, …, 𝑇 𝑒𝑘+ℓ)

= 𝛽((𝑇 |𝑈)𝑒1, …, (𝑇 |𝑈)𝑒𝑘)

= (det(𝑇 |𝑈)) 𝛽(𝑒1, …, 𝑒𝑛)

= (det 𝐵) 𝛼(𝑒1, …, 𝑒𝑛, 𝑇 𝑒𝑘+1, …, 𝑇 𝑒𝑘+ℓ)

= (det 𝐵) 𝛼(𝑒1, …, 𝑒𝑘, 𝑆𝑒𝑘+1, …, 𝑆𝑒𝑘+ℓ)

= (det 𝐵) 𝛾(𝑆𝑒𝑘+1, …, 𝑆𝑒𝑘+ℓ)

= (det 𝐵)(det 𝑆)𝛾(𝑒𝑘+1, …, 𝑒𝑘+ℓ)

= (det 𝐵)(det 𝐶) 𝛼(𝑒1, …, 𝑒𝑘, 𝑒𝑘+1, …, 𝑒𝑘+ℓ)

= (det 𝐵)(det 𝐶).

Exercise 9.C.6. Suppose 𝐴 = ( 𝑣1 ⋯ 𝑣𝑛 ) is an 𝑛-by-𝑛 matrix, with 𝑣𝑘 denoting the
𝑘th column of 𝐴. Show that if (𝑚1, …, 𝑚𝑛) ∈ perm 𝑛, then

det( 𝑣𝑚1
⋯ 𝑣𝑚𝑛

) = (sign(𝑚1, …, 𝑚𝑛)) det 𝐴.

Solution. Swapping pairs of columns of ( 𝑣𝑚1
⋯ 𝑣𝑚𝑛

) multiplies the determinant by −1
(see 9.57(b)). If 𝑁  is the number of swaps required until the columns are in the correct order,
i.e. ( 𝑣1 ⋯ 𝑣𝑛 ), then sign(𝑚1, …, 𝑚𝑛) = (−1)𝑁 .
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Exercise 9.C.7. Suppose 𝑇 ∈ ℒ(𝑉 ) is invertible. Let 𝑝 denote the characteristic poly-
nomial of 𝑇  and let 𝑞 denote the characteristic polynomial of 𝑇 −1. Prove that

𝑞(𝑧) =
1

𝑝(0)
𝑧dim 𝑉 𝑝(

1
𝑧
)

for all nonzero 𝑧 ∈ 𝐅.

Solution. By definition we have 𝑝(𝑧) = det(𝑧𝐼 − 𝑇 ) and 𝑞(𝑧) = det(𝑧𝐼 − 𝑇 −1). Now observe
that

1
𝑝(0)

𝑧dim 𝑉 𝑝(
1
𝑧
) =

1
det(−𝑇 )

𝑧dim 𝑉 det(
1
𝑧
𝐼 − 𝑇)

= det(−𝑇 −1) det(𝐼 − 𝑧𝑇 )

= det(𝑧𝐼 − 𝑇 −1)

= 𝑞(𝑧),

where the second line holds by 9.50 and the third bullet point of 9.42 and the second line
holds by 9.49(a).

Exercise 9.C.8. Suppose 𝑇 ∈ ℒ(𝑉 ) is an operator with no eigenvalues (which implies
that 𝐅 = 𝐑). Prove that det 𝑇 > 0.

Solution. Since 𝑇  has no eigenvalues, it must be the case that 𝐅 = 𝐑 and 𝑛 ≔ dim 𝑉  is
even (by 5.34). Furthermore, the characteristic polynomial 𝑝 of 𝑇  must have no real roots.
Thus the factorization of 𝑝 over 𝐂 is of the form

𝑝(𝑧) = (𝑧 − 𝜆1)(𝑧 − 𝜆1) ⋯ (𝑧 − 𝜆𝑚)(𝑧 − 𝜆𝑚)

for some non-zero complex numbers 𝜆1, …, 𝜆𝑚 (see Chapter 4). It follows that the constant
term of 𝑝 is

𝜆1𝜆1 ⋯ 𝜆𝑚𝜆𝑚 = |𝜆1|
2⋯ |𝜆𝑚|2 > 0.

On the other hand, by 9.65, the constant term of 𝑝 equals (−1)𝑛(det 𝑇 ) = det 𝑇 . Thus 
det 𝑇 > 0.

Exercise 9.C.9. Suppose that 𝑉  is a real vector space of even dimension, 𝑇 ∈ ℒ(𝑉 ),
and det 𝑇 < 0. Prove that 𝑇  has at least two distinct eigenvalues.

Solution. We will prove the contrapositive, i.e. assuming that 𝑉  is a real vector space of
even dimension and 𝑇 ∈ ℒ(𝑉 ), we will prove that if 𝑇  has at most one distinct eigenvalue
then det 𝑇 ≥ 0. If 𝑇  has no eigenvalues then Exercise 9.C.8 shows that det 𝑇 > 0, so suppose
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that 𝑇  has exactly one eigenvalue 𝜆 and let dim 𝑉 = 2𝑛 for some positive integer 𝑛. It follows
that the characteristic polynomial 𝑝 of 𝑇  is given by 𝑝(𝑧) = (𝑧 − 𝜆)2𝑛. Now observe that

det 𝑇 = (−1)2𝑛 det 𝑇 = det(−𝑇 ) = 𝑝(0) = (−𝜆)2𝑛 ≥ 0.

Exercise 9.C.10. Suppose 𝑉  is a real vector space of odd dimension and 𝑇 ∈ ℒ(𝑉 ).
Without using the minimal polynomial, prove that 𝑇  has an eigenvalue.

This result was previously proved without using determinants or the characteristic
polynomial—see 5.34.

Solution. The characteristic polynomial 𝑝 of 𝑇  is a polynomial of odd degree with real
coefficients. It follows from Exercise 4.9 that 𝑝 has a real zero, i.e. 𝑇  has an eigenvalue.

Exercise 9.C.11. Prove or give a counterexample: If 𝐅 = 𝐑, 𝑇 ∈ ℒ(𝑉 ), and det 𝑇 > 0,
then 𝑇  has a square root.

