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Chapter 1. Vector Spaces

1.A. R™ and C"

Exercise 1.A.1. Show that a + = 8+ « for all o, 8 € C.

Solution. If a = x 4+ yi and 8 = u + vi, then
a+f=(x+u)+@y+v)i=(u+z)+ w+y)i=06+aq,

where we have used the commutativity of addition in R.

Exercise 1.A.2. Show that (a«+ ) + A=a+ (8+ A) for all o, 8 € C.

Solution. If a = x 4+ yi, 8 = u 4+ vi, and A = s + i, then

(a+B)+A=((z+u)+y+v)i+ A= ((x+u) +35)+((y+v)+1t)i
=@+ u+s)+y+@w+t)i=a+ ((u+s)+w+t)i)=a+(B+N),

where we have used the associativity of addition in R.
Exercise 1.A.3. Show that (af)A = a(BA) for all a, 5, € C.

Solution. If o = x + yi, 8 = u + vi, and A\ = s + ti, then
(aB)X = [(zu — yv) + (zv + yu)i]\
= [(zu — yv)s — (zv + yu)t] + [(zu — yv)t + (zv + yu)s]i
= [(zu)s — (yv)s — (zv)t — (yu)t] + [(zw)t — (yv)t + (zv)s + (yu)s]i
= [z(us) — z(vt) —y(ut) —y(vs)] + [z(ut) + z(vs) + y(us) —y(vt)]i
= [z(us — vt) — y(ut +vs)] + [z(ut + vs) + y(us — vt)]i
= af(us — vt) + (ut + vs)i]
= a(BAr),

where we have used several algebraic properties of R.

Exercise 1.A.4. Show that A(a+ 8) = Aa+ Ag for all \,«, 5 € C.

Solution. If a = x + yi, 8 = u + vi, and A = s + ti, then
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Ma+8) = [s(z +u) —t(y +v)] + [s(y + v) + t(z + u)i]
= (sz + su —ty — tv) + (sy + sv + tx + tu)i
= [(sz — ty) + (sy + tz)i] + [(su — tv) + (sv + tu)i]
=l + A\B,

where we have used distributivity in R.

Exercise 1.A.5. Show that for every a € C, there exists a unique g € C such that
a+ B =0.

Solution. Suppose that a = = + yi. Let 8 = —x — yi and observe that
a+f=(x—z)+(y—y)i=0+0i=0.
To see that 8 is unique, suppose that 8’ also satisfies o + 8” = 0 and notice that
B=p=0=0+(a+p)=(a+h)+p =0+5 =0,

where we have used the associativity of addition in C (Exercise 1.A.2) and the commutativity
of addition in C (Exercise 1.A.1).

Exercise 1.A.6. Show that for every a € C with a # 0, there exists a unique § € C
such that af = 1.

Solution. Suppose that a = z 4 yi. Since a # 0, it must be the case that  and y are not

both zero, so that z? + y? # 0. Let 8 = xQL-i-yZ_wz—iJ-yQZ and observe that
2 4,2
. z Y . ¢ +y Yy — XY, .
af = (z+yt — 1| = 1=140:=1.
’8 ( y)(x2+y2 ~T2+y2 ) $2+y2 x2_|_y2

To see that 8 is unique, suppose 3’ also satisfies a3’ = 1 and notice that
B=p1=paf)=(aB)f =15" =45,
where we have used the associativity of multiplication in C (Exercise 1.A.3) and the com-
mutativity of multiplication in C (1.4).
Exercise 1.A.7. Show that

—1+/3i
2

is a cube root of 1 (meaning that its cube equals 1).

Solution. Let z = _1+T\/§i, so that 2z = —1 + v/3i. Observe that
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(22)? =422 = (—1+V3i) =1-2VBi—3=—2-2V3i
= (22)° = (42?)(22) = (-2 —2v3i) (-1 + V3i) =2 —2VBi + 2V3i + 6 = 8,

i.e. 822 = 8. It follows that 22 = 1.

Imaginary
2z a
Z3
: s
—1 1 Real
Z2 -t
Exercise 1.A.8. Find two distinct square roots of i.
Solution. Let z; = 1—\;; and z, = —z; (2; and z, are distinct since z; # 0) and observe that

222=(1+4)>=2 = 22=4i

. . , 2 , .
i.e. 2, is a square root of i. Furthermore, 22 = (—z;)” = 22 =i, so that z, is a square root

of 7 also.

Imaginary

_ 1 1 Real
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Exercise 1.A.9. Find z € R* such that
(4,-3,1,7) + 2z = (5,9,—6,8).

Solution. The unique solution is z = (%, 6, —g, %)

Exercise 1.A.10. Explain why there does not exist A € C such that

A2 — 33,5 + 44, —6 + 73) = (12 — 54,7 + 224, —32 — 95).

Solution. If there was such a A, then

12-50
231 v

AN2—-3i)=12—-5i = A=
However,
(3+2i)(—6+T7i) = —32+49i + —32 — 9i.

Exercise 1.A.11. Show that (z +y) + 2z =24 (y+ 2) for all z,y,2z € F".

Solution. If z = (x4, ...,2,,),y = (Y1, ---, ¥y, ), and z = (24, ..., 2,,), then

(.’L' + y) +z= (:I:l +y17 sy Ty +yn) +z= ((.’171 + yl) + FARREY) (mn +yn) + zn)
= (xl + (yl + zl)""’xn + (yn +zn)) =T+ (yl +z1""’yn +zn) =+ (y+z)7

where we have used the associativity of addition in F (we proved this for C in Exercise 1.A.2).
Exercise 1.A.12. Show that (ab)x = a(bz) for all z € F™ and all a,b € F.

Solution. If z = (z, ..., x,,), then
(ab)z = ((ab)xy, ..., (ab)zx,) = (a(bzy), ...,a(bzx,)) = a(bzy, ..., bz,) = a(bx),

where we have used the associativity of multiplication in F (we proved this for C in Exercise
1.A.3).

Exercise 1.A.13. Show that 1z = z for all x € F".

Solution. If z = (z, ..., x,,), then
le = (1zq, ..., 1z,) = (zq, ..., x,) = z,

where we have used that 1z, = z; for any z; € F.

Exercise 1.A.14. Show that A(z +y) = Az + Ay for all A € F and all z,y € F™.
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Solution. If z = (x4, ...

,x,) and y = (yq, ..., ¥, ), then
Mz 4+y) = Az + Y1, Ty + Yp)
=A@ +31), 0 M, +9,))
= (Azy + Ayy, -, Az, + AY,)
= (Azq, ..., AZ,) + (AYq, -y AY,,)
= A2,y Tpy) F ANY1y ooy Ypy)

= Az + Ay,

where we have used distributivity in F (we proved this for C in Exercise 1.A.4).

Exercise 1.A.15. Show that (a 4+ b)z = az + bx for all a,b € F and all z € F™.

Solution. If z = (x4, ...

,Z, ), then

axy,...,ax,) + (bxy,...,bx,)

=a(xy,...,z,) +b(zq,....,x,)

where we have used distributivity in F (we proved this for C in Exercise 1.A.4).
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1.B. Definition of Vector Space

Exercise 1.B.1. Show that —(—v) = v for every v € V.

Solution. Since v 4+ (—v) = 0 and the additive inverse of a vector is unique (1.27), it must
be the case that —(—v) = v.

Exercise 1.B.2. Suppose a € F,v € V, and av = 0. Prove that a =0 or v = 0.

Solution. It will suffice to show that if av =0 and a # 0, so that a=! exists, then v = 0.
Indeed,

aw=0 = allaw)=0 = (ala)v=0 = lv=0 = v=0.

Exercise 1.B.3. Suppose v, w € V. Explain why there exists a unique z € V such that

v+ 3z = w.

Solution. For v, w,z € V', notice that

(w—v).

Wl

v+3r=w & Jr=w—v & =

Exercise 1.B.4. The empty set is not a vector space. The empty set fails to satisfy

only one of the requirements listed in the definition of a vector space (1.20). Which one?
Solution. The empty set does not contain an additive identity.

Exercise 1.B.5. Show that in the definition of a vector space (1.20), the additive in-

verse condition can be replaced with the condition that
Ov=0forallveV.

Here the 0 on the left side is the number 0, and the 0 on the right side is the additive
identity of V.

The phrase a “condition can be replaced” in a definition means that the collection of
objects satisfying the definition is unchanged if the original condition is replaced with

the new condition.

Solution. If V satisfies all of the conditions in 1.20, then as shown in 1.30 we have Ov = 0
for all v € V. Suppose that V satisfies all of the conditions in 1.20, except we have replaced
the additive inverse condition with the condition that Ov = 0 for all v € V. We want to show
that for each v € V, there exists an element w € V such that v + w = 0. Indeed, for v € V,

let w = (—1)v and observe that
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v+w=1lv+ (—1)v=(1—1)v=0v=0.

Exercise 1.B.6. Let co and —oo denote two distinct objects, neither of which is in R.
Define an addition and scalar multiplication on R U {oco, —0co} as you could guess from

the notation. Specifically, the sum and product of two real numbers is as usual, and for
t € R define

—oo ift <0, 00 if t <0,
too=40 ift =0, t(—o0) =40 ift =0,
o0 if t >0, —oc0 ift >0,

and
t+00=00+1%=004+ 00 = 00,
b (~00) = (~00) + ¢ = (~00) + (~00) = —o0,
00 + (—00) = (—o0) + 00 = 0.

With these operations of addition and scalar multiplication, is R U {oco, —co} a vector

space over R? Explain.

Solution. This is not a vector space over R, since addition is not associative:

(1+00)+(—00) =00+ (—00)=0#1=1+0=1+ (00 + (—00)).

Exercise 1.B.7. Suppose S is a nonempty set. Let V¥ denote the set of functions from
S to V. Define a natural addition and scalar multiplication on V*°, and show that V*°

is a vector space with these definitions.

Solution. We define addition and scalar multiplication on V< as in 1.24, i.e. for f,g € V°
the sum f + g € V9 is the function

f+g: 8 — v
z = f(z)+g(z);

the addition f(x) + g(z) is vector addition in V. Similarly, for A € F and f € V¥, the prod-
uct \f € VS is the function

Af: 8 - V
z = Af(x);

the product Af(x) is scalar multiplication in V. We now show that V* with these definitions

satisfies each condition in definition 1.20.

Commutativity. Let f,g € V° and 2 € S be given. Observe that
(f+9)(x) = f(z) +g(x) = g(z) + f(z) = (9 + F)(2),
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where we have used the commutativity of addition in V for the second equality. It follows
that f+g=g+ f.

Associativity. Let f,g,h € VS and x € S be given. Observe that

(f+9) +h)(x) = (f +9)(x) + hz) = (f(z) + g(2)) + h(z)
= f(x) + (9() + h(z)) = f(z) + (9 + h)(x) = (f + (9 + h))(),

where we have used the associativity of addition in V for the third equality. It follows that
(f+g)+h=f+(g+h). Similarly, let f € VS and a,b € F be given. Observe that, for any
r €S,

((ab)f)(z) = (ab) f(z) = a(bf(x)) = a((bf)(z)) = (a(bf))(2),

where we have used the associativity of scalar multiplication in V for the second equality. It
follows that (ab)f = a(bf).

Additive identity. We claim that the additive identity in V* is the function 0: S — V
given by 0(z) = 0 for any x € S; the 0 on the right-hand side is the additive identity in V.
Indeed, for any f € V¥ and = € S we have

(f+0)(z) = f(z) + 0(z) = f(z) + 0 = f(2).
It follows that f+ 0= f.

Additive inverse. For f € V°, define g: S — V by g(z) = —f(z) for z € S, where —f(z)
is the additive inverse in V of f(z). We claim that g is the additive inverse of f. To see this,
let x € S be given and observe that

(f +9)(z) = f(z) + g(z) = fz) + (= f(z)) = 0= 0(z);
it follows that f 4+ g = 0.
Multiplicative identity. Let f € VS and = € S be given. Observe that
(1f)(z) = 1f(z) = f(=),
where we have used that 1v = v for any v € V. It follows that 1f = f.

Distributive properties. Let a € F and f,g € V° be given. Observe that, for any z € S,

(a(f +9))(z) = a(f + g)(z) = a((f(z) + g(x))
= af(z) +ag(z) = (af)(z) + (ag)(z) = (af + ag)(),

where we have used the first distributive property in V for the third equality. It follows that
a(f + g) = af + ag. Similarly, let a,b € F and f € V° be given. For any = € S, observe that

((a+0)f)(x) = (a+b)f(z) = af(z) + bf(x) = (af)(z) + (0f)(z) = (af + bf)(z),

where we have used the second distributive property in V for the second equality. It follows
that (a +b)f =af +bf.

We may conclude that V* is a vector space over F.
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Exercise 1.B.8. Suppose V is a real vector space.
o The complezxification of V, denoted by V-, equals V x V. An element of V- is an
ordered pair (u,v), where u,v € V, but we write this as u + iv.
o Addition on V( is defined by

(ug +ivy) + (ug + tvy) = (ug + us) + i(vy + vy)
for all uq,vy,uq,v5 € V.
o Complex scalar multiplication on Vi is defined by
(a + bi)(u + iv) = (au — bv) + i(av + bu)
for all a,b € R and all u,v e V.

Prove that with the definitions of addition and scalar multiplication as above, V- is a

complex vector space.

Think of V' as a subset of Vs by identifying uw € V with u + 0. The construction of
Vo from V' can then be thought of as generalizing the construction of C" from R™.

Solution. We need to verify each condition in definition 1.20. The algebraic manipulations
required to show that commutativity, associativity, and the first distributive property hold
for V- are essentially the same algebraic manipulations we performed in Exercise 1.A.1,
Exercise 1.A.2, Exercise 1.A.3, and Exercise 1.A.4, except instead of using the algebraic
properties of R, we use the algebraic properties of V' (i.e. the properties listed in 1.20); we

will avoid repeating ourselves and instead verify the remaining conditions.

Additive identity. We claim that the additive identity in Vg is 0440, where 0 is the
additive identity in V. Indeed, for any u 4 v € V- we have

(u+iv)+ (0+140) = (u+0) +i(v+0) = u + iv.

Additive inverse. We claim that the additive inverse of an element u 4 iv € Vo is the

element (—u) + i(—v), where —u is the additive inverse of u in V. Indeed,
(u+ ) + ((—u) +i(—v)) = (u+ (—u)) + i(v+ (—v)) = 0+ 0.
Multiplicative identity. For any u 4 iv € V5, we have
(14 0i)(u+iv) = (lu — 0v) + i(lv 4+ Ou) = u + iv.

Distributive properties. For the second distributive property, let a + bi, c 4+ di € C and
u+ v € Vi be given. Observe that

((a+bi)+ (c+di))(u+iv) = ((a+c) + (b + d)i)(u + iv)
=((a+c)u—(b+d)v) +i((a+c)v+ (b+d)u)

= (au + cu — bv — dv) + i(av + cv + bu + du)
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= ((au — bv) + i(av + bu)) + ((cu — dv) + i(cv + du))
= (a+bi)(u+ i) + (c + di)(u + iv),

where we have used the second distributive property for V for the third equality.
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1.C. Subspaces

Exercise 1.C.1. For each of the following subsets of F3, determine whether it is a

subspace of F3.

(a) {(z1,29,75) € F® : 2y + 22, + 325 = 0}
( ) € F3:zq + 2z, + 35 = 4}
(21, %o, 73) € F3 : 22525 = 0}
( )

3. —
L1, Tq,T3) € F° : 3y = 5z5}

Solution. Let U denote the set in each part of this question.

(a) This is a subspace of F3. Certainly the zero vector belongs to U. Suppose that
z = (x,2,,23),y = (Y1,Y2,¥3) € U and o € F and observe that

(T1 +41) + 2(z3 + y2) + 3(25 + y3) = (21 + 225 + 323) + (Y1 + 2y, +3y3) =0+ 0 =0,
azy + 2(azy) + 3(azxs) = a(zy + 224 + 325) = a0 = 0.
Thus x + y and ax also belong to U. It follows from 1.34 that U is a subspace of V.

(b) This is not a subspace of F3 because it does not contain the zero vector.

(c) This is not a subspace of F3 because it is not closed under addition: (1,1, 0) and (0,0, 1)
belong to U, but (1,1,0) 4+ (0,0,1) = (1,1,1) does not belong to U.

(d) This is a subspace of F2. Note that U = {(z,,z,,73) € F? : z; — bxy = 0}. Certainly
the zero vector belongs to U. Suppose that z = (z1,%4,23),y = (y1,¥s,¥3) € U and
a € F and observe that

(1 +y1) —5(xz3 +y3) = (2, —dz3) + (y; —dy3) =0+0=0,

ar, —5(azg) = a(zr; — bxs) = al = 0.

Thus x 4+ y and ax also belong to U. It follows from 1.34 that U is a subspace of V.
Exercise 1.C.2. Verify all assertions about subspaces in Example 1.35.

Solution.
(a) The assertion is that if b € F, then
U= {(z,25,23,3,) € F* 1 23 = 5z + b} = {(21, 25, 23,7,4) € F! : 35 — 54 = b}

is a subspace of F* if and only if b = 0. Indeed, if b # 0 then U is not a subspace of
F* because the zero vector does not belong to U, and if b = 0 then we may argue as in
Fxercise 1.C.1 (d) to see that U is a subspace of F*.

11 / 366



(b) The assertion is that the set of continuous real-valued functions on the interval [0, 1] is

a subspace of RI%1 je.
U={f:[0,1] = R, f continuous}

011, Certainly the zero function z - 0 on [0,1] is continuous and

is a subspace of R
hence belongs to U, and it is well-known from elementary real analysis that sums and
constant multiples of continuous functions are again continuous. It follows from 1.34

that U is a subspace of RI%1,

(c) The assertion is that the set of differentiable real-valued functions on R is a subspace
of RR ie.

U={f:R — R, f differentiable}

is a subspace of RR. Certainly the zero function z - 0 on R is differentiable and hence
belongs to U, and it is well-known from elementary real analysis that sums and constant
multiples of differentiable functions are again differentiable. It follows from 1.34 that

U is a subspace of R,

(d) The assertion is that the set U of differentiable real-valued functions f on the interval
(0,3) such that f’(2) = b is a subspace of R(%3) if and only if b = 0. If b # 0, then the
zero function = + 0 on (0, 3), which has derivative 0 # b at x = 2, does not belong to
U and thus U is not a subspace of R(®:3).

Suppose that b = 0 and note that the zero function now belongs to U. If f,g € U and
a € R, then

(f+9)(2)=f2)+g(2)=0+0=0 and (af)(2)=af'(2)=a0=0.
Thus f + g and aof belong to U. It follows from 1.34 that U is a subspace of R(®3).

(e) The assertion is that the set U of all sequences of complex numbers with limit 0 is a
subspace of C*°. Certainly the zero sequence (0,0, 0, ...) has limit 0 and hence belongs
to U. Suppose that z = (z,,)r; and y = (y,,),—; belong to U and « € C. Using basic
results about limits, observe that

lim (z,, +vy,) = lim z, + lim y, =04+0=0

n—oo

and lim (az,) =« lim z, = a0 =0.
n—oo n—oo

Thus z + y and oz belong to U. It follows from 1.34 that U is a subspace of C(0:3),

Exercise 1.C.3. Show that the set of differentiable real-valued functions f on the in-
terval (—4,4) such that f/(—1) = 3f(2) is a subspace of R4,

Solution. Let U be the set in question; it is straightforward to verify that the zero function
belongs to U. Suppose that f,g € U and a € R. Observe that

(f+9)(=1) = f/(=1) + ¢'(—1) = 3£(2) + 39(2) = 3(f(2) + 9(2)) = 3(f + 9)(2)
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and (af) (-1) = af’(~=1) = a(3f(2)) = 3(af(2)) = 3(af)(2).
Thus f + g and af belong to U. It follows from 1.34 that U is a subspace of R(-%4).

Exercise 1.C.4. Suppose b € R. Show that the set of continuous real-valued functions
f on the interval [0, 1] such that fol f = b is a subspace of RI% if and only if b = 0.

Solution. Let U be the set in question. If b # 0 then the zero function z - 0 on [0, 1], which

has integral 0 # b over [0, 1], does not belong to U and thus U is not a subspace of R[0:1]

Suppose that b = 0 and note that the zero function now belongs to U. If f,g € U and o € R,

then using basic properties of integration we have

/Ol(f+g)=/01f+/olg=0+0:o and /Ol(af):a/olf:a():().

Thus f + g and af belong to U. It follows from 1.34 that U is a subspace of RI[%1].
Exercise 1.C.5. Is R? a subspace of the complex vector space C2?

Solution. The question is whether the subset
R? = {(z,y) : 7,y € R} C {(z,w) : z,w € C} = C?

is a subspace, where we are taking complex scalars in C2. This is not a subspace because it
is not closed under scalar multiplication: (1,0) € R? but i(1,0) = (3,0) ¢ R2.

Exercise 1.C.6.
(a) Is {(a,b,c) € R®: a® = b3} a subspace of R3?
(b) Is {(a,b,c) € C?: a® = b3} a subspace of C3?

Solution.

(a) Let U be the set in question. For a,b € R we have a® = b? if and only if @ = b and thus

the set U can be expressed as
U ={(a,a,c) e R3:a,c € R}.
Certainly (0,0,0) € U. If (a,a,c), (z,z,y) € U and A € R, then observe that
(a,a,¢) + (z,z,y) = (a+z,a+z,c+y) €U and Aa,a,c)=(Aa, a,Ac) € U.
It follows from 1.34 that U is a subspace of R3.
(b) Let U be the set in question. Observe that

—1+V/3i 3_ —1—/3i 3_1
2 B 2 -
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It follows that u := (71+T‘/§”, 1, 0) and v := (flfT‘/gz, 1, O) belong to U. However,
u+v=(-1,2,0) ¢U.

Thus U is not a subspace of C? because it is not closed under addition.

Exercise 1.C.7. Prove or give a counterexample: If U is a nonempty subset of R? such
that U is closed under addition and under taking additive inverses (meaning —u € U

whenever u € U), then U is a subspace of R2.

Solution. For a counterexample, consider U = {(a,b) : a,b € Q} C R?, which satisfies the
required conditions since the sum of two rational numbers is a rational number and the ad-

ditive inverse of a rational number is a rational number. However, U is not a subspace of R?
because it is not closed under scalar multiplication: (1,0) € U but v/2(1,0) = (\/5, 0) ¢U.

Exercise 1.C.8. Give an example of a nonempty subset U of R? such that U is closed

under scalar multiplication, but U is not a subspace of R2.

Solution. Let U be the union of the z- and y-axes, i.e.
U={(z,0): 2 € R}U{(0,y) : y € R}.
It is straightforward to verify that U is closed under scalar multiplication. However, U is not

a subspace of R? because it is not closed under addition: (1,0) and (0,1) belong to U, but
(1,0) 4+ (0,1) = (1,1) does not.

Y
(1,1)

Exercise 1.C.9. A function f: R — R is called periodic if there exists a positive num-
ber p such that f(z) = f(x + p) for all x € R. Is the set of periodic functions from R
to R a subspace of RR? Explain.

Solution. Consider the periodic functions sin(z) and sin(\/§a:) and let
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f(x) = sin(x) + sin(\/ix).

We will show that f is not periodic.

sin(z)

—10 —5 0 ) 10

sin(ﬁx)

—10 -5 0 5 10

sin(x) + sin(ﬁx)

—2 . . . .
—10 -5 0 ) 10

Suppose there was a positive real number p such that f(z) = f(z + p) for all z € R, i.e.
sin(z) + sin(ﬂw) = sin(z + p) + sin(ﬁx + \/ﬁp) for all z € R. (1)
By differentiating this equation twice, we see that
sin(z) + 2 sin(\/§a:) = sin(z + p) + 2 sin(\/ia: + \/§p) for all x € R. (2)
Subtracting equation (1) from equation (2) gives us
Sin(\/in) = sin(\/iw + \/§p) for all x € R, (3)
which together with equation (1) implies that
sin(z) = sin(x + p) for all z € R. (4)

By taking z = 0 in equation (4) we see that 0 = sin(p), which is the case if and only if p = nx
for some positive integer n (p was assumed to be positive). Substituting this value of p and
x = 0 into equation (3) gives 0 = sin(n\/ﬁw), which is the case if and only if nv2r = mn
for some integer m, which must be positive since n is positive. It follows that v/2 = ™, con-
tradicting the irrationality of v/2.
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Thus f is not periodic and we may conclude that the set of periodic functions from R to R

is not a subspace of RR because it is not closed under addition.

Exercise 1.C.10. Suppose V; and V, are subspaces of V. Prove that the intersection
V, NV, is a subspace of V.

Solution. Because V; and V, are subspaces of V, we have 0 € V; and 0 € V, and thus
0 € V; NV,. Suppose u,v € V; NV, and A € F. Since u,v € V] and V] is a subspace of V', we
have v +v € V; and Au € V;. Similarly, u +v € V, and Au € V,. Thus u+v € V; NV, and
Au € Vi NV,. We may use 1.34 to conclude that V; NV, is a subspace of V.

Exercise 1.C.11. Prove that the intersection of every collection of subspaces of V' is a

subspace of V.

Solution. Let U be an arbitrary collection of subspaces of V. We will show that (U is
a subspace of V. The zero vector belongs to (U because each U € U is a subspace of V
and hence contains the zero vector. If u,v € U,A € F, and U € U, then u,v € U and thus
u+v €U and Au € U since U is a subspace of V. Because U € U was arbitrary, it follows
that w +v € (U and Au € [(U. We may use 1.34 to conclude that (U is a subspace of V.

Exercise 1.C.12. Prove that the union of two subspaces of V' is a subspace of V' if and

only if one of the subspaces is contained in the other.

Solution. Suppose that U and W are subspaces of V. We want to show that UUW is a
subspace of V if and only if U CW or W C U. If one of U or W is contained in the other
then either UUW =U or UUW = W in either case, U UW is then a subspace of V' by

assumption.

For the converse, it will suffice to show that if U UW is a subspace of V and U € W, then
W C U. Since U € W, there is some u € U such that u ¢ W. Let w € W be given and note
that, because U U W is a subspace of V and u,w € U U W, we must have u + w e UUW. It
cannot be the case that u 4+ w € W, since then v+ w —w = u € W, so it must be the case
that v +w € U. It follows that u + w —u = w € U and hence that W C U, as desired.

Exercise 1.C.13. Prove that the union of three subspaces of V' is a subspace of V if

and only if one of the subspaces contains the other two.

This exercise is surprisingly harder than Exercise 12, possibly because this exercise is

not true if we replace ¥ with a field containing only two elements.

Solution. Let U,, U,, and U; be subspaces of V. We want to show that U = U; UU, U U, is
a subspace of V' if and only if some U; contains the other two. If some U, contains the other

two, then U = U, is a subspace of V' by assumption.
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Suppose that U is a subspace of V. If any U, is contained in the union of the other two,
say U; C Uy UUs, then U = U, UU; and we may apply Exercise 1.C.12 to see that either
Uy CU; or Uz C U,; in either case, one U; contains the other two. Suppose therefore that
no U; is contained in the union of the other two. Seeking a contradiction, suppose further

that no U, contains the other two, so that
Uy € (U,UU3) and (U,UUs) LU

It follows that there exists some u € U; such that u ¢ U, UU; and some v € Uy, U Us such
that v ¢ U;. Let W = {v+ Au: A € F} C U and observe that no element of W belongs to
U,, for if v+ Au € U; then v+ Au — Au =v € U;—but v ¢ U;. Thus

Because W contains infinitely many elements, there must be some i € {2,3} such that U,
contains infinitely many elements of W. There then exist A\, u € F such that A # p and such
that v + Au and v + pu both belong to U,, which implies that (A — p)u € U, since Uj is a
subspace of V. This gives u € U, since A — u # 0, contradicting that u ¢ Uy, U Us. We may

conclude that some U f contains the other two.

Exercise 1.C.14. Suppose
U={(z,—=z,2z) e F¥:2€F} and W ={(z,z,2z) e F?:2 €F}.

Describe U + W using symbols, and also give a description of U + W that uses no

symbols.

Solution. We claim that U + W is the subspace
E={(z,y,2z) e F?: 2,y e F}.
To see this, let (z,—x,2x) € U and (y,y,2y) € W be given and notice that
(x,—z,2z) + (y,y,2y) = (. +y,—x + y,2(z +y)) € E.

Thus U + W C E. For the reverse inclusion, let (z,y,2z) € E be given and observe that

X — — X x + x +
(:U,y,2:v)=( 2y’y2 ,x—y)—l—( 2@/, Zy,x+y>€U+W.

Thus U + W = E, as claimed. In words, U + W is the subspace of F? consisting of those

vectors whose third coordinate is twice their first coordinate.
Exercise 1.C.15. Suppose U is a subspace of V. What is U + U?

Solution. For u+v € U + U we have u+ v € U since U is a subspace of V', and for u € U
we haveu=u+0€U+U. ThusU +U =U.
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Exercise 1.C.16. Is the operation of addition on the subspaces of V' commutative? In
other words, if U and W are subspaces of V,isU+W =W + U?

Solution. The operation is commutative, since addition of vectors in V is commuta-
tive. fu+weU+W,thenu4+w=w+ueW+U, sothat U+ W CW + U. Similarly,
W+UCU+W.

Exercise 1.C.17. Is the operation of addition on the subspaces of V associative? In

other words, if V;,V,, V5 are subspaces of V, is

WV +Vo)+ Vo=V, + (Vo +V3)?

Solution. The operation is associative, since addition of vectors in V is associative. If
(uy 4+ up) +uz € (Uy +Uy) + Us, then

(ug +ug) +ug =uy + (ug +ug) € Uy + (Uy + Us),

so that (U; + Uy) + Uy C Uy + (Uy + Us). Similarly, U, + (U, + Us) C (U, + U,) + Us.

Exercise 1.C.18. Does the operation of addition on the subspaces of V have an addi-

tive identity? Which subspaces have additive inverses?

Solution. The subspace {0} is the additive identity for the operation. If U is a subspace of
V then u 4+ 0 = u for any u € Uj; it follows that U + {0} = U.

Since {0} + {0} = {0}, the subspace {0} is its own additive inverse. We claim that no other
subspace of V' has an additive inverse, i.e. if U is a subspace of V with U # {0}, then
there does not exist a subspace W satisfying U + W = {0}. Indeed, simply observe that
U C U + W for any subspace W, so that U + W # {0}.

Exercise 1.C.19. Prove or give a counterexample: If V;,V,, U are subspaces of V such
that

Vi+U=V,+U,
then V; = V,,.

Solution. This is false. For a counterexample, consider the real vector space R and observe
that

{0}+R=R+R =R,

but {0} # R.
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Exercise 1.C.20. Suppose
U={(z,z,y,y) € F*: 2,y € F}.

Find a subspace W of F* such that F* =U @ W.

Solution. Let
W ={(0,a,0,b) € F*:a,b € F};
it is straightforward to verify that W is a subspace of F4. If v € U N W, then
veW = wv=(0,a,0,b) for some a,b € F,
veU = a=b=0 = v=0.
Thus U NW = {0} and it follows from 1.46 that the sum U + W is direct.
Let (vy,vy,v5,v,) € F* be given and observe that
(vq, V9, v3,0y) = (Vy,v1,03,03) + (0,09 —v1,0,v, —v3) €U D W.

Thus FA=Ue W.

Exercise 1.C.21. Suppose
U= {(a:,y,x—i—y,m—y,?x) = F5 : ZE,yEF}~

Find a subspace W of F% such that F° =U @ W.

Solution. Let

W ={(0,0,a,b,c) € F®: a,b,c € F};
it is straightforward to verify that W is a subspace of F°. If v € U N W, then

velU = v=(z,y,z+vy,x—y,2z) for some z,y € F,

veW = z=y=0 = v=0.
Thus UNW = {0} and it follows from 1.46 that the sum U + W is direct.
Let v = (v, vq,v3,04,05) € F® be given and observe that

(1, V2, V3, Uy, V5) = (v1, V3,01 + Vg, vy — Vg, 201)
+ (0,0,v3 — (vy +vy), vy — (V] —vy),v5 —20v,) €U G W.

Thus FP°=Ue W.
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Exercise 1.C.22. Suppose
U={(z,y,x+y,z—y,2z) €EF°: 2,y € F}.

Find three subspaces W;,W,, W, of F® mnone of which equals {0}, such that

FP=UoW, oW, W,.
Solution. Let

W, ={(0,0,a,0,0) e F°:a € F}, W, ={(0,0,0,b,0) € F°:b € F},
W5 ={(0,0,0,0,c) € F° : c € F};
it is straightforward to verify that W,, W,, and W, are subspaces of F?. Suppose that
u=(z,y,xc+y,z—y,2z) €U, wy, = (0,0,a,0,0) € Wy,
wy = (0,0,0,b,0) € W,, and wy=(0,0,0,0,c) € Wy
are such that u + w; + wy + w3 = 0. That is,
(z,y,z+y+a,z—y+b2x+c)=(0,0,0,0,0),

from which it follows that x =y =a = b = ¢ = 0. Thus the only way to express the zero
vector as a sum u + wy +wy +wg € U + W, + W, + Wy is to take u = w; = wy = w3 =0
and so it follows from 1.45 that the sum U 4+ W, 4+ W, 4+ W; is direct.

Let (vq,v9,v5,v,,vs) € F° be given and observe that
(v1, vy, Vg, 0y, V) = (Vq, Vg, V1 + Vg, V3 — Vg, 20;) + (0,0,v3 — (v; + v5),0,0)
+(0,0,0,v, — (v; —v5),0) 4+ (0,0,0,0,v5 —2v,) e U D W, & W, & Wj.
Thus Fo=U o W, & W, & Wj.

Exercise 1.C.23. Prove or give a counterexample: If V;, V,, U are subspaces of V' such
that

V=V,eU and V=V,®U,

Hint: When trying to discover whether a conjecture in linear algebra is true or false,

it is often useful to start by experimenting in F2.

Solution. This is false. For a counterexample, consider V = R?,
U={(z,00eR*:zeR}, V;={(0,9) eR?*:ycR}, V,={(y,y) €cR*:yeR}

It is straightforward to verify that U NV, =U NV, = {0}, so that U +V; and U + V, are
both direct sums (1.46), and that U @ V; = U @& V, = R%. However, V; # V, since (1,1) € V,
but (1,1) ¢ V;.
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Exercise 1.C.24. A function f: R — R is called even if

for all x € R. A function f: R — R is called odd if
f(=z) = —f(z)

for all z € R. Let V, denote the set of real-valued even functions on R and let V denote
the set of real-valued odd functions on R. Show that RR =V, @ V..

Solution. Suppose that f € V,NV,, so that f(xz) = —f(x) for all x € R. This implies that
f(z) =0forall z € R,ie. f=0.Thus V,NV, = {0} and it follows from 1.46 that the sum
V, +V, is direct. For f : R — R, define f,: R =+ R and f,: R =+ R by

f(@)+ f(=2) f@) = f(=2)

fola) = 52 !

and  f,(z) =

It is straightforward to verify that f, is an even function, f, is an odd function, and
f=f,+ f,- We may conclude that RR =V, @ V.
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Chapter 2. Finite-Dimensional Vector Spaces

2.A. Span and Linear Independence

Exercise 2.A.1. Find a list of four distinct vectors in F3 whose span equals

{(z,y,2) EF3: 2+ y+2z=0}.

Solution. Let W be the subspace in question and consider the list
vy = (1,0,—1), wvy=(0,1,—1), ws=(1,1,-2), v, =(1,—1,0).
We claim that span(vy,vy,vs,v,) = W. If ay, a4, a3,a, € F, then
a1v1 + ayvy + agvg + ayvy = (aq + ag + ay, 09 + a3 —ay, —a; —a, —2a5) € W
since (ay + ag +ay) + (ay + a5 —ay) + (—a; — ay — 2a3) = 0.

Thus span(vq, vy, vs,v,) € W. Now suppose that (z,y,z) € W and observe that z = —z — y.
It follows that

(xvyv Z) = (maya —T — y) = IV —I—yU2 € span(v1,02,03,v4).

Thus W C span(vy, vy, v3,v,) and we may conclude that span(v,, vy, v5,v,) = W, as claimed.

Exercise 2.A.2. Prove or give a counterexample: If v;, vy, v3,v, spans V, then the list

V1 — Vg, Vg — U3, Uz — Uy, Uy

also spans V.

Solution. This is true. Let v € V' be given. Since V' = span(v;, vy, v3,v,), there are scalars

aq,ay,as,a, such that v = a;v; + ayvy + agvg + a4v,. Observe that
a1 (vy —vg) + (ay + ag)(vy —v3) + (ay + ag + a3)(vs —vy) + (a1 + ag + ag +ay)v,
= a1V + AUy + agV3 + G4 V4 = V.
Thus v € span(v; — vy, V5 — Vg, V5 — vy, v,). It follows that

V = span(v; — vy, Vg — Vg, Vg — Uy, Uy)-

Exercise 2.A.3. Suppose vy, ...,v,, is a list of vectors in V. For k € {1,...,m}, let

m

Wy, = V1 + 0+ v

Show that span(vy,...,v,,) = span(wy, ..., w,,).
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Solution. For any scalars aq, ..., a,, € F, observe that
a1 + ay(vy +vy) + -+ a,, (v; + -+ 0,,)
=(a; + - +a,)v, + (ag + - +a,,)vy+ -+ a,,v,,.
It follows that span(w,...,w,,) C span(vy, ..., v,,). Similarly, for any scalars aq,...,a,, € F,
notice that
a1 + AUy + -+ @y Uy, = (a3 — ag)vy + (ay — ag)(vy + v3)
ot (A — @) (V1 o F Vg g) Fap (V) + oy,

Thus span(vy, ..., v,,) C span(wy, ..., w,,).

Exercise 2.A .4.

(a) Show that a list of length one in a vector space is linearly independent if and only

if the vector in the list is not 0.

(b) Show that a list of length two in a vector space is linearly independent if and only

if neither of the two vectors in the list is a scalar multiple of the other.

Solution.

(a) Suppose the list consists of the single vector v € V. If v # 0 and a € F is such that
av = 0, then Exercise 1.B.2 shows that we must have a = 0; it follows that the list v is
linearly independent. If v = 0 then simply observe that 1v = 0, demonstrating that the

list v is linearly dependent.

(b) Suppose that the list consists of the vectors u,v € V. If one of these vectors is a scalar
multiple of the other, say v = Au for some A € F, then observe that v — Au = 0. Because
the coefficient of v in this linear combination is non-zero, we see that the list u,v is

linearly dependent.

Conversely, suppose that the list u, v is linearly dependent, so that uv + Au = 0 with

at least one of the coefficients p, A non-zero, say u #+ 0; it follows that v = —%u.

Exercise 2.A.5. Find a number ¢ such that

(3,1,4),(2,-3,5),(5,9,t)

is not linearly independent in R3.