If 𝐅 = 𝐂, 𝑇 ∈ ℒ(𝑉 ) and det 𝑇 ≠ 0, then 𝑇  has a square root (see 8.41).

Solution. This is false. For a counterexample, let 𝑇  be the operator on 𝐑2 whose matrix
with respect to the standard basis is

𝐴 = (−1
0

1
−1).

Thus det 𝑇 = det 𝐴 = 1 by 9.48. We claim that 𝑇  has no square root. It will suffice to show
that for any matrix

𝑀 = (𝑎
𝑐

𝑏
𝑑
) ∈ 𝐑2,2

we have 𝑀2 ≠ 𝐴. Indeed, observe that

𝑀2 = (
𝑎2 + 𝑏𝑐
𝑐(𝑎 + 𝑑)

𝑏(𝑎 + 𝑑)
𝑏𝑐 + 𝑑2.

)

Equating this to 𝐴, we must have 𝑐(𝑎 + 𝑑) = 0. If 𝑐 = 0 then 𝑎2 = −1, which cannot hold
for 𝑎 ∈ 𝐑, so it must be the case that 𝑎 = −𝑑. But now 𝑏(𝑎 + 𝑑) = 0 ≠ 1. Thus there does
not exist 𝑀 ∈ 𝐑2,2 satisfying 𝑀2 = 𝐴.

Exercise 9.C.12. Suppose 𝑆, 𝑇 ∈ ℒ(𝑉 ) and 𝑆 is invertible. Define 𝑝 : 𝐅 → 𝐅 by

𝑝(𝑧) = det(𝑧𝑆 − 𝑇).

Prove that 𝑝 is a polynomial of degree dim 𝑉  and that the coefficient of 𝑧dim 𝑉  in this
polynomial is det 𝑆.

Solution. Let 𝑛 = dim 𝑉  and observe that
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𝑝(𝑧) = det(𝑧𝑆 − 𝑇) = det(𝑆(𝑧𝐼 − 𝑆−1𝑇)) = (det 𝑆)(det(𝑧𝐼 − 𝑆−1𝑇)) = (det 𝑆)𝑞(𝑧),

where 𝑞 is the characteristic polynomial of 𝑆−1𝑇 . Since det 𝑆 ≠ 0 (because 𝑆 is invertible)
we see that 𝑝 is a polynomial of degree 𝑛. Furthermore, by 9.65, the coefficient of 𝑧𝑛 in the
polynomial 𝑝 is det 𝑆.

Exercise 9.C.13. Suppose 𝐅 = 𝐂, 𝑇 ∈ ℒ(𝑉 ), and 𝑛 = dim 𝑉 > 2. Let 𝜆1, …, 𝜆𝑛 denote
the eigenvalues of 𝑇 , with each eigenvalue included as many times as its multiplicity.

(a) Find a formula for the coefficient of 𝑧𝑛−2 in the characteristic polynomial of 𝑇  in
terms of 𝜆1, …, 𝜆𝑛.

(b) Find a formula for the coefficient of 𝑧 in the characteristic polynomial of 𝑇  in terms
of 𝜆1, …, 𝜆𝑛.

Solution.

(a) By 9.62, the characteristic polynomial 𝑝 of 𝑇  is given by

𝑝(𝑧) = (𝑧 − 𝜆1) ⋯ (𝑧 − 𝜆𝑛).

Multiplying 𝑝 out involves making a binary choice for each factor (either choose 𝑧 or
−𝜆𝑘), summing over all 2𝑛 choices, and collecting like powers. To find the coefficient of
𝑧𝑛−2, we should choose 𝑧 from 𝑛 − 2 of the factors; equivalently, we should choose −𝜆𝑘

from 2 of the factors. That is, for each choice of 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 we obtain a contribution
of (−𝜆𝑖)(−𝜆𝑗) = 𝜆𝑖𝜆𝑗 to the coefficient of 𝑧𝑛−2. Summing over all such choices, we see
that the coefficient of 𝑧𝑛−2 in 𝑝 is

∑
1≤𝑖<𝑗≤𝑛

𝜆𝑖𝜆𝑗.

(b) As in part (a), to find the coefficient of 𝑧 we should choose 𝑧 from exactly one of the
factors, which is equivalent to choosing −𝜆𝑘 from 𝑛 − 1 of the factors. In other words,
we should omit exactly one of the 𝜆𝑘’s, i.e. for each choice of 1 ≤ 𝑘 ≤ 𝑛 we obtain a
contribution of

(−𝜆1) ⋯ (−𝜆𝑘−1)(−𝜆𝑘+1) ⋯ (−𝜆𝑛) = (−1)𝑛−1(𝜆1 ⋯ 𝜆𝑘−1𝜆𝑘+1 ⋯ 𝜆𝑛)

to the coefficient of 𝑧. If we write 𝜆1 ⋯ 𝜆𝑘 ⋯ 𝜆𝑛 to mean the product of all the eigenval-
ues 𝜆1, …, 𝜆𝑛 except for 𝜆𝑘, then the coefficient of 𝑧 in 𝑝 is

(−1)𝑛−1 ∑
𝑛

𝑘=1
𝜆1 ⋯ 𝜆𝑘 ⋯ 𝜆𝑛.

Exercise 9.C.14. Suppose 𝑉  is an inner product space and 𝑇  is a positive operator on
𝑉 . Prove that

det
√

𝑇 =
√

det 𝑇 .
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Solution. By 7.38(c) there is an orthonormal basis 𝑒1, …, 𝑒𝑛 of 𝑉  with respect to which the
matrix of 𝑇  is of the form

⎝
⎜⎜
⎛𝜆1

⋮
0

⋯
⋱
⋯

0
⋮

𝜆𝑛⎠
⎟⎟
⎞

for some non-negative real numbers 𝜆1, …, 𝜆𝑛. It is then clear that the matrix of 
√

𝑇  with
respect to 𝑒1, …, 𝑒𝑛 is

⎝
⎜⎜
⎜⎜
⎛√𝜆1

⋮
0

⋯
⋱
⋯

0
⋮

√𝜆𝑛⎠
⎟⎟
⎟⎟
⎞

.

It follows from 9.48 that

det
√

𝑇 = √𝜆1 ⋯ √𝜆𝑛 = √𝜆1 ⋯ 𝜆𝑛 =
√

det 𝑇 .

Exercise 9.C.15. Suppose 𝑉  is an inner product space and 𝑇 ∈ ℒ(𝑉 ). Use the polar
decomposition to give a proof that

|det 𝑇 | = √det(𝑇 ∗𝑇 )

that is different from the proof given earlier (see 9.60).

Solution. By the polar decomposition (7.93) there exists a unitary operator 𝑆 ∈ ℒ(𝑉 ) such
that 𝑇 = 𝑆

√
𝑇 ∗𝑇 . Now observe that

|det 𝑇 | = |det(𝑆
√

𝑇 ∗𝑇)| = |(det 𝑆)(det(
√

𝑇 ∗𝑇))| = |det 𝑆||√det(𝑇 ∗𝑇 )| = √det(𝑇 ∗𝑇 ),

where the second equality follows from 9.49, the third equality follows from Exercise 9.C.14,
and the fourth equality follows from 9.58 and 9.59.

Exercise 9.C.16. Suppose 𝑇 ∈ ℒ(𝑉 ). Define 𝑔 : 𝐅 → 𝐅 by 𝑔(𝑥) = det(𝐼 + 𝑥𝑇 ). Show
that 𝑔′(0) = tr 𝑇 .

Look for a clean solution to this exercise, without using the explicit but complicated
formula for the determinant of a matrix.

Solution. Let 𝑛 = dim 𝑉  and let 𝑝 be the characteristic polynomial of −𝑇 . For 𝑥 ≠ 0, ob-
serve that

𝑔(𝑥) = det(𝐼 + 𝑥𝑇 ) = 𝑥𝑛 det( 1
𝑥𝐼 + 𝑇) = 𝑥𝑛𝑝( 1

𝑥) = 1 + (tr 𝑇 )𝑥 + ⋯ + (det 𝑇 )𝑥𝑛,

where we have used 9.65 for the last equality. Since 𝑔(0) = det 𝐼 = 1, we see that this formula
holds for all 𝑥 ∈ 𝐅. Thus 𝑔′(0) = tr 𝑇 .
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Exercise 9.C.17. Suppose 𝑎, 𝑏, 𝑐 are positive numbers. Find the volume of the ellipsoid

{(𝑥, 𝑦, 𝑧) ∈ 𝐑3 :
𝑥2

𝑎2 +
𝑦2

𝑏2 +
𝑧2

𝑐2 < 1}

by finding a set Ω ⊆ 𝐑3 whose volume you know and an operator 𝑇  on 𝐑3 such that
𝑇 (Ω) equals the ellipsoid above.

Solution. Let 𝑒1, 𝑒2, 𝑒3 be the standard orthonormal basis of 𝐑3, let Ω = {𝑣 ∈ 𝐑3 : ‖𝑣‖ < 1},
and define 𝑇 ∈ ℒ(𝐑3) by 𝑇𝑒1 = 𝑎𝑒1, 𝑇 𝑒2 = 𝑏𝑒2, and 𝑇𝑒3 = 𝑐𝑒3. Then as the proof of 7.99
shows,

𝑇 (Ω) = 𝐸(𝑎𝑒1, 𝑏𝑒2, 𝑐𝑒3) = {(𝑥, 𝑦, 𝑧) ∈ 𝐑3 :
𝑥2

𝑎2 +
𝑦2

𝑏2 +
𝑧2

𝑐2 < 1}.

Thus the volume of the ellipsoid in question is given by 9.61:

volume 𝑇 (Ω) = |det 𝑇 |(volume Ω) =
4𝑎𝑏𝑐𝜋

3
.

Exercise 9.C.18. Suppose that 𝐴 is an invertible square matrix. Prove that Hadamard’s
inequality (9.66) is an equality if and only if each column of 𝐴 is orthogonal to the
other columns.

Solution. Let 𝑣1, …, 𝑣𝑛 be the columns of 𝐴, let 𝑒1, …, 𝑒𝑛 be the result of applying the Gram-
Schmidt procedure to 𝑣1, …, 𝑣𝑛, and let 𝐴 = 𝑄𝑅 be the QR factorization (see 7.58) of 𝐴, i.e.
𝑄 is the unitary matrix whose columns are 𝑒1, …, 𝑒𝑛 and 𝑅 is the upper-triangular matrix
with positive diagonal entries whose (𝑗, 𝑘)th entry is 𝑅𝑗,𝑘 = ⟨𝑣𝑘, 𝑒𝑗⟩. By studying the Gram-
Schmidt procedure, we see that the columns of 𝐴 are orthogonal to each other if and only if
the list 𝑒1, …, 𝑒𝑛 is given by

𝑒1 =
𝑣1

‖𝑣1‖
, …, 𝑒𝑛 =

𝑣𝑛
‖𝑣𝑛‖

. (1)

Furthermore, the proof of Hadamard’s inequality (9.66) shows that the inequality is an
equality if and only if

𝑅1,1 ⋯ 𝑅𝑛,𝑛 = ‖𝑅⋅,1‖ ⋯ ‖𝑅⋅,𝑛‖. (2)

Suppose that the columns of 𝐴 are orthogonal to each other. It follows from (1) and the
definition of 𝑅 that 𝑅 is a diagonal matrix whose 𝑘th diagonal entry is ‖𝑣𝑘‖, from which it
follows that both sides of (2) are equal to ‖𝑣1‖ ⋯ ‖𝑣𝑛‖. Thus Hadamard’s inequality is an
equality.

Now suppose that Hadamard’s inequality is an equality, so that (2) holds. It follows that
each inequality 𝑅𝑘,𝑘 ≤ ‖𝑅⋅,𝑘‖ must be an equality, otherwise the left-hand side of (2) would
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be strictly less than the right-hand side. Thus each off-diagonal entry of 𝑅 must be zero, i.e.
⟨𝑣𝑘, 𝑒𝑗⟩ = 0 for 𝑗 ≠ 𝑘. It follows that at the 𝑘th stage of the Gram-Schmidt procedure we set
𝑒𝑘 = ‖𝑣𝑘‖−1𝑣𝑘, so that (1) holds. Thus the columns of 𝐴 are orthogonal to each other.