Solution. Let t = 2 and observe that
3(3,1,4) — 2(2,—3,5) — (5,9,2) = (0,0,0).

Exercise 2.A.6. Show that the list (2,3,1), (1,—1,2), (7,3, ¢) is linearly dependent in
F3 if and only if ¢ = 8.
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Solution. That the list is linearly dependent if ¢ = 8 was shown in the first bullet point of
(2.20). Conversely, suppose that the list is linearly dependent. Since (1,—1,2) is evidently
not a scalar multiple of (2,3, 1), the linear dependence lemma (2.19) implies that (7, 3, ¢) lies
in the span of (2,3,1) and (1,—1,2), i.e. there are scalars x and y such that

13(2,3, 1) + y(la _172) = (7,3,0).

Solving the equations 2x+y =7 and 3z —y =3 gives =2 and y =3, whence
c=x+ 2y =8.

Exercise 2.A.7.
(a) Show that if we think of C as a vector space over R, then the list 1 +1¢,1 — 1 is

linearly independent.

(b) Show that if we think of C as a vector space over C, then the list 1 +4,1 —13 is

linearly dependent.

Solution.
(a) Suppose that z and y are real numbers such that
z(l+i)+y(l—i)=(x+y)+(x—y)i=0.
Since a complex number is zero if and only if its real and imaginary parts are zero, we

must have
r+y=0andz—y=0 & z=y=0.
Thus the list 1 + 4,1 — ¢ is linearly independent.

(b) Observe that i(1 —i) =1+ 14, so that 1 + ¢ is a scalar multiple of 1 —i. It follows from
Exercise 2.A.4 (b) that the list 1 44,1 — i is linearly dependent.

Exercise 2.A.8. Suppose vy, vy, V3,9, is linearly independent in V. Prove that the list
Uy — Uz, Uy — U3, Ug — Uy, Uy

is also linearly independent.

Solution. Suppose that a, ay, as,a, are scalars such that
a1 (v — vg) + ag(vy — vg) + ag(vs — vy) + agvy =0
< ayv; + (ag — ay)vy + (a3 — ay)vs + (ay —ag)v, = 0.
Since the list vy, vq,v3, v, is linearly independent, we must have
A =Gy — Q) = Q3 — Ay = ay — a3 = 0,

which implies that a; = ay = a3 = a4 = 0. It follows that the list v; — vy, vy — v5,v53 — V4, V4

is linearly independent.
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Exercise 2.A.9. Prove or give a counterexample: If v;,v,, ...,v,, is a linearly indepen-

dent list of vectors in V', then

ov; — 4vy, Vg, Vs, ..., Uy,

is linearly independent.

Solution. Suppose that aq, a,, ..., a,, are scalars such that
aq (5v; — 4vy) + asvy + agvs + -+ a,,v, =0
& bayv; + (ag —4aq)vy + agvg + - + a,,v, =0.

Since the list v;, vy, ..., v,, is linearly independent, we must have

m

da, = ay —4a; = a3 =--=a,, =0,
which implies that a; = ay = a3 = --- = a,,, = 0. It follows that the list 5v; — 4v,, vy, v3, ..., v,,
is linearly independent.

Exercise 2.A.10. Prove or give a counterexample: If v;,v,,...,v,, is a linearly inde-

m

pendent list of vectors in V and A € F with A # 0, then Avy, Avy, ..., Av

independent.

m 1S linearly

Solution. Suppose that aq,a,, ..., a,, are scalars such that
a1 vy + agAvy + - +a,, Av,, = 0.
Since A # 0, we may multiply both sides of this equation by A~! to obtain the equation
ayv; + asvy + -+ a,, v, =0.

Since the list vy, vy, ...,v,, is linearly independent, this implies that a; = ay = - =a,, = 0.

It follows that the list Avy, Av,, ..., Av,, is linearly independent.

m

Exercise 2.A.11. Prove or give a counterexample: If vy, ...,v,, and wy, ..., w,, are lin-

m m

early independent lists of vectors in V/, then the list v; +wy,...,v,, +w,, is linearly

independent.

Solution. This is false. Consider R as a vector space over itself. We have two linearly inde-
pendent lists 1 and —1, but the list 1 + (—1) = 0 is linearly dependent.

Exercise 2.A.12. Suppose vy, ...,v,, is linearly independent in V and w € V. Prove

that if v; + w, ..., v,, + w is linearly dependent, then w € span(vy,...,v,,).

Solution. By the linear dependence lemma (2.19), there is a j € {1,2,...,m} such that
v;tweE spaun(v1 +w,...,v_; + w). If =1 then v; + w =0, i.e. w= —v;. It follows that

w € span(vy, ..., v,,).
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If j > 2, then there are scalars ay, ..., a;_; such that

where A =1 — (a; + -+ aj_l). Note that A must be non-zero: if this were not the case, then
v; would lie in the span of vy, ...,v,;_;, which cannot happen since the list vy, ..., v, is linearly

independent. It follows that

so that w € span(vy, ..., v,,).

Exercise 2.A.13. Suppose vy, ..., v,, is linearly independent in V and w € V. Show that

Uy eeey U,y W is linearly independent < w ¢ span(vy, ..., v,,).

Solution. If w € span(vy, ..., v,,) then the list vy, ..., v,,, w is linearly dependent by the third
bullet point of 2.18. Conversely, suppose that the list vq, ..., v,,,w is linearly dependent. By
the linear dependence lemma (2.19), one of the vectors in the list must be in the span of the
previous vectors. It cannot be the case that some v; belongs to Span(vl, - fuj_l) since this
would contradict the linear independence of the list vy, ...,v,,, so it must be the case that

w € span(vy, ..., v,,).

Exercise 2.A.14. Suppose vq, ...,v,, is a list of vectors in V. For k € {1,...,m}, let
Wy, = V1 + -+ v
Show that the list vy, ...,v is

linearly independent.

is linearly independent if and only if the list wq,...,w

m m

Solution. Let W = span(wy, ...,w,,); by Exercise 2.A.3 we also have W = span(vy, ..., v,,).
If the list wy, ..., w,, is linearly dependent, then using the linear dependence lemma (2.19) we
may remove some w; from the list wy, ..., w,, to obtain a spanning list for W of length m — 1.
It follows from 2.22 that the list vy, ...,v,,, which spans W, must be linearly dependent.
A similar argument shows that the list wy, ..., w,, must be linearly dependent if the list

V1, ..., U, is linearly dependent.

Exercise 2.A.15. Explain why there does not exist a list of six polynomials that is

linearly independent in P, (F).
Solution. As noted in the textbook, 2, (F) is spanned by the list 1, 2, 22, 23, 2, which has
length 5. It follows from 2.22 that any linearly independent list in P, (F) can have length at

most 5.

Exercise 2.A.16. Explain why no list of four polynomials spans 2, (F).
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Solution. As shown in (2.16) (b), the list 1, z, 22, 23, 24, which has length 5, is linearly in-
dependent in P, (F). It follows from 2.22 that any spanning list for 2, (F) must have length
at least 5.

Exercise 2.A.17. Prove that V is infinite-dimensional if and only if there is a sequence

V1, Vg, ... Of vectors in V such that vq,...,v,, is linearly independent for every positive

m

integer m.

Solution. First suppose that V is finite-dimensional, so that it is spanned by some list
Wy, ..., W,,, and let v, v,, ... be any sequence of vectors in V; by 2.22, the list vy, vy, ..., 0,44

must be linearly dependent.

Now suppose that V is infinite-dimensional, so that no list of vectors in V' is a spanning list.
Certainly V' # {0}, so pick any v; # 0 in V and note that the list v, is linearly independent.
Suppose that after m steps we have chosen a linearly independent list vy, ..., v,,. By assump-
tion V # span(vy,...,v,,), so pick any v,,,; ¢ span(v,...,v,,) and note that, by Exercise
2.A.13, the list vq,...,v

sequence of vectors vy, v, ... such that v,,...,v,, is linearly independent for each positive

msUma1 18 linearly independent. This process recursively defines a

integer m.
Exercise 2.A.18. Prove that F°° is infinite-dimensional.

Solution. Consider the sequence of vectors vy, vy, ..., where v; € F° is the sequence with a
1 in the 5 position and 0’s elsewhere. For each positive integer m, it is straightforward to
verify that the list vy, ..., v,, is linearly independent; it follows from Exercise 2.A.17 that F*

is infinite-dimensional.

Exercise 2.A.19. Prove that the real vector space of all continuous real-valued func-

tions on the interval [0, 1] is infinite-dimensional.

Solution. Consider the sequence of continuous functions f;, fs, ... on the interval [0, 1], where
fi(x) =1 for all z € [0,1] and, for j > 2,
1 ifo<z<?t

fj(x): o

0 if Z<z<l.
J

On the interval (%, ﬁ), take f; to be the line segment joining the points (%, 1) and (J%l, 0),

so that f; is a continuous function on [0, 1].
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0 % J_Ll 1
Let m be a positive integer and suppose we have real numbers a4, ..., a,, such that
a1 f1(z) + ag fo(@) + -+ + ap, fro(2) =0
for all x € [0,1]. Taking x = 1 gives us
a1 f1(1) +ax fo(1) + -+ ay, [, (1) = a; = 0.

Similarly, taking « = % gives us
asfy(3) + -+ @y fin(3) = a, = 0.

By continuing in this fashion, taking z = % for each je€ {1,2,..,m}, we see that
a; = ay = = a,, = 0. It follows that the list f,, fs,..., f,,, is linearly independent for each
positive integer m and thus by Exercise 2.A.17 the real vector space of all continuous real-

valued functions on the interval [0, 1] is infinite-dimensional.

Exercise 2.A.20. Suppose py, Py, ---, P, are polynomials in P, (F) such that p,(2) =0
for each k € {0, ...,m}. Prove that py,py, ..., D, is not linearly independent in 2, (F).

Solution. Since P, (F) is spanned by the list 1, z, ..., ™ of length m + 1, 2.22 implies that
the list pgy, Py, ..., Dy, & Of length m + 2 is linearly dependent. The linear dependence lemma
(2.19) implies that one of the vectors from this list belongs to the span of the previous

vectors. Notice that for any scalars ag, ...,a

m>

Tr = aOpO(x) + et a’mpm(w) fOI‘ all z € F = 2= a’0p0(2) + et a’mpm(2) = 07

which is a contradiction; it follows that = ¢ span(py, py, ---, P,,,) and thus there must be some
j €40, ...,m} such that p; € span(po,pl, ...,pj_l). The third bullet point of 2.18 then implies
that the list py, py, ..., p,,, is linearly dependent.
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2.B. Bases

Exercise 2.B.1. Find all vector spaces that have exactly one basis.

Solution. We will consider only finite-dimensional vector spaces over R or C.

First consider the trivial vector space {0}. There are two possible lists of vectors: the empty
list and the list 0. Since any list containing the zero vector is linearly dependent, the list 0
cannot be a basis of {0}. By definition the empty list is linearly independent and has span
{0}; it follows that the empty list is a basis of {0}. Thus the trivial vector space has exactly

one basis.

Now suppose that V' # {0}. By 2.31, V has a basis vy, ...,v,,. Since V # {0}, this basis is

not the empty list, so v; exists and is non-zero. It follows that B = 2v,, ..., 2v,, is distinct
from vy, ...,v,,. By Exercise 2.A.10, B is linearly independent. Furthermore, we claim that

is a basis, there are scalars aq, ..., a,, such

span B = V. Let v € V be given. Since vq,...,v

m

that v = »7%"; a,v;. This is equivalent to

it follows that v € span B and hence that span B =V, as claimed. Thus B is a basis of V,
distinct from the original basis v, ...,v,,. We may conclude that the trivial vector space is

the only vector space which has exactly one basis.
Exercise 2.B.2. Verify all assertions in Example 2.27.

Solution.

(a) The assertion is that the list B = (1,0,...,0),(0,1,0,...,0),...,(0,...,0,1) is a basis of

F™. Since any (z4, z,, ..., z,,) € F™ can be expressed as
z1(1,0,...,0) + 2,(0,1,0,...,0) + - + z,,(0, ..., 0, 1),
we see that span B = F". Setting the above expression equal to (0,0,0,...,0) immedi-

ately gives us z; = x5 = --- = x,, = 0, so that the list B is linearly independent. Thus
B is a basis of F".

(b) The assertion is that the list B = (1,2),(3,5) is a basis of F2. Since neither of these
vectors is a scalar multiple of the other, Fxercise 2.A.4 (b) shows that B is linearly
independent. If (a,b) € F?, then observe that

(—5a + 3b)(1,2) + (2a — b)(3,5) = (a, b).

Thus span B = V and we may conclude that B is a basis of F2.
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(c) The assertion is that the list B = (1,2, —4), (7, —5,6) is linearly independent in F3 but
is not a basis of F3 because it does not span F3. Since neither of these vectors is a
scalar multiple of the other, Exercise 2.A.4 (b) shows that B is linearly independent.
However, since the list (1,0,0),(0,1,0),(0,0,1) of length 3 is linearly independent in
F3 (see (a)), 2.22 implies that B cannot span F3.

(d) The assertion is that the list B = (1,2),(3,5), (4,13) spans F2 but is not a basis of
F2 because it is not linearly independent. Indeed, part (b) shows that B spans F2 and
that (4,13) lies in the span of (1,2) and (3,5), so that B is linearly dependent.

(e) The assertion is that the list B = (1,1,0),(0,0,1) is a basis of
U={(z,z,y) e F?: 2,y € F}.
Indeed, span B = U since z(1,1,0) + y(0,0,1) = (z, z,y) for any scalars z,y, and B is
linearly independent since (z,x,y) = (0,0, 0) forces x =y = 0.
(f) The assertion is that the list B = (1,—1,0), (1,0, —1) is a basis of
U={(z,y,2) EF3:z+y+2=0}
Observe that B is linearly independent since
z(1,-1,0) +y(1,0,—-1) = (z + y,—z,—y) = (0,0,0)
gives us x = y = 0, and B spans U by Exercise 2.A.1 (using the notation of that exer-
cise, we have B = v,,v;).

(g) The assertion is that the list B =1, z, ..., 2™ is a basis of P, (F'). The fact that span B =
P, (F) was noted on p. 31 of the textbook, and the linear independence of B was shown
in 2.16(b).

Exercise 2.B.3.
(a) Let U be the subspace of R5 defined by
U ={(z,%y,T3,24,75) € R® : z; = 3z, and z5 = Tz, }.
Find a basis of U.
(b) Extend the basis in (a) to a basis of RS.
(c) Find a subspace W of R® such that R> =U @ W.

Solution.
(a) Note that
U ={(Bxy,21,72y,24,73) E R® : 71,35, 25 € R}.
Let u; = (3,1,0,0,0),uy = (0,0,7,1,0),us = (0,0,0,0,1) and B = uq, uqy, us. Since

T1Uyp + ToUy + T3Ug = (3zy,xq, 7372,372,553)
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for scalars z;,x,, x5, we see that span B = U. Setting the above expression equal to
(0,0,0,0,0), it is immediate that z; = x4 = 5 = 0, so that B is linearly independent.
Thus B is a basis of U.

(b) Denote the j* standard basis vector of R® by e;. Following the procedure outlined in
2.30 and 2.32, we adjoin the five standard basis vectors to B to obtain the spanning list

Uy, Ug, Us, €1, €9, €3, €y, 5.
e e; does not belong to span(uy,uy,us), so we do not delete it.

o Note that e, = u; — 3ey, so we delete e, from the list.

o e5 does not belong to span(uy,u,y,us,e;), so we do not delete it.
« Note that e, = uy — 7e3, so we delete e, from the list.

e Since e5 = ug, we delete e5 from the list.

We are left with the list uq,uq,ug, €1, e5; as the proof of (2.32) shows, this must be a
basis of RS.

(c) As shown in the proof of (2.33), if we let
W = span(eq, e3) = {(24,0,23,0,0) € R® : z;, 25 € R},

then R°=U e W.

Exercise 2.B.4.
(a) Let U be the subspace of C° defined by
U = {(21, 29, 23, 24, 25) € C® : 62; = 2z, and z3 + 224 + 325 = 0}.
Find a basis of U.
(b) Extend the basis in (a) to a basis of C°.
(c) Find a subspace W of C5 such that C> =U @ W.

Solution.
(a) Note that
U = {(2y,621,—229 — 325, 29,23) € C° : 21, 25,23 € C}.
Let u; = (1,6,0,0,0),uy = (0,0,—2,1,0),u3 = (0,0,—3,0,1), and B = uq, uy, us. Since
21Uy + 29Uy + Z3Us = (21,621, —229 — 323, 29, 23)
for scalars zj, z,, 23, we see that span B = U. Setting the above expression equal to

(0,0,0,0,0), it is immediate that z; = z, = 23 = 0, so that B is linearly independent.
Thus B is a basis of U.

(b) Denote the jt* standard basis vector of C® by e;. Following the procedure outlined in

2.30 and 2.32, we adjoin the five standard basis vectors to B to obtain the spanning list
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Uy, Ug, U3, €1, €9, €3, €y, E5.
o e; does not belong to span(uy,uy,us), so we do not delete it.

o Note that e, = %(u1 — e;), so we delete e, from the list.

e e5 does not belong to span(u, uy, us, 1), so we do not delete it.
o Note that e, = uy + 2e3, so we delete e, from the list.

e Since e; = ug + 3e3, we delete e5 from the list.

We are left with the list u;,uy,us,€q,€3; as the proof of 2.32 shows, this must be a
basis of C3.

(c) As shown in the proof of (2.33), if we let
W = span(e;, e3) = {(21,0,25,0,0) € C° : z,,z5 € C},

then C® =Ua W.

Exercise 2.B.5. Suppose V is finite-dimensional and U, W are subspaces of V such
that V. = U + W. Prove that there exists a basis of V' consisting of vectors in U U W.

Solution. Let uq,...,u,, be a basis of U and let wy,...,w,, be a basis of W; these bases exist
by 2.25 and 2.31. Since

U = span(uq,...,u,,), W =span(wy,...,w,), and V =U+W,

we see that V' = span(ug, ..., u,,, wy, ..., w,,). Thus, using the procedure of 2.30, we can reduce

the list uq, ..., u,,,w;, ..., w,, to a basis of V' consisting of vectors in U U W.

Exercise 2.B.6. Prove or give a counterexample: If py, py, py, pg is a list in P4(F) such

that none of the polynomials pg, p;, ps, p3 has degree 2, then py, p;, ps, ps is not a basis
of P4(F).

3

Solution. For a counterexample, consider B = 1, z,x? + 23, 23; none of the polynomials in

this list has degree 2. Suppose ag, a;, a,, a3 are scalars such that
ag + a,x + a2(:1:2 + .T3) + a3a:3 =agt+a;r+ a2x2 + (aq + a3)a:3 =0

for all z € F. This implies that ay = a; = ay = ay + a3 =0 (we will prove this in 4.8),
which in turn gives a3 = 0. It follows that B is linearly independent. Now suppose that

p=ay+ a1z + ayx® + azz3 € P4(F) is given and observe that
ay + a T + ay (22 + 23) + (ag — ay)z® = p,

so that p € span B. It follows that P(F) = span B and hence that B is a basis of P4(F).
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Exercise 2.B.7. Suppose v;,v,,v5,v, is a basis of V. Prove that
Uy + Vg, Vg + U3, Uz + Uy, Uy

is also a basis of V.

Solution. Let B = v; 4 vy, v9 + v3,v3 + v4,v,. Suppose there are scalars aq, ay, as,a, such
that

a1 (vy + vg) + ag(vy + vs) + az(vs + vy) + ayvy
= ayv; + (a1 + ag)vy + (ag + ag)vs + (ag + ay)vy = 0.
Since vy, v4,v5,v, is a basis, this implies that
a;=ay+ay,=ay+a3=0a3+a,=0 = a =ay=0a3=a,=0.

Thus the list B is linearly independent. Let v € V' be given. Since v;, vy, v3,v, is a basis of

V', there are scalars aq, ay, a3, a, such that v = a,v; + ayvy + a3v5 + a,v,. Observe that
a1 (vy + vy) + (ag — ay)(vy + vs) + (ag — ag + ay)(vs + vy)
+ (a4 — CL3 + (12 — azl)'U4 = alvl + a2'U2 + (13’1]3 + a:4U4 = .

It follows that span B = V and hence that B is a basis of V.

Exercise 2.B.8. Prove or give a counterexample: If v, v,,v3,v, is a basis of V and U
is a subspace of V such that v;,v, € U and v3 ¢ U and v, ¢ U, then v;, v, is a basis of
U.

Solution. For a counterexample, consider V = R* and let e; be the j* standard basis vector
of R*. Tt is straightforward to verify that the list

Uy =€, Uy =€ Ug=e€z3t+€, V=€ t+€
is a basis of R*. Let U = span(ey, ey, e3) and note that v;,v, € U. Note further that, since
each vector (aq, aq,ag,a,) € U must satisfy a, = 0, we have vy, v, ¢ U. However, vy, v, is not

a basis for U: since ey, e5, e5 is linearly independent, any spanning list for U must contain

at least three vectors.
Exercise 2.B.9. Suppose vy, ..., v,, is a list of vectors in V. For k € {1, ..., m}, let
Wy, = V1 + 0+ U

Show that vy, ...,v,, is a basis of V' if and only if w,, ..., w,, is a basis of V.

m

Solution. This is immediate from Exercise 2.A.3 and Exercise 2.A.14.
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Exercise 2.B.10. Suppose U and W are subspaces of V' such that V= U @& W. Suppose

also that uq,...,u,, is a basis of U and w;, ..., w,, is a basis of W. Prove that

n

Uy eoey Upyyy Wiy eeey W,y

is a basis of V.

Solution. Let v € V be given. Since the sum V =U @ W is direct, there are unique vec-

tors u € U and w € W such that v = u + w. Because uq, ..., u,, is a basis of U, 2.28 implies

m

that there are unique scalars aq, ..., a,, such that u = a;u; + --- + a,,u,,,. Similarly, there are

unique scalars by, ..., b, such that w = byw; + -+ b, w,,. It follows that v can be uniquely

n

represented as
v=a,u ++a,u, +bw +-+b,w,.

Thus, by 2.28, u,,...,u,,,w;,...,w,, is a basis of V.

Exercise 2.B.11. Suppose V is a real vector space. Show that if v,,...,v,, is a basis of

V (as a real vector space), then vy, ...,v,, is also a basis of the complexification Vg (as

n

a complex vector space).

See Exercise 8 in Section 1B for the definition of the complexification V.

Solution. Let u + tv € V be given. By 2.28, there are unique real scalars a4, ..., a,,,b;,..., b,
such that

u=av;++a,v, and v=buv +-+0b,v,.

Using the definitions of vector addition and complex scalar multiplication in V- given in

Fxercise 1.8B.8, observe that

Z(ak + b i)vy, = ( akvk) +1 ( bkvk> = u + iv. (1)
k=1 k=1

k=1

Because two ordered pairs (u,v) and (w,z) are equal if and only if v =w and v =,
and the real scalars aq,...,a,,b;,...,b, are unique, we see that the complex scalars
ay + byi,...,a, +b,i in the linear combination on the left-hand side of equation (1) are

unique. It follows from 2.28 that vy, ...,v,, is a basis of V.

n
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2.C. Dimension

Exercise 2.C.1. Show that the subspaces of R? are precisely {0}, all lines in R? con-

taining the origin, and R2.

Solution. It is easily verified that {0}, all lines in R? through the origin, and R? are indeed
subspaces of R2. To see that these are the only subspaces of R?, suppose that U is a subspace
of R? and note that by 2.37 we must have dimU € {0,1,2}. If dimU = 0 then U = {0}, if

dimU = 2 then U = R? by 2.39, and if dim U = 1 then there exists a basis u # 0 of U, so
that U = span(u) = {Au: A € R}, i.e. U is a line through the origin with direction vector w.

. y
U "~

Exercise 2.C.2. Show that the subspaces of R? are precisely {0}, all lines in R? con-

taining the origin, all planes in R? containing the origin, and R3.

Solution. It is easily verified that {0}, all lines in R3 through the origin, all planes in

R3 through the origin, and R? are indeed subspaces of R3. To see that these are the only
subspaces of R3, suppose that U is a subspace of R? and note that by 2.37 we must have

dimU € {0,1,2,3}. If dimU = 0 then U = {0}, if dimU = 3 then U = R3 by 2.39, and if
dim U =1 then there exists a basis u # 0 of U, so that U = span(u) = {Au: A € R}, ie. U
is a line through the origin with direction vector w. If dim U = 2 then there is a basis u;, u,
of U, so that U = span(uy,uy) = {A\ju; + Aty : Ay, Ay € R}. Because neither of u,,u, is a
scalar multiple of the other, i.e. u; and u, are not collinear, this describes a plane through

the origin in R3.
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Exercise 2.C.3.
(a) Let U = {p € P,(F) : p(6) = 0}. Find a basis of U.
(b) Extend the basis in (a) to a basis of P, (F).
(c¢) Find a subspace W of P,(F) such that P,(F)=U & W.

Solution.

(a) Let B=x —6,(z — 6)2, (x — 6)3, (x — 6)4; certainly each of these polynomials belongs

to U.
—2z—6 —(x—6> —(x—6)° (z —6)*
1.
0-
—1F
) 6 7
X

Suppose we have scalars a;, a,, as, a, such that
ay(z—6) + ay(z —6)> + as(z —6)° + ay(z —6)* =0

for all x € F. Using the reasoning of 2.41, we see that this equation implies that
a, = ay = a3 =a, = 0. It follows that B is linearly independent and thus by 2.22 we
have dim U > 4. Using 2.37, we also find that dim U < dim P ,(F) = 5. However, notice
that U # P,(F) because the non-zero constant polynomials do not belong to U; it fol-
lows from 2.39 that dim U must be strictly less than dim P, (F) = 5. Thus dimU = 4

and using 2.38 we may conclude that B is a basis of U.

(b) Certainly the constant polynomial 1 does not belong to U = span B. It then follows
from Exercise 2.A.13 that the list B’ = 1,2 — 6, (z — 6)°, (z — 6)°, (z — 6)* is lincarly
independent. Since dim P, (F) =5, 2.38 allows us to conclude that B’ is a basis of
P4 (F).

(c) Let W = span(1), i.e. the subspace of all constant polynomials. As the proof of 2.33
shows, we then have P,(F)=U @& W.
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Exercise 2.C.4.
(a) Let U ={p € P,(R) : p”"(6) = 0}. Find a basis of U.
(b) Extend the basis in (a) to a basis of P,(R).
(c¢) Find a subspace W of P,(R) such that P,(R)=U & W.

Solution.

(a) Let B=1,z,(x — 6)°, (z — 6)4; it is straightforward to verify that each of these poly-

nomials belongs to U. Suppose we have scalars ag, aq, as,a, such that
ag + a7+ ag(z —6)° + ay(z —6)' =0

for all z € R. Using the reasoning of 2.41, we see that this equation implies that
ay =a; = a3 =a, = 0. It follows that B is linearly independent and thus by 2.22 we
have dim U > 4. Using 2.37, we also find that dim U < dim ,(R) = 5. However, notice
that U # P,(R) because x? ¢ U; it follows from 2.39 that dim U must be strictly less
than dim ?,(R) = 5. Thus dim U = 4 and using 2.38 we may conclude that B is a basis
of U.

(b) As noted in part (a), 2 ¢ U = span B. It then follows from Exercise 2.A.13 that the
list B = 1,z, 22, (z — 6)°, (x — 6)" is linearly independent. Since dim 2,(R) = 5, (2.38)

allows us to conclude that B’ is a basis of P,(R).

(c) Let W = span(z?). As the proof of 2.33 shows, we then have P,(R)=U ® W.

Exercise 2.C.5.
(a) Let U ={p € P,(F):p(2) = p(5)}. Find a basis of U.
(b) Extend the basis in (a) to a basis of P, (F).
(c) Find a subspace W of P ,(F) such that P,(F)=U & W.

Solution.
(a) Let B=1,(z —2)(z —5), (z — 2)*(z — 5), (x — 2)*(x — 5)?; it is straightforward to ver-
ify that each of these polynomials belongs to U. Suppose we have scalars a, aq, a3, a4
such that

ag + ag(z —2)(z — 5) 4 as(z — 2)*(x — 5) + ay(z — 2)*(z —5)> = 0

for all x € F. Using the reasoning of 2.41, we see that this equation implies that
ay = ay = a3 = a, = 0. It follows that B is linearly independent and thus by 2.22 we
have dim U > 4. Using 2.37, we also find that dim U < dim P ,(F) = 5. However, notice
that U # P,(F) because x ¢ U; it follows from 2.39 that dim U must be strictly less
than dim ?,(F) = 5. Thus dim U = 4 and using 2.38 we may conclude that B is a basis
of U.
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—1 —(@-2(x—-5 —(z—2)>%*=z—5) (z —2)*(z —5)°

5
. ~ y
—5F
2 5
x

(b) As noted in part (a), z ¢ U = span B. It then follows from Exercise 2.A.13 that the
list B =1,z,(z—2)(z —5),(x—2)*(z —5), (x — 2)*(x — 5)* is linearly independent.
Since dim P, (F) = 5, 2.38 allows us to conclude that B’ is a basis of P,(F).

(c) Let W = span(zx). As the proof of 2.33 shows, we then have P,(F) =U & W.

Exercise 2.C.6.
(a) Let U = {p € P,(F) : p(2) = p(5) = p(6)}. Find a basis of U.
(b) Extend the basis in (a) to a basis of P, (F).
(c) Find a subspace W of 2?,(F) such that P,(F)=U & W.

Solution.

(a) Let B=1,(z —2)(x — 5)(z — 6), (z — 2)*(xz — 5)(z — 6); it is straightforward to verify
that each of these polynomials belongs to U. Suppose we have scalars agy, as,a, such
that

aog + az(z —2)(z —5)(x — 6) + ay(z —2)*(z — 5)(z — 6) = 0

for all x € F. Using the reasoning of 2.41, we see that this equation implies that
ag = a3 = a, = 0. It follows that B is linearly independent and thus by 2.22 we have
dim U > 3. Let Y denote the subspace from Exercise 2.C.5 and notice that U is a sub-
space of Y. Using 2.37, we then find that dimU < dimY = 4. However, notice that
U #Y because (r —2)(x —5) € Y but (z —2)(x —5) ¢ U; it follows from 2.39 that
dim U must be strictly less than dimY = 4. Thus dim U = 3 and using 2.38 we may
conclude that B is a basis of U.
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—1 —(z—-2)(z—-5)(x—6) — (z—2)*(z—5)(z—6)

8.
ol V
—8 F
2 5 6
T

(b) As noted in part (a), (z —2)(x —5) € Y but (z —2)(z —5) ¢ U = span B. It then fol-
lows from Exercise 2.A.13 that the list
B =1,(z —2)(z —5), (z —2)(z — 5)(z — 6), (z — 2)* (¢ — 5)(z — 6)

is linearly independent. Since dimY = 4, 2.38 shows that B’ is a basis of Y. We can

now argue as in FExercise 2.C.5 (b) to conclude that the list
1,2, (z —2)(z —5), (z — 2)(z — 5)(z — 6), (¢ — 2)*(z — 5)(z — 6)

is a basis of P,(F).

(c) Let W =span(z,(x —2)(x —5)). As the proof of 2.33 shows, we then have
P,F)=UeW.

Exercise 2.C.7.
(a) Let U = {p e?,(R): f_llp = O}. Find a basis of U.
(b) Extend the basis in (a) to a basis of P,(R).
(c) Find a subspace W of ?,(R) such that P,(R)=U & W.

Solution.

(a) Let B =z,2% — %, a3, xt — %; it is straightforward to verify that each of these polyno-

mials belongs to U. Suppose we have scalars a;, a,, as, a, such that
a,x + a2(a:2 — %) + azz® + a4(a:4 — %) =0

for all z € R. Using the reasoning of 2.41, we see that this equation implies that
a, = ay = a3 =a, = 0. It follows that B is linearly independent and thus by 2.22 we
have dim U > 4. Using 2.37, we also find that dim U < dim ?,(R) = 5. However, notice
that U # P4(R) because 1 ¢ U; it follows from 2.39 that dim U must be strictly less
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than dim P, (R) = 5. Thus dim U = 4 and using 2.38 we may conclude that B is a basis

of U.
R —_—2 1
xr A -3
1 1
0r 0
—1} —1
—1 0 1 —1 0 1
xr xXr
1
1t 1t
0Ff Or
_1- _1-
—1 0 1
xXr X

(b) As noted in part (a), 1 ¢ U = span B. It then follows from Exercise 2.A.13 that the list
B =1,z,2%— %, a3, xt — % is linearly independent. Since dim P,(R) =5, 2.38 allows
us to conclude that B’ is a basis of 7,(R).

(c) Let W = span(1). As the proof of 2.33 shows, we then have P,(R) =U @ W.

Exercise 2.C.8. Suppose vy, ..., v,, is linearly independent in V and w € V. Prove that

dimspan(v; + w, ...,v,, + w) > m — 1.

Solution. If m =1 then certainly dimspan(v; + w) > 0, so suppose that m > 2. Because

vy, ..., V,, is linearly independent, notice that:
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e —U ¢ span(vz, "-avm);

* y,...,,, is linearly independent.

m

It then follows from the contrapositive of Fixercise 2.A.12 that the list B = vy — vy, ..., v,,, — 3

is linearly independent. Now observe that

v; —v; = (v; + w) — (v; +w) € span(v; +w, ..., v, + w)
for any 2 < j<m. Thus B is a linearly independent list of length m — 1 contained in
span(v; + w, ...,v,, + w) and we may use 2.22 to conclude that

dimspan(v; + w, ...,v,, + w) > m — 1.

Exercise 2.C.9. Suppose m is a positive integer and py, py, .., p,, € P(F) are such that
each p, has degree k. Prove that py, pq, ...,p,, is a basis of 2, (F).

Solution. Suppose we have scalars ag, a4, ..., a,, such that

appo (%) + a1p1(T) + - + 4Py (7) = 0 (*)
for all x € F. Let ¢ be the coefficient of 2™ in the polynomial p,, and note that ¢ # 0 since
D,, has degree m. Because each p, has degree k, the coefficient of 2™ in the polynomial
p, must be zero for k < m. Thus the left-hand side of (x) has an a,,cz™ term whereas the
right-hand side has no ™ term. It follows that a,,c = 0 and hence that a,, = 0, since ¢ # 0.
Repeating this argument for the lower degree terms, we find that ay =a; = =a,, =0.
Thus pgy, Py, - Py, 1S a linearly independent list of length m + 1 contained in 2,,(F). Since
dim ?,,(F) = m + 1, 2.38 allows us to conclude that py,py, ..., p,, is a basis of P, (F).

Exercise 2.C.10. Suppose m is a positive integer. For 0 < k < m, let
pi(x) = 2*(1 —2)" "
Show that py, ..., p,, is a basis of 2, (F).

The basis in this exercise leads to what are called Bernstein polynomials. You can do
a web search to learn how Bernstein polynomials are used to approximate continuous

functions on [0, 1].

Solution. To remind us that these polynomials depend on m, let us use the notation
—k
P (2) = 2"(1 —2)™ "

For a positive integer m, let S(m) be the statement that the list py ,,, is linearly

cos Prnm,

independent. We will use induction (twice) to show that S(m) holds for all positive integers.
First, we show the truth of S(1) and S(2).

For S(1), suppose that agy,a; are scalars such that

aoPo1 (%) +a1py 1(z) = ag(l —z) +a;z =0
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for all x € F. Taking z = 0 and z = 1 immediately gives us ay, = a; = 0.
For S(2), suppose that ag,a,, a, are scalars such that
apPo 2(T) + a1py 2(T) + agpy o () = ag(1 — x)2 +a,2(1 — ) + ayz® = 0
for all x € F. Taking x =0 and x = 1 immediately gives us a; = a, = 0, and then taking
any x ¢ {0,1} gives us ay, = 0.
Now suppose that S(m) holds for some positive integer m and let ag,...,a,,, o be scalars

such that

m+2 m+2

m+2—k
Z akpk,m+2(37) = Z apz (1 — z) =0
k=0 k=0

for all z € F. Taking = 0 and = = 1 immediately gives us aq = a,,,» = 0, so that we now

have the equation

m+1

Z azF(1—z)™ % =0
k=1

for all z € F. Observe that

m+1
Z apr*(1— )" = (1 —2)
k=1

3
t

ak:L'k_l(l . x)m"rl—k

=z(l—x)

M 1M

A2 (1 — f’?)m_k

b
|

0

= (1= 2) Y app1Prom ().
k=0
Thus 2(1 — x) Y% o Gy 1Pk (@) = 0 for all z € F, which implies that Y} gy 10k (%) = 0
for all z # 0, 1. Because the only polynomial with infinitely many roots is the zero polynomial

(we will prove this in 4.8), in fact we must have
m
Z A 41Pp,m (T) =0
k=0

for all x € F. The induction hypothesis now implies that a; = - = a,,, = 0 and thus the list
D0» s Pm4o 18 linearly independent, i.e. S(m + 2) holds. This completes the induction step.

We have now shown that S(m) = S(m + 2) for a positive integer m. Since S(1) holds, an
application of induction shows that S(1),S5(3),S5(5), ... all hold. Similarly, since S(2) holds,
another application of induction shows that S(2),S5(4),S(6),... all hold. Thus S(m) holds

for all positive integers m.

To complete the exercise, let m be a positive integer. As we just showed, pg,...,p,, is a
linearly independent list of length m + 1 contained in 2,,(F). Since dim ?,,(F) =m + 1,
2.38 allows us to conclude that py, ..., p,, is a basis of P, (F).
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Exercise 2.C.11. Suppose U and W are both four-dimensional subspaces of C®. Prove
that there exist two vectors in U N W such that neither of these vectors is a scalar

multiple of the other.
Solution. Notice that

6 = dim C% > dim(U + W) = dim U + dim W — dim(U N W) = 8 — dim(U N W),

where we have used 2.37 and 2.43. It follows that dim(U N W) > 2 and thus we can find a
linearly independent list v, v, in U N W; by Exercise 2.A.4 (b), neither of these vectors is a

scalar multiple of the other.

Exercise 2.C.12. Suppose that U and W are subspaces of R® such that dim U = 3,
dimW =5, and U + W = R8. Prove that RE =U @ W.

Solution. By 2.43 we have

8 = dimR® = dim(U + W) = dim U + dim W — dim(U N W) = 8 — dim(U N W).
It follows that dim(U NW) =0 and hence that UNW = {0}. Thus, by 1.46, the sum
R2® = U @ W is direct.

Exercise 2.C.13. Suppose U and W are both five-dimensional subspaces of R?. Prove
that U N W # {0}.

Solution. By 2.43 we have
9 =dimR? > dim(U + W) = dimU + dim W — dim(U N W) = 10 — dim(U N W).
It follows that dim(U N'W) > 1 and hence that U N W # {0}.

Exercise 2.C.14. Suppose V is a ten-dimensional vector space and V;, V;, V5 are sub-
spaces of V with dimV; = dim V, = dim V5 = 7. Prove that V; NV, N V5 # {0}.

Solution. By 2.43 we have

dim((V; NV,) + V3) = dim(V; NV,) + 7 —dim(V; NV, N V3), (1)

dim(V; +V,) = 14 — dim(V; N'V;). (2)

Combining equations (1) and (2) gives us

dim(V; NV, N V3) =21 —dim(V; + V3) — dim((V; N Vy) + V3).
Now we use the above equation and 2.37:

dim(V; NV, NV;) >21 —2dimV = 1.

Thus V; NV, N V5 # {0}.
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Exercise 2.C.15. Suppose V is finite-dimensional and V;,V,, V5 are subspaces of V'
with dim V; + dim V;, + dim V3 > 2dim V. Prove that V; NV, N V5 # {0}.

Solution. By 2.43 we have
dim((V; NV,) + V) = dim(V; NV,) + dim V5 — dim(V; NV, NV3), (1)

dim(V; + V,) = dim V] 4+ dim V;, — dim(V; N V5). (2)
Combining equations (1) and (2) gives us
dim(V; NV, NV;) =dimV; +dim V, + dim V5 — dim(V; + V;) — dim((V; N'V,) + V3).
Now we use the above equation and 2.37:
dim(V; NV, NV;) > dimV; +dim V, + dim V5 — 2dim V' > 0.

Thus V; NV, N V5 # {0}.

Exercise 2.C.16. Suppose V is finite-dimensional and U is a subspace of V with U # V.
Let n =dimV and m = dimU. Prove that there exist n — m subspaces of V', each of

dimension n — 1, whose intersection equals U.

Solution. Let wuq,...,u,, be a basis of U and, using 2.32, extend this to a basis
B =uq,...,u,,,vy,...,v; of V; note that k£ > 1 since U # V and that n —m = k. For each

aey m)

jeA{l, ..., k}, let Bj be the list of vectors obtained by removing v; from B, i.e.

BJ - U17 ...,’U,m,’Ul, ...,'l)j_l,'l)j+1, ...,'Uk.

Now let U; = span B;. Observe that B; is linearly independent since B is linearly indepen-
dent and thus B, is a basis of Uj, so that dimU; =m + k —1 =n — 1. Furthermore, for

i # j we have v; € U; but v; ¢ U, by the linear independence of B; it follows that U; # U;.
Thus the collection {U ;1< < k} consists of k = n — m distinct subspaces of V' each of

dimension n — 1.

We now show that U =U; N---NU,. If k=1 then U; =U and the equality is clear, so
suppose that k > 2. Certainly U C U; for each j € {1,...,k} and thus U C U; N---NUj. Let
u € U; N---N U, be given. In particular u € U;, so there are scalars a4, ..., a,,, Cy, ..., ¢, such
that

U= ayUy + -+ QU + CUy + o+ U (%)
For each j € {2,...,k} we have u € U ; and thus u can also be expressed as a linear combina-
tion of the list B;. The coefficient of v; in this linear combination is zero and, because B is a
basis of V, it then follows from unique representation 2.28 that the coeflicient ¢, in the linear

combination (x) is also zero. Thus v = ayu; + -+ a,,u,, € U, sothat U; N---NU,, CU. We
may conclude that U =U; N---NU,.
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Exercise 2.C.17. Suppose that V..., V., are finite-dimensional subspaces of V. Prove

that V; + -+ V_ is finite-dimensional and
dim(V; + - +V,,) <dimV, + - +dimV,,.

The inequality above is an equality if and only if V| + --- + V. is a direct sum, as will
be shown in 3.94.

Solution. Each V; has a basis B, by 2.31, so that V; =spanB,. Let B be the list
B, B,, ..., B,, (removing duplicate vectors if necessary) and, letting |B| denote the length
of the list B, notice that |B| < |By| + -+ + |B,,|. Notice further that V; + -+ V, = span B.
It follows that V; +--- 4V, is finite-dimensional and furthermore, by 2.22,

dim(V; +--+V,,) <|B| < |By|+ -+ |B,,| =dimV; +--+dimV,,.

Exercise 2.C.18. Suppose V is finite-dimensional, with dimV =n > 1. Prove that

there exist one-dimensional subspaces Vi, ..., V, of V such that

V=V,0-aV,.

Solution. V has a non-empty (since n > 1) basis vq,...,v,. For each j€ {1,...,n} let

V, = Span(vj) and note that dim V; = 1 because v; # 0. By 2.28 each vector in V' is a linear

combination of the basis vectors vy, ...,v,,, so that V =V, +--+V,_, and furthermore this

linear combination is unique, so that the sum V=V, @ ---+ @ V,, is direct.

Exercise 2.C.19. Explain why you might guess, motivated by analogy with the for-
mula for the number of elements in the union of three finite sets, that if V;,V,, V; are

subspaces of a finite-dimensional vector space, then
dim(V; + V, + V3)
=dim V] +dim V; 4 dim V3
—dim(V; NV,) —dim(V; NV3) — dim(V, N'V;)
+dim(V; NV, N V).

Then either prove the formula above or give a counterexample.

Solution. If S, S,, S; are finite sets and |S| denotes the number of elements in a finite set

S, then the inclusion-exclusion principle gives us the formula
51 U Sy U Ss| = [Sy| 4 [Sa| + |S5] — [S1 N Sy =[Sy N Ss| =[Sy N Ss| +[S; NSy N Sl

However, the analogous formula for the dimensions of finite-dimensional subspaces does not
hold, as the following counterexample shows. Consider R? and let V;, V,, V5 be three distinct

lines through the origin, say
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Vi =span((—1,2)), V,=span((1,1)), and V; =span((4,—1)).

It is straightforward to verify that V; + V, + V3 = R? and that
VinVo=vVinVya=V,NnVy =V, NV, NVy; ={0}.

Thus dim(V; + V, + V3) = dim R? = 2, whereas the right-hand side of the proposed formula

1S

1+41+1-0-0-0+4+0=3.

Exercise 2.C.20. Prove that if V;,V,, and V; are subspaces of a finite-dimensional

vector space, then
dim(V; + V, + V5)
=dim V] +dim V; 4+ dim V5
_dim(Vl NV,y) + dim(V; N V5) 4+ dim(V, N V3)
3

_dim((Vy + V5) NV3) 4 dim((V; + V3) N V3) + dim((V +V3) N V)
3 :

The formula above may seem strange because the right side does not look like an in-

teger.

Solution. Using 2.43 twice, observe that
dim(V; + V5 + V3) = dim(V; + V3) + dim V5 — dim((V; + V) N'V3)
=dim V] +dimV, 4+ dim V5 — dim(V; N V,) — dim((V; + V,) NV;).
Similarly, we find that
dim(V; + Vo + V;) =dim V] + dim V;, + dim V5 — dim(V; N V3) — dim((V; + V3) N'V5),
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Adding these three formulas together and then dividing through by 3 gives us the desired

formula.
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Chapter 3. Linear Maps

3.A. Vector Space of Linear Maps

Exercise 3.A.1. Suppose b,c € R. Define T : R® — R? by
T(z,y,2) = 2z —4y + 32+ b, 6z + czyz).

Show that T is linear if and only if b = ¢ = 0.

Solution. First suppose that b = ¢ = 0, so that T is the map
T(z,y,2) = (2 — 4y + 3z, 6x).
Let (zq,v1,21), (Z9,Ys, 25) € R3 and X € R be given. Observe that
T(zy + %9, 41 +Yp, 21 + 22) = (2(zy +73) —4(y1 +y2) +3(21 + 22),6(z1 + 25))
= (2z1 + 225 — 4y; — 4yy + 32 + 324, 621 + 65)
= (2xy — 4y, + 321, 6x¢) + (225 — 4y, + 325, 625)
=T(z1,y1,21) + T(%2, Y2, 22)

T(Azy, Ay;, Azq) = (2Az; — 4y, + 3Azy, 6)x,)

= (M(2z; — 4y, +321), A(6x,))
= )\(2[51 — 4y1 + 321,6.T1)
= XT(z1,9;,2)

Thus T is linear.

Now suppose that b # 0 and notice that 7'(0,0,0) = (b,0) # (0,0); it follows from 3.10 that
T is not linear. If ¢ # 0 then note that

T(1,1,1)=(1+b,6+c) and T(2,2,2) = (2+b,12+ 8c).

Since 2(6 + ¢) = 12 + 2¢ # 12 + 8¢ for ¢ # 0, we see that 27°(1,1,1) #+ T(2,2,2) and thus T

is not linear.
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Exercise 3.A.2. Suppose b, c € R. Define T : P(R) — R? by

Tp= <3p(4) + 5p'(6) + bp(l)p(2),/ 3p(x) dz + csinp(O)) :

Show that T is linear if and only if b = ¢ = 0.

Solution. First suppose that b = ¢ = 0, so that T is the map

Tp= <3p(4) + 5p’(6),/ z3p(x) dx) :

~1
Let p,g € P(R) and XA € R be given. Observe that

2
T(p+q) = (300 +0)@) +5(p + )/ (6), /

-1

z*(p + q)(2) dw)

2

= | 3(p(4) + q(4)) +5(p’ (6) + q'(G)),/

-1

2% (p(z) + q(z)) dw)

— ( 3p(4) + 3¢(4) + 59/ (6) + 5¢(6), /

-1

— (3p(4) + 5p'(6), /

-1

=Tp+Tq.

T(\p) = (3(Ap)(4)+5(kp)’(6),/ 23 (Ap)() dw)

= (3(Ap(4))+5(hp’(6)),/ fv?’(Ap(w))dfv)
= (A(3p(4) +5p’(6)), A

= <3p(4) + 5p’(6),/ z3p(x) dx)

= \T'p.

Thus T is linear.

Now suppose that T is linear and observe that

2T(7r) = (67T + 2[)71-27 %7‘( + 20) and T(27‘r) — (67‘(’ + 4b7‘r2, %7‘()
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Since T is linear we must have 27'(w) = T'(27):

(6w + 2bm2, D + 2¢) = (67 + 4bn?, 1) < (2072, 2¢) = (4b7%,0) < b=c=0.

Exercise 3.A.3. Suppose that T' € L(F",F™). Show that there exist scalars A, , € F
for j=1,...,mand k =1,...,n such that

T(xl, ceey .Tn) = (A]_’lxl + e + A17n$n, ceey Am,1$1 + oo + Am,nxn)
for every (z4,...,x,) € F™.

This exercise shows that the linear map T’ has the form promised in the second to last

item of Example 3.3.

Solution. Let eq, ..., e, be the standard basis of F" and let f,,..., f,,, be the standard basis
of F™. For any k € {1,...,n}, there are scalars A; ..., 4,,  such that

Tep =) A;vf;
=1

Let * = (21, ...,%,) = Y p_1 Ty, be given and observe that by linearity,

Tx=T (Z xkek) = ZwkTek = Zxk ZAij = Z (Z Achxk) f;
k=1 k=1 k=1  j=1 j=1 \ k=1

= (Z A kT o ZAm,kmk> = (A1,1331 +o Ay Ty ey A 1@y o Am’nxn)_
k=1 k=1

Exercise 3.A.4. Suppose T' € £(V,W) and vy,...,v,, is a list of vectors in V such
that T'vy, ...,Tv

independent.

is a linearly independent list in W. Prove that vy, ...,v,, is linearly

m m

Solution. Suppose we have scalars a, ..., a,, such that a;v; + -+ a,,v,, = 0. Applying T'

to both sides of this equation and using linearity and 3.10, we obtain
T(ayvy + - +a,,v,) =T0) < aTv;+-+a,Tv, =0.

Since the list Twvy,...,Tv,, is linearly independent, this equation implies that

a, = - = a,, = 0. Thus the list vy, ..., v,, is linearly independent.

m

Exercise 3.A.5. Prove that £(V, W) is a vector space, as was asserted in 3.6.

Solution. First let us show that £(V, W) is closed under addition and scalar multiplication.
Let S,T € L(V,W),u,v € V,and A\,a € F be given. Observe that

(S+T)u+v)=Su+v)+T(u+v)=Su+ Sv+Tu+Tv
=Su+Tu+ Sv+Tv=(S+T)(u)+ (S+T)v),
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(S+T)(aw) = S(aw) + T(aw) = aSv+ aTv = a(Sv+ Tv) + a(S + T)(v).
Thus S + T € £(V,W). Similatly,
(AS)(u+v) = AS(u+v) = A(Su+ Sv) = ASu+ ASv = (AS)(u) + (AS)(v),
(AS)(av) = AS(av) = AM(aSv) = a(ASv) = a(AS)(v).
Thus AS € £(V,W). We now verify each requirement in definition 1.20.
Commutativity. Suppose S, T € £(V,W) and v € V. Observe that
(S+T)v)=Sv+Tv=Tv+ Sv= (T +95)(v).
Thus S+T =T+ S.
Associativity. Suppose R, S,T € £(V,W),a,b € F, and v € V. Observe that
(R+S)+T)(v)=(R+ S)(v) =Tv=(Rv+ Sv) =Tv
=Rv+ (Sv+Tv)=Rv+(S+T)(v) =(R+(S+T))(v),
((ab)R)(v) = (ab)Rv = a(bRv) = a((bR)(v)) = (a(bR))(v).
Thus (R+S)+T = R+ (S +T) and (ab)R = a(bR).

Additive identity. Certainly the map 0: V — W given by v = 0 belongs to £(V,W); we
claim that this map is the additive identity in £(V,W). Indeed, let S € L(V,W) andv €V

be given and observe that
(S+0)(v) =Sv+0v=Sv+0=S5v.
Thus S+0=S.

Additive inverse. For S € £L(V, W), define T : V. — W by Tv = —Sw; it is straightforward
to verify that T is linear. We claim that T is the additive inverse to S. Indeed, for any v € V,

(S+T)(v) =Sv+Tv=Sv+ (—Sv) =0.
Thus S+ T = 0.
Multiplicative identity. Let S € £(V,W) and v € V be given and observe that
(1S)(v) = 1Sv = Swv.
Thus 15 = S.
Distributive properties. Let S,T7 € £(V,W),a,b € F, and v € V be given. Observe that
(a(S+T))(v) =a(S+T)(v) =a(Sv+Tv) =aSv+ aTv = (aS)(v) + (aT)(v),
((a+0)S)(v) = (a+ b)Sv=aSv+ bSv = (aS)(v) + (bS)(v).

Thus a(S+T) = aS + aT and (a+b)S = aS + bS.
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Exercise 3.A.6. Prove that multiplication of linear maps has the associative, identity,

and distributive properties asserted in 3.8.

Solution. The associative property is immediate from the associativity of composition of

functions.

For the identity property, let I, be the identity map on V and let Iy, be the identity map
on W.For T € £(V,W) and v € V, observe that

(TI,)(v) = T(Iyv) = Tv and (I T)(v) = Iy (Tv) = T.
Thus TI, = I, T =T.

For the distributive properties, let T',T,,T, € £L(U,V) and S,S5;,5, € £(V,W) be given.
For any u € U, observe that

((S1 + 85)T)(u) = (S1 + S3)(Tu) = S1(Tw) + S3(Tu) = (5,T)(u) = (S;T)(u),

(S(Ty + T3))(u) = S(Ty + Ty)(u)) = S(Tyu + Tyu)
= S(Tu) + S(Thu) = (ST)(u) + (ST)(u).

ThuS (Sl + SQ)T — SlT + SzT and S(Tl + TQ) — ST] + STz.

Exercise 3.A.7. Show that every linear map from a one-dimensional vector space
to itself is multiplication by some scalar. More precisely, prove that if dimV =1 and
T € £(V), then there exists A € F such that Tv = Av for all v € V.

Solution. Since dim V' = 1 there is a basis u of V and thus Tu = Au for some X € F. Let

v = au € V be given and observe that

Tv=T(au) = aTu = a(Au) = Aau) = Iw.

Exercise 3.A.8. Give an example of a function ¢ : R?> — R such that
p(av) = ap(v)
for all a € R and all v € R? but ¢ is not linear.

This exercise and the next exercise show that neither homogeneity nor additivity alone

is enough to imply that a function is a linear map.

/3 and observe that for anya € R

Solution. Let ¢ : R? — R be given by p(z,y) = (23 + y3)1
and (z,y) € R?,

1/3

olaz, ay) = ((ax)3 n (ay)3) (a3)1/3(x3 + y3)1/3 _ a(x3 +y3)1/3 — ap(z, y).

However, notice that
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@(1,0) +¢(0,1) =1+ 1 =223 = (1,1).

Thus ¢ is not linear.

Exercise 3.A.9. Give an example of a function ¢ : C — C such that
p(w+2) = p(w) + ¢(2)
for all w, z € C but ¢ is not linear. (Here C is thought of as a complex vector space.)

There also exists a function ¢ : R — R such that ¢ satisfies the additivity condition
above but ¢ is not linear. However, showing the existence of such a function involves

considerably more advanced tools.

Solution. Let ¢ : C — C be given by ¢(z + iy) = z, i.e. ¢ takes a complex number to its

real part.

Imaginary L
x4+ 1y

'

z  Real

Observe that
o((z +iy) + (u+i) = o((z +u) +i(y +v)) =z +u=p+iy) + (u+iv).
However, (i) = 0 but ¢(i?) = ¢(—1) = —1 # ip(i). Thus ¢ is not linear.

Exercise 3.A.10. Prove or give a counterexample: If ¢ € P(R) and T : P(R) — P(R)
is defined by T'p = q o p, then T is linear map.

The function T defined here differs from the function T defined in the last bullet point
of 3.3 by the order of the functions in the compositions.

Solution. This does not necessarily define a linear map. For example, consider g(xz) = 1 and
observe that (70)(z) = q(0(z)) = ¢(0) = 1 # 0. It follows from 3.10 that T is not linear.

Exercise 3.A.11. Suppose V is finite-dimensional and T' € £(V). Prove that T is a
scalar multiple of the identity if and only if ST = T'S for every S € £L(V).

Solution. Suppose that T is a scalar multiple of the identity, say T'= Al for some A € F,
and let S € £(V) and v € V be given. Observe that
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S(Tv) = S((AI)(v)) = S(Av) = A(Sv) = (AI)(Sv) = T(Sv).
Thus ST =TS.
Now suppose that ST =TS for every S € £(V). If V = {0} then T = 0I and we are done.

Otherwise, let vy, ...,v,, be a basis of V' and, using the linear map lemma (3.4), define a
linear map ¢ : V — F satisfying p(v;) = = ¢(v,,) = 1. Let A = ¢(Tv;) € F. For a fixed
v eV, define S, € £L(V) by S,u = ¢(u)v; the linearity of S follows from the linearity of (.

Now observe that
Tv=T(p(vy)v) = T(S,v1) = S,(Tvy) = (T )v = Av,

where we have used that T' commutes with every S € £(V) for the third equality. Because

v € V was arbitrary, we may conclude that T' = AI.

Exercise 3.A.12. Suppose U is a subspace of V with U # V. Suppose S € £L(U, W)
and S # 0 (which means that Su # 0 for some u € U). Define T : V. — W by

Sv ifveU,
Tv = .
0 ifveVandvg¢U.

Prove that T is not a linear map on V.

Solution. There is some u € U such that Su # 0 and since U # V there is some v € V such
that v ¢ U. This implies that u — v ¢ U, otherwise v = —(u — v) + u € U. Observe that

Tv+T(u—v)=04+0=0#Su=Tu=T(v+u—v).

Thus T is not linear.

Exercise 3.A.13. Suppose V is finite-dimensional. Prove that every linear map on a

subspace of V' can be extended to a linear map on V. In other words, show that if U is
a subspace of V and S € £(U, W), then there exists T' € £(V, W) such that Tu = Su
forallu e U.

The result in this exercise is used in the proof of 3.125.

Solution. Let uq,...,u,, be a basis of U and extend this to a basis u,...,u,,, v, ...,v,, of

V. If we use the linear map lemma (3.4) to define T' € £L(V,W) by Tu,, = Su;, and Tv,, = 0,

then for any v = ayu; + -+ a,,u,, € U we have
Tu=a,Tuy + - +a,Tu, =a;Su; + -+ a,Su,, = Su.

Thus T extends S.

Exercise 3.A.14. Suppose V is finite-dimensional with dim V' > 0, and suppose W is

infinite-dimensional. Prove that £(V, W) is infinite-dimensional.
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Solution. By Exercise 2.A.17 there is a sequence w;, wy, ws, ... in W such that wq, ..., w,, is
linearly independent for each positive integer m. Let v, ...,v,, be a basis of V' and note that
n > 1. For each positive integer k, use the linear map lemma (3.4) to define a linear map
T, € £L(V,W) satisfying

T V. — {wk ifj = ].,
k73 0 otherwise.

Let m be a positive integer and suppose we have scalars aq,...,a,, such that

a7, +--+a,,T, =0.In particular,
0=(a1T} + -+ a,T)(v1) = a1 Thyvg + - + a4, 1,01 = aqwy + -+ + AWy,

This implies that a; = - = a,,, = 0 since the list w,,...,w,, is linearly independent and it

m

follows that the list T3, ...,T,, is linearly independent. We may use Exercise 2.A.17 to con-

m

clude that £(V, W) is infinite-dimensional.

Exercise 3.A.15. Suppose vy, ..., v,, is a linearly dependent list of vectors in V. Suppose
also that W # {0}. Prove that there exist wy,...,w,, € W such that no T' € £L(V,W)

satisfies Tv, = w,, for each k =1, ..., m.

Solution. (We will use complex conjugation for this solution; complex conjugation is defined

and its properties are studied in Chapter 4 of the textbook.)

We will prove the contrapositive statement. That is, assuming that for all lists wy, ..., w,,, € W
there is a linear map T' € £(V, W) such that Tv,, = w,, for each k € {1, ...,m}, we will prove
that the list vy, ..., v,, is linearly independent. Indeed, suppose we have scalars a4, ..., a,,, such
that a;v; +--- + a,,v,, = 0. There is some non-zero w € W; by assumption there is a linear
map T' € £(V, W) such that T, = a,w for each k € {1,...,m}. It follows that

m m m m
0=T (Z akvk> = ZakTvk = Zak@w = (Z|ak\2> w.
k=1 k=1 k=1 k=1
Since w # 0, Exercise 1.B.2 implies that > ;- ;|a,|*> = 0, which is the case if and only if

a, =0 for all k£ € {1,...,m}. Thus the list vy, ..., v,, is linearly independent.

m

Exercise 3.A.16. Suppose V is finite-dimensional with dim V' > 1. Prove that there
exist S,T € £(V) such that ST # T'S.

Solution. There is a basis vy, vy, ..., v,, for V with n > 2. Using the linear map lemma (3.4),

define linear maps S,T € £(V) satisfying

Sv,=4qv, ifk=2, Tv,=<qv, ifk=2,
0 otherwise, 0 otherwise.
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Observe that

Thus ST #TS.

Exercise 3.A.17. Suppose V is finite-dimensional. Show that the only two-sided ideals
of £(V) are {0} and £(V).

A subspace & of £(V) is called a two-sided ideal of £L(V') if TE € & and ET € & for
all E € EandallT € L(V).

Solution. Certainly {0} is a two-sided ideal of £(V'), so suppose that & is a two-sided ideal
of £(V') containing some non-zero linear map 7' € £(V'); we must show that & = £(V).

Let vy, ...,v,, be a basis of V. For each pair (i, j), use the linear map lemma (3.4) to define a
linear map E; ; € £(V)) which sends v; to v; and each other basis vector to 0. Since T' # 0,
there must be some £ € {1,...,m} such that

Tv, = ayvy + -+ a,,v, #0;

there must then be some non-zero coefficient in this linear combination, say a,,. For each
i € {1,...,m}, observe that

E,,TE, v; = E, Tv, = E, ;(a1v; + - + a,,v,,) = a,v,,

Thus, letting L; be the linear map E, ,TE, ,, we have L;v; = a,v; and L;v, = 0 for k # i;
it follows that L; +---+ L,, = a,,I, where [ is the identity map on V. Now observe that
Teé = E,TE ,=L;,€foreachic{l,..,m}
= Li+++L,=a,]€ = a,'a,l=1€¢;

each of these implications is justified because & is a two-sided ideal of £(V'). It follows that
SI =S5 ¢€ & forany S € £(V) and we may conclude that & = £(V).
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3.B. Null Spaces and Ranges

Exercise 3.B.1. Give an example of a linear map 7 with dimnull7” =3 and

dimrangeT = 2.

Solution. Let T : R5 — R? be given by
T(zy, Ty, Ty, Ty, Ts) = (21, T2)
and observe that
nullT = {(0,0,z3,2,4,75) € R® : 24,74, € R} and rangeT = R?

Thus dimnull7 = 3 and dimrange T = 2.

Exercise 3.B.2. Suppose S,T € £(V) are such that rangeS C nullT. Prove that
(ST)?* = 0.

Solution. For any v € V we have S(Tw) € range S C nullT, so that T'(S(Tv)) = 0. It fol-
lows that

(ST)*(v) = S(T(S(T'v))) = 5(0) = 0.

Thus (ST)* = 0.

Exercise 3.B.3. Suppose vy, ..., v,, is a list of vectors in V. Define T' € L(F™, V') by
T (21, ey Zpy) = 2901 + -+ + 2,0, -
(a) What property of T' corresponds to vy, ..., v,, spanning V7

(b) What property of T' corresponds to the list vy, ...,v,, being linearly independent?

Solution.

(a) The surjectivity of T corresponds to vy,...,v,, spanning V. Indeed, observe that
T is surjective if and only if for every veV there exists (zq,...,2,) € F™
such that T(zy,...,2,,) = 2301 + -+ + 2,,9,, = v, which is the case if and only if
V = span(vy, ..., v,,).

(b) The injectivity of T' corresponds to vy, ..., v,, being linearly independent. By 3.15, T is
injective if and only if null T = {0}, i.e. if and only if the only choice of (zq, ..., z,,,) € F™
which gives zyv; + - + 2z,,v,, = 0 is (0,...,0); this is the definition of linear indepen-

dence.
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Exercise 3.B.4. Show that {T € £(R®,R*) : dimnullT > 2} is not a subspace of
L(R5,RY).
Solution. Let W = {T € £(R®,R*) : dimnullT > 2}. Define S,T € £(R° R*) by
S(zy,xq,%5,2y,T5) = (1,25,0,0) and T(zq,Tq,x3,24,25) = (0,0, 25,2,)
and observe that
null S = {(0,0, 25,74, z5) € R® : 23,24, 75 € R}
and nullT = {(2,,2,,0,0,25) € R® : 2, 25,75 € R},
so that dimnull S = dimnull T = 3. Thus S,T € W. However, note that
(S + T)(:Cla Lo, L3, Ly, .’.E5) = (xla Loy L3, .’134)
= nul(S+7T)=1{(0,0,0,0,z5) e R® :z; e R} = dimnull(S+7T)=1
Thus S + T ¢ W. It follows that W is not closed under addition and hence that W is not a
subspace of £(R® R*).

Exercise 3.B.5. Give an example of T € £(R*) such that range7 = null 7.

Solution. Let T' € £(R*) be given by
T(m17w27 T3, $4) = (:L'37 Ly, 07 0)7

which satisfies range T = nullT = {(a,b,0,0) € R* : a,b € R}.
Exercise 3.B.6. Prove that there does not exist T € £(R®) such that range T = null 7.

Solution. If T € £(V) for some finite-dimensional vector space V and range7 = nullT,

then the fundamental theorem of linear maps (3.21) implies that

dimV = dimnullT + dimrange 7 = 2dimnull 7.

Thus the dimension of V' must be a non-negative even integer, which 5 is not.

Exercise 3.B.7. Suppose V and W are finite-dimensional with 2 < dimV < dim W.
Show that {T" € £(V,W) : T is not injective} is not a subspace of £(V,W).

Solution. Let X = {T € £(V,W) : T is not injective} and note that by 3.15 we have
X={T € £L(V,W):nullT # {0}}.

Let vy, ...,v,, be a basis of V and let wy,...,w, be a basis of W; by assumption we have
2 <m < n. Define S,T € £L(V,W) by
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0 lszl, w, lszl,
1

1 . .
swy,  otherwise, swy  otherwise.

Notice that S,T € X since v;,v, are non-zero, v; € nullS, and v, € nullT. Notice further
that

(S+T)(v,) =wy, for all k € {1,...,m} = range(S+T) = span(wy,...,w,,).

The linear independence of the list wy,...,w, then implies that w,...,w,, is a basis of

range(S 4+ T) and thus dimrange(S + T') = dim span(wy, ..., w,,,) = m. Because dimV = m,
it follows from the fundamental theorem of linear maps (3.21) that dimnull(S +T) = 0,
hence null(S + T') = {0}, hence S+ T ¢ X. We may conclude that X is not closed under

addition and hence is not a subspace of £(V,W).

Exercise 3.B.8. Suppose V and W are finite-dimensional with dimV > dim W > 2.
Show that {T" € £(V,W) : T is not surjective} is not a subspace of £(V,W).

Solution. Let X ={T € £(V,W) : T is not surjective}, let vy, ...,v,, be a basis of V', and
let wy, ..., w,, be a basis of W; by assumption we have m > n > 2. Define S, T € £(V,W) by

0 iftk=1or k>n, w, ifk=1,
Sy, = wy k=2, Tv, =<0 itk=2ork>n,
%wk otherwise, %wk otherwise.

It is straightforward to verify that range S = span(ws, ..., w,,). The linear independence of
the list wy,...,w, then implies that w, ¢ range S and thus S is not surjective, i.e. S € X.
Similarly, we find that w, ¢ rangeT and thus T' € X. Now observe that
if k <mn,
(S+T)(v,) = Ok 1 =" = range(S +T) = span(wy,...,w,) = W.
0 if £k > n,
Thus S + T is surjective, i.e. S+ T ¢ X. It follows that X is not closed under addition and
hence is not a subspace of £L(V,W).

Exercise 3.B.9. Suppose T' € £(V, W) is injective and vy, ..., v,, is linearly independent
in V. Prove that Tv,,...,Tv,, is linearly independent in W.

Solution. Suppose we have scalars a,, ..., a,, such that a;Tv; + --- 4+ a,, T'v,, = 0. By linearity,
this is equivalent to T'(ayvy + -+ a,v,,) =0, ie. a;v; + -+ a,v, € nullT. Because T is
injective, it follows from 3.15 that a;v; + - + a,,v,, = 0. The linear independence of vy, ..., v

n

then implies that a; = --- = a,, = 0. Thus T'vy,...,Tv,, is linearly independent.
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Exercise 3.B.10. Suppose vy, ...,v,, spans V and T' € £(V,W). Show that Tvy, ..., Tv

spans range1'.

n

Solution. Let w € rangeT be given, so that w = T'v for some v € V. Since vy, ..., v,, spans
V, there are scalars aq, ..., a,, such that v =a; + -+ a,v,,. It follows from the linearity of
T that

w=Tv=T(ayv; + - +a,v,) =a;Tv; + -+ a,Tv, €span(Tvy,...,Tv,).

Thus rangeT C span(Tvy,...,Tv,). Now let a;Tv; + -+ a,Tv, € span(Tvy,...,Tv,) be

given. The linearity of T gives us
aTvy + - +a,Tv, =T(a;v; + -+ a,v,) € rangeT.

Thus span(Tvy, ...,Tv, ) C rangeT and we may conclude that rangeT' = span(Tvy, ..., Tv,,).

Exercise 3.B.11. Suppose that V is finite-dimensional and that T' € £(V,W). Prove
that there exists a subspace U of V such that

UNnullT ={0} and rangeT ={Tu:uecU}.

Solution. By 2.33 there is a subspace U of V such that V =U @ nullT and 1.46 then
gives us U NnullT = {0}. Suppose that w € range T, so that w = T'v for some v € V. Since
V =U & nullT, there are vectors u € U and x € nullT such that v = u + « and it follows
that

w=Tv=T(u+z)=Tu+Tx =Tu.

Thus rangeT C {Tu : u € U}; the reverse inclusion {Tu : u € U} C rangeT is clear.

Exercise 3.B.12. Suppose T is a linear map from F# to F? such that
null 7 = {(z,, %y, 25,2,) € F*: 7, = 5z, and x5 = Tz, }.
Prove that T is surjective.

Solution. It is straightforward to verify that (5,1,0,0), (0,0,7,1) is a basis of null T, so that

dimnull T = 2. The fundamental theorem of linear maps (3.21) then gives
dimrangeT = dimF* — dimnull T = 2.
Thus dimrangeT = 2 = dim F? and it follows from 2.39 that rangeT = F2, i.e. T is surjec-

tive.

Exercise 3.B.13. Suppose U is a three-dimensional subspace of R® and that T is a
linear map from R® to R5 such that nullT = U. Prove that T is surjective.
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Solution. The fundamental theorem of linear maps (3.21) gives us
dimrangeT = dimR® — dimnull7T = 8 — dim U = 5.

Thus dimrangeT = 5 = dim R5 and it follows from (2.39) that rangeT = RS, i.e. T is sur-

jective.

Exercise 3.B.14. Prove that there does not exist a linear map from F® to F? whose

null space equals {(z, s, T3, 24, 25) € F° : ; = 3z, and 25 = 7, = z5}.

Solution. Let U = {(zy, 5, x5, %4, %5) € F* : 1 = 3z, and z4 = z, = x5 }. It is straightfor-
ward to verify that (3,1,0,0,0),(0,0,1,1,1) is a basis of U, so that dimU = 2. For any
T € £(F5,F?), the fundamental theorem of linear maps (3.21) implies that

dimnull 7T = dim F® — dim rangeT > 5 — dim F?2 =3.

It follows that U cannot be the null space of T

Exercise 3.B.15. Suppose there exists a linear map on V' whose null space and range

are both finite-dimensional. Prove that V is finite-dimensional.

Solution. Let T' be the linear map in question, let Tv,, ..., Tv,, be a basis of rangeT', and

let wy, ...,w,, be a basis of nullT. For any v € V there are scalars a4, ..., a,, such that
Tv=a;Tvy + -+ a,,Tv,, =T(ayv; + -+ a,,v,,)
= T(w—(avy+-+a,v,)=0 = v—(av; +-+a,,v,) €nulT.
It follows that there are scalars by, ..., b,, such that
v—(ayv; + - +a,,v,) =bw +-+bw,
= v=av; +-+a,v, +bw +--+bw,.

Thus the list vy, ...,v,,,w;, ..., w,, spans V. We may conclude that V is finite-dimensional.
Exercise 3.B.16. Suppose V and W are finite-dimensional. Prove that there exists an

injective linear map from V to W if and only if dim V < dim W.

Solution. If dimV > dim W then 3.22 guarantees that no linear map from V to W is in-
jective. Suppose therefore that dimV =m < n =dim W, let vy, ...,v,, be a basis of V', and
let wy, ..., w,, be a basis of W. Define T' € £(V,W) by Tv,, = wy,. The linear independence

of the list wy,...,w,, and Exercise 3.8.10 imply that w,,...,w,, is a basis of rangeT, so

m m

that dimrangeT = m = dim V. It then follows from the fundamental theorem of linear maps
(3.21) that dimnull7 = 0, i.e. T is injective.
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Exercise 3.B.17. Suppose V and W are both finite-dimensional. Prove that there ex-

ists a surjective linear map from V onto W if and only if dim V' > dim W.

Solution. If dimV < dim W then 3.24 guarantees that no linear map from V to W is sur-
jective. Suppose therefore that dimV =m > n =dim W, let vy, ...,v,, be a basis of V, and
let wy, ..., w,, be a basis of W. Define T' € £(V, W) by

T’Uk _ {wk. if k S n,
0 otherwise.

It follows from Exercise 3.B.10 that
range T’ = span(Tvq, ..., Tv,,) = span(wy, ...,w, ) = W.

Thus T is surjective.

Exercise 3.B.18. Suppose V and W are finite-dimensional and that U is a sub-
space of V. Prove that there exists T' € £(V,W) such that nullT = U if and only if
dimU > dimV —dim W.

Solution. If there exists such a T then the fundamental theorem of linear maps (3.21) and

2.37 give us
dimU = dimnull7” = dimV — dimrangeT > dim V' — dim W.

Conversely, suppose that dimU > dim V — dim W. Let u, ..., u,,, be a basis of U, extend this
to a basis uq, ..., u,,, vy, ...,v, of V, and let X = span(vq,...,v,,), so that V=U & X and

oy Up

dimV = dim U + dim X. Combining this with our hypothesis dimU > dim V' — dim W gives
us dim X < dim W and so we may invoke Exercise 3.8.16 to obtain an injective linear map
S : X — W. Extend this to a linear map T : V' — W satisfying T'(u + ) = Sz as in Exercise
3.A.13 (X is playing the role of U here). Now observe that

Tu+z)=0 & Sxr=0 & z=0 & utzel,
where we have used the injectivity of S for the second equivalence. It follows that nullT = U.
Exercise 3.B.19. Suppose W is finite-dimensional and T' € £(V,W). Prove that T is

injective if and only if there exists S € £L(W,V) such that ST is the identity operator
on V.

Solution. Suppose there exists such an S and let v € nullT be given. Observe that
v=(ST)(v) = S(0) =0.

Thus null T = {0}, which implies that T is injective (by 3.15).
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Now suppose that T is injective. Let Tvy, ..., Tv,, be a basis of range T" and extend this to a
basis Tvy, ..., Tv,,, wy, ...,w, of W. Define S € £L(W,V) by S(Tv;,) = v, and Sw;, = 0. For

any v € V we have Tv = ayTv; + --- + a,,Tv,, for some scalars a, ..., a,,, which implies
T(v— (ayv; + - +a,,v,,)) =0.
Because T is injective it must then be the case that v =a;v; + --- + a,,v,,,. Now observe that
S(Tv) =a,S(Tvy) + - +a,,S(Tv,,) = ayvy + -+ a,,v,, =v.

Thus ST is the identity map on V.

Exercise 3.B.20. Suppose W is finite-dimensional and T' € £(V,W). Prove that T is
surjective if and only if there exists S € £(W, V) such that T'S is the identity operator
on W.

Solution. Suppose there exists such a map S and let w € W be given. Observe that
w=T(Sw) € rangeT.
It follows that W = range T, i.e. T' is surjective.

Now suppose that T is surjective, i.e. W =rangeT. Let Twvy,...,Tv,, be a basis
of rangeT =W and define S € L(W,V) by S(Tv,) =v, for ke {1,...,m}. For any
w=aTv, + - +a,Tv,, €W, observe that

Sw=a;8(Tv,) +-+a,,S(Tv,,) = ayv; + -+ a,,v,,
= T(Sw)=aTvy +-+a,Tv, =w.

Thus T'S is the identity map on W.