Exercise 9.C.19. Suppose 𝑉  is an inner product space, 𝑒1, …, 𝑒𝑛 is an orthonormal
basis of 𝑉 , and 𝑇 ∈ ℒ(𝑉 ) is a positive operator.

(a) Prove that det 𝑇 ≤ ∏𝑛
𝑘=1⟨𝑇 𝑒𝑘, 𝑒𝑘⟩.

(b) Prove that if 𝑇  is invertible, then the inequality in (a) is an equality if and only if
𝑒𝑘 is an eigenvector of 𝑇  for each 𝑘 = 1, …, 𝑛.

Solution.

(a) Let 𝐵 be the matrix of 
√

𝑇  with respect to 𝑒1, …, 𝑒𝑛 and suppose the columns of 𝐵
are 𝑣1, …, 𝑣𝑛, so that ‖𝑣𝑘‖ = ‖

√
𝑇𝑒𝑘‖ for each 𝑘 ∈ {1, …, 𝑛} (the norm on the left-hand

side is the usual norm on 𝐅𝑛 and the norm on the right-hand side is the norm on 𝑉 ).
Note that det 𝑇  and det

√
𝑇  are non-negative since 𝑇  and 

√
𝑇  are positive operators

(see 9.59). It follows from Hadamard’s inequality (9.66) that

det
√

𝑇 = det 𝐵 ≤ ∏
𝑛

𝑘=1
‖𝑣𝑘‖ = ∏

𝑛

𝑘=1
‖
√

𝑇𝑒𝑘‖ = ∏
𝑛

𝑘=1

√⟨𝑇𝑒𝑘, 𝑒𝑘⟩.

Thus

det 𝑇 = (
√

det 𝑇)
2

= (det
√

𝑇)
2

≤ ∏
𝑛

𝑘=1
⟨𝑇 𝑒𝑘, 𝑒𝑘⟩,

where we have used Exercise 9.C.14 for the second equality.

(b) Let 𝜆1, …, 𝜆𝑛 be the eigenvalues of 𝑇 ; since 𝑇  is a positive operator, these are also the
singular values of 𝑇  (once sorted into decreasing order; see Exercise 7.E.7). If each 𝑒𝑘

is an eigenvector of 𝑇  then, by 9.60, both sides of the inequality in (a) equal 𝜆1⋯ 𝜆𝑛.

Now suppose that the inequality in (a) is an equality. Since we only used Hadamard’s
inequality to derive the inequality in (a) and 𝑇  being invertible implies 

√
𝑇  is invertible,

Exercise 9.C.19 shows that the columns of 𝐵 (as defined in (a)) must be orthogonal to
each other. It follows that 𝐵∗𝐵 is a diagonal matrix, since its (𝑗, 𝑘)th entry is ⟨𝑣𝑗, 𝑣𝑘⟩.
Now observe that, by the self-adjointness of 

√
𝑇 ,

𝑇 = (
√

𝑇)
2

= (
√

𝑇)
∗
(
√

𝑇) ⇒ ℳ(𝑇 , (𝑒1, …, 𝑒𝑛)) = 𝐵∗𝐵.

Thus the matrix of 𝑇  with respect to 𝑒1, …, 𝑒𝑛 is diagonal, i.e. each 𝑒𝑘 is an eigenvector
of 𝑇 .
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Exercise 9.C.20. Suppose 𝐴 is an 𝑛-by-𝑛 matrix, and suppose 𝑐 is such that |𝐴𝑗,𝑘| ≤ 𝑐
for all 𝑗, 𝑘 ∈ {1, …, 𝑛}. Prove that

|det 𝐴| ≤ 𝑐𝑛𝑛𝑛/2.

The formula for the determinant of a matrix (9.46) shows that |det 𝐴| ≤ 𝑐𝑛𝑛!. However,
the estimate given by this exercise is much better. For example, if 𝑐 = 1 and 𝑛 = 100,
then 𝑐𝑛𝑛! ≈ 10158, but the estimate given by this exercise is the much smaller number
10100. If 𝑛 is an integer power of 2, then the inequality above is sharp and cannot be
improved.

Solution. Suppose the columns of 𝐴 are 𝑣1, …, 𝑣𝑛. For any 𝑘 ∈ {1, …, 𝑛}, observe that

‖𝑣𝑘‖2 = ∑
𝑛

𝑗=1
|𝐴𝑗,𝑘|2 ≤ 𝑐2𝑛 ⇒ ‖𝑣𝑘‖ ≤ 𝑐𝑛1/2.

It follows from this inequality and Hadamard’s inequality (9.66) that

|det 𝐴| ≤ ∏
𝑛

𝑘=1
‖𝑣𝑘‖ ≤ 𝑐𝑛𝑛𝑛/2.

Exercise 9.C.21. Suppose 𝑛 is a positive integer and 𝛿 : 𝐂𝑛,𝑛 → 𝐂 is a function such
that

𝛿(𝐴𝐵) = 𝛿(𝐴) ⋅ 𝛿(𝐵)

for all 𝐴, 𝐵 ∈ 𝐂𝑛,𝑛 and 𝛿(𝐴) equals the product of the diagonal entries of 𝐴 for each
diagonal matrix 𝐴 ∈ 𝐂𝑛,𝑛. Prove that

𝛿(𝐴) = det 𝐴

for all 𝐴 ∈ 𝐂𝑛,𝑛.

Recall that 𝐂𝑛,𝑛 denotes the set of 𝑛-by-𝑛 matrices with entries in 𝐂. This exercise
shows that the determinant is the unique function defined on square matrices that is
multiplicative and has the desired behavior on diagonal matrices. This result is anal-
ogous to Exercise 10 in Section 8D, which shows that the trace is uniquely determined
by its algebraic properties.

Solution. First suppose that 𝐴 is not invertible. It follows from Exercise 3.C.5 that there are
matrices 𝐵, 𝐶, and 𝐷 such that 𝐴 = 𝐵𝐷𝐶, where 𝐷 is diagonal with at least one diagonal
entry equal to zero. Thus 𝛿(𝐷) = 0 and hence

𝛿(𝐴) = 𝛿(𝐵)𝛿(𝐷)𝛿(𝐶) = 0 = det 𝐴,

where we have used 9.50 for the last equality.
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To prove that 𝛿(𝐴) = det 𝐴 for invertible 𝐴, let us first prove the following. For 𝑖, 𝑗 ∈ {1, …, 𝑛}
such that 𝑖 ≠ 𝑗 and 𝛼 ∈ 𝐂, let 𝐶𝑖,𝑗(𝛼) be the identity matrix except for an 𝛼 in the 𝑖th row
and 𝑗th column. For any 𝐴 ∈ 𝐂𝑛,𝑛, a calculation shows that 𝐴𝐶𝑖,𝑗(𝛼) is the matrix obtained
from 𝐴 by adding 𝛼 times column 𝑖 to column 𝑗. We claim that 𝛿(𝐶𝑖,𝑗(𝛼)) = 1. For ease of
notation, let 𝐶 = 𝐶𝑖,𝑗(𝛼). Note that 𝐶 is invertible (its inverse is 𝐶𝑖,𝑗(−𝛼)). Let 𝐵 be the
identity matrix except for 𝐵𝑗,𝑗 = 1

2  and let 𝐷 be the identity matrix except for 𝐷𝑗,𝑗 = 2. A
calculation shows that 𝐶 = 𝐵𝐶𝐷𝐶−1 and it follows that

𝛿(𝐶) = 𝛿(𝐵)𝛿(𝐶)𝛿(𝐷)𝛿(𝐶−1) = 1
2 ⋅ 𝛿(𝐶) ⋅ 2 ⋅ 𝛿(𝐶−1) = 𝛿(𝐶𝐶−1) = 𝛿(𝐼) = 1,

as claimed.

Now suppose that 𝐴 is invertible. By 5.47 and 3.84, there exists an invertible matrix 𝐵 and
an invertible upper-triangular matrix 𝑈  such that 𝐴 = 𝐵−1𝑈𝐵, from which it follows that

𝛿(𝐴) = 𝛿(𝐵−1)𝛿(𝑈)𝛿(𝐵) = 𝛿(𝑈)𝛿(𝐵−1𝐵) = 𝛿(𝑈)𝛿(𝐼) = 𝛿(𝑈).

Since det 𝐴 = det 𝑈  by 9.52, it will suffice to show that 𝛿(𝑈) = det 𝑈 . Suppose that the di-
agonal entries of 𝑈  are 𝜆1, …, 𝜆𝑛; note that each 𝜆𝑘 is non-zero since 𝑈  is invertible and that
det 𝑈 = 𝜆1⋯ 𝜆𝑛 by 9.48. For any matrix of the form 𝐶𝑖,𝑗(𝛼), observe that

𝛿(𝑈𝐶𝑖,𝑗(𝛼)) = 𝛿(𝑈)𝛿(𝐶𝑖,𝑗(𝛼)) = 𝛿(𝑈).

Given that 𝑈  is upper-triangular with non-zero diagonal entries, we can multiply 𝑈  on
the right by successive matrices of the form 𝐶𝑖,𝑗(𝛼) until we obtain a diagonal matrix 𝐷
with diagonal entries 𝜆1, …, 𝜆𝑛; as we just showed, this has no effect on the value of 𝛿, i.e.
𝛿(𝐷) = 𝛿(𝑈). Thus

𝛿(𝑈) = 𝛿(𝐷) = 𝜆1⋯ 𝜆𝑛 = det 𝑈,

as desired.
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9.D. Tensor Products

Exercise 9.D.1. Suppose 𝑣 ∈ 𝑉  and 𝑤 ∈ 𝑊 . Prove that 𝑣 ⊗ 𝑤 = 0 if and only if 𝑣 = 0
or 𝑤 = 0.

Solution. If 𝑣 = 0 then 𝜑(𝑣) = 0 for any 𝜑 ∈ 𝑉 ′ and if 𝑤 = 0 then 𝜏(𝑤) = 0 for any 𝜏 ∈ 𝑊 ′.
Thus if 𝑣 = 0 or 𝑤 = 0 then

(𝑣 ⊗ 𝑤)(𝜑, 𝜏) = 𝜑(𝑣)𝜏(𝑤) = 0

for any 𝜑 ∈ 𝑉 ′ and any 𝜏 ∈ 𝑊 ′. Hence 𝑣 ⊗ 𝑤 = 0.

If 𝑣 ≠ 0 and 𝑤 ≠ 0 then, by Exercise 3.F.3, there exist 𝜑 ∈ 𝑉 ′ and 𝜏 ∈ 𝑊 ′ such that
𝜑(𝑣) = 𝜏(𝑤) = 1. It follows that

(𝑣 ⊗ 𝑤)(𝜑, 𝜏) = 𝜑(𝑣)𝜏(𝑤) = 1.

Thus 𝑣 ⊗ 𝑤 ≠ 0.

Exercise 9.D.2. Give an example of six distinct vectors 𝑣1, 𝑣2, 𝑣3, 𝑤1, 𝑤2, 𝑤3 ∈ 𝐑3 such
that

𝑣1 ⊗ 𝑤1 + 𝑣2 ⊗ 𝑤2 + 𝑣3 ⊗ 𝑤3 = 0

but none of 𝑣1 ⊗ 𝑤1, 𝑣2 ⊗ 𝑤2, 𝑣3 ⊗ 𝑤3 is a scalar multiple of another element of this list.

Solution. Let

𝑣1 =
⎝
⎜⎛

1
1
1⎠
⎟⎞, 𝑣2 =

⎝
⎜⎛

−1
−1
−1⎠

⎟⎞, 𝑣3 =
⎝
⎜⎛

2
2
2⎠
⎟⎞, 𝑤1 =

⎝
⎜⎛

1
−1
0 ⎠

⎟⎞, 𝑤2 =
⎝
⎜⎛

1
0
1⎠
⎟⎞, 𝑤3 =

⎝
⎜⎜
⎜⎜
⎛0

1
2
1
2⎠
⎟⎟
⎟⎟
⎞

.