Exercise 3.B.21. Suppose V is finite-dimensional, T' € £(V,W), and U is a subspace
of W. Prove that {v € V : Tv € U} is a subspace of V and

dim{v € V:Tv € U} = dimnull T + dim(U NrangeT).

Solution. Let X ={v e V :Tv € U} and note that 0 € X since T(0) =0 € U. Suppose
v1,V9 € X, so that Tv;,Tv, € U, and X € F. Because T is linear and U is a subspace, we

then have

Tv,Tvo €U = T(v;)+T(vy) =T(v;+vy) €U and ITv; =T(Iv;)eU.
Thus v, + v, and Av; belong to X. It follows from 1.34 that X is a subspace of V.
Let S be the restriction of T to X, i.e. S: X — W is given by Sv = T'v, and notice that S

is linear because T is linear. Notice further that
venullT = Tv=0e€U = veX = Sv=Tv=0 = wvenuls,

venulsS = Sv=Tv=0 = ve&nulT.
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Thus null S = null T'. Similarly,

TveUnNnrangeT forsomeveV = veX = Tv=Sv€&ranges,

Sv € range S for someve X = Sv=TveUANrangeT.

Thus range S = U NrangeT. The fundamental theorem of linear maps (3.21) now implies

that
dim X = dimnull S + dimrange S = dimnull7 + dim(U NrangeT).

Exercise 3.B.22. Suppose U and V are finite-dimensional vector spaces and
Se L(V,W)and T € £(U,V). Prove that

dimnull ST < dimnull S 4+ dimnull 7.

Solution. For any u € U observe that

venullST < S(Tu)=0 < Tuecnuls.

Thus null ST = {u € U : Tu € null S}. It follows from Exercise 3.B.21 that
dimnull ST = dimnull 7" + dim(null S Nrange T') < dimnull 7" + dim null S.

Exercise 3.B.23. Suppose U and V are finite-dimensional vector spaces and
SeL(V,W)and T € £(U,V). Prove that

dimrange ST < min{dimrange S, dimrangeT'}.

Solution. Certainly range ST C rangeS and thus dimrangeST < dimrangeS. Let
R € L(range T, W) be the restriction of S to range T, so that range R = range ST. The fun-

damental theorem of linear maps (3.21) then implies that
dimrange ST = dimrange R = dimrangeT — dimnull R < dimrangeT'.
Thus dimrange ST < dimrange S and dimrange ST < dimrangeT'; it follows that

dimrange ST < min{dimrange S, dimrange T'}.

Exercise 3.B.24.

(a) Suppose dimV =5 and S,T € £(V) are such that ST = 0. Prove that
dimrange TS < 2.

(b) Give an example of S,T € £(F%) with ST =0 and dimrangeT'S = 2.

Solution.
(a) The fundamental theorem of linear maps (3.21) and Exercise 3.B.23 give us

dimnull S = 5 — dimrange S < 5 — dimrangeT'S. (1)
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Note that ST = 0 implies rangeT’ C null S, so that dimrangeT < dimnull S. It then
follows from Exercise 3.B.23 and equation (1) that

dimrangeT'S < dimrange7 < dimnull S <5 —dimrangeT'S
= 2dimrange7$S <5 = dimrangeT§ < g
Thus dimrange T'S < 2, since the dimension of a vector space must be an integer.
(b) Let S,T € £(F®) be given by
S(zy,xq,23,24,T5) = (0,0,0,2,4,25) and T(xy,zy,2s,T,,%5) = (T3,2T4,25,0,0).
Observe that
(ST)(zq1,xy,x5,24,25) = (0,0,0,0,0)
and (TS)(zq, T, x5, 24,25) = (0,24, 5,0,0).

Thus ST = 0 and dimrangeT'S = 2.

Exercise 3.B.25. Suppose that W is finite-dimensional and S,T € £(V,W). Prove
that null § C null 7" if and only if there exists E € £(W) such that T'= ES.

Solution. If there exists such a map F then for any v € null S we have
Tv=E(Sv)=FE0)=0 = wvenulT.
Thus null S C nullT.

Now suppose that null'S C nullT. Let Sv,, ..., Sv,, be a basis of range S and extend this to
a basis Svq, ..., Sv,,, wy, ..., w,, of W. Define E € £L(W) by E(Sv,) = Tv, and Ew,, = 0. For
any v € V we have Sv = a;Sv; + - + a,,,Sv,,, for some scalars a, ..., a,,, which implies
S(v—(av; ++a,v,) =0 = v—(av; +-+a,,v,,) €nuls
= v—(av; ++a,v,) EnullT = T(v—(av; + - +a,,v,,)) =0.
Thus Tv = ayTvy + -+ a,,Tv,,. It follows that
E(Sv) = a,E(Sv) + -+ a,,E(Sv,,) = a;Tv, + -+ a,,Tv,, = Tv.

Hence T'=FES.

Exercise 3.B.26. Suppose that V is finite-dimensional and S, T" € £(V,W). Prove that
range S C range T if and only if there exists E € £(V') such that S =TE.

Solution. If there exists such a map FE then for any Sv € rangeS we have
Sv =T(Ev) € rangeT also. Thus range S C rangeT'.

Now suppose that rangeS Crange7l and let wvq,..,v,, be a basis of V. Since

m

range S C rangeT’, for each k€ {1,...,m} we have Sv, = Ty, for some u, € V. Define
E € £(V) by Ev, = u;, and observe that for any v = ayv; + - + a,,v,, € V we have
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(TE)(v) = (TE)(ayvy + -+ ap,05,) = a, T(E(vy)) + - + a,, T(E(vy,))
=a,Tuy + - +a,,Tu,, =a;Sv, + -+ a,,Sv,, = S(a,v; +-+a,,v,,) = Sv.

Thus S =TE.
Exercise 3.B.27. Suppose P € £(V) and P? = P. Prove that V = null P & range P.

Solution. For any v € V note that
Pv=Pv = P(Pv)—Pv=0 = PPv—v)=0
= Pv—v=u€nullP = v=wu+ Pvé&null P+ rangeP.
Thus V = null P + range P. Suppose that v = Pu € null P Nrange P. It follows that
0= Pv=P?u=Pu=n.
Thus null P Nrange P = {0} and it follows from 1.46 that the sum V = null P @ range P is

direct.

Exercise 3.B.28. Suppose D € £(P(R)) is such that deg Dp = (degp) — 1 for every

non-constant polynomial p € P(R). Prove that D is surjective.

The notation D is used above to remind you of the differentiation map that sends a

polynomial p to p’.

Solution. First, we will recursively define a sequence of polynomials (p;)r—o such that
Dp,. = z*. By assumption deg Dz = (degz) — 1 = 0, so that Dz = b for some non-zero b € F.
Define p, = b1z and, using the linearity of D, observe that

Dp,=D(b7'z) =b"'Dz=b"1b=1.
Now suppose that we have defined polynomials p,...,p,, such that Dp, = z¥ for each
k € {0,...,n}. By assumption D(z""?) must have degree n + 1, i.e. must be of the form
D(z"*?) = b, 12" + bz + -+ bz + by
where b,, ., # 0. Because Dp,, = z* and D is linear, it follows that
b1 D(a"*?) = 2™ + b3, (b, Dp,, + - + by Dp; + by Dpy)
= " = D(b 51 (2" = bup, — = bypy — bopy))-

Thus, defining p, 1 = b,31(z"*? —b,p, — - —b1py —bopy), we have Dp, ., =z"*. We

now obtain the desired sequence (py)r=o of polynomials by recursion.

We can now show that D is surjective. Let p = Zdegp a,z® € P(R) be given. Because D is

linear, it follows that
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degp degp degp
D3 o) = 3 wbn =Y oust =
k=0 k=0 k=0
Thus D is surjective.

Exercise 3.B.29. Suppose p € P(R). Prove that there exists a polynomial ¢ € P(R)
such that 5¢” + 3¢’ = p.

This exercise can be done without linear algebra, but it’s more fun to do it using linear

algebra.

Solution. Define a map D : P(R) — P(R) by Dq = 5¢” + 3¢’; it will suffice to show that
D is surjective. The linearity of D follows from the linearity of differentiation. Suppose
q € P(R) is a non-constant polynomial of degree n > 1, so that ¢ = Y 1_, a,z* with a,, # 0.

Some calculations reveals that

3a,, ifn=1,
Daq =
1 3na, "t + S0 (k + 1)[3ay,1 + 5(k + 2)ay o]zk  if n > 2.

In either case, because a,, # 0, the polynomial Dq has degree n — 1. Thus D satisfies the

hypotheses of Fixercise 3.8.26 and hence must be surjective.

Exercise 3.B.30. Suppose ¢ € L(V,F) and ¢ # 0. Suppose u € V is not in null ¢.
Prove that

V =nullp ® {au : a € F}.

Solution. For any v € V, the linearity of ¢ gives us

= Lu v) = cp(v)u U—Mu =

o) = e =el) el )
gp(v)uzwforsomewénullgp = v:w+Mu€nullg0+{au:a€F}.
p(u) p(u)

Thus V = nullp + {au : a € F}. Suppose that v € nullp N {au : a € F}, so that v = au for
some a € F. Observe that

= v—

0= ¢(v) = plau) = ap(u).
Since ¢(u) # 0, Exercise 1.B.2 implies that @ = 0 and hence that v = 0. Thus
nullp N {au:a € F} = {0}

and it follows from 1.46 that the sum V = nullp @ {au : a € F} is direct.
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Exercise 3.B.31. Suppose V is finite-dimensional, X is a subspace of V, and Y is
a finite-dimensional subspace of W. Prove that there exists T € £(V, W) such that
null7” = X and rangeT =Y if and only if dim X + dimY =dim V.

Solution. If there exists such a map T then the equality dim X + dimY = dim V' is imme-

diate from the fundamental theorem of linear maps (3.21).

Suppose that dim X +dimY = dim V. Let z,,...,x, be a basis of X, which we extend to a

basis zq, ..., x,, vy, ...,0,,, and let y;,...,y,, be a basis of Y. By assumption we have
dimX +dimY =dimV < /(+n={(+m < n=m,
sothemap T' € £L(V, W) given by T'z;, = 0 and T'v;, = y,, is well-defined (i.e. there are enough

yi's to define this map). Suppose v = ayz; + -+ + a,z, + byv; + -+ + b,,v,, € V is such that
Tv = 0. Observe that

O0=Tv=aTz; + - +a,Tx, +b;Tv; +--+0b,,Tv,, =bjy; +-+b,Y,,-
The linear independence of y,, ..., y,, then implies that b; =--- =b,, =0 and thus v € X, so

that nullT C X. Certainly X C null T and it follows that nullT = X. Furthermore, Fxercise
3.B.10 implies that

range T = span(Tzy,...,Tx,,Tvy,....,Tv,,) = span(yy, ..., Y,,) = span(yy, ..., y,) =Y,

where we have used m = n for the third equality.

Exercise 3.B.32. Suppose V is finite-dimensional with dimV > 1. Show that if
¢ : £L(V) — F is a linear map such that ¢(ST) = ¢(S)p(T) for all S,T € £(V), then

p=0.
Hint: The description of the two-sided ideals of £(V') given by Exercise 17 in Section
3A might be useful.

Solution. First note that by Exercise 3.A.16 there exist S, T € £(V) such that ST — T'S # 0.
Note further that

(ST —T58) = ¢(ST) — p(T'S) = ¢(S)p(T) — o(T)p(S) = 0,
where we have used that multiplication in F is commutative. It follows that ST —T'S € null ¢
and hence that null p # {0}.
Now suppose that E € nullp and T' € £(V). Observe that
P(ET) = p(E)p(T) =0-¢(T) =0 and @(TE) = ¢(T)p(E) = ¢(T)-0=0.
Thus ET and TE also belong to null ¢, so that null ¢ is a two-sided ideal of £(V'). As we

showed in Exercise 3.A.17, any non-zero two-sided ideal of £(V) must be £(V) itself, i.e.
nullp = £(V). It follows that ¢ = 0.
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Exercise 3.B.33. Suppose that V and W are real vector spaces and T € £(V,W).
Define T : Vo — W by

Te(u+iv) =Tu+iTv
for all u,v € V.
(a) Show that T is a (complex) linear map from Vi to W.
(b) Show that T is injective if and only if T is injective.
(c) Show that range T = W if and only if range T = W.

See Exercise 8 in Section 1B for the definition of the complexification V. The linear
map T is called the complexification of the linear map T..

Solution.
(a) Let uy + vy and uy + ivy € V& be given. Using the linearity of T, observe that
To((uy 4 ivy) + (uy +ivy)) = Te((uy + uy) +i(vy +vy))
=T(uy + uy) +iT'(vy + vy)
=Tu, +Tuy +1Tv; +iTvy
=Tuy +iTvy +Tuyg +iTv,
=Tc(uy +vy) + T (ug + ivy).
Similarly, let u 4+ iv € Vs and a + bi € C be given. The linearity of T' gives us
Te((a+bi)(u+iv)) = Te((au — bv) + i(av + bu))
=T (au — bv) + iT(av + bu)
= (aTu — bTw) + i(aTv + bTu)
= (a+bi)(Tu +iTv)
= (a+bi)Te(u+ iv).
Thus T is a C-linear map from Vi to We.
(b) Suppose that T is injective and observe that for any u + iv € Vg,
Tc(u+iw)=0 < Tu+iTv=0 < Tu=0and Tv=0
< u=0andv=0 < u+iv=0,

where we have used the injectivity of T' for the third equivalence. Thus null T = {0},

i.e. T is injective.
Now suppose that T is injective and observe that for any u € V,

Tu=0 < Tc(u+i0)=0 < u+i0=0 < u=0,
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where we have used the injectivity of T~ for the second equivalence. It follows that
nullT = {0}, i.e. T' is injective.

Suppose that rangeT = W and let w+ iz € W be given. There exist u,v € V' such
that Tu = w and Tv = z. It follows that

To(u+iv) =Tu+iTv = w + ix.
Thus range T = We.

Now suppose that rangeT~ = W and let w € W be given. There exists u 4 iv € Vo
such that T (u + iv) = w + 0. It follows that

Tec(u+iw)=Tu+iTv=w+i0 = Tu=w.

Thus rangeT = W.
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3.C. Matrices

Exercise 3.C.1. Suppose T' € £(V,W). Show that with respect to each choice of bases

of V and W, the matrix of T" has at least dimrange 7" nonzero entries.

Solution. Let vy, ...,v,, be a basis of V and wy, ..., w,,, be a basis of W, so that the matrix of

T with respect to these bases is the m-by-n matrix M (T) whose entries A; ; are defined by
Tv, = Al’kwl + -+ Amvkwm.

Let p = dimnullT and ¢ = dimrangeT’, so that p + ¢ = n. Because the list v,,...,v,, is lin-
early independent, at most p of the v,’s can belong to null 7. Equivalently, at least n —p = ¢

of the v,’s do not belong to nullT'. Letting v, be such a vector, we have
Tv, = Ay pwy + -+ Ay pwp, F 0.

This implies that at least one of the scalars A; ; is non-zero, i.e. column k of M(T') has at
least one non-zero entry. Since there are at least ¢ choices of k resulting in a non-zero column

k of M (T), we see that M (T) has at least ¢ = dimrange T non-zero entries.

Exercise 3.C.2. Suppose V and W are finite-dimensional and T € £(V,W). Prove
that dimrangeT = 1 if and only if there exist a basis of V and a basis of W such that
with respect to these bases, all entries of M (T') equal 1.

Solution. Suppose there exists a basis vy, ...,v,, of V and a basis wy, ..., w,,, of W such that

with respect to these bases all entries of M (T') equal 1. That is,
Tv, = =Tv, =w; +-+w,.
It follows from Exercise 3.B.10 that
range T' = span(T'vy, ..., Tv,) = span(w; + - + w,, ).

Because wy,...,w,, is linearly independent, we must have w; + -+ w,, # 0 and thus

m

Wy, ..., w,, is a basis of rangeT". It follows that dimrangeT = 1.

To prove the converse, let us first prove the following lemmas.
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Lemma L.1. If W is finite-dimensional with dim W = m and w € W is non-zero, then
there exists a basis wy, ..., w,, of W such that w = w; + --- + w,,,.
Proof. Note that w being non-zero implies m > 1. If m =1 then take w; = w; other-

wise, extend the list w to a basis w, wy, ..., w,,_; of W and define

Wy =W— Wy — = Wy g,

so that w = w; +--- + w,,. Observe that each vector in the basis w,wy, ..., w,,_; can
be expressed as a linear combination of vectors from the list wy, ..., w,,. It follows that

W = span(wj...,w,,) and hence, by 2.42, w,, ..., w,, is a basis of W. O

Lemma L.2. If V is finite-dimensional with dim V' = n and U is a subspace of V with
U # V, then there exists a basis vy, ...,v,, of V such that v, ¢ U for each k € {1, ...,n}.

Proof. Note that U # V implies n > 1. We will construct the required basis v, ..., v,

via the following process.

Step 1. Because U # V, there exists some v; € V such that v; ¢ U, which implies that
vy # 0. If span(v;) = V then the process stops and v; is the required basis. Otherwise,

move to step 2.

Step k. Suppose we have chosen linearly independent vectors vy, ..., v;,_;, none of which
belong to U, such that span(vq,...,v;_;) # V. Observe that

span(vy,...,v_1)UU =V = U Cspan(vy,...,U_1)
= span(vy,...,v,_1) =V,
where we have used Exercise 1.C.12 and the fact that span(vy, ..., v;_;) is not contained

in U (since v; ¢ U) for the first implication. Given that span(vy,...,v,_;) # V, it must
be the case that span(vy,...,v,_;) UU # V and thus there exists some v, € V such that

vy, & span(vq,...,v,_1) and v, ¢ U.
It follows from Exercise 2.A.13 that the list vy,...,v; is linearly independent. If

span(vq, ...,v;) = V then the process stops and vy, ..., v, is the required basis. Other-

wise, move to step k + 1.

Because V is finite-dimensional, this process must stop after a finite number of steps

(indeed, it stops after n steps). O

Returning to the exercise, suppose that dimrangel’ = 1, so that rangel" has a basis w. By

Lemma L.1 there is a basis wy, ..., w,,, of W such that w = w; + --- + w,,,, and by Lemma 1.2

there is a basis uq,...,u,, of V such that each wj ¢ nullT. For any k € {1,...,n} we have

Tu, € rangeT = span(w) and thus T'u;, = A\ w for some scalar \;; this scalar must be non-
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zero since Tuy, # 0. Let v, = A\ u, and observe that, because each A\;! is non-zero, vy, ..., v
is a basis of V. It follows that

n

T, =w=w, ++w,

for each k € {1,...,n}. Thus with respect to the bases vy, ...,v,, and wy, ..., w,, all entries of
M(T) equal 1.

Exercise 3.C.3. Suppose vy, ...,v,, is a basis of V and w,, ..., w,, is a basis of W.

(a) Show that if S,T € £(V,W), then M (S +T) = M(S) + M (T).
(b) Show that if A € F and T' € £(V, W), then M(AT) = AM(T).
This exercise asks you to verify 3.35 and 3.38.

Solution.

(a) Suppose M (S) has entries A; , and M (T) has entries By, i.e.
Svp = Ay pwy + -+ A, pw,, and  Tv = By ywy + -+ B, pw,,.
It follows that
(S+T)(vy,) = Svp + Ty, = (Al,k: + Bl,k)wl + et (Am,k + Bm,k)wm'

Thus M (S + T') has entries A, ; + B, ;. That is, M (S +T) = M(S) + M(T).

(b) Suppose M(T) has entries A; ;, i.e.
T’Uk - ALkwl + A + Am,kwm
It follows that

(AT)(vy,) = ATvp = (M) p)w; + -+ (A, )w

Thus M (S + T) has entries AA; ;. That is, M(AT) = AM(T).

Exercise 3.C.4. Suppose that D € £(P5(R), P5(R)) is the differentiation map defined
by Dp = p’. Find a basis of P5(R) and a basis of P,(R) such that the matrix of D with

respect to these bases is
1 0
0 0].
0 0

Compare with Example 3.33. The next exercise generalizes this exercise.

S = 9
o O

Solution. Take 23,22 2,1 as a basis of P5(R) and 3z2%,2x,1 as a basis of P,(R) and ob-
serve that

D(z%) =3z%, D(2?)=2z, D(z)=1, and D(1)=0.

Thus the matrix of D with respect to these bases is
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o = O
_ o O

1 0
0 0].
0 0

Exercise 3.C.5. Suppose V and W are finite-dimensional and T' € £(V, W). Prove that
there exist a basis of V' and a basis of W such that with respect to these bases, all entries

of M (T) are 0 except that the entries in row k, column k, equal 1if 1 < k < dimrangeT'.

Solution. Let vy, ...,v,, be a basis of nullT and extend this to a basis uy, ..., u,, vy, ..., v,,
of V' (note the ordering). As the proof of 2.33 shows, we then have U NnullT = {0}, where
U = span(uy, ..., u,y). The restriction of T to U is a linear map in its own right. Moreover,

this restriction is injective:

velUandTu=0 = wvweUNuullT={0} = wu=0.

It then follows from Exercise 3.B.9, Exercise 3.B.10, and Exercise 3.B.11 that the list
Tuq,...,Tu, is a basis of {Tu:u € U} =rangeT. Thus dimrangeT = ¢. Extend the list
Tuq,...,Tu, to a basis Tuq, ..., Tuy, wq, ...,w, of W and let M (T) be the matrix of T with
respect to the bases uy, ..., uy, vy, ..., v,, and Tuq, ..., Tu,, wq, ..., w, . If M(T) has entries Ak
then notice that Aj7k =1lifj=kand 1 <k </¢=dimrangeT, and Aj7k = 0 otherwise.

Exercise 3.C.6. Suppose vy, ..., v, is a basis of V and W is finite-dimensional. Suppose
T € £(V,W). Prove that there exists a basis wy, ..., w,, of W such that all entries in the
first column of M (T') [with respect to the bases vy, ...,v,, and wy,...,w,] are 0 except

for possibly a 1 in the first row, first column.

In this exercise, unlike Exercise 5, you are given the basis of V instead of being able

to choose a basis of V.

Solution. If v; € nullT then let wy, ..., w,, be any basis of W. Since T'v; = 0, it follows that
the first column of M(T) is zero.

Suppose that v; ¢ null T, so that Tv; # 0. Let w; = T'v; and extend this to a basis wy, ..., w,,
of W. It follows that the entries in the first column of M (T') are all 0 except for a 1 in the

first row.

Exercise 3.C.7. Suppose wy, ..., w,, is a basis of W and V is finite-dimensional. Suppose
T € £(V,W). Prove that there exists a basis vy, ...,v,, of V such that all entries in the
first row of M (T') [with respect to the bases vy, ...,v,, and wy,...,w,] are 0 except for

possibly a 1 in the first row, first column.

In this exercise, unlike Exercise 5, you are given the basis of W instead of being able

to choose a basis of W.
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Solution. Let uq,...,u,, be any basis of V' and suppose M (T, (uq, ..., u,,), (wy, ...,w,,)) has
is the desired basis. Other-

wise, there exists some 4 € {1,...,m} such that A, ; is non-zero. Let A = Al_,i and define

entries A; ;. If the first row of this matrix is zero then uy, ..., u,,

'Ul - )\ui, ’U,L' -

— Ay, and v, = uy, — AAy pu, for 2 <k <m and k # 1.

Because each u;, belongs to span(vy,...,v,,), the list vy, ..., v,, spans V. It follows from 2.42

that vy, ...,v,, is a basis of V. Now observe that

T’U1 = ATU'L = )\(Al,iwl + -+ Amiwn) = 1’!1)1 4+ + XA w

nz n’

T’U,L' = Tul — Al,l(ATui) = ALlwl + -+ An71wn — Al,l (w1 + -+ )\An an)
- Owl + ot + (A?'L,l - )\Al,lA?’L,’L)w'rL
For 2 <k <m and k # 1,

T’Uk = T’uk — Al,k()\Tu’L) = Al’kwl + .-+ An’kwn — Alyk(wl -+ AA =W )

TLZ n

= Owl + -+ (An,k — AAl,kAn,i>wn

Thus the entries in the first row of the matrix of T with respect to the bases v, ...,v,, and

m

Wy, ..., w,, are 0, except for a 1 in the first column.

Exercise 3.C.8. Suppose A is an m-by-n matrix and B is an n-by-p matrix. Prove that
(AB)j,- = Ajy.B

for each 1 < j < m. In other words, show that row j of AB equals (row j of A) times

B.

This exercise gives the row version of 3.48.

Solution. (AB)j, is a 1-by-p matrix whose entry in the k™ column is
((AB)J}')U“ = (AB)jk = ZAj,rBr,k
r=1

A; . is a 1-by-n matrix and so A;.B is a 1-by-p matrix whose entry in the k™ column is

n

(4;.B)1k =Y _(A;.)1rB, Zn: A;,B,,
r=1

r=1

Thus (AB);, = A, .B.
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Exercise 3.C.9. Suppose a = (a; - a, ) is a 1-by-n matrix and B is an n-by-p ma-

trix. Prove that

aB=a,B;.++a,B, .

In other words, show that aB is a linear combination of the rows of B, with the scalars

that multiply the rows coming from a.

This exercise gives the row version of 3.50.

Solution. aB is a 1-by-p matrix whose entry in the k™ column is

n
(aB)1,k = ZarBryk =a; By + - +a,B, -

r=1

Thus
aB=a,B; +-+a,B, . .

Exercise 3.C.10. Give an example of 2-by-2 matrices A and B such that AB # BA.

Solution. Let

S

|
~—
[a)

10 (11
0) and B_(OO>

= (1) ()~ ns

Exercise 3.C.11. Prove that the distributive property holds for matrix addition and

and observe that

matrix multiplication. In other words, suppose A, B,C, D, E, and F are matrices whose
sizes are such that A(B+ C) and (D + E)F make sense. Explain why AB + AC and
DF + EF both make sense and prove that

A(B+C)=AB+AC and (D+E)F = DF + EF.

Solution. For B 4 C' to make sense, B and C must have the same sizes; suppose they are

both n-by-p matrices. For A(B + C) to make sense, A must then be an m-by-n matrix for

some m. Given this, both AB and AC' are m-by-p matrices and thus AB + AC makes sense.

Similarly, suppose D and E are both m-by-n matrices. For (D + E)F' to make sense, F' must
be an n-by-p matrix for some p. Given this, both DF and EF' are m-by-p matrices and thus
DF + EF makes sense.

The entry of A(B+ C) in row j, column k is given by
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n

ZAj,r(B—i_C)T,k:ZAj,r(Br,k+C ZAQT rk+ZAyr r,k
r=1

r=1

where we have used distributivity in F. The expression on the right-hand side gives the entry
of AB+ AC in row j, column k. Thus A(B+ C) = AB+ AC. A similar argument shows
that (D+ E)F = DF + EF.

Exercise 3.C.12. Prove that matrix multiplication is associative. In other words, sup-
pose A, B, and C are matrices whose sizes are such that (AB)C makes sense. Explain

why A(BC) makes sense and prove that
(AB)C = A(BC).

Try to find a clean proof that illustrates the following quote from Emil Artin: “It is my
experience that proofs involving matrices can be shortened by 50% if one throws the

matrices out.”

Solution. If A is an m-by-n matrix then for AB to make sense, B must be an n-by-p matrix
for some p, so that AB is an m-by-p matrix. For (AB)C to make sense, C must then be a p
-by-¢q matrix for some ¢, so that (AB)C is an m-by-q matrix. Thus BC is an n-by-q matrix
and A(BC) is an m-by-¢q matrix.

Let eq,...,e, be the standard basis of F", let f;,..., f,,, be the standard basis of F, and
define R € L(F",F™) by Re, = Ay . f1 + -+ A, fr,- Thus, with respect to the standard
bases, M(R) = A. Define S € £(FP,F") and T € £(F9,FP) similarly, so that M(S) = B
and M (T) = C, with respect to the standard bases. Now observe that

(AB)C = (M(R)M ()M (T) "2 2(rS) 2 (T) "L 2 (RS)T)

2 a(resT) 2 MR (ST) "2 M (R)M(8)M(T)) = ABO);

the number above the equals sign is the textbook reference justifying the equality.

Exercise 3.C.13. Suppose A is an n-by-n matrix and 1 < j, k < n. Show that the entry

in row j, column k, of A3 (which is defined to mean AAA) is

35 Ay A

p=1 r=1

Solution. By the definition of matrix multiplication, we have

n n

(A%)5 = (A24);, =) (A%);, A, = Z (Z A A, 7«) =2 i; i AprAr -

r=1
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Exercise 3.C.14. Suppose m and n are positive integers. Prove that the function

A A'is a linear map from F™" to F™»™,

Solution. Let A, B € F™™ and A € F be given. Observe that
((A+B)"), ;= (A+B)jk = Aj 4 + B = (A)k; + (B,

(A", = Ak = A 5 = MAY ;.

)

Thus (A+ B)' = A* + B* and (AA)" = \A".

Exercise 3.C.15. Prove that if A is an m-by-n matrix and C' is an n-by-p matrix, then
(AC)" = Ct A",

This exercise shows that the transpose of the product of two matrices is the product of

the transposes in the opposite order.

Solution. Observe that

n

((AC)'), , = (AC) 1 = iAj,rcr,k =3 () (AT, = (CPAY) .

r=1

Thus (AC)" = CtAt.

Exercise 3.C.16. Suppose A is an m-by-n matrix with A # 0. Prove that the rank of A
is 1 if and only if there exist (cy, ..., c,,) € F™ and (dy, ...,d,,) € F" such that A; , = c;d;

ey Wy

for every j =1,...,m and every k=1, ..., n.

Solution. If the rank of A is 1 then by 3.56 there is an m-by-1 matrix C and a 1-by-n matrix
R such that A = CR; take c; to be the j™ entry of C' and take d; to be the k™ entry of R.

Now suppose there exist (cy,...,c,,) € F™ and (di,...,d,) € F" such that A;, = c;d, for

every j=1,...,m and every k = 1,...,n. If we define

!
C = ( ) cF™! and D= (dl dn) c Fl,n’

Cm

then A = CD. By (3.51) (a), every column of A is a scalar multiple of C. It follows that
rank A < 1, and since A # 0 we must have rank A > 1. Thus rank A = 1.
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Exercise 3.C.17. Suppose T € £(V), and uy, ..., u,, and vq, ..., v,, are bases of V. Prove

that the following are equivalent.
(a) T is injective.
(b) The columns of M (T) are linearly independent in F™!,
(c) The columns of M (T) span F™1.
(d) The rows of M (T) span F1:m,
(e) The rows of M(T) are linearly independent in F1,™,
Here M (T) means M (T, (uy, ..., u,), (1, ...y 0,,))-

Solution. Suppose that M (T') has entries A, ; and suppose that (a) holds. Let by, ...,b,, be

n

scalars such that

Ay Ay, bjAy 1+ + b4, 0
bl ¢ | +4b,] 1 | = : —|:]

A, A, biA, 1+ +b,4,., 0
Let v = byuy + -+ + b, u,, and observe that
Tu=bTu; +--+b,Tu,
= b, (A1,1U1 4ot An,lvn) 4o bn(Al,nU1 4ot An,nvn)
= (b Ay + b A v 4+ (b Ay + o+ b A, L) v,
= 0vy; + -+ 0v,, =0.

Thus u € nullT. Since T is injective, this implies that w = 0. The linear independence of
the basis uq, ..., u,, then gives us b; = --- =0b,, = 0. Thus the columns of M (T) are linearly
independent, i.e. (b) holds.

Now suppose that (b) holds and let w = bjuy + -+ + b, u,, be such that Tu = 0. As in the

previous paragraph, this is equivalent to
(blAl,l + et bnAl,n)Ul + et (blAn,l + ot bnAn,n)Un = 0.
The linear independence of the basis vy, ...,v,, then implies that

blAl,l + et bnAl,n == blAn,l + et bnAn,n = O’

which in turn gives us

bjAj 1+ + 0,4, A4 A, 0
: =b | ¢ [+-+0,] : —(z)
blAn,l + ot bnAn,n An,l An,n 0
It follows from the linear independence of the columns of M (T') that b; =---=10b,, =0, so

that u = 0. Thus T is injective, i.e. (a) holds. This gives us the equivalence of (a) and (b).
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For the equivalence of (b) and (c), note that dim F™! = n by 3.40 and thus, by 2.38 and
2.40, a list of n vectors in F™! is linearly independent if and only if it spans F™!. The same

argument gives us the equivalence of (d) and (e), since we also have dim F1'™ = n by 3.40.

Finally, the equivalence of (c¢) and (d) is given by 3.57.
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3.D. Invertibility and Isomorphisms

Exercise 3.D.1. Suppose T € £(V,W) is invertible. Show that T~! is invertible and

(T-H) ' =T.

Solution. By the definition of invertibility of T' we have TT~! =TI and T-!T = I. These

equations show that 7! is invertible and its inverse is 7.

Exercise 3.D.2. Suppose T € £L(U,V) and S € £(V,W) are both invertible linear
maps. Prove that ST € £(U, W) is invertible and that (ST) " = T-15-1.

Solution. Using the algebraic properties of 3.8, observe that
TS IST =T ' IT=T"'T=1 and STT 'S '1=8IS'1=8§1=1I.

Thus T-1S~'ST is the identity map on U and STT-!S~! is the identity map on W. It
follows that ST is invertible and that (ST)™' = 71§~

Exercise 3.D.3. Suppose V is finite-dimensional and T' € £(V'). Prove that the follow-

ing are equivalent.
(a) T is invertible.
(b) Tvy,...,Tv,, is a basis of V for every basis vy, ...,v,, of V.

(¢) Tvy,...,Tv, is a basis of V for some basis vy, ...,v,, of V.

Solution. Suppose that (a) holds and let vy, ...,v,, be a basis of V. Since T is invertible, it
is injective. It follows from Exercise 3.8.9 that Tv,, ..., Tv,, is linearly independent. Thus by
2.38, Tvy, ..., Tv,, is a basis of V. Hence (b) holds.

Suppose that (b) holds. By 2.31 there is a basis vy, ...,v,, of V. By assumption Tv,...,Tv,,
is a basis of V. Thus (c) holds.

Suppose that (c) holds, so that there is a basis vy, ..., v,, of V such that Tvy, ..., T'v,, is a basis
of V. Let v = ayv; + - + a,,v,, be such that T'v = 0 and observe that

0=Tv="T(ayv; + - +a,v,) =a;Tv; +-+a,Tv,.
The linear independence of Tv, ..., Tv,, then implies that a; = -+ = a,, = 0 and thus v = 0.

It follows that nullT' = {0} and hence that T is injective. Thus by 3.65, T' is invertible.

Exercise 3.D.4. Suppose V is finite-dimensional and dim V' > 1. Prove that the set of

noninvertible linear maps from V to itself is not a subspace of £(V).
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Solution. By 3.65 this is equivalent to showing that the set of linear maps from V to itself

which are not injective is not a subspace of £(V'). We showed this in Exercise 3.B.7.

Exercise 3.D.5. Suppose V is finite-dimensional, U is a subspace of V, and
S € L(U,V). Prove that there exists an invertible linear map T from V to itself such
that Tu = Su for every u € U if and only if S is injective.

Solution. If there is such a map 7', then
nullS =nullTNU = {0} NU = {0}.

Thus S is injective.

Suppose that S is injective. Let uq,...,u,, be a basis of U, which we extend to a basis
Upy ooy Uy, T,y -oey T, Of V. The injectivity of S and Exercise 3.8.9 imply that Su,, ..., Su,, is
linearly independent and thus can be extended to a basis Suy, ..., Su,,, ¥y, ---,y,, of V. Define
T € £L(V) by Tuy, = Suy, and T'z), = y;,. Certainly T" extends S. Furthermore, since T' maps
a basis of V' to a basis of V, T must be invertible by Exercise 3.B.3.

Exercise 3.D.6. Suppose that W is finite-dimensional and S,T € £(V, W). Prove that
null S = null T if and only if there exists an invertible E € £(W) such that S = ET.

Solution. Suppose there exists an invertible E € £(W) such that S = ET, which implies
T = E~1S. Tt follows from Exercise 3.B.25 that nullT C null S and null S C null 7. Thus
nullS = null T

Now suppose that nullS = nullT. It follows from Exercise 3.B.25 that there are maps
R,R" € £L(W) such that T = RS and S = R'T and thus by Exercise 3.B.23 we have
dimrangeT = dimrange S. Let Tvq, ..., T'v,, be a basis of range T" and notice that this linearly
independent list is equal to R(Svy), ..., R(Sv,,). It follows from Exercise 3.A.4 that the list
Svy, ..., Sv,,

Extend these lists to bases

is linearly independent and hence is a basis of range S, since dimrange S = m.

Tvy,....Tv,,, 15y, and Svy,...,50,,,Y1, - Yn

m)

of W, and define E € £L(W) by E(Tv,) = Sv, and Ex; = y,. Notice that E maps a basis of
W to a basis of W it follows from Exercise 3.1.3 that E is invertible. For any v € V' we have
Tv=aTvy + - +a,,Tv,, for some scalars aq, ..., a,,. As we showed in Exercise 3.3.25, this

implies Sv = a,Sv; + - + a,,,Sv,,, since nullT = null S. It follows that
E(Tv) =aE(Tv,) + -+ a,, E(Tv,,) = a;Sv; + - + a,,Sv,, = Sv.

Thus S = ET.

Exercise 3.D.7. Suppose that V is finite-dimensional and S, T € £(V,W). Prove that
range S = range T if and only if there exists an invertible E € £(V') such that S = TE.
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Solution. Suppose there exists an invertible £ € £(V) such that S = TE, which implies
T = SE~L. It follows from Exercise 3.3.26 that rangeT C range S and range S C rangeT.
Thus range S = range T

Now suppose that range S = rangeT. Let uq,...,u,, be a basis of nullS and extend this
to a basis of uy,...,u,,,x,...,z, of V; as the proof of the fundamental theorem of linear
maps (3.21) shows, Sxzy,...,Sz, is a basis of range S. Our assumption range S = rangeT
implies that Sz, = Ty, for some y,,...,y, € V, and also that dimnull7 = dimnull § = m.

Let vy, ...,v,, be a basis of nullT" and suppose we have scalars a,...,a,,, by, ...,b,, such that
ayvy + -+ @V, +01y; + -+ by, = 0.
Applying T to both sides of this equation gives us
b Ty, +--+0b,Ty, =b;Sxy +--+b,5x, =0.
The linear independence of Sz, ..., Sz, implies that b; =--- =b,, = 0 and the linear inde-
pendence of vy, ...,v,, then gives us a; =+ =a,, = 0. Thus the list vy,...,v,,, Y1, ..., ¥,, 15
linearly independent and hence is a basis of V' by 2.38. Define E € £(V) by Eu, = v, and
Ezx, = y,. Because E maps a basis of V' to a basis of V, Exercise 3.D.3 shows that E is
invertible. For any v = ayu; + -+ a,,u,, + bjx; + -+ b,x, € V, observe that
T(Ev) =T(agvy + - + Qp Uy +b1ys + -+ 0,9,,)
=bTy, + - +b,Ty, = b5z, + -+ b,5z, = Sv.