By identifying 𝑣𝑘 ⊗ 𝑤𝑘 with the matrix 𝑣𝑘𝑤t
𝑘 (see 9.76), we find that

𝑣1 ⊗ 𝑤1 =
⎝
⎜⎛

1
1
1

−1
−1
−1

0
0
0⎠
⎟⎞, 𝑣2 ⊗ 𝑤2 =

⎝
⎜⎛

−1
−1
−1

0
0
0

−1
−1
−1⎠

⎟⎞, 𝑣3 ⊗ 𝑤3 =
⎝
⎜⎛

0
0
0

1
1
1

1
1
1⎠
⎟⎞.

Since the sum of these three matrices is zero and none of them is a scalar multiple of another,
𝑣1 ⊗ 𝑤1, 𝑣2 ⊗ 𝑤2, 𝑣3 ⊗ 𝑤3 is the desired list.

Exercise 9.D.3. Suppose that 𝑣1, …, 𝑣𝑚 is a linearly independent list in 𝑉 . Suppose
also that 𝑤1, …, 𝑤𝑚 is a list in 𝑊  such that

𝑣1 ⊗ 𝑤1 + ⋯ + 𝑣𝑚 ⊗ 𝑤𝑚 = 0.

Prove that 𝑤1 = ⋯ = 𝑤𝑚 = 0.
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Solution. We will prove the contrapositive. Suppose that 𝑤𝑘 ≠ 0 for some 𝑘 ∈ {1, …, 𝑚}.
By Exercise 3.F.3 there exists some 𝜏 ∈ 𝑊 ′ such that 𝜏(𝑤𝑘) ≠ 0. As in the proof of 9.74, let
𝜑1, …, 𝜑𝑚 ∈ 𝑉 ′ be such that 𝜑𝑖(𝑣𝑗) = 1 if 𝑖 = 𝑗 and 𝜑𝑖(𝑣𝑗) = 0 otherwise. Now observe that

[𝑣1 ⊗ 𝑤1 + ⋯ + 𝑣𝑚 ⊗ 𝑤𝑚](𝜑𝑘, 𝜏) = 𝜑𝑘(𝑣1)𝜏(𝑤1)

+ ⋯ + 𝜑𝑘(𝑣𝑘)𝜏(𝑤𝑘) + ⋯ + 𝜑𝑘(𝑣𝑚)𝜏(𝑤𝑚) = 𝜏(𝑤𝑘) ≠ 0.

Thus 𝑣1 ⊗ 𝑤1 + ⋯ + 𝑣𝑚 ⊗ 𝑤𝑚 ≠ 0.

Exercise 9.D.4. Suppose dim 𝑉 > 1 and dim 𝑊 > 1. Prove that

{𝑣 ⊗ 𝑤 : (𝑣, 𝑤) ∈ 𝑉 × 𝑊}

is not a subspace of 𝑉 ⊗ 𝑊 .

This exercise implies that if dim 𝑉 > 1 and dim 𝑊 > 1, then

{𝑣 ⊗ 𝑤 : (𝑣, 𝑤) ∈ 𝑉 × 𝑊} ≠ 𝑉 ⊗ 𝑊.

Solution. Let 𝑒1, 𝑒2, …, 𝑒𝑚 be a basis of 𝑉  with dual basis 𝜑1, 𝜑2, …, 𝜑𝑚, and let 𝑓1, 𝑓2, …, 𝑓𝑛

be a basis of 𝑊  with dual basis 𝜏1, 𝜏2, …, 𝜏𝑛. Let

𝑈 = {𝑣 ⊗ 𝑤 : (𝑣, 𝑤) ∈ 𝑉 × 𝑊}.

Observe that

[𝑒1 ⊗ 𝑓1 + 𝑒2 ⊗ 𝑓2](𝜑𝑖, 𝜏𝑗) = {1 if 𝑖 = 𝑗 ∈ {1, 2},
0 otherwise.

For any 𝑣 = 𝑎1𝑒1 + 𝑎2𝑒2 + ⋯ + 𝑎𝑚𝑒𝑚 ∈ 𝑉  and any 𝑤 = 𝑏1𝑓1 + 𝑏2𝑓2 + ⋯ + 𝑏𝑛𝑓𝑛 ∈ 𝑊 , ob-
serve that (𝑣 ⊗ 𝑤)(𝜑𝑖, 𝜏𝑗) = 𝑎𝑖𝑏𝑗. Equating 𝑒1 ⊗ 𝑓1 + 𝑒2 ⊗ 𝑓2 = 𝑣 ⊗ 𝑤 then gives us the sys-
tem of equations

𝑎1𝑏1 = 𝑎2𝑏2 = 1 and 𝑎1𝑏2 = 𝑎2𝑏1 = 0,

which has no solution. Thus 𝑒1 ⊗ 𝑓1 + 𝑒2 ⊗ 𝑓2 ≠ 𝑣 ⊗ 𝑤 for any (𝑣, 𝑤) ∈ 𝑉 × 𝑊 , which shows
that 𝑈  is not closed under addition and hence is not a subspace of 𝑉 ⊗ 𝑊 .

Exercise 9.D.5. Suppose 𝑚 and 𝑛 are positive integers. For 𝑣 ∈ 𝐅𝑚 and 𝑤 ∈ 𝐅𝑛, iden-
tify 𝑣 ⊗ 𝑤 with an 𝑚-by-𝑛 matrix as in Example 9.76. With that identification, show
that the set

{𝑣 ⊗ 𝑤 : 𝑣 ∈ 𝐅𝑚 and 𝑤 ∈ 𝐅𝑛}

is the set of 𝑚-by-𝑛 matrices (with entries in 𝐅) that have rank at most one.

Solution. Thinking of 𝑣 and 𝑤 as column vectors, Example 9.76 shows that we can identify
𝑣 ⊗ 𝑤 with the 𝑚-by-𝑛 matrix 𝑣𝑤t. The desired result is now immediate from Exercise 3.C.16.
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Exercise 9.D.6. Suppose 𝑚 and 𝑛 are positive integers. Give a description, analogous
to Exercise 5, of the set of 𝑚-by-𝑛 matrices (with entries in 𝐅) that have rank at most
two.

Solution. Let 𝑀  be the collection of 𝑚-by-𝑛 matrices with entries in 𝐅 that have rank at
most two. We claim that 𝑀  can be identified with the set

{𝑢 ⊗ 𝑤 + 𝑣 ⊗ 𝑥 : 𝑢, 𝑣 ∈ 𝐅𝑚 and 𝑤, 𝑥 ∈ 𝐅𝑛}

by identifying 𝑢 ⊗ 𝑤 with 𝑢𝑤t (thinking of 𝑢 and 𝑤 as column vectors) as in example 9.76.
This amounts to showing that

𝑀 = {𝑢𝑤t + 𝑣𝑥t : 𝑢, 𝑣 ∈ 𝐅𝑚,1 and 𝑤, 𝑥 ∈ 𝐅𝑛,1}.

For 𝑢, 𝑣 ∈ 𝐅𝑚,1 and 𝑤, 𝑥 ∈ 𝐅𝑛,1, observe that 𝑢𝑤t + 𝑣𝑥t is the matrix whose 𝑘th column is
𝑤𝑘𝑢 + 𝑥𝑘𝑣, from which it is clear that the span of the columns of 𝑢𝑤t + 𝑣𝑥t is equal to the
span of 𝑢 and 𝑣. Thus 𝑢𝑤t + 𝑣𝑥t has rank at most two.

Exercise 9.D.7. Suppose dim 𝑉 > 2 and dim 𝑊 > 2. Prove that

{𝑣1 ⊗ 𝑤1 + 𝑣2 ⊗ 𝑤2 : 𝑣1, 𝑣2 ∈ 𝑉 and 𝑤1, 𝑤2 ∈ 𝑊} ≠ 𝑉 ⊗ 𝑊.

Solution. Suppose 𝑒1, …, 𝑒𝑚 is a basis of 𝑉  and 𝑓1, …, 𝑓𝑛 is a basis of 𝑊 , where 𝑚, 𝑛 ≥ 3.
By identifying an 𝑚-by-𝑛 matrix 𝐴 with the bilinear functional

∑
𝑛

𝑘=1
∑
𝑚

𝑗=1
𝐴𝑗,𝑘(𝑒𝑗 ⊗ 𝑓𝑘)

as in the proof of 9.74, we can identify 𝑉 ⊗ 𝑊  with 𝐅𝑚,𝑛. Under this identification the set

𝐸 ≔ {𝑣1 ⊗ 𝑤1 + 𝑣2 ⊗ 𝑤2 : 𝑣1, 𝑣2 ∈ 𝑉 and 𝑤1, 𝑤2 ∈ 𝑊}

corresponds to the set of 𝑚-by-𝑛 matrices that have rank at most two, as we showed in
Exercise 9.D.6. Given that 𝑚, 𝑛 ≥ 3, there exist matrices in 𝐅𝑚,𝑛 with rank strictly greater
than two. Thus 𝐸 ≠ 𝑉 ⊗ 𝑊 .

Exercise 9.D.8. Suppose 𝑣1, …, 𝑣𝑚 ∈ 𝑉  and 𝑤1, …, 𝑤𝑚 ∈ 𝑊  are such that

𝑣1 ⊗ 𝑤1 + ⋯ + 𝑣𝑚 ⊗ 𝑤𝑚 = 0.

Suppose that 𝑈  is a vector space and Γ : 𝑉 × 𝑊 → 𝑈  is a bilinear map. Show that

Γ(𝑣1, 𝑤1) + ⋯ + Γ(𝑣𝑚, 𝑤𝑚) = 0.

Solution. 9.79(a) shows that there exists a linear map Γ̂ : 𝑉 ⊗ 𝑊 → 𝑈  such that

Γ̂(𝑣 ⊗ 𝑤) = Γ(𝑣, 𝑤)

for all 𝑣 ∈ 𝑉  and all 𝑤 ∈ 𝑊 . It follows that
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Γ(𝑣1, 𝑤1) + ⋯ + Γ(𝑣𝑚, 𝑤𝑚) = Γ̂(𝑣1 ⊗ 𝑤1) + ⋯ + Γ̂(𝑣𝑚 ⊗ 𝑤𝑚)

= Γ̂(𝑣1 ⊗ 𝑤1 + ⋯ + 𝑣𝑚 ⊗ 𝑤𝑚) = Γ̂(0) = 0.

Exercise 9.D.9. Suppose 𝑆 ∈ ℒ(𝑉 ) and 𝑇 ∈ ℒ(𝑊). Prove that there exists a unique
operator on 𝑉 ⊗ 𝑊  that takes 𝑣 ⊗ 𝑤 to 𝑆𝑣 ⊗ 𝑇𝑤 for all 𝑣 ∈ 𝑉  and 𝑤 ∈ 𝑊 .

In an abuse of notation, the operator on 𝑉 ⊗ 𝑊  given by this exercise is often called 
𝑆 ⊗ 𝑇 .

Solution. Define a bilinear map Γ : 𝑉 × 𝑊 → 𝑉 ⊗ 𝑊  by Γ(𝑣, 𝑤) = 𝑆𝑣 ⊗ 𝑇𝑤. By 9.79, there
is a unique operator Γ̂ ∈ ℒ(𝑉 ⊗ 𝑊) such that

Γ̂(𝑣 ⊗ 𝑤) = Γ(𝑣, 𝑤) = 𝑆𝑣 ⊗ 𝑇𝑤.

Exercise 9.D.10. Suppose 𝑆 ∈ ℒ(𝑉 ) and 𝑇 ∈ ℒ(𝑊). Prove that 𝑆 ⊗ 𝑇  is an invertible
operator on 𝑉 ⊗ 𝑊  if and only if both 𝑆 and 𝑇  are invertible operators. Also, prove
that if both 𝑆 and 𝑇  are invertible operators, then (𝑆 ⊗ 𝑊)−1 = 𝑆−1 ⊗ 𝑇 −1, where we
are using the notation from the comment after Exercise 9.

Solution. If 𝑆 and 𝑇  are both invertible then

(𝑆−1 ⊗ 𝑇 −1)(𝑆 ⊗ 𝑊)(𝑣 ⊗ 𝑤) = (𝑆−1 ⊗ 𝑇 −1)(𝑆𝑣 ⊗ 𝑇𝑤) = 𝑆−1𝑆𝑣 ⊗ 𝑇 −1𝑇𝑤 = 𝑣 ⊗ 𝑤

for any (𝑣, 𝑤) ∈ 𝑉 × 𝑊 . Thus 𝑆 ⊗ 𝑊  is invertible and (𝑆 ⊗ 𝑊)−1 = 𝑆−1 ⊗ 𝑇 −1.