Thus S =TE.

Exercise 3.D.8. Suppose V and W are finite-dimensional and S,T € £(V,W). Prove
that there exist invertible £, € £(V) and E, € £(W) such that S = E,TE, if and only
if dimnull § = dimnull 7.

Solution. Suppose there exist such maps E;, E,. It follows from Fxercise 3.8.22 that

dimnull § < dimnull 5 4+ dimnull 7' + dimnull £; = dimnull7T'.

Notice that T' = E5'SE!; repeating the previous argument gives us dimnull7 < dimnull §
and thus dimnull § = dimnull 7.

Now suppose that dimnull S = dimnull 7. Let u, ..., u,, be a basis of null § and let vy, ..., v
be a basis of null T. Extend these to bases

m

Uy ooy Uy y Tyy oeey T

ey U s noand v, .0, Y Yy,

of V, and define E; € £(V) by Eju;, = v, and E,z; = y,. Because E; maps a basis to
a basis, Exercise 3.D.3 shows that E; is invertible. It is straightforward to verify that
null S = null TE; and thus by Exercise 3.D.6 there is an invertible E, € £(W) such that
S =E,TE,.
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Exercise 3.D.9. Suppose V is finite-dimensional and T : V' — W is a surjective linear
map of V onto W. Prove that there is a subspace U of V such that T'|;; is an isomor-
phism of U onto W.

Here T'|; means the function T restricted to U. Thus T |y is the function whose domain
is U, with T'|; defined by T|; (u) = T'u for every u € U.

Solution. By Exercise 3.B.11 there is a subspace U of V' such that
UNnullT ={0} and W =rangeT ={Tu:ueU}.

The equation U NnullT = {0} shows that T|; is injective and the equation
W = {Tu: u € U} shows that T is surjective. Thus T'|;; is an isomorphism of U onto W.

Exercise 3.D.10. Suppose V and W are finite-dimensional and U is a subspace of
V. Let

E={T e LV, W):UCnullT}.
(a) Show that & is a subspace of £(V,W).
(b) Find a formula for dim & in terms of dim V', dim W, and dim U.
Hint: Define ® : L(V,W) — L(U,W) by ®(T) = T|y. What is null ®? What is

range ®?

Solution.

(a) Because the null space of the zero map is all of V, we certainly have 0 € £. Suppose
that S,T € £ and X € F. For any u € U, observe that

(S+T)(u)=Su+Tu=0 and (AT)(u)=ATu=0,
where we have used that u € null 'S and v € null T'. It follows that U C null(S + T') and
U C null(AT), so that S+ T € £ and AT € &. Thus & is a subspace of £(V,W).
(b) Following the hint, define ® : L(V, W) — L(U,W) by ®(T) =T|y; it is straightfor-
ward to verify that @ is linear. Note that
®(T)=0 & T|y=0 & Tu=0forallueU <« U CnulT.
Thus null® = &. For any S € L(U,W) we can use Exercise 3.B.13 to extend S
to a linear map T € £L(V,W); it follows that ®(T) = S. Thus ® is surjective, i.e.

range ® = £(U,W). It now follows from the fundamental theorem of linear maps (3.21)
and 3.72 that

dim £(V, W) = dimnull® + dimrange® = dim¢ =dimW(dimV —dimU).
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Exercise 3.D.11. Suppose V is finite-dimensional and S,T € £(V). Prove that

ST is invertible <« S and T are invertible.

Solution. If S and T are invertible then Exercise 3.D.2 shows that ST is invertible. If S is
not invertible then S is not surjective by 3.65, so that dimrange S < dim V. It follows from
Exercise 3.B.23 that

dimrange ST < dimrange S < dim V.

Thus ST is not surjective and hence not invertible. A similar argument shows that if T is

not invertible then ST is not invertible.

Exercise 3.D.12. Suppose V is finite-dimensional and S,T,U € £(V) and STU = I.
Show that 7 is invertible and that 7! = US.

Solution. It follows from 3.68 that S commutes with TU and that ST commutes with
U. Thus

STU =] = TUS=TIandUST =1.
Hence T is invertible and T~ = US.

Exercise 3.D.13. Show that the result in Exercise 12 can fail without the hypothesis

that V is finite-dimensional.

Solution. Consider V = F*. Let S be the backward shift operator, let T be the forward
shift operator, and let U be the identity on F*°. For any (z,, 5, x3,...) € F*° observe that

(STU)(xl,ZL'Q,JJ?’, ...) - S(T($1,$2,LE3, ...)) - S(O, $1,$2,QJ3, ...) - (1‘1,182,1‘3, ...).

Thus STU = I. However, T is not invertible because T is not surjective: (1, 0,0, ...) ¢ range T'.

Exercise 3.D.14. Prove or give a counterexample: If V' is a finite-dimensional vector
space and R, S,T € £(V) are such that RST is surjective, then S is injective.

Solution. This is true. RST must be invertible by 3.65 and thus by Exercise 3.D.11 § is

invertible and hence injective.

Exercise 3.D.15. Suppose T' € £(V) and vy, ..., v,, is a list in V such that Tvy, ..., Tv

spans V. Prove that vy, ...,v,, spans V.

m

Solution. Using 2.30 we can reduce the list Tvy,...,Tv,, to a basis T'vg,, ..., Tvg, for some
indices 1 < k; < - < k,, < m. It follows from Exercise 3.A.4 and 2.38 that vg,,...,v, is a
basis of V' and thus
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V= span(vkl, ...,vkn) C span(vy,...,v,,) = V =span(vy,...,v,,).

Exercise 3.D.16. Prove that every linear map from F™! to F™! is given by a matrix
multiplication. In other words, prove that if T' € £(F™! F™!), then there exists an m

-by-n matrix A such that Tz = Ax for every z € F™1.

Solution. Let A be the matrix of T with respect to the standard bases of F™! and F™!.
With respect to these standard bases we have M (z) = x and M (y) = y for any x € F™! and
y € F™1 It then follows from 3.76 that

Te=MTz)=M(T)M(x) = Ax

for every z € F™1,

Exercise 3.D.17. Suppose V is finite-dimensional and S € £(V). Define 4 € £(£(V))
by

A(T) = ST
for T € £L(V).
(a) Show that dimnull A = (dim V') (dimnull S).
(b) Show that dimrange A = (dim V')(dim range S).

Solution.

(a) For T € £(V), note that ST = 0 if and only if rangeT' C null S. Thus we can identify
null A with £(V,null S) and it follows from 3.72 that

dimnull A = (dim V')(dim null S).

(b) For R € £(V), Exercise 3.B.26 implies that R = ST for some T € £(V) if and only
if range R C range S. Thus we can identify range A with £(V,rangeS) and it follows
from 3.72 that

dimrange A = (dim V')(dim range S).
Exercise 3.D.18. Show that V and £(F,V) are isomorphic vector spaces.

Solution. Define a map ® : £(F,V) — V by

It is straightforward to verify that @ is linear. Now define a map ¥ : V — £(F,V) by
[V (v)](z) = zv.

It is straightforward to check that ¥(v) indeed belongs to £(F,V) for any v € V. For any
T € £(F,V), observe that
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(W (2(T))](x) = [¥(T(1))](z) = 2T(1) = T(x).

Thus U(®(T)) =T, i.e. Yo ® is the identity map on £L(F, V). Now let v € V be given and

observe that
D(U(v)) = [F(0)](1) = v.

Thus ® o ¥ is the identity map on V. As the proof of 3.63 shows, it now follows that ¥ is a

linear map. Thus @ is an isomorphism from £(F, V') to V and its inverse is U.

Exercise 3.D.19. Suppose V is a finite-dimensional and 7' € £(V'). Prove that T has
the same matrix with respect to every basis of V if and only if T is a scalar multiple of

the identity operator.

Solution. If T'= AI for some A € F then the matrix of T' with respect to any basis of V'
must be AI (here I is the identity matrix).

Suppose that 7" has the same matrix with respect to every basis of V, i.e. there is some

matrix A with entries A, such that

Tup, = Aq puy + -+ Ay, Uy,

of V. Let vy,...,v,, be a fixed basis of V and let k € {1,...,m} be

given; it is straightforward to verify that vy, ..., %vk, ..., U, is also a basis of V. By assumption

for any basis uq, ..., u,,

we must then have
T(3vp) = Ay v+ 4 A o (30) + - + Ay U,
= Tv, =24, pvy + -+ Ag v + -+ 24, 10,
On the other hand we must have
Tv, = Ay gy + -+ Ag pvg + -+ Ay 10,
Hence by unique representation we must have A; , =24, ., so that A, , =0, for all j # k;

it follows that T'u), = Ay, pu, for any basis uy,...,u,, of V. Let 1 < j <k <m be given and

consider the basis vy, ..., vy, ..., v;, ..., v, of V, i.e. the basis obtained by swapping the basis
vectors v; and v. This gives us the two equations

TUk = Ak’kvk and T'Uk = Aj,jvk'

It follows from unique representation that A; ; = Ay ;. and thus, letting A = A4, ;, we have
Tv, = Ay, for all k € {1,...,m}. Thus T' = AI.
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Exercise 3.D.20. Suppose ¢ € P(R). Prove that there exists a polynomial p € P(R)
such that

q(z) = (2 + 2)p” (z) + 22p(z) + p(3)
for all x € R.
Solution. There is a non-negative integer m such that ¢ € 2,,,(R); either m = degqif ¢ # 0
orm=0if ¢g=0. Define T: ?,,(R) = ?,,(R) by
Tp = (2° + z)p” (2) + 22p"(z) + p(3).

It is straightforward to check that T is linear and some calculations reveal that degTp = degp
for any p € 2,,(R). It follows that if p € 2,,(R) is such that T'p = 0, so that degTp = —o0,
then degp = —o0, i.e. p =0. Thus T is injective. By 3.65 this implies that T is surjective
and so there must exist some p € 2,,(R) such that Tp = q.

Exercise 3.D.21. Suppose n is a positive integer and A; , € F for all j,k=1,...,n.

Prove that the following are equivalent (note that in both parts below, the number of

equations equals the number of variables).

(a) The trivial solution z; = - = x,, = 0 is the only solution to the homogeneous sys-

tem of equations

Z Al’kxk =0
k=1

2": A,z = 0.
k=1

(b) For every ¢y, ...,c, € F, there exists a solution to the system of equations

n
E :Al,kwk =G
k=1

Z Anvkxk = Cn.
k=1
Solution. Define T' € £(F™) by

T(.’El, ceey .'En) = (Z Al’kxkn ceey Z An,kmk)
k=1 k=1
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and notice that (a) is equivalent to the injectivity of 7" and (b) is equivalent to the surjectivity
of (b). It then follows from 3.65 that (a) and (b) are equivalent.

Exercise 3.D.22. Suppose T' € £(V') and vy, ...,v,, is a basis of V. Prove that

M(T, (vy,...,v,)) is invertible <« T is invertible.

Solution. In what follows, all matrices of linear maps and vectors are understood to be with

respect to the basis vy, ...,v,, of V.
Suppose that M (T') is invertible and let B be its inverse. Define S € £(V) by
Svy = By jv1 + -+ By, Uy,
so that M (S) = B. Note that for any u,v € V we have v = v if and only if M (u) = M (v),

by unique representation in the basis vy, ...,v,,. Let v € V' be given and observe that

2 ((ST) () "L 2 (sT) M (0) “E M ()M (T M (0) = IM(v) = M (w).

The number above the equals sign is the textbook reference justifying the equality; the third
equality is justified as M (S) = B is the inverse of M (T). Thus (ST)(v) = v for all v € V|, so
that ST is the identity map on V. It follows from 3.68 that T'S is also the identity map on

V and we may conclude that T is invertible with inverse S.

The converse statement is the content of 3.86, which we now prove. Suppose that T is in-
vertible. Using 3.43, observe that

MT)M(T) = M(TT ) = M) =1=M1IT)=M(T'T) = M(T)M(T).
Thus (M(T))™" = M (T1).

Exercise 3.D.23. Suppose that u,...,u,, and vy, ...,v, are bases of V. Let T € £(V)
be such that T'v;, = u,, for each k = 1,...,n. Prove that

M(T, (vy,.ryv,)) = M, (uy, ..., u,), (V1, ..., v,))-

Solution. For ease of notation, let us write
M(T,u,v) = M(T, (uqg, ..., u,), (v, -.yv,)) and M(T,v) =M(T, (vq,...,v,))-
Note that, by 3.81,
M(T,u)M(I,v,u) = M(TI,v,u) =M (T,v,u) =1, (%)

where the last equality follows from the definition of 7. Using 3.84, 3.82, and (x), observe
that

M(T,v) = (MI,v,u) " M(T,w) M, v,u) = M, u,0)M(T,w) M, v,u) =M, u,v).
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Exercise 3.D.24. Suppose A and B are square matrices of the same size and AB = I.
Prove that BA = 1.

Solution. Suppose that A and B are n-by-n matrices and let eq, ..., e,, be the standard basis
of F™. In what follows, all matrices of linear maps are understood to be with respect to this

standard basis.
Let S, T € £(F™) be given by
Se;, = zn:Ajvkek and Te, = zn:BjJCek,
Jj=1 j=1
so that M (S) = A and M(T) = B. Using 3.43, we then have
M(ST)=M(S)M(T)=AB=1=M(I).
Thus, by the uniqueness part of the linear map lemma (3.4), we have ST = I, which implies
TS =1 by 3.68. It follows from 3.43 that
BA=MT)MS)=M(TS)=MmMI)=1.
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3.E. Products and Quotients of Vector Spaces

Exercise 3.E.1. Suppose T is a function from V' to W. The graph of T is the subset of
V x W defined by

graph of T = {(v,Tv) e VX W :v € V}.
Prove that T is a linear map if and only if the graph of T is a subspace of V' x W.
Formally, a function T from V to W is a subset T of V' x W such that for eachv € V,

there exists exactly one element (v, w) € T. In other words, formally a function is what
is called above its graph. We do not usually think of functions in this formal manner.
However, if we do become formal, then this exercise could be rephrased as follows:
Prove that a function T from V to W is a linear map if and only if T is a subspace of
V xW.

Solution. Let graph(T') be the graph of T'. First suppose that T is linear, so that T(0) = 0;
it follows that (0,0) = (0,7°(0)) € graph(T'). For any (u,Tu),(v,Tv) € graph(T') and X € F,
the linearity of T implies that

(u, Tu) + (v, Tv) = (u+v,Tu+Tv) = (u+v,T(u+v)) € graph(T),
A(v, Tv) = (v, \Tv) = (Av, T'(\v)) € graph(T).
Thus graph(T') is a subspace of V' x W.

Now suppose that graph(T') is a subspace of V' x W. Let u,v € V and A € F be given. Ob-

serve that
(u,Tu), (v, Tv) € graph(T) = (u,Tu)+ (v,Tv) = (u+v,Tu+ Tv) € graph(T).

Because the second component of an element of graph(7) must be T applied to the first
component, and (u 4+ v, Tu + T'v) belongs to graph(7T'), it must be that T'(u + v) = Tu + T.

Similarly,
(v,Tv) € graph(T) = A(v,Tv) = (v, \Tv) € graph(T) = T () = ATw.
Thus T is linear.

Exercise 3.E.2. Suppose that V;,..., V. are vector spaces such that V; x ---xV_ is

finite-dimensional. Prove that V; is finite-dimensional for each k =1, ..., m.
Solution. For any k € {1,...,m}, let p;, : V; x .- x V.. — V}. be given by p,(vq, ..., v,,) = vj.

It is straightforward to verify that p, is a surjective linear map and thus, by the fundamental

theorem of linear maps (3.21), range p, = V}, is finite-dimensional.
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Exercise 3.E.3. Suppose V;, ...,V are vector spaces. Prove that £(V} x -+ x VW)
and £L(Vy,W) x - x £L(V,,, W) are isomorphic vector spaces.

Solution. Define a map
¢ LV, W) x--x LV, W)= LV, xxV W),

where ®(T}, ...,T,,) is the map V; x --- x V. — W given by

(V1 ey V) > Tyvy + -+ T, 0,

T

e m)7

It is straightforward to verify that ®(77,...,T,,) is indeed a linear map for any (77, ..
and that & itself is linear.
For k € {1,...,m}, define ¢, : V}, =V} x -+ x V,_ by ¢, (v) = (0, ...,v,...,0), where the v is in

the k' position; it is straightforward to check that each ¢j, is a linear map. Define a map
U: (Vi x-xV, W)= LV, W)x-x LV, W),

where U(T') is given by (T o ¢q,...,T ot,,). The linearity of each T o ¢;, follows from the lin-
earity of T and the linearity of ¢. Let (T}, ...,T,,) € L(V, W) x --- x £L(V,,, W) be given and

observe that

G(D(Ty, o, T,)) = (B(Tyy oo T ) 0 tgs oy ®(Tyy s T ) 00, ).

For any k € {1,...,m} and v € V,, we have
[@(TY, ..., T,,)| (0 (v) = [R(Ty, .., T)](O, -y v, ., 0) = Ty (0) + -+ + Tyv + - 4 T, (0) = T

Thus ®(13,...,T,,) o t;, = T}, and it follows that ¥(®(13,...,T,,)) = (1, ...,T,,), i.e. Vo P is

the identity map on £(V;,W) x --- x L(V,,,W). Now let T' € £(V; x --- x V., W) be given

and observe that
[@(T(T)](vy, ey V) = [®(T 0 tqy ey T 0 0,,)] (V1 eey Upy)
= (Touy)(v1) + -+ (T oty)(v,)
= T(vy,...,0) + - +T(0, ..., v,,)
=T(vyy ey U,y )-
Thus ®(V(T)) =T, ie. oV is the identity map on £L(V; x - x V,  W). As the proof

of 3.63 shows, it now follows that W is a linear map. Thus ® is an isomorphism from
LV, W) x - x LV, W) to L(Vy x-xV_ W) and its inverse is ¥.

Exercise 3.E.4. Suppose W, ..., W, are vector spaces. Prove that £L(V,W; x - x W)
and L(V,W;) x --- x £L(V,W,,) are isomorphic vector spaces.

Solution. Define a map

O: LV, W) x--x LV, W,)—> LV, W) x--xW,

m)s
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where ®(T7,...,T,,) is the map V. — W, x --- x W given by

v (Tyo, ..., T, v).
It is straightforward to verify that ®(77,...,T,,) is indeed a linear map for any (13, ...,T,,),
and that @ itself is linear.
For each k€ {1,...,m}, define p, : W, x - x W, — W, by pi(wq,..,w,,)=w,; it is
straightforward to check that each p; is a linear map. Define a map

U: LV, Wy x-xW,_ )= LV, W) x-x LV, W),

where U(T) is given by (p; T, ...,p,, o T). The linearity of each p, o T is given by the lin-
earity of p, and the linearity of T'. Let (1y,...,T,,) € L(V,W;) x --- x L(V,W,.) be given

and observe that
W(@(T:l’ ...7Tm)) - (p1 o @(T:l, ...7Tm), ...,pm o @(Tl, ...,Tm)).
For any k € {1,...,m} and v € V we have
pk([(D(Tlv 7Tm)](v)) = pk(Tlva ) va) = Tkv'
Thus py, o ®(14, ...,T,,) = T}, and it follows that ¥(®(T},...,T,,)) = (1T}, ...,T,,), i.e. Yo & is
the identity map on £L(V,W;) x --- x L(V, W, ). Now let T' € £L(V, W, x --- x W, ) be given
and observe that

[@(U(T)](v) = [B(p1° T, s Py © T)](v) = (p1(T0), o0 Py (T0)) = T

Thus ®(¥(T)) =T, i.e. ®o U is the identity map on L(V,W; x - x W, ). As the proof
of 3.63 shows, it now follows that ¥ is a linear map. Thus ® is an isomorphism from
LV, W) x - x LV, W, ) to LV, W, x - x W,_ ) and its inverse is V.

Exercise 3.E.5. For m a positive integer, define V™ by

Vm =V x--xV.
N —— e’
m times

Prove that V™ and £(F™, V') are isomorphic vector spaces.

Solution. Define a map ® : L(F™, V) — V™ by
O(T) = (Tey,...,Te,,),

where ey, ...,e,, is the standard basis of F™. It is straightforward to verify that ® is linear.

o tm

Now define a map ¥ : V"™ — L(F™, V) by
(U (v1, ey 0, [(T1y ey @,y) = TqU + o+ + 2,0, -

It is straightforward to check that ¥(v,,...,v,,) indeed belongs to £(F™,V) for any
(U1, oy 0,,) € V™. For any T € L(F™, V), observe that
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(W(®(T)|(xy,-..,z,,) = [¥(Teyq,....Te, ) (xq,....z,,)
=zTe, ++z,Te,,
=T(x1e + -+ 2,6,)
=T(xq, ..., Tpy,)-

Thus U(®(T')) =T, i.e. ¥o ® is the identity map on L(F™, V). Now let (vq,...,v,,) € V™

be given and observe that

QW (vy, s 0)) = ([W (V1,0 00)](€4), s [W (015, 0)] (€)= (V1500 0)-

Thus ® o ¥ is the identity map on V™. As the proof of 3.63 shows, it now follows that ¥ is

a linear map. Thus ® is an isomorphism from £(F™ V) to V™ and its inverse is W.

Exercise 3.E.6. Suppose that v, z are vectors in V' and that U, W are subspaces of V'
such that v+ U = x + W. Prove that U = W.

Solution. Since v € v+ U = x 4+ W, there is some w € W such that v = z + w, which im-
plies that  — v = —w € W. For any u € U we have v+ u = x 4+ w for some w € W, so that
u=x—v+we€W. Thus U C W. A similar argument shows that W C U and it follows that
Uu=Ww.

Exercise 3.E.7. Let U = {(z,y,2) € R®: 22+ 3y + 52 = 0}. Suppose A C R®. Prove

that A is a translate of U if and only if there exists ¢ € R such that

A={(z,y,2) € R®: 2z + 3y + 52 = c}.

Solution. Suppose that A is a translate of U, i.e. there is some (a;,a5,a3) € R? such that
A= (ay,a9,a5) + U. Let ¢ = 2a; + 3a4 + 5az and let

W = {(z,2y,25) € R®: 22, + 32, + 525 = c}.
We need to show that A = W. Suppose that (x,,z4,x3) € A, so that
(z1, g, 3) = (a1, a9, a3) + (U, uy, u3)
for some (uq,uq,uq) € U. It follows that
2z, + 35 + 573 = 2u; + 3uy + dug + 2a4 + 3a, +5a3 =0+ c=c.
Thus A C W. If (1, x4,x5) € W then note that
2z, + 3xy + 5x3 = ¢ =2a; +3ay + 5a3 = (r; —ay,Ty—ay, x5 —ag) €U.

Thus (331,.’172,.7)3) = (a17a27a3) + (.171 —Q1,Ty — Ay, T3 — CL3) S (a17a2’a’3) + U = A and it fol-
lows that W C A. Hence A =W.

Now suppose that there is some ¢ € R such that
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A={(zy,zy,23) € R®: 2z, + 325 + bx5 = c}.
We claim that A = (£,£, ) + U. If (z;,,,%3) € A then observe that
(z1,73,73) = (§:5:15) + (11— 522~ 53— 15) € (5:5:15) + U

where (2, — £,z — §,23 — £) € U since

2(zy — ) +3(z— §) +5(w5—13) =20, + 3z, + 535 — (5 +5+5) =c—c=
Thus AC (§,6, ) +U. If (§,5,13) + (uy,up,u3) € (§,5,55) + U then
2(6 +u) +3(§5+up) +5(F+us) = (5+5+5)+2u +3u+Sug =c+0=c.
Thos (§,5,5) + (

Uy, Uy, ug3) € A and we may conclude that A = (§,£,5)+U.

oo

Exercise 3.E.8.
(a) SupposeT € £L(V,W)and ¢ € W. Prove that {x € V : Tx = c} is either the empty

set or is a translate of null T.

(b) Explain why the set of solutions to a system of linear equations such as 3.27 is

either the empty set or is a translate of some subspace of F".

Solution.

(a) If ¢ ¢ rangeT then {x € V : Tz = ¢} must be empty. Suppose that ¢ € rangeT, so
that ¢ = T'u for some u € V. We claim that {x € V : Tz = ¢} = u+ null T Indeed, for

z=u+v € u+nulT we have
Te=Tu+Tv=c = ze{zecV:Tr=c}
Thus u+nullT C {x € V : Tz = c}. If z € V is such that Tz = ¢ then observe that
Tr=c=Tu = Tx—u)=0 = z—uecnulT
= x =u+ v for some v € null7".

Thus {z € V: Tz = ¢} Cu+ nullT and our claim follows.

(b) Consider a system of linear equations

n
E Al,kmk =
k=1

n
E Achxk - Cm.
k=1

Define T' € £(F™, F™) by
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T(.'L'l, aeey .’En) - (Z Alykwk, ceey Z Am,k:xk>
k=1 k=1

and let ¢ = (¢q, ..., ¢,,,) € F™. The solution set of the system of linear equations is then

precisely the set
{(zq,..,z,) € F" : T(xy,...,x,) = c}.

As we showed in part (a), this set is either empty or is a translate of the subspace
null 7'.

Exercise 3.E.9. Prove that a nonempty subset A of V is a translate of some subspace
of V if and only if Av+ (1 — X\)w € A for all v,w € A and all A € F.

Solution. Suppose that A = z 4+ U for some z € V' and some subspace U of V. Let v,w € A
and A € F be given and note that v =z 4+ ¢ and w = z 4 u for some ¢,u € U. It follows that

MW+1=-Nw=Az+t)+(1-N(z+u)=z+M+(1—-Nu) exz+U=A.

Now suppose that Av+ (1 —AN)w € A for all v,w € A and all A € F. Because A is non-
empty, there is some z € A. We claim that —x + A is a subspace of V. Certainly
0=—xz+x € —x+ A. Suppose that —x +v,—x +w € —x + A and A € F, and observe that

2,2 wEA = —zxr4+2v€A and z,weEA = —xr+4+2weA
It follows that
(—%x—i—v)—l—(—%x—kw):—x—l—v—kweA = 2r4+v+we—x+ A

Thus (—z +v) + (—z + w) € —x + A, so that —x + A is closed under vector addition. Fur-

thermore, —z 4+ A is closed under scalar multiplication:
z2,2vEA = AN——=z+v)=—2+ M+ (1—-Nzx) € —z+ A

Thus —z + A is a subspace of V. It follows that A =z + (—x + A) is a translate of the
subspace —x + A.

Exercise 3.E.10. Suppose A; = v+ U; and A, = w + U, for some v,w € V and some
subspaces U;, U, of V. Prove that the intersection A; N A, is either a translate of some

subspace of V or is the empty set.

Solution. If A; N A, is non-empty, so that there is some z € A; N Ay, then by 3.101 we have
A, =x+ U, and Ay =z + U,. We claim that Ay N Ay =z + (U; NU,). If y € A; N A, then
Yy =2+ u; =+ uy for some u; € U; and some u, € U,. It follows that u; = uy, € U; N U,
and thus y € x4+ (U; NU,). This gives us the inclusion 4; NA, Cz+ (U;NU,). If
y=z+u€cx+ (U NU,) theny=z+uecx+U; =4, and y=z+uecz+U,=A,, so
that y € A; N Ay. Thus z + (U; NU,) C A; N A, and our claim follows.
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Exercise 3.E.11. Suppose U = {(x,Zy,...) € F> : z; # 0 for only finitely many k}.
(a) Show that U is a subspace of F°.

(b) Prove that F*° /U is infinite-dimensional.

Solution.
(a) Notice that
U={(z,zy,...) € F : there exists K such that z; =0 for all k > K}.

Certainly (0,0,0,...) € U. Suppose that (zy,x,,...), (Y1,¥s,...) € U and X € F. There
are positive integers K, L such that z, =0 for all k > K and y,, =0 for all k> L. It
follows that z;, + y, = 0 for all £k > max{K, L} and Az, = 0 for all £ > K. Thus

(1,29, ...) + (Y1,Ys,...) EU and A(zy,z,,...) €U.
It follows that U is a subspace of F.

(b) For x € F* we will use the notation z(k) to denote the k™ term of z. Let e,, € F* be

the sequence given by

e (k) = {1 if k is divisible by 27,
0 otherwise.
e; =(0,1,0,1,0,1,0,1,...),
e, =(0,0,0,1,0,0,0,1,...),
es = (0,0,0,0,0,0,0,1,...), etc.

Let m € N be given. We claim that the list e; + U, ..., e,, + U is linearly independent.

Suppose a, ..., a,, are such that
CLl(el + U) + ot am(em + U) = (a’lel + ot Clmem) +U=0.

This is the case if and only if e € U, where e = a;e; + - + a,,€,,,, which implies that
there is a positive integer K such that e(k) = 0 for all £ > K. Let N € N be such that
2mN > K and note that 2™ + 2 is divisible by 2 but not by 22, ...,2™. It follows that

0=e(2™" +2) = ae;(2™Y +2) + ayey (27N +2) + - + a0, (27N + 2) = ay.
Similarly, 2™ + 22 is divisible by 22 but not by 23, ...,2™ and thus
0= e(QmN + 22) = a262(2mN + 22) + 06363(2mN + 22)
+ -+ ap e, (2™ +2%) = q,.
Continuing in this manner, we find that a; = --- = a,,, = 0 and our claim follows.

We can now use Exercise 2.A.17 to conclude that F*° /U is infinite-dimensional.
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Exercise 3.E.12. Suppose vy, ...,v,, € V. Let
A - {)\11)1 + e + )\m’l}m . )\1, ceey )\m E F and Al + b + Am == 1}.
(a) Prove that A is a translate of some subspace of V.

(b) Prove that if B is a translate of some subspace of V' and {vy,...,v,,} C B, then
AC B.

(c) Prove that A is a translate of some subspace of V' of dimension less than m.

Solution.

(a) Suppose v = g A\v, and w = > -1 pev, belong to A and v € F. Observe that
Z’Y)\k‘i‘ 1 — )] —’YZAIH' 1— )Zﬂk:’7+(1—’7):1-
k=1 k=1 k=1

It follows that

2

S

+
=
8]

S

I

2
]
=
~

+
=
&)
NgE
=

~

I
i\NgE

[’V\k + (1 = 7)pglvy,

belongs to A. Thus A is a translate of some subspace of V' by Fxercise 3.E.9.

(b) Suppose that B = v+ U for some v € U and some subspace U of V, and suppose that
{vy,...,v,,} € B, so that each v, = v+ u, for some u, € U. Let > j-; \yv, € A be

given and observe that

Zx\kvk—ZAk v+ u) = (Z)\k)v-l—Z)\kuk—v—i-Z)\kukEv—l-U B.

Thus A C B.
(c) If m=1 then A= {v,} =v; +{0}. If m > 2 then let U = span(vy — vy, ...,v,, — V1)

rrm

and note that dimU < m — 1. Note further that v; + U is a translate of U containing
{vy, .y, }; it follows from part (b) that A C v, + U. Let vy + > prg ap(vy —vq) in
v, + U be given and observe that

m m m
vy +Zak(vk —vy) = (1—Zak>v1 +Zakvk € A
k=2 k=2 k=2
Thus v; + U C A and we may conclude that A = v, + U, where dimU < m — 1.

Exercise 3.E.13. Suppose U is a subspace of V such that V /U is finite-dimensional.
Prove that V is isomorphic to U x (V/U).

Solution. Let v, +U,...,u,, +U be a basis of V/U. Define T € £L(V/U,V) by
T(v,+U)=wv, and notice that moT is the identity map on V/U. Now define
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S:Ux (V/U)—V by S(u,v+U) =u+ T(v+ U); the linearity of S follows from the lin-
earity of T'.

Suppose (u,v 4+ U) is such that
Su,v+U)=u+T(v+U)=0.

Using nullm = U and wo T = I, applying 7 to the equation above shows that v+ U = 0. It
follows that T'(v + U) = 0 and hence that u = 0. Thus S is injective.

For any v € V there are scalars a4, ..., a,, such that v+ U = a;v; + - + a,,v,,, + U and thus

by 3.101 we have v = u + a;v; + - + a,,v,,, for some u € U. Observe that
S(u,a,vq + -+ a,,v,, +U) =u+T(a,v; + -+ a,,v,, +U)
=u—+a,v; + -+ a,v, =0

Thus S is surjective and we may conclude that S is an isomorphism from U x (V' /U) to V.

Exercise 3.E.14. Suppose U and W are subspaces of V and V =U & W. Suppose
Wy, ..., W, is a basis of W. Prove that w; + U, ...,w,, + U is a basis of V/U.

Solution. Suppose aq,...,a,, are scalars such that ayw; + -+ a,,w,, + U = 0, which by

3.101 is the case if and only if a;w; + --- + a,,w,,, € U. Because the sum U @ W is direct, 1.46
shows that ayw; + -+ + a,,w,, = 0 and it follows from the linear independence of wy, ..., w,,

that ¢y = -- =a,, = 0. Thus w; + U, ...,w,, + U is linearly independent.

For any v+ U € V /U, we have v = u 4+ ayw; + -+ + a,,,w,, for some u € U and some scalars

aq,...,a,,. It follows that
v+ U =7) =aqw, ++a,w, +U=0a,(w; +U) + - +a,,(w, +U).

Thus wy + U, ...,w,, + U spans V /U and we may conclude that w; + U, ...,w,,, + U is a basis
of V/U.

Exercise 3.E.15. Suppose U is a subspace of V and v; + U, ...,v,, + U is a basis of

V /U and ug, ..., u,, is a basis of U. Prove that vy, ...,v,,,uq, ..., u, is a basis of V.

n Y Y m n

Solution. Suppose there are scalars a, ..., a,,, by, ..., b, such that
a;vy + - +a,,v, +bju; +--+b,u, =0.

Applying 7 to both sides of this equation shows that a,(v; +U) + -+ a,,(v,, + U) = 0.
The linear independence of v; + U, ...,v,, + U then implies that a; =--- = a,, =0, and the
is

linear independence of u, ..., u,, then gives us b; =---=0b,, =0. Thus v,,...,v,,, Uy, ..., u

Y m n

linearly independent.

Let v € V be given. There are scalars a4, ..., a,, such that v+ U = ayv; + - +a,,v,, + U. It
follows from 3.101 that v = ayv; + --- + a,,v,,, + u for some u € U, so that there are scalars
by, ..., b, such that
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v=av; + -+ a,v, +bu; +-+b,u,.

Thus vy, ...,v,,, Uy, ...,u, spans V and we may conclude that v,...,v,,,u;,...,u, is a basis

of V.

n

Exercise 3.E.16. Suppose ¢ € £(V,F) and ¢ # 0. Prove that dim V/(nullp) = 1.

Solution. There is some u € V such that ¢(u) # 0; Exercise 3.8B.30 then implies that
V=nullp® {au:a € F}.

Notice that u is a basis of {au : a € F}. It follows from Exercise 3.E.14 that u 4+ nully is a
basis of V/(null ). Thus dim V' /(null ) = 1.

Exercise 3.E.17. Suppose U is a subspace of V' such that dimV /U = 1. Prove that
there exists ¢ € £(V,F) such that nullp = U.

Solution. Let w+ U be a basis of V/U. For any v € V there is a unique a € F such that
v+ U = aw + U. Given this uniqueness, the map ¢ : V — F defined by ¢(v) = a is well-
defined. Moreover, ¢ is linear. For any v;,v, € V there are unique scalars a;, a, such that
vy +U =a,w+U and v, + U = ayw + U. Let XA € F be given. Since

(v +vy) +U =(a; +a)w+U and Iv; +U = (Aay))w+U,
a; +a, must be the unique coefficient of w in the linear combination representing

(vy + vy) + U in the basis w+ U of V/U; similarly, Aa; must be the unique coefficient of w
in the representation of A\v; + U. It follows that

(v +v3) = a; +ag = p(vy) +9(vy) and  p(Avg) = Aay = Ap(vy).
Thus ¢ is linear.

For any u € U we have u+ U = 0w+ U and thus ¢(u) =0, so that U C null ¢. Conversely,
if v € V is such that ¢(v) = 0 then v+ U = 0w + U; it follows from 3.101 that v € U. Thus
nullp =U.

Exercise 3.E.18. Suppose that U is a subspace of V such that V/U is finite-dimen-

sional.

(a) Show that if W is a finite-dimensional subspace of V and V =U + W, then
dim W > dim V/U.

(b) Prove that there exists a finite-dimensional subspace W of V such that
dmW =dimV/U and V=U® W.

Solution.

(a) Let wy,...,w,, be a basis of W. For any v+ U € V/U we have
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v=u+aw, + -+ a,w,
for some u € U and some scalars aq, ..., a,,, so that
v+U=a;(w +U)+-+a,(w, +U).
Thus w; + U, ...,w,, + U spans V/U. It follows that dim V/U < m = dim W.

(b) Let v; + U, ...,v,, + U be a basis of V/U and define T' € £(V/U,V) by T'(v;, + U) = v,.
Notice that

moT =1 and rangeT = span(vq,...,v,,).

It follows from Exercise 3.83.19 that T' is injective; letting W = range T, we see that T’
is an isomorphism between V/U and W. Thus dim W = dim V/U.

For any v € V we have v+ U = ayv, + -+ a,,v,, + U for some scalars ay,...,a,,. It

follows from 3.101 that v = u + a;v; + - +a,,v,, for some v € U. Thus V=U + W.
Suppose that v € UNW, so that v+ U = 0 and v = ayv; + --- + a,,v,, for some scalars

aq,...,a,,. It follows that
O=v+U=0ay(v; +U)+ - +a,,l(v, +U).

The linear independence of v; +U,...,v,, + U then implies that a; = =a,, =0,
whence v =0. Thus UNW = {0} and we may use 1.46 to conclude that the sum
V =U @ W is direct.

Exercise 3.E.19. Suppose T € £(V,W) and U is a subspace of V. Let 7 denote the
quotient map from V onto V/U. Prove that there exists S € £(V /U, W) such that
T = Somif and only if U C nullT.

Solution. If there exists such a map S and u € U, then
Tu= S(n(u)) = S(0) =0.
Thus U C nullT'.
Now suppose U C nullT. Define S : V/U — W by S(v+ U) = Tv. This map is well-defined:
n+U=v4+U & v,—v,€U = v, —vy€enulllT = Tv, =Tv,.

The linearity of S follows from the linearity of 7" and the definition of S makes it clear that
T=Som.
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3.F. Duality

Exercise 3.F.1. Explain why each linear functional is surjective or is the zero map.

Solution. Suppose ¢ € V' is non-zero, so that there is some v € V such that ¢(v) # 0, and

notice that

for any A € F. Thus ¢ is surjective.

Exercise 3.F.2. Give three distinct examples of linear functionals on RI[%1,

Solution. For k € {0,1,2}, define ¢, : R%1 — R by ¢, (f) = f(g) It is straightforward to

check that each ¢, is a linear functional on RI%1.

Exercise 3.F.3. Suppose V is finite-dimensional and v € V with v # 0. Prove that there
exists ¢ € V' such that p(v) = 1.

Solution. Let v; = v and extend this to a basis vy,...,v,, of V. Now define ¢ € V' by
o(v,) =1 for each k € {1,...,n}.

Exercise 3.F.4. Suppose V is finite-dimensional and U is a subspace of V' such that
U # V. Prove that there exists ¢ € V’ such that p(u) = 0 for every u € U but ¢ # 0.

Solution. Let uq, ...,u,, be a basis of U and extend this to a basis uy, ..., u,,, v, ...,v,, of V;

there must be at least one v, since U # V. Define ¢ € V' by
pug) = =p(u,) =0 and @(v;) = =p(v,) =1.
It follows that ¢(u) = 0 for all w € U but ¢ # 0.

Exercise 3.F.5. Suppose T € £(V,W) and wy, ..., w

each v € V, there exist unique numbers ¢, (v), ..., ¢,,(v) such that

m is a basis of rangeT'. Hence for

Tv= ¥1 (v)wl + et (pm(v)wm’

thus defining functions ¢, ..., ¢,,, from V to F. Show that each of the functions ¢, ..., ¢,

is a linear functional on V.

Solution. Let us think of T as a linear map V — range T, so that the dual map T’ is a
linear map (rangeT)” — V’. Let 1y, ...,4,, be the dual basis to wy,...,w,,. For any v € V,
the definition of each ¢, and 3.114 show that
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P1(V)wy + -+ @ (V)wy, = Tv = ¢y (To)wy + -+ Y, (TV)wy,
It follows from unique representation that ¢, (v) = ¢, (Tv) for all v € V, i.e.

O =Yg oT =T () €V".

Exercise 3.F.6. Suppose @, 8 € V’. Prove that null ¢ C null 8 if and only if there exists
¢ € F such that 8 = cp.

Solution. By Exercise 3.B.25 we have null p C null 8 if and only if there exists E € £(F)
such that § = E o . If there exists such an E, then let ¢ = E(1) and observe that, for any
veV,

B(v) = E(p(v)) = E(L)p(v) = cp(v) = B =cp.

Conversely, if there exists such a ¢ € F then define E € £(F) by E(z) = cx and observe that,
for any v € V,

Bv) = cp(v) = E(p(v)) = B=Eep.

Exercise 3.F.7. Suppose that Vi, ..., V. are vector spaces. Prove that (V; X -+ x Vm)/

and V{ x .- x V! are isomorphic vector spaces.
Solution. This is immediate from Exercise 3.E.3, taking W = F.

Exercise 3.F.8. Suppose vy, ...,v,, is a basis of V and ¢, ..., @,, is the dual basis of V".
DefineI': V — F" and A : F* — V by
F(U) = (901(1})7 000 (Pn(’U)) and A(a17 ocog an) = A1Up + G,

Explain why I' and A are inverses of each other.
Solution. It is straightforward to verify that I' and A are linear. For any (aq,...,a,) € F™,
3.114 shows that
I'(Alaq, ...y a,)) =T(ayv; + -+ a,v,)
= (¢1(avy + -+ a,v,), ..y, (a0, + - +a,v,)) = (ag,...,a,).
Thus I'A is the identity on F". For any v € V, 3.114 gives us
AT(v)) = Alp1(v), ;00 (V) = 01 (V)1 + -+ + @, (V)v, = .

Thus AT is the identity on V' and we may conclude that I' and A are inverses of each other.
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Exercise 3.F.9. Suppose m is a positive integer. Show that the dual basis of the basis

Lz,..,z™ of P,,(R) is ©g, ©1, s @, Where

(k)
(D) = 2 k!(O).

Here p'¥) denotes the k" derivative of p, with the understanding that the 0™ derivative
of pis p.

Solution. Let k € {0,...,m} be given and observe that, for j # k,

(=*)" ) _H ()" 0) _ 0

(k)
Thus the linear functionals ¢, and p — pk_!(O) agree on the basis 1, x, ..., x™; it follows that

they are equal as functions.

Exercise 3.F.10. Suppose m is a positive integer.
(a) Show that 1,z —5, ..., (z —5)™ is a basis of P,,(R).
(b) What is the dual basis of the basis in (a)?

Solution.
(a) This is immediate from Exercise 2.C.9.

b) We can argue as we did in Exercise 3.F.9 to see that the dual basis is ¢, ..., ¢,,,, where
0 m

(k)
ou(p) = 2 k!(5)-

Exercise 3.F.11. Suppose vy, ...,v,, is a basis of V and ¢, ..., ¢,, is the corresponding
dual basis of V. Suppose 1 € V’. Prove that

w = TP(Ul)‘Pl + ot w(vn)gon‘

Solution. Let v =ayv; +--+a,v, €V be given and note that, by 3.114, we have
vr(agvy + - +a,v,,) = a;. It follows that

[w(vl)@l + et 1/’(%)9%](@1”1 + ot a’nvn) = w(vl)wl (alvl +oet a‘nvn)
+ ot ¢(Un)(pn(a’1vl T+t anvn)

= Y(vy)ay + -+ P(v,)a,
= ¢(a1”1 + ot a’nv'n)'

Thus ¥(vy )y + -+ P(v,) e, = .
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Exercise 3.F.12. Suppose S, T € £(V,W).
(a) Prove that (S+7T) =8 +1T'.
(b) Prove that (AT)" = XT” for all A € F.
This exercise asks you to verify (a) and (b) in 3.120.

Solution.

(a) For any ¢ € W’ and v € V, observe that
(S +T) ()] (v) = $((S + T)(v)) = $(Sv + Tv) = $(Sv) + (Tv)
=[S (V)](v) + [T ()] (v) = [S"(¥) + T (¥)](v) = [(S" + T")(¥)](v).
Thus (S+T) =8 +T'.
(b) For any ¢ € W’ and v € V, observe that
[(AT)" (¥)] (v) = $((AT)(v)) = $(ATv) = Mp(Tv)

= AT7(9)](v) = [MT"(¥)](v) = [(AT")(¥)](v)-
Thus (A\T) = \T".

Exercise 3.F.13. Show that the dual map of the identity operator on V is the identity
operator on V.

Solution. For any ¢ € V' and v € V, observe that
[ (@)](v) = ¢(Iv) = o(v).

Thus I’ (¢) = ¢, i.e. I’ is the identity operator on V’.

Exercise 3.F.14. Define T : R® — R? by
T(z,y,2) = 4z + 5y + 62,7z + 8y + 9z).

Suppose ¢, ¢, denotes the dual basis of the standard basis of R? and ), , 15, 15 denotes
the dual basis of the standard basis of R3.

(a) Describe the linear functionals T"(y;) and T (p,).
(b) Write T"(y,) and T (p,) as linear combinations of 1y, 1, 5.

Solution.
(a) By the definition of the dual map, we have
[T (p1)(z,y,2) = p1(T(x,y, 2)) = p; (4 + 5y + 62, Tx + 8y + 9z) = 4z + 5y + 62,
[T (o)](x,y, 2) = po(T(x,y, 2)) = pg(dx + 5y + 62, 7Tx + 8y + 92) = Tz + 8y + 9=.
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(b) Note that
Vi (3,y,2) =3, Py(r,y,2) =y, and ¢P3(z,y,2) = 2.
Thus
T'(p1) =4y + 5¢, + 63 and  T7(py) = 69y + Tty + 8ths.

Exercise 3.F.15. Define T': ?(R) — P(R) by
(Tp)(z) = 2*p(z) + " (x)
for each z € R.

(a) Suppose p € P(R)’ is defined by (p) = p’(4). Describe the linear functional T” (i)
on P(R).

(b) Suppose ¢ € P(R)" is defined by o(p) = fol p. Evaluate (T”(p))(z®).

Solution.
(a) We have
[T’ ()](p) = ¢(Tp) = @(a*p+p") = (z’p +p") (4)
= (2zp + z?p’ + p”)(4) = 8p(4) + 16p’(4) + p” (4).
(b) We have
19

[T (p)](z3) = o(Tx3) = p(x° + 6z) = / 2 +6rdr = .

Exercise 3.F.16. Suppose W is finite-dimensional and T' € £(V,W). Prove that
T"=0 < T=0.

Solution. If T'=0 and ¥ € W’, then
T () =1poT =100 =0.
Thus 7" = 0.

Now suppose that T’ =0, so that null7’ =W’. It follows from 3.128(a) that
(range T)° = W’, which by 3.127(b) is equivalent to rangeT = {0}. Thus 7" = 0.

Exercise 3.F.17. Suppose V and W are finite-dimensional and T' € £(V,W). Prove
that T is invertible if and only if 77 € L(W', V") is invertible.

Solution. If either of T',T” is invertible then, using 3.111, it must be the case that
dimV’' =dimV =dimW = dim W".
Thus, by 3.65 and 3.129,
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T is invertible < T is surjective < T' is injective < T is invertible.

Exercise 3.F.18. Suppose V and W are finite-dimensional. Prove that the map that
takes T € L(V, W) to T’ € £L(W’, V') is an isomorphism of £(V, W) onto L(W’' V).

Solution. Let ® : L(V, W) — £L(W’,V’) be the map in question, i.e. ®(T) = T". Exercise
3.F.12 shows that ® is linear and Exercise 3.F.16 shows that ® is injective. Note that, by
3.72 and 3.111,

dim £(V, W) = (dim V)(dim W) = (dim V") (dim W) = dim £(W’, V").

3.65 allows us to conclude that ® is an isomorphism.

Exercise 3.F.19. Suppose U C V. Explain why
U= {p eV :U Cnullp}.

Solution. This is immediate from the equivalence

p(u)=0forallue U < U Cnulle.

Exercise 3.F.20. Suppose V is finite-dimensional and U is a subspace of V. Show that
U={veV:p) =0 for every ¢ € U°}.

Solution. If v € U then certainly ¢(v) = 0 for every ¢ € U°. Suppose v ¢ U and let u, ..., u,,
be a basis of U. Let v; = v and note that the list u,, ..., u,,,v; is linearly independent since
vy ¢ U = span(uyq, ..., u,,). Extend this list to a basis uq,...,u,,,vq,...,v, of V and define
p eV’ by

p(uy) == o(u,) =0 and @(v;) = =p(v,) =1
It follows that ¢ € U° and ¢(v) # 0. Thus

velU < ve{veV:p) =0 forevery p € U}

Exercise 3.F.21. Suppose V is finite-dimensional and U and W are subspaces of V.
(a) Prove that W° C UY if and only if U C W.
(b) Prove that W0 = UY if and only if U = W.

Solution. For a subspace U of V, let
Ay ={v eV :p) =0 for every p € U°}.
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(a) WO C U% and v € Ay, then in particular ¢(v) = 0 for every ¢ € W0, i.e. v € Ay,. Thus
Ay C Ay, which by Exercise 3.F.21 is equivalent to U C W. If U C W and ¢ € W°
then in particular ¢(v) = 0 for all v € U, i.e. ¢ € U°. Thus W° C U°.

(b) This follows from part (a):

WO=U" & WOCU%andU°CW? & UCWandWCU & U=W.

Exercise 3.F.22. Suppose V is finite-dimensional and U and W are subspaces of V.
(a) Show that (U +W)® = U° n Wo.
(b) Show that (U NW)° = U° 4+ W°.

Solution.

(a) Suppose ¢ € (U + W)°. For any u € U and w € W observe that u,w € U 4+ W, so that
o(u) = p(w) = 0. Thus ¢ € U N W and it follows that (U + W)° C U° N WO.

Suppose ¢ € U° N W and observe that, for any u +w € U + W, we have
pu+w)=opu) +ew) =0 = e U+W)’
It follows that U N WO C (U + W)° and thus (U + W)° = U° n W,

(b) Suppose ¢ € (UNW)". There are subspaces X,Y of V such that V =U & X and
V=WeaY. Define ¢, 3 € V' by

Y(uta)=gp(x) and Blw+y) = 30(y).

It is straightforward to verify that ¢ € U° and B € WP. Let v=u+z=w+y €V be
given and note that, because ¢ € (UNW)°, o(v) = () = ¢(y). It follows that

p(v) = 50(v) + 50(v) = 30(x) + 50(y) = P(v) + B(v).
Thus ¢ € U° + W°, whence (UNW)° C U° + WO.

Now suppose that ¢ € U? + W0, so that ¢ = 1 + 3 for some ¥ € U° and some 3 € W°.
Let v € UNW be given and observe that

pv) =9) +Bv) =0 = peUNW)’.

It follows that U° + W° C (U N W)° and thus (U NW)° = U° + WO,

Exercise 3.F.23. Suppose V is finite-dimensional and ¢4, ...,¢,, € V’. Prove that the

following three sets are equal to each other.

(a) span(pq, ..., @.n)

(b) ((mullg;) NN (nullg,,))”
(c) {p € V' :(nully;)N--N(nullp,,) C nullp}
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Solution. (b) and (c) are equal by Exercise 3.F.19.

To show that (a) and (b) are equal, let us prove the following lemma.

Lemma L.3. If ¢ € V' then span(p) C (nullp)’; if V is finite-dimensional then this

containment is an equality.

Proof. For any a € F and v € null ¢ we have ap(v) = 0. Thus span(y) C (null )°.
observe that dim span(y) = dimrange , since

=0 = dimspan(p) =0 = dimrange ¢,

¢ #0 = dimspan(p) =1 = dimrange g,
where we have used Fxercise 3.F.1 for the second implication. Assuming that V is

finite-dimensional, we can use (3.21) and (3.125) to obtain the equality

dim span(y) = dim range ¢ = dim (null gp)o.

2.39 allows us to conclude that span(p) = (null )°.

Using Fxercise 3.F.22 and Lemma [..3, observe that
(nullg,) N--N (nullp,,))° = (nullp,)° + - + (nullg,,)°
= span(p;) + - + span(ip,,,) = span(@;, ..., ., )-
Thus (a) and (b) are equal.

Exercise 3.F.24. Suppose V is finite-dimensional and v, ...,v,, € V. Define a linear
map I' : V/ = F™ by I'(¢) = (@(v1), -, (V)
(a) Prove that vy, ...,v,, spans V if and only if T" is injective.

(b) Prove that vy, ...,v,, is linearly independent if and only if T" is surjective.

m

Solution. Let e, ..., e,,, be the standard basis of F"* and let 1y, ...,4,,, be the corresponding
dual basis of (F™)’, so that the map ¥ :F™ — (F™) given by ¥(e,) = ¢, is an isomor-
phism. Define T' € L(F™, V) by Te;, = vy, i.e.

T(Zq,y .0y @,y,) = T01 + -+ + T, U,y
For any ¢ € V’ and k € {1, ...,m}, observe that
[T ()] (er,) = p(Tey,) = @(vy) = Z @(%)%(%)
=1

= [U(p(v1), s p(vy))](ex) = [ (T ()] (ey)-

Thus T = U oI'. Because ¥ is a bijection, it follows that the injectivity of I' is equivalent
to the injectivity of T” and the surjectivity of I' is equivalent to the surjectivity of T".

109 / 366



(a) Observe that
span(vy,...,v,,) =V < T is surjective < T’ isinjective < T is injective,

where the first equivalence follows from Exercise 3.B.3, the second equivalence follows

from 3.129, and the third equivalence follows from our previous discussion.

(b) Observe that
V1, ..., V,, is linearly independent < T is injective
< T is surjective < T' is surjective,

where the first equivalence follows from Exercise 3.B.3, the second equivalence follows

from 3.131, and the third equivalence follows from our previous discussion.

Exercise 3.F.25. Suppose V is finite-dimensional and ¢4, ...,¢,, € V'. Define a linear
map T : V = F™ by T(v) = (9, (0), -, ¢ (0)):

(a) Prove that ¢4, ...,¢,, spans V' if and only if " is injective.

(b) Prove that ¢, ..., ¢,, is linearly independent if and only if I is surjective.

Solution. Let e, ..., e,, be the standard basis of F"* and let 11, ...,4,, be the corresponding
dual basis of (F™)’, so that the map ¥ : F™ — (F™) given by ¥(e,) = ¢, is an isomor-
phism. For any (z, ...,x,,) € F™ and v € V, observe that

(L (W (@ e )] () = [ (@191 + - + 2090, (V)
= [z1¥1 + -+ 2 Y| (T(v)
= 2191+ + 2] (01 (V) s 01, (V)
= 211 (V) +  + Ty (V)
= [2101 + = + Tppm] (V).
It follows that IV o U : F™ — V” is given by
T (U(2y, .00y Tpy)) = 101 + - + Ty O

Because ¥ is a bijection, the injectivity of I'V is equivalent to the injectivity of IV o ¥ and

the surjectivity of I'V is equivalent to the surjectivity of IV o W.

(a) Observe that
span(@q, ..., p,,) =V’ < IY oW is surjective
< IV is surjective < T is injective,

where the first equivalence follows from Exercise 3.B.3, the second equivalence follows

from our previous discussion, and the third equivalence follows from 3.131.

(b) Observe that
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©1y -y P,y 18 linearly independent < I o W is injective
< IV is injective < T is surjective,
where the first equivalence follows from Exercise 3.8B.3, the second equivalence follows
from our previous discussion, and third equivalence follows from 3.129.
Exercise 3.F.26. Suppose V is finite-dimensional and §2 is a subspace of V. Prove that
Q={veV:pw) =0 for every p € 2}°.
Solution. Let U ={v € V : p(v) =0 for every ¢ € Q} and let ¢,,...,¢,, be a basis of Q.

Certainly U C (null¢;) N---N (null ¢, ). Suppose v € (nullp;) N-- N (nullp,,) and let p € Q

be given. There are scalars aq, ..., a,, such that ¢ =a,¢; + -+ a,,¥,,, which gives us
p(v) = (a191 + - + 4 0,) (V) = 1901 (V) + - + @ 0y, (V) = 0

Thus v € U and it follows that U = (nullg;) N---N (nullp,,,). We may now apply Exercise
3.F.23 to see that

U° = ((nullpy) NN (nullp,,))” = span(py, ..., @) = Q.

Exercise 3.F.27. Suppose T € £(P5(R)) and nullT” = span(p), where ¢ is the linear
functional on P5(R) defined by ¢(p) = p(8). Prove that

rangeT = {p € P5(R) : p(8) = 0}.
Solution. Observe that
range T = {p € P5(R) : ¥(p) = 0 for every 9 € (range T)O} (Exercise 3.F.20)
={pe P;(R):¢¥(p) =0 for every ¢ € nullT"} (3.128)
— {(p e P4(R) : ¥(p) = 0 for every € span(p)}
={pe P;(R): Ap(p) =0 for every A € R}
={peP;(R): Ap(8) =0 for every A € R}

= {p € P5(R) : p(8) = 0}.

Exercise 3.F.28. Suppose V is finite-dimensional and ¢4, ..., ¢,, is a linearly indepen-

dent list in V’. Prove that
dim((nullpy) NN (nully,,)) = (dim V) — m.

Solution. By Exercise 3.F.23 and the linear independence of the list ¢4, ..., ¢,, we have
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dim ((null ;) N - N (null,,))® = dimspan(py, ..., ¢,,) = m.

It then follows from 3.125 that
dim((nullp;) N--N(nully,,)) = (dim V) —m.

Exercise 3.F.29. Suppose V and W are finite-dimensional and T' € £(V,W).
(a) Prove that if ¢ € W’ and nullT” = span(yp), then rangeT' = null ¢.
(b) Prove that if ¥ € V' and range T” = span(v), then null T = null .

Solution.

(a) Observe that

range T = {w € W : (w) = 0 for every 1) € (range T)O} (Exercise 3.F.20)
= {we W :y(w) =0 for every ¢ € nullT"} (3.128)
= {w e W : ¢(w) = 0 for every 1) € span(p)}
= {we W : Ap(w) =0 for every A € F}

={weW:p(w)=0}

= null ¢.
(b) Observe that
nullT = {v €V :p(v) =0 for every ¢ € (null T)O} (Exercise 3.F.20)
= {v eV :p(v) =0 for every ¢ € range T’} (3.130)

= {v e V:p(v) =0 for every ¢ € span(y)}
= {v e V:XY(v) =0 for every A € F}

— {ve V:g(v) =0}

= null¢.

Exercise 3.F.30. Suppose V is finite-dimensional and ¢, ..., ,, is a basis of V. Show

that there exists a basis of V' whose dual basis is ¢4, ..., ¢,

Solution. Let k € {1,...,n} be given and define
U, = ﬂ{nullgoj :je{1l,...,n}\{k}}.

By 3.111 and Exercise 3.F.28 we have dim U, = 1 and thus there is some non-zero u; € V

such that U, = span(u;). Note that Exercise 3.F.28 also implies that
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(nullp;) N---N (nullp,,) = {0}.
Since wuy #0 it must then be the case that wu, ¢ nully,. Thus we can define
v = (5 (ug)) "y, Notice that ¢, (v,) = 1 and, for j # k,

up €nullp; = p;(v,) = 0.
If a4, ..., a, are scalars such that a;v; + - 4+ a,,v,, = 0 then, for each j € {1,...,n}, applying

¢; to both sides of this equation shows that a; = 0. Thus vy, ..., v, is a linearly independent

list of length n = dim V; it follows that v,,...,v,, is a basis of V. Because

1 ifj=k
i) =9 if j + k,

the uniqueness part of the linear map lemma (3.4) shows that ¢, ..., ,, is the dual basis of

Uy eeey Uy

Exercise 3.F.31. Suppose U is a subspace of V. Let i : U — V be the inclusion map
defined by i(u) = u. Thus " € L(V',U’).
(a) Show that nulli’ = UP°.
(b) Prove that if V is finite-dimensional, then rangei’ = U’.
(¢) Prove that if V is finite-dimensional, then 7’ is an isomorphism from V’/U° onto
U'.
The isomorphism in (c) is natural in that it does not depend on a choice of basis in

either vector space.

Solution.
(a) For ¢ € V' the map i’ (¢) = ¢ o is simply the restriction of ¢ to U. Thus
i'(p)=0 < p(u)=0foralluel.

It follows that nulli’ = U9.

(b) Let ¢ € U’ be given. By Exercise 3.A.13 we can extend % to a linear functional ¢ € V’
such that the restriction of ¢ to U is equal to 9. Thus i’(¢) = ¢ and it follows that i’
is surjective.

(¢) By 3.107 and parts (a) and (b), ¢ is an isomorphism from V’/nulli’ = V’/U° onto

rangei’ = U’.
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Exercise 3.F.32. The double dual space of V', denoted by V”, is defined to be the dual
space of V’. In other words, V” = (V’)". Define A : V. — V” by

(Av)(¢) = ¢(v)
for each v € V and each ¢ € V.
(a) Show that A is a linear map from V to V”.
(b) Show that if T € £(V), then T” o A = A o T, where T” = (T’)’.
(¢) Show that if V' is finite-dimensional, then A is an isomorphism from V onto V”.

Suppose V is finite-dimensional. Then V and V' are isomorphic, but finding an iso-
morphism from V onto V' generally requires choosing a basis of V. In contrast, the
isomorphism A from V onto V" does not require a choice of basis and thus is consid-

ered more natural.

Solution.
(a) Suppose u,v € V and pu € F. For any ¢ € V' we have
(Alu+v))(p) = p(u+v) = @(u) + ¢(v) = (Au)(p) + (Av)(p) = (Au + Av)(p).
Thus A(u + v) = Au+ Av. Similarly, for any ¢ € V”,
(A(pv)) () = p(pv) = pp(v) = p(Av)(p) = (pAv)(p).
Thus A(uv) = pAv. It follows that A is linear.
(b) Let v € V be given and observe that
(T"(Av)) () = (Av)(T"(¢)) = (Av)(¢ o T) = ¢(Tv) and (A(Tv))(p) = (T).
Thus T” o A = Ao T.

(c) Let vy,...,v, be a basis of V and let ¢y, ...,p, be the corresponding dual basis of V".
Suppose v = ayv; + -+ + a,v,, is such that Av =0, i.e. p(v) = 0 for every ¢ € V’. For
each k € {1,...,n} it follows that

0= ¢ (v) = pplayvy + -+ a,v,) = ay.
Thus v = 0, so that null A = {0}, i.e. A is injective. By 3.111 we have
dimV” =dimV’ =dimV

and so, by 3.65, we may conclude that A is an isomorphism.
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Exercise 3.F.33. Suppose U is a subspace of V. Let w : V' — V/U be the usual quotient
map. Thus 7’ € £((V/U)",V’).

(a) Show that 7" is injective.
(b) Show that rangen’ = U°.
(c) Conclude that 7’ is an isomorphism from (V/U)" onto U°.

The isomorphism in (c) is natural in that it does not depend on a choice of basis in
either vector space. In fact, there is no assumption here that any of these vector spaces

are finite-dimensional.

Solution.

(a) Suppose ¢ € (V/U) is such that 7’ () = 0, i.e. (v + U) = 0 for all v + U € V/U. Thus
¢ = 0, so that null7w” = {0}. It follows that 7" is injective.

(b) Note that U° = {p € V' : U C nullp} by Exercise 3.F.19. Taking W = F in Exercise
3.15.19 then shows that rangen’ = U°.

(¢) This is immediate from parts (a) and (b).
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Chapter 4. Polynomials

Exercise 4.1. Suppose w, z € C. Verify the following equalities and inequalities.

(a) z+Z=2Rez

(b) z—z =2(Im 2):
(c) 2z = |z |2
d) wt+z=w+zZandwz=wz

NII

Rez| < |z| and |[Im z| < |z|

(f
g) [z =[]

)
)
)
()
)
(&)
(b) fw

2| = |wl|z]

The results above are the parts of 4.4 that were left to the reader.

Solution. Suppose w = a + bi and z = = + yi.
(a) Observe that
z+Z=(z+yi)+ (x—yi) =2z =2Rez.
(b) Observe that
z—Z=(z+yi)— (x —yi) = 2yi = 2(Im 2)1.

(c) Observe that

2z = (z +yi)(z —yi) = 22 + % = (Re2)” + (Im2)® = |2|°.
(d) Observe that

wtz=(a+z)—(b+y)i=(a—bi)+ (z—yi) =wW+7Z,

wz = (ax — by) — (ay + bx)i = (a — bi)(x — yi) = WZ.

(e) Observe that

Z=x—yi=x+yi = 2.

(f) Since each quantity involved is positive, it will suffice to show that
IRez|”> < |2® and |Im(z)|* < |2|?; these inequalities are immediate from the equation
12]* = [Re z|” + |Im z|*.

Observe that

(&)

Z| = (Rez)” + (Im%)” = (Re2)> 4+ (—Imz)* = (Re2)” + (Im2)* = |2].
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(h) Since both sides are positive, it will suffice to show that |wz|* = |w|?|2|*. Indeed, using
parts (c) and (d),

lwz|” = wzwz = wzw z = wwzz = |w|”|z|
Exercise 4.2. Prove that if w, z € C, then ||w| — |z|| < |w — z|.
The inequality above is called the reverse triangle inequality.
Solution. Notice that
wl=lw—z+z[<|w—2zl+]z] = [w =]z <|w-2
ol =z —wtw <[z—wl+|w = [z]—|w <|w—2z

Thus ||w| — |2|| < |w— 2.
Exercise 4.3. Suppose V is a complex vector space and ¢ € V’. Define 6 : V — R by
o(v) = Rep(v) for each v € V. Show that
v(v) = o(v) —io(iv)

forallve V.

Solution. For any z = z + iy € C, note that
Re(iz) = Re(—y +iz) = —y = —Im 2.

For any v € V it follows that
o(v) —io(iv) = Rep(v) —iRe(p(iv)) = Rep(v) —iRe(ip(v)) = Rep(v) + Im p(v) = p(v).

Exercise 4.4. Suppose m is a positive integer. Is the set

{0} U{p € P(F) : degp = m}

a subspace of P(F)?

Solution. Let U be the set in question and observe that x™,1 — z™ € U but
xm+1—am=1¢U.

Thus U is not a subspace of P(F).

Exercise 4.5. Is the set

{0} U{p € P(F) : degp is even}

a subspace of P(F)?
Solution. Let U be the set in question and observe that 22,z — 22 € U but
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’+r—22=x¢U.

Thus U is not a subspace of P(F).

Exercise 4.6. Suppose that m and n are positive integers with m < n, and suppose
ALy -y A, € F. Prove that there exists a polynomial p € P(F) with degp = n such that
0 =p(A;) = =p(\,,) and such that p has no other zeros.

Solution. Let p(z) = (z— A;)(z— Ay) -~ (z—\,,)" ™" and note that degp = n and that
each )\ is a zero of p. The uniqueness parts of 4.13 and 4.16, together with 4.6, shows that

p can have no other zeros.

Exercise 4.7. Suppose that m is a nonnegative integer, 2y, ..., 2,,,, are distinct elements
of F, and wy,...,w,,,; € F. Prove that there exists a unique polynomial p € 7, (F)
such that

p(2) = wy,
foreach k=1,....m+ 1.

This result can be proved without using linear algebra. However, try to find the clearer,

shorter proof that uses some linear algebra.

Solution. Note that the list pg, ..., D01 € P, (F) given by
Py = 17
pl =z — zl,

Py = (2 — 21)(2 — 29),

Pm = (2= 2)(2 — 23) (2 — 2,)
is a basis of 2,,(F) by Exercise 2.C.9. Define a map T € £(2,,(F),F™!) by
Tp = (p(zl)7"'7p(zm+1))'

Notice that the matrix of T' with respect to the basis py, ..., p,, of ?,,(F) and the standard
basis of F™*! is

1 0 0 0
: : : : =1
1 Am,l Am,Q ’ Am,m

Notice further that each A;, is non-zero because the elements zy,...,z,,,, are distinct.

A straightforward calculation then shows that the rows of this matrix are linearly
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independent; it follows from Exercise 3.C.17 that T is injective and hence, because
dim 2, (F) = dim F™™! invertible. Thus there exists a unique p € P,,(F) such that

Tp = (p(zl)v ...,p(Zm+1)) = (w17w27 ""wm+1)'

Exercise 4.8. Suppose p € P(C) has degree m. Prove that p has m distinct zeros if

and only if p and its derivative p” have no zeros in common.

Solution. The cases m =0 and m = 1 are straightforward to check. For m > 2, we will

prove the equivalent statement

p has strictly less than m distinct zeros < p and p’ have a zero in common.

If p has strictly less than m distinct zeros then it must be the case that p has a zero A € C
such that p(z) = (z — A)"q(2) for some positive integer k > 2 and some ¢ € P(C). It follows
that

P (2) =k(z— N q(2) + (2 — Vg (2)
and hence that p’(A) = 0, since k > 2. Thus p and p’ have the zero A in common.

Now suppose that p and p” have a zero in common, say A € F, so that
p(z) =(z2—=N)q(z) and p'(z) = (z = A)r(2)
for some ¢,r € P(C). The product rule gives us
() + (2 = A)q'(2) = p'(z) = (z = A)r(2).

Evaluating this expression at z = A shows that ¢(\) = 0, so that z — A is a factor of ¢q. It
follows that p is of the form p(z) = (z — A)*t(z) for some ¢ € P(C) satisfying degt = m — 2.

Thus p has strictly less than m zeros.

Exercise 4.9. Prove that every polynomial of odd degree with real coefficients has a

real zero.
Solution. Let p € P(R) be a polynomial of odd degree. By 4.16, p is of the form

p(x) = c(x —Ay) (2 = Ay, ) (@ + b1z 4 ¢p) = (2% 4+ by + ¢py),

where ¢, Ay, ..., A, b1, .0, 05,61, ., cpp € Ry > 0, and b% < 4c¢,, for each k. This implies that
degp = m + 2M; since degp is odd, it must be the case that m > 0. Thus p has at least one

real zero.
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Exercise 4.10. For p € P(R), define Tp: R — R by

pe) 9
———  ifx # 3,
(Tp)(z) = z=3
P’ (3) ifr=3

for each z € R. Show that Tp € P(R) for every polynomial p € P(R) and also show
that T': P(R) — P(R) is a linear map.

Solution. Let p € P(R) be given and notice that p(z) — p(3) has a zero at = 3, so that
p(z) —p(3) = (z —3)q(x)
for some unique ¢ € P(R). It follows that for any x # 3 we have

p(z) —p(3)_

q(z) = ——3

Differentiating the equality p(z) —p(3) = (z — 3)q(z) gives us p'(z) = q(z) + (z — 3)q’ (z),
whence p’(3) = ¢(3). Thus Tp = g € P(R).

Let py,py, € P(R) and A € R be given. There are unique polynomials ¢;, g, € P(R) such
that

pi(2) —p1(3) = (2 —3)q1(x) and py(z) —py(3) = (z — 3)ga ().
As we showed above, it follows that T'p, = ¢, and Tp, = gq,. Notice that
(p1 +p2)(x) — (P1 +12)(3) = (2 = 3)(q1 + ¢2)(2)
and  (Apy)(z) — (Ap1)(3) = (z — 3)(Aqy ) ().

By uniqueness we must have T'(p; +py) = q; + ¢y = Tp; + Tpy and T'(Ap;) = Ag; = AT'p;.

Thus T is linear.

Exercise 4.11. Suppose p € P(C). Define ¢ : C — C by

q(z) = p(2)p(Z).

Prove that ¢ is a polynomial with real coefficients.

Solution. Suppose p(z) = ag + a;z + -+ + a,, 2" for some non-negative integer m. Observe

that p(zZ) = ay + a3z + -+ + @,,2™. It follows that

q(2) = p(2)p(z) = i( > aia_j> 2*.

k=0 \i+j=k

For any k € {0, ...,2m} note that
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where the last equality follows by reindexing. Thus } ;4 a,a; € R for each k € {0, ...,2m},

i.e. ¢ has real coefficients.

Exercise 4.12. Suppose m is a nonnegative integer and p € P, (C) is such that there

are distinct real numbers z,, z,, ..., x,, with p(z;) € R for each k£ =0,1,...,m. Prove

m

that all coefficients of p are real.

Solution. By Exercise 4.7 there is a unique polynomial ¢ € 2, (R) such that q(z;) = p(z})
for each k € {0,...,m}. It follows that the polynomial p —q € 2,,(C) has m + 1 distinct
zeros and thus, by (4.8), p=q € ?,,(R).

Exercise 4.13. Suppose p € P(F) with p # 0. Let U = {pq : ¢ € P(F)}.
(a) Show that dim P(F)/U = degp.
(b) Find a basis of P(F)/U.

Solution.

(a) Let m =degp. If m =0, i.e. p is a non-zero constant polynomial, then U = P(F)
and thus P(F)/U = {0}, so that dim P(F)/U = 0 = degp. Suppose that m > 1. For
any s € P(F), the division algorithm for polynomials (4.9) implies that there are
unique polynomials ¢, € P(F) such that s = pg+ r and degr < degp. Thus the map
T:P(F)—2P,,_1(F) given by T's = r is well-defined. Let s;,s, € P(F) and A € F be

given. There are unique polynomials q;, gy, 71,75 € P(F) such that
$1=pqy +71, Sy =Dpqy+1y, degr; <degp, and degr, < degp.
Thus T's; = r; and T'sy = 5. Observe that
$1+ Sy =p(ay +q3) + (ry +73), deg(ry +ry) < max{degr,,degr,} < degp,
As; = p(Aqy) + (Ary), deg(Ary) < degr; < degp.

It follows from the uniqueness part of the division algorithm that
T(sy+sq)=r;+r9=Ts; +Tsy and T(Asy) = Ar; = AT's;.
Thus T is linear.

For any r € ?,,_1(F) we have degr < degp and thus T'r = r. Hence T is surjective.
Notice that pg € U has remainder zero upon division by p; it follows that T'(pq) =
0. Conversely, if s = pq + r is such that Ts =r =0 then s =pg € U. Thus nullT =
U. It now follows from 3.107 that P(F)/U is isomorphic to P,, ;(F) via the map
T :P(F)/U — P,, ,(F) given by T(s 4+ U) = T's. Thus
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dimP(F)/U = dim?,,,_(F) = m = degp.
(b) Notice that T(14U),T(z + U),...,T(z™ 1 + U) is the list 1, 2,..., 2!, i.e. the stan-
dard basis of P,, ;(F). Because T is an isomorphism, it follows that
T11), T Y(2),... T Y (2" ) =14U,24U,....2" + U

is a basis of P(F)/U.

Exercise 4.14. Suppose p,q € P(C) are nonconstant polynomials with no zeros in
common. Let m = degp and n = degq. Use linear algebra as outlined below in (a)-(c)
to prove that there exist r € P,,_;(C) and s € P,,,_;(C) such that

rp 4+ sq = 1.
(a) Define T: P, (C) x P,, 1(C) = P,,.n_1(C) by
T(r,s) =1p+ sq.
Show that the linear map T is injective.
(b) Show that the linear map T in (a) is surjective.

(c) Use (b) to conclude that there exist r € P, _;(C) and s € P,,_;(C) such that
rp+ sq = 1.

Solution.

(a) Note that m,n > 1 since p, ¢ are non-constant. Let Aq, ..., A,, be the zeros of p and let
[y, -5 B, De the zeros of g; by assumption we have p(u;) # 0 and g(A,) # 0 for all k.
Suppose that r € P, _;(C) and s € P,, _,(C) are such that rp + s¢ = 0. In particular,
for each k € {1,...,n},

()P (pg) + s(g)a(py) = r(pg)p(py) =0 = r(py,) =0,

where we have used that ¢(u;) = 0 and p(u) # 0. Thus r is a polynomial of degree at
most n — 1 with n zeros; it follows from 4.8 that » = 0. A similar argument with the
A,’s shows that s = 0. Thus nullT' = {0}, i.e. T is injective.

(b) Notice that
dim(?,,_,(C) x ?,, ;(C)) =dim?,,_,(C) +dim?P,, ,(C)
=n+m=dmP?,, . ,(C).
Since T is injective, it follows from 3.65 that T is also surjective.

(c¢) This is immediate from the surjectivity of T
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Chapter 5. Eigenvalues and Eigenvectors

5.A. Invariant Subspaces

Exercise 5.A.1. Suppose T' € £(V) and U is a subspace of V.
(a) Prove that if U C nullT, then U is invariant under 7'

(b) Prove that if rangeT C U, then U is invariant under 7.

Solution.

(a) Let w € U C nullT be given and observe that Tu = 0 € U. Thus U is invariant under
T.

(b) Let u € U be given and observe that T'u € rangeT C U. Thus U is invariant under 7'

Exercise 5.A.2. Suppose that T'€ £(V) and V;,..., V., are subspaces of V invariant
under 7T'. Prove that V; +--- 4V, is invariant under T

Solution. Let v = ayv; + -+ a,,v,, € V; + -+ V,, be given. By assumption each T'v;, € V,
and thus

Tv=a,Tv, +-+a,Tv, €V, ++V .