Now suppose that 𝑆 is not invertible (the case where 𝑇  is not invertible is handled similarly).
There exists a non-zero 𝑣 ∈ 𝑉  such that 𝑆𝑣 = 0. Let 𝑤 ∈ 𝑊  be non-zero (we may as well
assume 𝑊 ≠ 0) and note that 𝑣 ⊗ 𝑤 ≠ 0 by Exercise 9.D.1. Now observe that

(𝑆 ⊗ 𝑇)(𝑣 ⊗ 𝑤) = 𝑆𝑣 ⊗ 𝑇𝑤 = 0 ⊗ 𝑇𝑤 = 0.

Thus 𝑆 ⊗ 𝑇  is not invertible.

Exercise 9.D.11. Suppose 𝑉  and 𝑊  are inner product spaces. Prove that if 𝑆 ∈ ℒ(𝑉 )
and 𝑇 ∈ ℒ(𝑊), then (𝑆 ⊗ 𝑇)∗ = 𝑆∗ ⊗ 𝑇 ∗, where we are using the notation from the
comment after Exercise 9.

Solution. For any 𝑢, 𝑣 ∈ 𝑉  and any 𝑤, 𝑥 ∈ 𝑊 , observe that

⟨(𝑆 ⊗ 𝑇)(𝑣 ⊗ 𝑤), 𝑢 ⊗ 𝑥⟩ = ⟨𝑆𝑣 ⊗ 𝑇𝑤, 𝑢 ⊗ 𝑥⟩

= ⟨𝑆𝑣, 𝑢⟩⟨𝑇𝑤, 𝑥⟩

= ⟨𝑢, 𝑆∗𝑢⟩⟨𝑤, 𝑇 ∗𝑥⟩

= ⟨𝑣 ⊗ 𝑤, 𝑆∗𝑢 ⊗ 𝑇 ∗𝑥⟩

= ⟨𝑣 ⊗ 𝑤, (𝑆∗ ⊗ 𝑇 ∗)(𝑢 ⊗ 𝑥)⟩.

365 / 366



Thus (𝑆 ⊗ 𝑇)∗ = 𝑆∗ ⊗ 𝑇 ∗.

Exercise 9.D.12. Suppose that 𝑉1, …, 𝑉𝑚 are finite-dimensional inner product spaces.
Prove that there is a unique inner product on 𝑉1 ⊗ ⋯ ⊗ 𝑉𝑚 such that

⟨𝑣1 ⊗ ⋯ ⊗ 𝑣𝑚, 𝑢1 ⊗ ⋯ ⊗ 𝑢𝑚⟩ = ⟨𝑣1, 𝑢1⟩ ⋯ ⟨𝑣𝑚, 𝑢𝑚⟩

for all (𝑣1, …, 𝑣𝑚) and (𝑢1, …, 𝑢𝑚) in 𝑉1 × ⋯ × 𝑉𝑚.

Note that the equation above implies that

‖𝑣1 ⊗ ⋯ ⊗ 𝑣𝑚‖ = ‖𝑣1‖ × ⋯ × ‖𝑣𝑚‖

for all (𝑣1, …, 𝑣𝑚) ∈ 𝑉1 × ⋯ × 𝑉𝑚.

Solution. For each 𝑘 ∈ {1, …, 𝑚} let 𝑒𝑘
1, …, 𝑒𝑘

𝑛𝑘
 be an orthonormal basis of 𝑉𝑘. A very tedious

calculation shows that

⟨∑
𝑛1

𝑗1=1
⋯ ∑

𝑛𝑚

𝑗𝑚=1
𝑏𝑗1,…,𝑗𝑚

(𝑒1
𝑗1

⊗ ⋯ ⊗ 𝑒𝑚
𝑗𝑚

), ∑
𝑛1

𝑗1=1
⋯ ∑

𝑛𝑚

𝑗𝑚=1
𝑐𝑗1,…,𝑗𝑚

(𝑒1
𝑗1

⊗ ⋯ ⊗ 𝑒𝑚
𝑗𝑚

)⟩

∑
𝑛1

𝑗1=1
⋯ ∑

𝑛𝑚

𝑗𝑚=1
𝑏𝑗1,…,𝑗𝑚

𝑐𝑗1,…,𝑗𝑚

is the desired inner product.

Exercise 9.D.13. Suppose that 𝑉1, …, 𝑉𝑚 are finite-dimensional inner product spaces
and 𝑉1 ⊗ ⋯ ⊗ 𝑉𝑚 is made into an inner product space using the inner product from
Exercise 12. Suppose 𝑒𝑘

1, …, 𝑒𝑘
𝑛𝑘

 is an orthonormal basis of 𝑉𝑘 for each 𝑘 = 1, …, 𝑚. Show
that the list

{𝑒1
𝑗1

⊗ ⋯ ⊗ 𝑒𝑚
𝑗𝑚

}
𝑗1=1,…,𝑛1;⋯;𝑗𝑚=1,…,𝑛𝑚

is an orthonormal basis of 𝑉1 ⊗ ⋯ ⊗ 𝑉𝑚.

Solution. The list in question is a basis of 𝑉1 ⊗ ⋯ ⊗ 𝑉𝑚 by 9.90. To verify orthonormality,
suppose that 𝑖𝑘, 𝑗𝑘 ∈ {1, …, 𝑛𝑘} for each 𝑘 ∈ {1, …, 𝑚} and observe that

⟨𝑒1
𝑖1

⊗ ⋯ ⊗ 𝑒𝑚
𝑖𝑚

, 𝑒1
𝑗1

⊗ ⋯ ⊗ 𝑒𝑚
𝑗𝑚

⟩ = ⟨𝑒1
𝑖1

, 𝑒1
𝑗1

⟩ ⋯ ⟨𝑒𝑚
𝑖𝑚

, 𝑒𝑚
𝑗𝑚

⟩ = {1 if 𝑖1 = 𝑗1, …, 𝑖𝑚 = 𝑗𝑚,
0 otherwise.
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