Hence V; + -+ V,, is invariant under T

Exercise 5.A.3. Suppose T € £(V). Prove that the intersection of every collection of

subspaces of V invariant under T is invariant under T'.

Solution. Let U be a collection of subspaces of V invariant under T'. For any u € (U and
any U € U, we have u € U and thus Tu € U. It follows that Tu € (U and hence that (U

is invariant under T'.

Exercise 5.A.4. Prove or give a counterexample: If V' is finite-dimensional and U is a

subspace of V' that is invariant under every operator on V', then U = {0} or U = V.

Solution. This is true. It will suffice to show that if U # {0} then U = V. Suppose therefore
that there exists some v; € U with v; # 0 and extend this to a basis vy, ...,v,, of V. For
each k € {1,...,m} define an operator T}, € £(V) by Tyv; = v, and Tv; = 0 for j # 1. By
assumption U is invariant under T}, and thus T v, = v, € U. It follows that U contains the

basis vy, ..., v,, of V and hence that U = V.
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Exercise 5.A.5. Suppose T' € £(R?) is defined by T'(z,y) = (—3y, z). Find the eigen-

values of T.

Solution. Geometrically, we can observe that T is a counterclockwise rotation by 90° about
the origin followed by a dilation of the z-axis by a factor of 3. We can now argue as in 5.9(a)

to see that T has no eigenvalues.

Algebraically, for A € R we can try to solve the equation T'(z,y) = (—3y,x) = (Az, A\y). Sub-
stituting = Ay into —3y = Az gives us —3y = A\?y. Because y = 0 implies = 0, and eigen-
vectors are non-zero, we may assume that y # 0 and thus obtain the equation A% 4+ 3 = 0.

Since this equation has no real solutions, we see that T has no eigenvalues.

Exercise 5.A.6. Define T € £(F?) by T'(w, z) = (z,w). Find all eigenvalues and eigen-

vectors of 7.

Solution. T is a reflection in the line w = z. An appeal to our geometric intuition sug-
gests that 1 is an eigenvalue with corresponding eigenvector (1,1) and that —1 is an eigen-
value with corresponding eigenvector (—1,1). To see this algebraically, suppose A € F and
(w, z) # (0,0) are such that T(w, z) = (z,w) = (Aw, A\z). Substituting z = Aw into w = Az
gives us w = A\?w. Since w = 0 implies z = 0, and eigenvectors are non-zero, we may assume
that w # 0 and thus obtain the equation A2 — 1 = 0, which has solutions A = 1. These are

both indeed eigenvalues, since
T(1,1)=(1,1) and T(-1,1)=(1,—-1)=—(-1,1).
Since dim F? = 2, it follows from 5.11 and 5.12 that there are no other eigenvalues of T' and

no other eigenvectors of 1" linearly independent from the two given above. We may conclude

that the eigenvalues and eigenvectors of T' are precisely:

eigenvalue | corresponding eigenvectors
1 (w,w) for w e F\ {0}
—1 (—w,w) for w e F\ {0}

Exercise 5.A.7. Define T € £(F3) by T'(2y, 29, 23) = (22,0, 525). Find all eigenvalues

and eigenvectors of T'.

Solution. T can be thought of as the composition of the following transformations:
e a projection onto the z,z5-plane;

o a clockwise rotation of 90° around the z;-axis; after the projection onto the z,25-plane,

this is equivalent to a reflection in the plane z; = 25;

 a dilation of the z;-axis by a factor of 2;
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 a dilation of the z;-axis by a factor of 5.
In other words, T maps (2;, 29, z3) € F3 like so:
(21, 29,23) > (0, 29, 23) > (29,0, 25) > (224, 0, 23) > (22,0, 525).
An appeal to our geometric intuition suggests that 5 is an eigenvalue with corresponding

eigenvector (0,0, 1) and that 0 is an eigenvector with corresponding eigenvector (1,0,0). To

prove this algebraically, suppose that A € F and (zq, 25, 25) # (0,0,0) are such that
T(21, 29, 23) = (222,0,523) = (Azy, Azy, Azg).

If X # 0 then the equation Az, =0 implies that z, =0 and thus the equation 2z5 = Az,

gives us z; = 0. Since eigenvectors are non-zero, it must be the case that z; # 0 and so the

equation 5z5 = Az implies that A = 5. So the only possible eigenvalues are 0 and 5, which

are indeed eigenvalues since

7(0,0,1) =(0,0,5) =5(0,0,1) and T(1,0,0)=(0,0,0)=0(1,0,0).
We claim that there are no other eigenvectors of T' linearly independent from these two.
As we just showed, any eigenvector of T corresponding to the eigenvalue 5 must satisfy

2, = 2o = 0 and thus each such eigenvector is a scalar multiple of (0,0,1). If (2, 24, 25) is an

eigenvector corresponding to the eigenvalue 0, i.e. (21, 25, 23) € null T, then
T(Zl,Z2,z3) — (222,0, 5Z3) — (0,0,0) = 22 :Z3 :O = (Z1,22,23) 221(1,0,0).

We may conclude that the eigenvalues and eigenvectors of T' are precisely:

eigenvalue | corresponding eigenvectors
5 (0,0,w) for w € F\ {0}
0 (w,0,0) for w € F\ {0}

Exercise 5.A.8. Suppose P € £(V) is such that P? = P. Prove that if ) is an eigen-
value of P, then A=0or A = 1.

Solution. Suppose that A is an eigenvalue of P, i.e. there is some v # 0 such that Pv = \v.
Notice that

\v = Pv = P(Pv) = P(Av) = APv = \?v.
Because v # 0, this implies that A = A2. Thus A =0 or A = 1.

Exercise 5.A.9. Define T : P(R) — P(R) by Tp = p’. Find all eigenvalues and eigen-

vectors of 7.
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Solution. Note that T(1) = 0 = 0(1), so that 0 is an eigenvalue of T'. Note further that the
only polynomials whose derivative is zero are the constant polynomials. Thus the eigenvec-

tors corresponding to the eigenvalue 0 of T" are precisely the non-zero constant polynomials.

Suppose p € P(R) satisfies degp>1. If A#0 then deg(Ap)=degp, whereas
degp’ = degp — 1. Thus it cannot be the case that Tp = p’ = Ap and we may conclude that

the eigenvalues and eigenvectors of T' are precisely:

eigenvalue ‘ corresponding eigenvectors

0 ‘ non-zero constant polynomials in P(R)

Exercise 5.A.10. Define T' € £(P,(R)) by (Tp)(z) = xp’(z) for all x € R. Find all

eigenvalues and eigenvectors of T.

Solution. Letting p, € P,(R) be given by p,(z) = z* for k € {0,...,4}, notice that
(Tpp)(z) = ka* = kpy(2).

By 5.11 and 5.12 we may conclude that the eigenvalues and eigenvectors of T' are precisely:

eigenvalue ‘ corresponding eigenvectors

k € {0,...,4} ‘ ap;, for a € R\ {0}

Exercise 5.A.11. Suppose V is finite-dimensional, T' € £(V'), and a € F. Prove that
there exists § > 0 such that T — AI is invertible for all A € F such that 0 < |a — | < 4.

Solution. If T has no eigenvalues then 5.7 shows that T' — AI is invertible for all A € F, so
that any ¢ > 0 will suffice, say § = 1. Suppose therefore that T has at least one eigenvalue
and let A, ..., A, be the distinct eigenvalues of T'; there are only finitely many eigenvalues of
T by 5.12. Let

d =min{ja— ;| : k€ {1,...,n} and A\, # a}.

It follows from this definition that ¢ is positive and furthermore that A # A, for any
ke {1,..,n} and any A € F such that 0 < |& — A| < §. That is, A is not an eigenvalue of T
for any A € F such that 0 < |a — A\| < §. By 5.7 this is equivalent to saying that T'— \I is
invertible for any A € F such that 0 < |a — \| < 4.

Exercise 5.A.12. Suppose V =U & W, where U and W are nonzero subspaces of V.

Define P € £(V) by P(u + w) = u for each u € U and each w € W. Find all eigenvalues

and eigenvectors of P.
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Solution. Notice that P2 = P. It follows from Exercise 5.A.8 that the only possible eigen-
values of P are 1 and 0. Because U and W are non-zero, there is some non-zero u € U and

some non-zero w € W. Observe that
Pu=1lu and Pw = 0w.

Thus 1 and 0 are indeed eigenvalues of P. The above equations show that any non-zero
elements of U are eigenvectors of T corresponding to the eigenvalue 1 and any non-zero
elements of W are eigenvectors of T' corresponding to the eigenvalue 0. If v = u + w is an

eigenvector of T corresponding to the eigenvalue 1, then observe that
u+w=Pu+w)=u = w=0 = veU\{0}.
Similarly, if v = u + w is an eigenvector of T' corresponding to the eigenvalue 0, then observe
that
0=Plu+w)=u = veW\{0}.
We may conclude that the eigenvalues and eigenvectors of P are precisely:
eigenvalue | corresponding eigenvectors

1 ue U\{0}
0 w e W\ {0}

Exercise 5.A.13. Suppose T' € £(V). Suppose S € £(V) is invertible.
(a) Prove that T and S™!T'S have the same eigenvalues.

(b) What is the relationship between the eigenvectors of T' and the eigenvectors of
S1TS7?

Solution.

(a) Suppose A € F is an eigenvalue of T a corresponding eigenvector v € V. Because S
is surjective there is some u € V such that v = Su; notice that u # 0 since v # 0. It

follows that
Tv=x < (TS)(u)=ASu < (S7'TS)(u)= \u.
Thus A is an eigenvalue of S™!T'S with a corresponding eigenvector w.

Similarly, suppose A € F is an eigenvalue of S™'T'S with a corresponding eigenvector
u € V. Because S~! is surjective there is some v € V such that v = S~1v; notice that
v # 0 since u # 0. It follows that

(STITS)(u) = u & (S7'T)(v)=AS"tv & Tv= .

Thus A is an eigenvalue of T' with a corresponding eigenvector v.
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(b) Let A € F be an eigenvalue of T'. As we showed in part (a), this is the case if and only
if X is an eigenvalue of S~'T'S. Define

E\NT)={veV:v#0and Tv = \v}
and E(X\,S7'TS)={ueV:u#0and (S'TS)(u) = Au}.

That is, E(\,T) is the collection of eigenvectors of T' corresponding to the eigenvalue
A and E(A,S7ITS) is the collection of eigenvectors of S~!'T'S corresponding to the

eigenvalue X. Our calculations in part (a) show that

EN\T)={Su:u€ E\,S'TS)} and E(\S'TS)={S'v:ve E\T)}.
Exercise 5.A.14. Give an example of an operator on R* that has no (real) eigenvalues.

Solution. Define T € £(R*) by T'(z,vy, 2,t) = (y,2,t,—z) and suppose A € R is such that
T(z,y,z2,t) = (y,2,t,—x) = Az, y, 2, t).

We then have —z = M\t = A%z = A3y = A*z. Notice that z = 0 implies y = z =t = 0. Since
we are looking for eigenvectors, we can assume that x # 0 and thus arrive at the equation

A* +1 = 0, which has no real solutions. It follows that T has no real eigenvalues.

Exercise 5.A.15. Suppose V is finite-dimensional, T' € £(V'), and A € F. Show that A

is an eigenvalue of T if and only if A is an eigenvalue of the dual operator 7" € £(V").

Solution. Observe that

A is an eigenvalue of T < T — AI is not injective (5.7)
< (T — AI)’ is not surjective (3.131)
< T’ — AI' is not surjective (Exercise 3.F.12)
< T’ — A is not surjective (Exercise 3.F.13)
<\ is an eigenvalue of T". (5.7)

Exercise 5.A.16. Suppose vy, ..., v, is a basis of V and T € £(V). Prove that if X is

n

an eigenvalue of T', then
A < nmax{|M(T)j,k| 1< 45,k< n},

where M (T);,x denotes the entry in row j, column k of the matrix of T with respect to
the basis vy, ..., v,,.

See Exercise 19 in Section 6A for a different bound on |\|.

128 / 366



Solution. Let A, = M(T);r and suppose that v =b;v; + - + b, v, is an eigenvector of

T corresponding to the eigenvalue A. Notice that

)\blvl + o + Abnvn - bleul + °te + bnTUn

=1 =1 j=1 \ k=1

It follows from unique representation that
n n
Ab; = Ajiby = [M[b <A, lby
k=1 k=1

for each j € {1,...,n}. Let |b;| be the largest amongst the values |b,], ..., |b,,| and notice that
|b;| > 0, since |b;| = 0 implies b; = --- = b,, = 0, so that v is zero—but v is an eigenvector and
thus non-zero. Let M = max{‘M(T)j7k‘ 1<4,k< n} and observe that

n n b n n
Al <D JAsllbel = A SZ‘AM‘%SZ‘AM‘ <Y M=nM.
k=1 k=1 | 'L‘ k=1 k=1

Exercise 5.A.17. Suppose F = R, T € £(V), and A € R. Prove that X is an eigenvalue
of T' if and only if A is an eigenvalue of the complexification 7.

See Exercise 33 in Section 3B for the definition of T.

Solution. Suppose that A\ is an eigenvalue of T' with a corresponding eigenvector v € V.

Notice that v 4 0 is non-zero since v is non-zero, and notice further that
Te(v+0i) =Tv+iT(0) = Av+ 0i = A(v + 03).
Thus A is an eigenvalue of T~ with a corresponding eigenvector v + 0s.

Now suppose that A is an eigenvalue of T with a corresponding eigenvector u + 7v. It fol-
lows that

To(u+w) =Tu+iTv=ANu+1iv) = Au+i(Av) = Tu= AIuand Tv=\v.
Since u + v # 0, at least one of w,v is non-zero. Thus A is an eigenvalue of T" with u or v

(or both) as a corresponding eigenvector.

Exercise 5.A.18. Suppose F = R, T € £(V), and A € C. Prove that A is an eigenvalue

of the complexification T if and only if X is an eigenvalue of T¢.

Solution. Suppose that A = a + bi and u + v is an eigenvector of T corresponding to A.
Observe that

AMu+iv) =Tc(u+iv) < (a+bi)(u+iv) = (au—bv) + (av + bu)i = Tu + iT.

Thus Tu = au — bv and Tv = av + bu. It follows that
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To(u —iv) = Tu —iTv = (au — bv) — (av + bu) = (a + bi)(u — iv) = A(u — v).

Furthermore, u — v is non-zero since u + v is non-zero. Thus A is an eigenvalue of T with

a corresponding eigenvector u — iv.

We have now shown that
A € C is an eigenvalue of T = )\ is an eigenvalue of T.
T_Fhe converse can be obtained by replacing A with X in the implication above and using that
A=A\
Exercise 5.A.19. Show that the forward shift operator T' € £(F>°) defined by
T (21, 29,-.-) = (0, 21, 29, ...)

has no eigenvalues.

Solution. We are looking for solutions to the equation
(0, Zl, Zz, ...) - ()\Zl, )\Z2, )\z3, ...),

where (24, 24,...) # 0 and X € F. Notice that A = 0 implies that each z, = 0. If A # 0 then
the equation 0 = Az; implies that z; = 0, which gives us the equation 0 = Az,, which implies
that z, = 0, and so on. Thus both assumptions A =0 and A # 0 imply that (2, 25, ...) = 0.

We may conclude that T has no eigenvalues.

Exercise 5.A.20. Define the backward shift operator S € £(F*°) by
S(Zl, 22, Z3, ...) = (ZQ, 23, ...).
(a) Show that every element of F is an eigenvalue of S.

(b) Find all eigenvectors of S.

Solution.

(a) Observe that for any A € F and any « € F \ {0} we have a(1,,\?,...) # 0 and
S(a(1,A,A%,.00) = a(A A2 03,.0) = da(1, M, 02, .0).
Thus each A € F is an eigenvalue of S.

(b) Let A € F be given and suppose that (zq, 25, 23, ...) is an eigenvector of S corresponding

to A, i.e.
(29, 23, 24, -..) = (A2q, A2y, A23, ...).
This equation implies that z, = \z;, which gives us 23 = Az, = A2z, and so on. Thus

21, 29y 23y -n) = (21, A2y, A2, .0.) = 2 (1, A\, A2, .0);
3
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this implies z; # 0 since eigenvectors are non-zero. Conversely, any vector of the form
a(1,2, 2%, ...) for @ € F\ {0} is an eigenvector of S corresponding to A, as we showed

in part (a). We may conclude that the eigenvalues and eigenvectors of S are precisely:

eigenvalue ‘ corresponding eigenvectors

AEF ‘ (1, M2, ..)) for a € F\ {0}

Exercise 5.A.21. Suppose T € £(V) is invertible.

(a) Suppose A € F with A # 0. Prove that A is an eigenvalue of T if and only if % is

an eigenvalue of 71,

(b) Prove that T and T—! have the same eigenvectors.

Solution.
(a) For A # 0 and v # 0, observe that
Tv=Xv & v=X\"1v & Xlv=T"lo

(b) Notice that 7" and T~! are both injective and so neither has 0 as an eigenvalue. Thus
any eigenvector of T or T—! must correspond to a non-zero eigenvalue. It follows from
part (a) that

v is an eigenvector of T < v is an eigenvector of T71.

Exercise 5.A.22. Suppose T € £(V) and there exist nonzero vectors v and w in V
such that

Tu=3w and Tw = 3u.

Prove that 3 or —3 is an eigenvalue of 7.

Solution. Applying T to both sides of the equation Tu = 3w shows that T?u = 9u or
equivalently (T2 —9I)(u) = 0. Because u is non-zero, this demonstrates that the operator
T? —9I = (T — 3I)(T + 3I) is not injective. It must then be the case that at least one of

the operators T'— 31, T + 31 is not injective and thus 3 or —3 is an eigenvalue of T'.

Exercise 5.A.23. Suppose V is finite-dimensional and S,T € £(V). Prove that ST

and T'S have the same eigenvalues.

Solution. Exercise 3.D.11 shows that ST is invertible if and only if T'S' is invertible; by 5.7,

this is equivalent to ST having 0 as an eigenvalue if and only if 7'S has 0 as an eigenvalue.

Suppose that A # 0 is an eigenvalue of ST with corresponding eigenvector v € V, i.e.
S(Tv) = v, and note that T'v # 0 since A # 0 and v # 0. Note further that

(T'S)(Tv) =T(S(Tv)) =T(Av) = ATw.
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Thus A is an eigenvalue of T'S with a corresponding eigenvector Tw. Swapping the roles of S

and T in this argument shows that any non-zero eigenvalue of T'S must also be an eigenvalue

of ST.

Exercise 5.A.24. Suppose A is an n-by-n matrix with entries in F. Define T' € £(F")

by Tx = Az, where elements of F" are thought of as n-by-1 column vectors.

(a) Suppose the sum of the entries in each row of A equals 1. Prove that 1 is an

eigenvalue of T'.

(b) Suppose the sum of the entries in each column of A equals 1. Prove that 1 is an

eigenvalue of T'.

Solution.

(a) Let A;, be the entries of A; our assumption is that Y p_; A; , = 1foreach j € {1,...,n}.
Observe that

Apq o Ay 1 > o1 Arg 1
T(1,..,1)= oo = : =1
n,l An,n 1 Zkzl An,k 1

Thus 1 is an eigenvalue of T'.

(b) Here
(1)

are two arguments.

Let ey, ..., e, be the standard basis of F™ and let ¢ € (F"™)” be the linear functional
e is A Tt

n

given by (e, ) = 1. Certainly the matrix of T with respect to ey, ..
follows that

("p ° (T - I))(ek) =9 < (i Angej) - ek) = (En: Aj,k) —1=0,

where we have used our assumption that the sum of the entries in each column of
A equals 1. Thus 9o (T —I) € (F™)" is the zero map. If the operator T — I were
invertible then it would have to be the case that 1) = 0; because 1 is non-zero, we

see that T'— I is not invertible. That is, 1 is an eigenvalue of T.

Define S € £(F™) by Sz = A'z. Because the rows of A are the columns of A,
part (a) shows that 1 is an eigenvalue of S. Let eq, ..., e, be the standard basis
of F", let ¢4, ..., p,, be the corresponding dual basis, and define an isomorphism
® € £(F", (F")') by ®e;, = ¢y, Certainly the matrix of T with respect to ey, ..., ,,
is A and thus, by 3.132, the matrix of T with respect to ¢y, ..., p,, is A" It fol-
lows that

(71T ®)(ey) = (D117 ) () = @71 (Ak,ﬁbl + ot Ak,n¢n)

== Ak’lel + i + Ak’nen - Atek == Sek.
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Thus ®17® = 9, so that ® 17"® has 1 as an eigenvalue. A small modification
of the argument given in Exercise 5.A.13 (a) shows that ®177® and T have the
same eigenvalues. It follows that 1 is an eigenvalue of 7" and hence, by Exercise

5.A.15, 1 is an eigenvalue of T'.

Exercise 5.A.25. Suppose T' € £(V) and u,w are eigenvectors of T' such that u + w
is also an eigenvector of T. Prove that v and w are eigenvectors of T' corresponding to

the same eigenvalue.

Solution. Suppose that the eigenvectors u,w,u + w correspond to the eigenvalues «, 3, A,

respectively. Observe that
au+ fw =Tu+Tw=T(u+w) = Au+w) = Au+ \w.

It follows that (o — A)u+ (8 — A)w = 0. If we suppose that a # S then 5.11 shows that u
and w are linearly independent and the equation (o — A)u + (8 — A)w = 0 then implies that

a = f = )\, contradicting our assumption. Thus a = .

Exercise 5.A.26. Suppose T' € £(V) is such that every nonzero vector in V is an

eigenvector of T'. Prove that T is a scalar multiple of the identity operator.

Solution. The case where V' = {0} is easily handled, so assume that V' # {0} and fix some
non-zero u € V; by assumption we have Tu = Au for some A € F. Suppose that v € V is non-
zero. If u 4+ v # 0 then by assumption v and u + v are both eigenvectors of T'. It then follows

from Fxercise 5.A.25 that u and v correspond to the same eigenvalue A, so that Tv = A\v. If
u+ v =0 then Tv=—Tu = —Au = Av. Thus we have Tv = dv for all v € V, i.e. T = AI.

Exercise 5.A.27. Suppose that V is finite-dimensional and k € {1, ...,dim V' — 1}. Sup-
pose T € £(V) is such that every subspace of V' of dimension k is invariant under 7'

Prove that T is a scalar multiple of the identity operator.

Solution. If dim V' = 0 then T" = 0] and if dim V' = 1 then Exercise 3.A.7 shows that T' = A\I
for some A € F. Suppose that dimV > 2. For k € {1,...,dimV — 1}, let P(k) be the state-
ment that if every subspace of V of dimension k is invariant under T', then T is a scalar
multiple of the identity operator. We will prove that P(1) holds and that P(k) implies
P(k+1), provided k+1 € {1,...,dimV — 1}.

Suppose that every one-dimensional subspace of V' is invariant under 7" and let v € V' be
non-zero. By assumption the subspace span(v) is invariant under 7" and thus Tv = Av for
some A € F, i.e. v is an eigenvector of T'. It follows from Exercise 5.A.26 that T is a scalar
multiple of the identity operator. Thus P(1) holds.

Now suppose that P(k) holds for some k such that k+1 € {1,...,dimV — 1} and suppose

that every subspace of dimension k + 1 is invariant under 7. Let U be a subspace of dimen-
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sion k. Because k < dim V' — 2, we can find linearly independent vectors v, w € V such that
v,w ¢ U. Let u € U be given. By assumption the subspaces U @ span(v) and U @ span(w),
which have dimension k + 1, are invariant under 7. Since u belongs to each of these sub-

spaces, it follows that

Tu=aju; +bv and Tu = ayu, + cw
for some u;,u, € U and some a;,a,,b,c € F. This implies that a;u; — ayuy = cw — by, so
that cw — bv € U Nspan(v, w) = {0}. Thus cw — bv = 0 and the linear independence of v, w

then gives us b = ¢ = 0, so that Tu € U. That is, U is invariant under T'. Because we assumed
that P(k) holds, it now follows that T is a scalar multiple of the identity, i.e. P(k + 1) holds.

Thus, by induction, P(k) holds for each k € {1,...,dimV — 1}.

Exercise 5.A.28. Suppose V is finite-dimensional and T' € £(V'). Prove that T has at

most 1 4+ dimrange T distinct eigenvalues.

Solution. Suppose A, ..., A,, are n distinct eigenvalues of T with corresponding eigenvectors
vy, ..., v, and note that each Tv;, = A\ v, € rangeT'. The list vy, ..., v,, is linearly independent
by 5.11 and thus the list A\jvq,..., A, v,, is also linearly independent, provided each A, is
non-zero; if some A, = 0 (since the eigenvalues are distinct there can be at most one such
M), we can discard A\ v, from the list and be left with a linearly independent list of n — 1
vectors. In either case, there are at least n — 1 linearly independent vectors in rangeT" and
thus n <14 dimrangeT'.

Exercise 5.A.29. Suppose T € £(R?) and —4,5, and /7 are eigenvalues of T. Prove
that there exists z € R3 such that Tz — 92 = (—4, 9, \/7)

Solution. Because T has 3 = dim R? distinct eigenvalues, 5.12 shows that 9 cannot be an
eigenvalue of T'. By 5.7 this is equivalent to the operator T' — 9I being invertible. Thus the
desired z € R3 is (T — 9I)™" (—4,5, \/7)

Exercise 5.A.30. Suppose T' € £(V) and (T — 2I)(T — 3I)(T — 4I) = 0. Suppose A is
an eigenvalue of T'. Prove that A =2 or A=3 or A = 4.

Solution. We have T'v = Av for some v # 0. Observe that
0=(T—-20)(T—-31)(T—4)v=(A—2)(A—3)(A—4)v.

Since v is non-zero, this equation implies that A € {2,3,4}.
Exercise 5.A.31. Give an example of T € £(R?) such that 7% = —1I.

Solution. Define T € £(R?) by
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T .7 1 3m . 3w 1
T(1,0) = (cos 75in Z) = ﬁ(l’l) and T(0,1) = (cos = sin T) = E(—l,l).

Note that T is a counterclockwise rotation about the origin by 45°. It follows that T4 is a
counterclockwise rotation about the origin by 180°, i.e.

T4(1,0) = (cosm,sinm) = (—1,0) and T(0,1) = (cos 377T,Sin 37#) = (0,—1).

Thus T* = —1I.

Exercise 5.A.32. Suppose T € £(V) has no eigenvalues and 7% = I. Prove that
T2 = —J.

Solution. Observe that 7% = I is equivalent to (7% —I)(T? + I) = 0. Because T has no
eigenvalues, the operators T'— I and T + I must be injective and thus their product
(T —I)(T +I)=T?%— I is also injective. It follows that for any v # 0,

0=(T*-1)(T*+1)v & 0=(T?*+1)v & T*v=—u.

Thus T? = —1I.

Exercise 5.A.33. Suppose T' € £(V) and m is a positive integer.
(a) Prove that T is injective if and only if 7™ is injective.

(b) Prove that T is surjective if and only if T™ is surjective.

Solution. Certainly these results are true if m = 1, so suppose that m > 2.

(a) The composition of injective functions is again injective, so T™ is injective if T is in-

jective. Suppose that T™ is injective and let v € null T be given. It follows that
Tv=0 = Tv=T"10)=0 = venullT™={0} = v=0.
Thus null T = {0}, i.e. T is injective.

(b) Suppose that T™ is surjective and let w € V be given. There exists some v € V' such

that T™v = w, which is equivalent to T (7™ 'v) = w. Thus T is surjective.

Suppose that T is surjective and let w € V' be given. There exist vectors vy, ..., v,, such
that:

Tvy =w and Tv, =wv,_; for k> 2.
It follows that T""v,, = w and hence that T™ is surjective.
Exercise 5.A.34. Suppose V is finite-dimensional and vy, ...,v,, € V. Prove that the

list vy, ...,v,, is linearly independent if and only if there exists T' € £(V') such that

vy, ..., U, are eigenvectors of T' corresponding to distinct eigenvalues.
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Solution. Suppose vq,...,v,, is linearly independent and extend this to a basis
Uy eeey Uy Wy s -y w,, Of V. Define T' € £(V) by

ey Uy s
Tv, = kv, for k€ {1,....,m} and Tw,=0for ke {1,...,n}.
It follows that vy, ...,v,, are eigenvectors of T' corresponding to distinct eigenvalues.

The converse implication is the content of 5.11.

Exercise 5.A.35. Suppose that A, ..., A, is a list of distinct real numbers. Prove that
the list e*1®, ..., e*»® is linearly independent in the vector space of real-valued functions

on R.

n

Hint: Let V = span(e™?, ..., e*®), and define an operator D € £(V) by Df = f’.

Find eigenvalues and eigenvectors of D.
Solution. Let V = span(e*?, ...,e**), and define an operator D € £(V) by Df = f’. For
each k € {1,...,n},
D(e’\k‘”) = (e’\kx)/ = )\keAk““".

This demonstrates that D indeed maps V into V' and also that each A\, is an eigenvalue of D
with a corresponding eigenvector e*+®. Because the eigenvalues A, ..., A, are distinct, 5.11

shows that the corresponding eigenvectors e*1?, ..., e*? are linearly independent.

Exercise 5.A.36. Suppose that A\j,...; A

that the list cos(\ ), ...,cos(A,z) is linearly independent in the vector space of real-

. 1s a list of distinct positive numbers. Prove

valued functions on R.

Solution. Let V = span(cos(\ ), ...,cos(A\,z)) and define D € £(V) by Df = %f. For
each k € {1,...,n},
4

D(cos(A\,z)) = Py cos(\,x) = A} cos(A,z).
x

This demonstrates that D indeed maps V into V and also that each A} is an eigenvalue
of D with a corresponding eigenvector cos(A,z). Because A4, ..., A\, are distinct and posi-
tive, the real numbers A],...,A\* are also distinct. It then follows from 5.11 that the list

cos(A;z), ...,cos(\,x) is linearly independent.

Exercise 5.A.37. Suppose V is finite-dimensional and T' € £(V'). Define A € £(L(V))
by

A(S) =TS

for each S € £(V'). Prove that the set of eigenvalues of T' equals the set of eigenvalues
of A.
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Solution. Suppose that A € F is an eigenvalue of 7', so that there is some non-zero v; € V
such that Tw; = Av;. Extend v, to a basis vy, ...,v,, of V and define S € £(V) by

Sv; =v; and Sv,=0for k> 2.

Notice that S # 0 and that

(T —A)Svy =(T —A)vy =0 and (T —AI[)Sv, =0 for k> 2.
Thus (T'— AI)S =0, i.e. T'S = AS. It follows that X is an eigenvalue of A with a correspond-
ing eigenvector S.

Now suppose that A € F is an eigenvalue of A, i.e. there is some non-zero S € £(V') such
that T'S = A\S, or equivalently (T'— AI)S = 0. If T'— AI were injective then the equation
(T'— AI)S = 0 would imply that S = 0. Given that S is non-zero, it must be the case that

T — Al is not injective and thus A is an eigenvalue of T'.

Exercise 5.A.38. Suppose V is finite-dimensional, T' € £(V'), and U is a subspace of
V invariant under T'. The quotient operator T/U € £(V/U) is defined by

(T/U)(v+U)=Tv+U
for each v € V.

(a) Show that the definition of T/U makes sense (which requires using the condition
that U is invariant under T') and show that T/U is an operator on V/U.

(b) Show that each eigenvalue of T/U is an eigenvalue of T'.

Solution.

(a) Suppose that v,w € V are such that v+ U = w + U, which by 3.101 is equivalent to
v—w € U. Because U is invariant under T' it follows that Tv — Tw € U and another
application of 3.101 gives us Tv + U = Tw + U. Thus the definition of T/U makes sense.

Certainly T/U maps V/U into V/U. Let v+ U,w+ U € V/U and X € F be given. Ob-

serve that
(T/U)(v+U)+ (w+U))=(T/U)(v+w)+U)=T(v+w)+ U

=Tv+Tw)+U=Tv+U)+ (Tw+U)=(T/U)(v+U) + (T/U)(w+U),

(T/U)Av+U)) =(T/U)( M+ U)=T(M)+U
= ATv+U = A(Tv+U) = NT/U)(v +U).
Thus T/U is a linear operator on V/U.

(b) Suppose A € F is an eigenvalue of T/U, i.e. there exists a non-zero v+ U € V/U such
that

(T/U)(v+U)=Tv+U=Av+U) = v+U.
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Note that U is invariant under T'— AI: for any v € U we have Tu — Au € U since U is

invariant under 7'. Here are two ways to proceed; notice that in each argument we only

require that U is finite-dimensional.

(1)

Consider the restriction operator R := (T'— AI)|; € £(U). There are two cases.

Suppose that R is not surjective; by 3.65 this is equivalent to null R # {0}, so
that there exists some non-zero u € U such that Ru = 0, i.e. Tu = Au. Thus A is

an eigenvalue of T'.

Now suppose that R is surjective. Because Tv+U = A+ U, we have
Tv = M+ w for some w € U. The surjectivity of R implies that there exists some
u € U such that —w = Ru = T'u — Au. Observe that

Two+u)=Tv+Tu= +w+Tu= I+ Iu= v+ u).

Note that v +u must be non-zero, otherwise v would belong to U, contradicting

that v + U is non-zero. Thus A is an eigenvalue of T

Let uq,...,u,, be a basis of U. Because Tv + U = Av + U and U is invariant under
T — M\, the list

(T — X, (T — ADuy, ..., (T — A\D)u,

is contained in U. This is a list of n + 1 vectors in an n-dimensional space and
hence must be linearly dependent, i.e. there are scalars ay,aq, ..., a,,, not all zero,
such that w := agv + a,uy + -+ + a,u,, satisfies (T' — AI)w = 0. Note that w must
be non-zero: if w = 0 and ay # 0 then v € U, contradicting v + U # 0, and if w = 0
and ay = 0 then ayu; +--- 4+ a,u,, is a non-trivial linear combination, contradict-

ing the linear independence of uq, ..., u,,. Thus A is an eigenvalue of T'.

Exercise 5.A.39. Suppose V is finite-dimensional and T € £(V). Prove that T has an
eigenvalue if and only if there exists a subspace of V' of dimension dimV — 1 that is

invariant under T'.

Solution. Suppose that T" has an eigenvalue A € F with a corresponding eigenvector v € V
it follows that dim null(7"— AI) > 1 and hence that dimrange(T — A\l) < dim V — 1. By tak-
ing a basis of range(T — AI) and, if necessary, extending it to a linearly independent list
of length dimV — 1, we can obtain a subspace U of V satisfying range(T"— A\I) C U and
dimU =dimV — 1. Exercise 5.A.39 shows that U is invariant under T'— A\I, which implies

that U is invariant under T':

uelU = Tu— uelU = Tuel.

Now suppose that there exists a subspace U of V such that U is invariant under T" and
dimU = dimV — 1, and consider the quotient operator T/U € £(V/U). Since dimV/U =1,
Exercise 3.A.7 shows that T/U = AI for some A € F; it follows that A is an eigenvalue of
T/U and thus, by Exercise 5.A.38, A is an eigenvalue of T'.
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Exercise 5.A.40. Suppose S,T € £(V) and S is invertible. Suppose p € P(F) is a

polynomial. Prove that

p(STS™) = Sp(T)S*.

Solution. Notice that (STS_I)O =1=988"1=81I8"1=8T°S"L. For a non-negative inte-
ger k, suppose that (STS_l)k = ST*S~1 and observe that

(STS 1! = (§T781)"STS1 = STFS-1STS! = STFITS™! = STH+1 51,

Thus (STSfl)k = ST*S~! for all non-negative integers k. Suppose p = > r_y a,2* and ob-

serve that

p(STS™) = a,(STS™! Za STES™ = (Z aka> S71 = Sp(T)S~!
k=0

Exercise 5.A.41. Suppose T € £(V) and U is a subspace of V invariant under 7.
Prove that U is invariant under p(T") for every polynomial p € P(F).

Solution. Certainly U is invariant under T* for any non-negative integer k. Suppose

p=> r_oa,z* and observe that

T)u = (i aka> u = i a, TFu;
k=0 k=0

this belongs to U since each T*u € U and U is closed under vector addition and scalar mul-

tiplication.

Exercise 5.A.42. Define T' € L(F") by T'(x, x4, T3, ..., x,,) = (1,224, 323, ..., NT,,).
(a) Find all eigenvalues and eigenvectors of T'.

(b) Find all subspaces of F™ that are invariant under 7.

Solution.

(a) Let eq,...,e, be the standard basis of F™ and notice that Te, = ke, for each
ke {1,..,n}. Thus k is an eigenvalue of T with a corresponding eigenvector e,. By

5.11 and 5.12 we can conclude that the eigenvalues and eigenvectors of T" are precisely:

eigenvalue ‘ corresponding eigenvectors

ke{l,..n} ‘ span(e;) \ {0}

(b) First, let us prove some useful results.
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Lemma L.4. Suppose T' € £(V) and U is a subspace of V invariant under 7. If
Ay, -y A, are distinct eigenvalues of T' with corresponding eigenvectors vy, ..., v

) m?
then

vy +--+uv, €U & v, €U foreach ke {l,..,m}.

Proof. If v, € U for each k € {1,...,m} then v; +--+wv,, € U since U is a sub-
space of V.

For the converse, we will proceed by induction on m. The base case m = 1 is clear,
so suppose that the result holds for some positive integer m and let Ay, ..., A\, 4
be distinct eigenvalues of T with corresponding eigenvectors vy, ..., v,, ;. Suppose

that v =v; + -4+ v,,,; € U. Because U is invariant under T' we have
Tv=X2v+ -+ A1V €U
= Tv— >‘m+1v = ()‘1 - )‘m-i—l)vl + e+ (Am - )‘m—i-l)vm eU

Let k € {1,...,m} be given. By assumption the eigenvalues A, ..., A, ; are dis-
tinct and thus A, — \,,11 # 0. It follows that (A, — A,,,1)v;, is an eigenvector of
T corresponding to the eigenvalue A\;. Our induction hypothesis then guarantees
that (A, — A1)V, belongs to U. Thus v, belongs to U for each k € {1,...,m},

which gives us
Upgp1 =V—v; — - —v, €U.

This completes the induction step and the proof. O
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Lemma L.5. Suppose T' € £(V),dimV = n, and A, ..., \,, are distinct eigenval-
ues of T" with corresponding eigenvectors vy, ...,v,,. If U is a subspace of V invari-

ant under T, then

U=UnNE,)®--®{UNE,) where E, =span(vy).
Proof. By 5.11 the eigenvectors vy, ..., v,, are linearly independent and hence form
a basisof V,sothat V=FE, &--@E,. For any u € U we have u =e; + -+ ¢,
where each e, € E,. If any e;, = 0 then certainly e, € U; otherwise, e, is an eigen-
vector of T' corresponding to the eigenvalue A\, and thus, by Lemma [.4, the
non-zero e,’s belong to U also. It follows that w € (UNE;) + -+ (UNE,,) and
hence that

U=UNE)+-+UNE,).

The directness of this sum follows immediately from the directness of the sum
V=E & -8E,. d

Lemma L.6. If T € £(V),dimV =n > 1, and A, ..., A,, are distinct eigenvalues
of T' with corresponding eigenvectors vy, ...,v,,, then the non-zero subspaces of V'

which are invariant under T are precisely those of the form
span(vg, , ..., Vg, )

for some choice of integers 1 < k; <-- <k, <n with1 <m <n.

Proof. 1t is straightforward to verify that each span(vg,, ..., vk, ) is indeed a sub-
space of V invariant under T'. For k € {1,...,n} let E, = span(v,) and suppose

U is a non-zero subspace of V invariant under T. By Lemma [..5 we have
U=UnNE,)®--®{UNE,).
For each k, since dim E; = 1, we can either have U N E, = {0} or U N E, = E,.

Because U is non-zero, there must be at least one k such that U N E, = E,; let
1<k <<k, <n be those indices for which U N E,, = E,. It follows that

U=UNE,)®&®UNE,)=Ey &®Ey, =span(vg,,...,0, ). O

Now let us return to the exercise. As we showed in part (a), the eigenvalues of T' are

1,...,n with corresponding eigenvectors ey, ...

the non-zero subspaces of F™ which are invariant under T are precisely those of the form

span(eg,, ..., €k, )

for some choice of integers 1 < k; <--- < k,, <n with 1 <m <n.
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Exercise 5.A.43. Suppose that V is finite-dimensional, dimV > 1, and T € £(V).
Prove that {p(T) : p € P(F)} # £L(V).

Solution. If every operator in £(V) could be realized as p(T) for some p € P(F), then
each pair of operators in £(V') would commute with each other by 5.17. However, because
dim V' > 1, Exercise 3.A.16 shows that there exist two operators in £(V') which do not com-

mute with each other.
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5.B. The Minimal Polynomial

Exercise 5.B.1. Suppose T € £(V). Prove that 9 is an eigenvalue of T? if and only if

3 or —3 is an eigenvalue of T

Solution. We showed in the solution to Fxercise 5.A.22 that if 9 is an eigenvalue of T2 then
3 or —3 is an eigenvalue of T'. Conversely, suppose there is some non-zero v € V such that
Tv = £3v. It follows that T?v = (£3)%v = 9v and thus 9 is an eigenvalue of T2,

Exercise 5.B.2. Suppose V is a complex vector space and T' € £(V') has no eigenvalues.

Prove that every subspace of V' invariant under T is either {0} or infinite-dimensional.

Solution. Suppose U is a non-zero subspace of V invariant under 7' and consider the re-
striction operator T'|;;. If U were finite-dimensional then 5.19 would imply that T'|;; has an
eigenvalue, which would also be an eigenvalue of T'. Since T has no eigenvalues it must be

the case that U is infinite-dimensional.

Exercise 5.B.3. Suppose n is a positive integer and T' € £(F™) is defined by
T(zyy..,x,) = (2 + 4+ x,,....x++x,).
(a) Find all eigenvalues and eigenvectors of T

(b) Find the minimal polynomial of T'.

The matrix of 'T' with respect to the standard basis of F™ consists of all 1°s.

Solution.

(a) If n =1 then T is the identity operator on F, whose only eigenvalue is 1 with corre-

sponding eigenvectors x € F \ {0}.
Suppose that n > 2. Some straightforward calculations reveal that
nullT = {(—zy — - — =z, 29, ..., x,) EF" 124, ...,x, € F}
and rangeT = span((1,...,1)).

Note that dimnull7” = n — 1 and dimrangeT = 1. Since dimnull 7" > 1, it follows that

0 is an eigenvalue of T'. Notice that n is also an eigenvalue of T', since
T1,..,1)=(n,..,n)=n(1,..1).

We claim that these are the only eigenvalues of T'. Indeed, if x # 0 and A # 0 are such
that Tx = Az, then since rangeT = span((1,...,1)) there must exist some o € F such
that

Tr =Xz =a(l,..,1) = z=Xla(l,..1).
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Thus the eigenvector z, which corresponds to the eigenvalue A, and the eigenvector
(1,...,1), which corresponds to the eigenvalue n, are linearly dependent. It follows from

the contrapositive of 5.11 that A = n.

Certainly null 7'\ {0} is the collection of eigenvectors of T' corresponding to the eigen-
value 0. Because rangeT = span((1,...,1)), the collection of eigenvectors of T' corre-

sponding to the eigenvalue n must be span((1,...,1)) \ {0}.

(b) If n =1 then T is the identity operator on F and it is then clear that the minimal
polynomial of T is p(z) = z — 1.

Suppose that n > 2 and let p € P(F) be the minimal polynomial of T'. As we showed in
part (a) the eigenvalues of T' are 0 and n, which must be the zeros of p by 5.27(a), i.e.
p is divisible by z and z — n. This implies that degp > 2. A straightforward calculation
shows that T'(T — nI) = 0. The uniqueness of p and the minimality of its degree allow

us to conclude that p(z) = z(z — n).

Exercise 5.B.4. Suppose F = C,T € £(V),p € P(C), and « € C. Prove that « is an
eigenvalue of p(T') if and only if a = p(\) for some eigenvalue A of T

Solution. Suppose that a = p(A) for some eigenvalue A of T'. There is some non-zero v € V
such that T'v = Av; as shown in the proof of 5.27 we then have p(T)v = p(A)v = av and thus

a is an eigenvalue of p(T).

For the converse, we must assume that p is non-constant (see the errata for the third edition
of LADR), or that V is finite-dimensional. To demonstrate this, let V' = C* p(z) = a € C,
and let T' € £(C) be the forward shift operator. Certainly « is an eigenvalue of p(T') = o,
but we may not express « as p(A) for some eigenvalue A of T' because T' has no eigenvalues,
as shown in Exercise 5.A.19. Since any operator on a non-zero complex vector space has an
eigenvalue (5.19), we will not encounter this issue if we assume that V' is finite-dimensional.

The result as stated is true if we assume that p is non-constant, as we now show.

Suppose that degp > 1 and that « is an eigenvalue of p(T'), i.e. there is some non-zero v € V
such that p(T)v = aw. Let ¢ € P(C) be given by ¢(z) = p(z) — a. Because q is a polynomial

over C, 4.13 shows that there is a factorization
q(z) = c(z=A) (2= Ap)

for some ¢, Ay, ..., A,,, € C. Since degq = degp > 1, it must be the case that ¢ # 0 and m > 1.
Note that ¢(T")v = 0 since p(T)v = av and thus

0=q(T)v=c(T—X\I)-(T—\,I)v.

Because ¢ # 0 and v # 0, the equation above implies that there is some k€ {1,...,m}
such that T — A I is not injective, ie. A, is an eigenvalue of 7. Furthermore,

p(Ar) = q(A) + a = a since A, is a zero of q.
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Exercise 5.B.5. Give an example of an operator on R? that shows the result in Fxercise
4 does not hold if C is replaced with R.

Solution. Let T' € £(R?) be given by T(z,y) = (—y,z), i.e. a counterclockwise rotation
about the origin by 90°. Let p(t) = t? and notice that p(T) = T? = —1I, since T2 is a counter-
clockwise rotation about the origin by 180°. Thus p(T") has the eigenvalue —1. However, we
cannot possibly express —1 as p(A) for some eigenvalue A of T' because T' has no eigenvalues,

as shown in 5.9(a).

Exercise 5.B.6. Suppose T € £(F?) is defined by T'(w, z) = (—z,w). Find the minimal
polynomial of T

Solution. Let ey, e, be the standard basis of F2 and note that Te; = ey and T?e; = —e;.
Note further that the system

has the unique solution ¢; = 1 and ¢; = 0. As shown in the textbook (see the discussion after
5.24), this implies that the minimal polynomial of T is p(t) = 1 + 2.

Exercise 5.B.7.

(a) Give an example of S,T € £(F?) such that the minimal polynomial of ST does

not equal the minimal polynomial of T'S.

(b) Suppose V is finite-dimensional and S,T € £(V'). Prove that if at least one of S, T
is invertible, then the minimal polynomial of ST" equals the minimal polynomial
of T'S.

Hint: Show that if S is invertible and p € P(F), then p(T'S) = S~1p(ST)S.

Solution.

(a) Let S, T € £ (Fg) be the operators whose matrices with respect to the standard basis

of F2 are

= (38) o - (33)

A simple computation shows that

M(ST) = (8 (1)) and M(TS) = (8 8)

It follows that the minimal polynomial of T'S is p(z) = z. Since p(ST) = ST # 0, it

cannot be the case that p is the minimal polynomial of ST'.
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(b) Suppose at least one of S,T is invertible, say S (the case where T is invertible
is handled similarly). Notice that (T'S)° =1I=8"1I5 = S1(ST)°S. Suppose that
(TS )k = S’l(ST)kS’ for some non-negative integer k and observe that

(TS = (TS FTS = §-1(ST)*STS = S~1(ST)* 3.

It follows by induction that (TS )k = S_l(ST)kS for all non-negative integers k. Now
suppose p(z) = Y 1_ axz"® is some polynomial in P(F) and observe that

Z a,(TS)" Z a, S = g1 (i ak(ST)k> S = S"1p(ST)S.
k=0

We can now show that the minimal polynomial of ST equals the minimal polynomial
of T'S. Let p be the minimal polynomial of ST and let ¢ be the minimal polynomial of
TS. Notice that

p(TS)=8"1p(ST)S =0 and 0=¢q(TS)=S81¢(ST)S = ¢q(ST)=0.

It follows from 5.29 that p is a polynomial multiple of ¢ and ¢ is a polynomial multiple
of p. This implies p = cq for some ¢ € F (as the next lemma shows); because p and ¢

are monic we must have ¢ = 1 and thus p = q.

Lemma L.7. Suppose p,q € P(F) are non-zero. If p is a polynomial multiple of
q and ¢ is a polynomial multiple of p then p = cq for some ¢ € F \ {0}.

Proof. There are polynomials r, s € P(F) such that p = rq and ¢ = sp, which gives
us p = rsp. This implies that r(z)s(xz) = 1 for all x € F such that p(z) # 0; there
are finitely many such z because p is non-zero. Thus r(z)s(z) = 1 holds for in-
finitely many x and so must hold for all x € F (otherwise rs — 1 is a non-zero
polynomial with infinitely many roots). This equation forces degr = 1, so that
r = ¢ for some ¢ € F \ {0}. Thus p = cq. O

Exercise 5.B.8. Suppose T' € £(R?) is the operator of counterclockwise rotation by

1°. Find the minimal polynomial of 7T'.

Because dim R? = 2, the degree of the minimal polynomial of T is at most 2. Thus
the minimal polynomial of T is not the tempting polynomial z'*° + 1, even though
TR0 — T,

Solution. Let e, e, be the standard basis of R? and observe that

Te, = COS(180)61 +sm(180)62 and T?e, = cos(go)e1 +sm(90>

Thus, solving the system of equations cye; 4+ ¢;T'e; = —T'e, amounts to solving the system
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1cos(%) (CO>_ —005(9—76)
Osin(KWO) €1 a —sin(%)

This system of equations has the unique solution ¢y =1 and ¢; = —2 cos(i

180
the textbook (see the discussion after 5.24), this implies that the minimal polynomial of T'

is p(x) = 1 —2cos(55 )= + 22

). As shown in

Exercise 5.B.9. Suppose T' € £(V) is such that with respect to some basis of V, all
entries of the matrix of 1" are rational numbers. Explain why all coefficients of the min-

imal polynomial of 7" are rational numbers.

Solution. By 5.22, there exists a minimal positive integer m < dim V' such that the equation

has a unique solution cy, ¢y, ..., ¢,,_; € F. Moreover, the numbers ¢y, ¢y, ...,c,,_1,1 are the
coefficients of the minimal polynomial of T". Thus it will suffice to show that each c; is a

rational number.

By assumption there is a basis vy, ...,v,, of V' such that the entries of the matrix of T' with
respect to this basis are rational numbers. Let A denote this matrix and consider the matrix

equation
rol + x A+ -+, AT =—A™,
As noted in the textbook (see the discussion after 5.24), this equation can be thought of as

a system of n? equations in the m unknowns xy,x,, ..., z,,_ ;. That is, letting (A")j,k be the

entry in the j® row and k™ column of A%, for each j,k € {1,...,n} we have a linear equation

3

(AY) k@ = (—A™) k-

|
o

i
Because the entries of A are rational, it follows from the definition of matrix multiplication
that each (A?) j.k 18 also rational. Thus each coefficient in this system of equations is a rational
number. If this system has a solution (x, x4, ..., Z,,_1), then Gaussian elimination (or some
other method) shows that each z, is a rational function of the coefficients of the system; it
follows that each z; is rational. Now observe that equation (1) implies that (cq, ¢y, .., ¢,p1)

is a solution of this system of equations. Thus each ¢; is rational.

Exercise 5.B.10. Suppose V is finite-dimensional, T' € £(V'), and v € V. Prove that

span(v, Tv, ..., T™v) = span(v, T, ..., T V-1y)

for all integers m > dimV — 1.
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Solution. Let n =dimV and let U,, = span(v,Tv, ...,T™v) for a non-negative integer m;
define U_; = {0}. Our goal is to show that U,, = U,,_; for all m > n — 1.

First we will use induction to show that if T**'v € U, for some k > —1 then T™v € U,
for all m > k+ 1. The base case m = k + 1 is clear, so suppose that T"v € U, for some
m>k+1,ie.

T = agv+ a;Tv+ -+ a,_T* v+ a, TFv.
Now observe that
Ty = agTv + a1 T?v + - + aj_1T*v + a, T+ w.

Certainly agTv + a;T?v + -+ + a,_;T*v € Uy, and since T**!v belongs to U, by assumption,
it follows that T™%1v € U,. This completes the induction step.

The previous result implies that if T#*1v € U,, for some k then U,, = U}, for all m > k. For
a non-negative integer m, note that if T*1v ¢ U, for all k € {—1,...,m — 1} then the linear
dependence lemma (2.19) shows that the list v, T'v, ..., T™uv is linearly independent. Because
the list v, Tv, ..., T™v is linearly dependent (it has length n + 1 and dim V' = n), it follows
that there exists some k € {—1,...,n — 1} such that T**!v € U,, which implies that U,, = U,

for all m > k. In particular, U,, =U,,_; for all m >n — 1.

Exercise 5.B.11. Suppose V is a two-dimensional vector space, T € £(V'), and the

matrix of T' with respect to some basis of V is (Z Z)
(a) Show that T? — (a + d)T + (ad — be)I = 0.

(b) Show that the minimal polynomial of T' equals
zZ—a ifb=c=0and a=d,
22— (a+d)z+ (ad — bc)  otherwise.

Solution.

(a) Letting A = (

a c

b d), a straightforward calculation shows that

A2 —(a+d)A+ (ad —be)I = 0.
It follows that T2 — (a + d)T + (ad — be)I = 0.

(b) If b=c=0and a =d then T = al and it is then clear that the minimal polynomial of
Tisz—a. If b#0, or ¢ #0, or a # d, then T is not a scalar multiple of the identity.
It follows that the equation zI = —T has no solution for z € F and thus the degree
of the minimal polynomial of T must be at least 2. Since the degree of the minimal
polynomial of T' can be at most dimV = 2, we see that the degree of the minimal
polynomial of T must equal 2. Thus, because p(z) = 22 — (a + d)z + (ad — bc) is monic,
satisfies p(T') = 0, and has degree equal to the degree of the minimal polynomial of T,
it follows from the uniqueness of the minimal polynomial of an operator that p is the

minimal polynomial of T'.
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Exercise 5.B.12. Define T € £L(F™) by T(zq,25,%3,...,%,) = (1,229, 323, ..., NT,, ).

Find the minimal polynomial of T'.

Solution. Let p € P(F) be the minimal polynomial of T. As we showed in Exercise 5.A.42
(a), each k € {1,...,n} is an eigenvalue of T'. It follows from 5.27 that each k € {1,...,n} is
a zero of p, which implies degp > n. Since degp < n by 5.22, it must be the case that

p(2) = (2= 1)(z = 2)(z = 3) - (2 —n).
Exercise 5.B.13. Suppose T € £(V) and p € P(F). Prove that there exists a unique
r € P(F) such that p(T) = r(T') and degr is less than the degree of the minimal poly-
nomial of 7.
Solution. Let ¢ € P(F) be the minimal polynomial of 7', which must be non-zero. The di-
vision algorithm for polynomials (4.9) shows that there exist unique polynomials s,r € P(F)

such that p = sq 4+ r and degr < deggq. Because ¢q(T') = 0, it follows that p(T) = r(T).

Exercise 5.B.14. Suppose V is finite-dimensional and 7' € £(V') has minimal polyno-
mial 4 + 5z — 622 — 723 4+ 22* + 25. Find the minimal polynomial of 71,

Solution. We will use the following useful lemma.
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Lemma L.8. Suppose V is finite-dimensional and T' € £(V) is invertible. If the mini-
mal polynomial of T is p € P(F) with p = >_1" ¢,2¥, then the minimal polynomial of
T-!is

m
l C Zk
§ :1nfk

Co k=0

(Note that ¢y # 0 since T is invertible.)
Proof. Let ¢ = % S e Cm_x2" and note that ¢ is monic and deggq = m. Note further
that

0=T""p(T)=T"™> ¢TF=> ¢TF™
k=0 k=0

=Y (@) =Y ek (T = (7).

m
=0 k=0

k
It follows that the degree of the minimal polynomial of T~ is at most degq = m. By
replacing T with T~! in the previous argument and using that (T_l)_1 =T, we see
that the minimal polynomials of 7" and 7! must have the same degree. Because ¢ is
monic, satisfies ¢(T') =0, and has the same degree as the minimal polynomial of
T, it follows from the uniqueness of the minimal polynomial of an operator that q is

the minimal polynomial of T 1. O

It is now immediate from Lemma L.8 that the minimal polynomial of T~ is

1.1 72 33,54 5
1T y¥ — gty 2

Exercise 5.B.15. Suppose V is a finite-dimensional complex vector space with
dimV > 0and T € £(V). Define f: C — R by

f(A) = dimrange(T — A\I).

Prove that f is not a continuous function.

Solution. Let m = dimV and note that, by 5.19, there exists an eigenvalue A € C of T'.
It follows from 5.7 that T'— AI is not surjective, so that f(A) < m. Consider the sequence
(A, ) of distinct complex numbers given by A, = A + %, which satisfies lim,,_, . A,, = A.
Because T' can have at most m distinct eigenvalues 5.13, we may choose a subsequence
(Any )y such that each A,, is not an eigenvalue of T'. By 5.7 each operator T — A,, I must

be surjective. It follows that f(\,,) = m for each positive integer k, which implies

S > 101 1 ).
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Thus f is not continuous at A.

Exercise 5.B.16. Suppose a, ...,a,_; € F. Let T' be the operator on F” whose matrix

(with respect to the standard basis) is

1 —Qq
0 )
1 —a,_q

Here all entries of the matrix are 0 except for all 1’s on the line under the diagonal and
the entries in the last column (some of which might also be 0). Show that the minimal

polynomial of T is the polynomial
agtaz+-+a, 12"+ 2"

The matrix above is called the companion matrix of the polynomial above. This exer-
cise shows that every monic polynomial is the minimal polynomial of some operator.
Hence a formula or an algorithm that could produce exact eigenvalues for each op-
erator on each F™ could then produce exact zeros for each polynomial [by 5.27(a)].
Thus there is no such formula or algorithm. However, efficient numeric methods exist

for obtaining very good approximations for the eigenvalues of an operator.

Solution. Let e, ...,e,,_; be the standard basis of F™ and observe that
Tey=e,, T?eq=c¢ey, .., TP leg=c¢, 1, Tley=—(ageq+ - +a, 1€, 1)
It follows that the equation cyeq + ¢;Tey + coT?eq + -+ + ¢, 1T ey = —T™e, is equivalent
to
Co€o +C1€1 +Coey + -+, _1€, 1 = Gg€y + a1€; + ageg + -+ a,_ 1€, 1.

By unique representation, this equation has the unique solution (cg, ..., ¢,_1) = (ag, .., @,,_1)-
It follows (see the discussion in the textbook after 5.24) that the minimal polynomial of T'

isag+ayz+-+a, 12"+ 2"

Exercise 5.B.17. Suppose V is finite-dimensional, T € £(V'), and p is the minimal
polynomial of T. Suppose A € F. Show that the minimal polynomial of T'— AI is the
polynomial ¢ defined by ¢q(z) = p(z + A).

Solution. Let s be the minimal polynomial of 7' — AI. Notice that ¢ is monic and satisfies

deg g = degp. Notice further that
q(T — M) =p(T — X+ ) =p(T)=0.
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It follows that degs < degq = degp. Now define a polynomial r by r(z) = s(z — A) and ob-
serve that degr = degs and that

r(T)=s(T —\)=0.

It follows that degp < degr = degs. Thus degs = degp. Because ¢ is a monic polynomial
satisfying q(T — AI) = 0, and the degree of ¢ equals the degree of the minimal polynomial
of T'— A, it follows from the uniqueness of the minimal polynomial of an operator that ¢ is

the minimal polynomial of T'— AI.

Exercise 5.B.18. Suppose V is finite-dimensional, T' € £(V'), and p is the minimal
polynomial of T'. Suppose A € F \ {0}. Show that the minimal polynomial of AT is the
polynomial ¢ defined by ¢(z) = Adegpp(f).

Solution. Let s be the minimal polynomial of AT'. Observe that degq = degp and that
g(AT) = X*Pp(T) = 0.

Thus degs < deggq. Let r be given by r(z) = s(Az) and notice that degr = degs since
A # 0. Furthermore, r(T) = s(AT') = 0, which implies degp < degr, i.e. degq < degs. Thus
deg s = degq. Because p is monic, the highest degree term of p(f) is A~deepzdeer and it fol-
lows that ¢ is monic. Thus ¢ is a monic polynomial satisfying ¢(AT") = 0 whose degree equals
the degree of the minimal polynomial of AT. The uniqueness of the minimal polynomial of

an operator then implies that ¢ is the minimal polynomial of AT'.

Exercise 5.B.19. Suppose V is finite-dimensional and T' € £(V'). Let & be the subspace
of £(V') defined by

E={q(T):q € P(F)}.

Prove that dim & equals the degree of the minimal polynomial of T'.

Solution. Let p be the minimal polynomial of T'. Define ® € L(P(F), £(V)) by ®q = q(T)
and notice that range ® = £. Notice further that, by 5.29, null® = {pq : ¢ € P(F)}. Exercise
4.13 shows that dim P(F)/(null ®) = degp and 3.107 shows that ® is an isomorphism from
P(F)/(null ®) onto &. Thus dim & = degp.

Exercise 5.B.20. Suppose T € £(F*) is such that the eigenvalues of T are 3, 5, 8. Prove
that (T — 31)*(T — 51)*(T — 8I)* = 0.

Solution. Let p be the minimal polynomial of T and let ¢(z) = (2 — 3)*(z — 5)*(z — 8)%.
5.27 shows that 3,5, 8 are zeros of p, so that p is of the form

p(z) = 5(2)(z = 3)(2 = 5)(2 — 8)
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for some polynomial s. Because degp < dimF* =4 and 3,5, 8 are the only zeros of p, we
must have s € {1,z — 3,z — 5,z — 8}. It follows that ¢ is a polynomial multiple of p and thus,
by 5.29, ¢(T) = 0.

Exercise 5.B.21. Suppose V is finite-dimensional and T € £(V'). Prove that the min-

imal polynomial of T" has degree at most 1 4+ dimrangeT'.

If dimrangeT < dim V' — 1, then this exercise gives a better upper bound than 5.22
for the degree of the minimal polynomial of T'.

Solution. Let p € P(F) be the minimal polynomial of T and let ¢ € P(F) be the minimal

polynomial of T'| ... For any v € V observe that

range

q(T)TU = q(T|rangeT)TU = 0.

Thus ¢(T)T = 0. It follows from the minimality of degp that

degp < deg(xzq(x)) =1+ degq <1+ dimrangeT.

Exercise 5.B.22. Suppose V is finite-dimensional and T € £(V). Prove that T is in-
vertible if and only if I € Span(T, T2, ..., Tdimv).

Solution. Let p(z) = ¢y + ¢,z + =+ + ¢,,_12™* + 2™ be the minimal polynomial of T'. If T
is invertible then 5.32 shows that ¢, # 0 and thus
col + 1T+ +cp T 1 +T™ =0
= I=— T+ +cp,T™ ' +T™) € span(T,..., T4™V).
Now suppose that I € span(T,T?,...,T"), where n = dim V, so that
I=a,T+a,T*+ - +a,T"

for some a,,a,, ...,a, € F.Let g € P(F) be given by q(z) = —1 + ay2 + ay2% + - + a,2™ and
note that ¢(T) = 0. It follows from 5.29 that ¢ is a polynomial multiple of p. Because 0 is
not a root of ¢, it must be that 0 is not a root of p either, i.e. the constant term of p is not

zero. 5.32 allows us to conclude that T is invertible.

Exercise 5.B.23. Suppose V is finite-dimensional and T' € £(V'). Let n = dim V. Prove
that if v € V, then span(v, Tv, ..., 7" 'v) is invariant under 7.

Solution. It will suffice to show that T"v € span(v, T, ..., T" *v). This is immediate from
Exercise 5.B.10.
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Exercise 5.B.24. Suppose V is a finite-dimensional complex vector space. Suppose
T € £(V) is such that 5 and 6 are eigenvalues of T and that T has no other eigenvalues.
Prove that (T — 50)"™Y (T —61)™ V! =0,

Solution. Let n = dim V' and note that because 7" has 2 distinct eigenvalues, 5.11 implies
n>2. Let q(z) = (z—5)"""(z—6)""", and let p be the minimal polynomial of T’ Since 5
and 6 are the only eigenvalues of T, 5.27(b) shows that p is of the form p(z) = (z — 5)%(z — 6)°
for some positive integers k, £. Thus q is a polynomial multiple of p and it then follows from
5.29 that ¢(T") = 0.

Exercise 5.B.25. Suppose V is finite-dimensional, T' € £(V), and U is a subspace of

V that is invariant under 7.

(a) Prove that the minimal polynomial of T is a polynomial multiple of the minimal

polynomial of the quotient operator T/U.
(b) Prove that
(minimal polynomial of T'|;;) X (minimal polynomial of T/U)
is a polynomial multiple of the minimal polynomial of T'.

The quotient operator T/U was defined in Exercise 38 in Section 5A.

Solution.

(a) We will use the following lemma.

Lemma L.9. Suppose T € £(V),U is a subspace of V invariant under 7', and
m: V — V/U is the quotient map. If p € P(F) then np(T) = p(T/U)7.

Proof. Suppose p =Y jr,cp2* and let 7:V — V/U be the quotient map. For
any non-negative integer k and any v € V, the definition of the quotient operator
implies that (T/U)*(v+ U) = T*v + U. Thus, for any v € V,

mp(T)v = Z cim(T*) Z e, (TFv + U)
k=0 k=0
=Y e (T/U) (v + U) = p(T/U)(n(v)).
k=0
It follows that 7p(T') = p(T/U ). O

Let p =Y 1, c,2* be the minimal polynomial of T and let 7 : V — V/U be the quo-
tient map. For any v+ U € V/U, it follows from Lemma L.9 that

p(T/U)(v+U) = p(T/U)(x(v)) = mp(T)v = m(0) = 0.
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Thus p(T/U) = 0. It then follows from 5.29 that p is a multiple of the minimal polyno-
mial of T/U.

(b) Let r and s be the minimal polynomials of T'|;; and T/U, and let 7 : V' — V/U be the
quotient map. By 2.33 there is a subspace W of V' such that V =U @& W. For any
u € U, notice that 7(T)u = r(T|y)u = 0. It then follows from Lemma 1.9 that, for any
we W,

m(s(Tw) =s(T/U)(w+U)=0 = s(THweU = r(T)s(T)w=0.
Let v =u 4+ w € V be given and observe that
r(T)s(T)v =r(T)s(T)u+r(T)s(T)w = s(T)r(T)u = 0.

Thus 7(T)s(T) = 0 and it then follows from 5.29 that rs is a polynomial multiple of

the minimal polynomial of T'.

Exercise 5.B.26. Suppose V is finite-dimensional, T' € £(V'), and U is a subspace of
V that is invariant under T'. Prove that the set of eigenvalues of T equals the union of

the set of eigenvalues of T'|;; and the set of eigenvalues of T/U.

Solution. Let p,r, and s be the minimal polynomials of T, T'|;;, and T/U, and let Zy Ly,
and Z, be the collection of zeros of p,r, and s. By 5.27(a), it will suffice to show that
Z,=2,UZ, It follows from Exercise 5.B.25 and 5.31 that there exist polynomials g,a,b
such that:

(1) r(z)s(z) = p(x)q(z);
(2) p(z) = a(z)r(z);
(3) p(z) = b(z)s(x).
Equation (1) shows that if A € F is such that p(\) = 0 then 7(\) = 0 or s(A) = 0. That is,

Z,C Z.U Z,. Equations (2) and (3) show that if A € F is such that r(\) =0 or s(\) =0
then p(A) = 0. That is, Z, U Z, C Z,,. Thus Z, = Z, U Z,.

Exercise 5.B.27. Suppose F = R,V is finite-dimensional, and T € £(V'). Prove that

the minimal polynomial of T~ equals the minimal polynomial of 7.

The complexification T was defined in Exercise 33 of Section 3B.

Solution. Let p € P(R) be the minimal polynomial of T" and let ¢ € P(C) be the minimal
polynomial of T. Because we can identify a € R with a + 0i € C, we can think of p as
a polynomial with complex coefficients. Thus it makes sense to consider p(Ts). From the
definitions of T and of scalar multiplication in V, note that, for any non-negative integer

k, any a € R, and any u + iv € V,

TE(u+iv) = (TFu) +i(T*v) and  aT(u+ iv) = (aTu) +i(aTv).
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Combining this with the definition of vector addition in Vg, for all u 4 v € V it follows that
p(Te)(u+iv) = (p(T)u) +i(p(T)v) = 0 + 0i.

Thus p(Te) = 0 and hence, by 5.29, p is a polynomial multiple of g, where we think of p as
an element of P(C).

Let B :=wvy,...,v, be a basis of V and let B := v, + 0, ..., v,, + 0¢; it follows from Exercise
2.B.11 that B is a basis of V. Because T (vy, + 0i) = T'v;, + 03, the matrix of T with
respect to B must be equal to the matrix of T" with respect to B, where we think of
M (T, B) as a matrix with complex entries. Letting A denote this matrix, it follows that each
entry of A is a real number and hence that A = A, where A is the matrix obtained by taking
the complex conjugate of each entry of A. Note that, for any non-negative integer k, each
entry of A*¥ must also be a real number and thus Ak = AF. Suppose that ¢ = > v ;2" and

observe that

0=ald) = 0=GA) = Yot = > ad = S wA = > ma
k=0 k=0 k=0 k=0

the algebraic properties of “matrix complex conjugation” used here follow quickly from 4.4.
Thus, letting § = > - a@z2", we have g(A) = 0, which implies that (¢ — q)(A4) = 0 and hence
that (¢ —q)(T¢) = 0. Note that, because ¢ and g are monic, we have deg(q —q) < deggq. It
must then be the case that ¢ —q is the zero polynomial, since ¢ is the minimal polynomial
of T. This gives us a; = ay, i.e. ap € R, for each k£ and thus g can be thought of as a
polynomial with real coefficients, so that ¢(7") makes sense. Because A is also the matrix of
T with respect to B, the equation 0 = q(A) shows that 0 = ¢(T") and thus, by 5.29, ¢ must
be a polynomial multiple of p. We may now appeal to Lemma [..7 and the fact that p and

q are both monic to conclude that p = q.

Exercise 5.B.28. Suppose V is finite-dimensional and T' € £(V'). Prove that the min-
imal polynomial of T € £(V") equals the minimal polynomial of T'.

The dual map V' was defined in Section 3F.

Solution. Let p be the minimal polynomial of T" and let ¢ be the minimal polynomial of 7".
For any s € P(F), 3.120 shows that s(T)" = s(T"), and Exercise 3.F.16 shows that 0’ = 0.
Thus

p(T)=0 = p(I)' =0 <« p(I')=0.

It follows from 5.29 that p is a polynomial multiple of q. Let A : V' — V” be the isomorphism
defined in Fxercise 3.F.32 and observe that

0=g¢(T")=q(T) = qT)'=0 = ¢T)"cA=0 = Aog(T)=0 = ¢(T)=0,
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where we have used Exercise 3.F.32 (b) for the third implication and the injectivity of A
for the last implication. Thus, by 5.29, ¢ must be a polynomial multiple of p. We may now
appeal to Lemma [.7 and the fact that p and ¢ are both monic to conclude that p = q.

Exercise 5.B.29. Show that every operator on a finite-dimensional vector space of

dimension at least two has an invariant subspace of dimension two.

Exercise 6 in Section 5C will give an improvement of this result when F = C.

Solution. For an integer k > 2, let P(k) be the statement that any operator on a vector
space of dimension k£ has an invariant subspace of dimension two. We will proceed by induc-
tion on k. For the base case P(2), we can take the invariant subspace to be the vector space
itself.

Now suppose that P(k) holds for some k > 2, let T' be an operator on some vector space
V satisfying dimV =k + 1, and let p € P(F) be the minimal polynomial of T; note that
degp > 1 since V # {0}.

If p has a linear factor, i.e. if p has a zero, then 5.27 shows that T" has an eigenvalue. It then
follows from Exercise 5.A.39 that there exists a subspace U of V which is invariant under
T and satisfies dim U = k. Our induction hypothesis guarantees that there is a subspace
W of U which is invariant under T'|;; and such that dim W = 2. It follows that W is a two-

dimensional subspace of V' which is invariant under 7T'.

If p has no linear factor then note that 7' has no eigenvalues by 5.27(a). Note further that,
by the fundamental theorem of algebra (4.12/4.13), we must have F = R. It then follows
from 4.16 that p has a factorization p = f, --- f,, where each f; € P(R) is quadratic. Because
0=p(T) = f1(T) f,,(T), there must exist some j € {1, ..., m} such that f;(T) is not injec-
tive, i.e. there exists some non-zero v € V such that f;(T)v = 0. Since f; is quadratic we
have f;(z) = az® + bz + ¢ for some a,b, ¢ € R such that a # 0. Thus

0= fi(T)v=aT?v+bTv+cv = T?v € span(v,Tv).

It follows that span(v,Tw) is invariant under T'. Furthermore, because v # 0 and T has
no eigenvalues, we must have dimspan(v,Tv) = 2. Thus V has a two-dimensional subspace

which is invariant under 7.

In either case, P(k + 1) holds. This completes the induction step and the proof.
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5.C. Upper-Triangular Matrices

Exercise 5.C.1. Prove or give a counterexample: If T € £(V) and T? has an upper-
triangular matrix with respect to some basis of V', then T has an upper triangular matrix

with respect to some basis of V.

Solution. This is false. For a counterexample, take T € £ (RQ) to be a counterclockwise
rotation about the origin by 90°, i.e. T'(z,y) = (—y, ). Then T? = —I, so that the matrix
of T? with respect to the standard basis of R? is the upper-triangular matrix

o)

However, note that if T had an upper-triangular matrix with respect to some basis of R?

then T would have an eigenvalue—but T" has no eigenvalues, as shown in 5.9(a).

Exercise 5.C.2. Suppose A and B are upper-triangular matrices of the same size, with

aq,...,a, on the diagonal of A and Sy, ..., 8,, on the diagonal of B.
(a) Show that A + B is an upper-triangular matrix with o; + 34, ..., ,, + 5,, on the

diagonal.
b) Show that AB is an upper-triangular matrix with a3, ..., a3, on the diagonal.
g 171 n~n g

The results in this exercise are used in the proof of 5.81.

Solution. Note that A and B satisfy

W Jes Ei=k s B iti=k
VI e gk ip
0 ifj>k, 0 ifj>k.

(a) From the definition of matrix addition, we have

a;+ 6. if j =k,
A+B).,=A.,+B., =2 7
( i = A By {0 if j > k.
Thus A + B is upper-triangular with a; + 84, ..., @,, + 5,, on the diagonal.
(b) By the definition of matrix multiplication, we have
(AB)j =) AjBry =438+ A Br;=0;8+) A;,B,;
r=1 r#j r#j

For r # j we either have j > r, in which case A, = 0, or we have r > j, in which case
B, ;=0.Thus >, ,;A; B, ;=0 and it follows that (AB); ; = a;0;.

For j > k, observe that
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n Jj—1 n
(AB)j,k = Z Aj,TBr,k = Z Aj,rBT,k + Z Aj,rBr,k'
r=1 r=1 r=j

For 1 <r <j—1 we have j > r and thus A;, = 0; it follows that Z‘Z;i A; B, =0.
For j <r <mn we have r > j > k and thus B, , = 0; it follows that Zf:j A; B, =0.
Hence (AB) jk=0 and we may conclude that AB is upper-triangular with

o8y, ..., 0, B, on the diagonal.

Exercise 5.C.3. Suppose T' € £(V) is invertible and vy, ..., v,, is a basis of V' with re-
spect to which the matrix of T" is upper triangular, with A, ..., A, on the diagonal. Show

that the matrix of 7! is also upper triangular with respect to the basis vy, ..., v,,, with

on the diagonal.

Solution. Because the matrix of T' with respect to vq,...,v, is upper-triangular with
Ay, -y A, O1 the diagonal, we have Tv; = Ajv; and, for each k > 2, Tv,, = u;, + A, v, for some

uy, € span(vy, ..., v,_q). Observe that

This shows that span(v;) is invariant under 77! and that the first diagonal entry of M (T 1)

is \T!. Now observe that
Tvy = Uy + Ay = T 1oy = MN1T  uy + Mgty

note that A3 'T~1u, € span(v;) because u, € span(v;) and span(v;) is invariant under 7.
Thus T v, € span(vy,v,), so that span(v;,vy) is invariant under 77!, and the second di-
agonal entry of M (T~1!) is A;'. Continuing in this manner, we see that each span(vy, ..., v;,)
is invariant under T—', whence M (T‘l) is upper-triangular, and that the diagonal entries
of M(T™1) are A\7h, ..., A\t

Exercise 5.C.4. Give an example of an operator whose matrix with respect to some

basis contains only 0’s on the diagonal, but the operator is invertible.

This exercise and the exercise below show that 5.41 fails without the hypothesis that

an upper-triangular matrix is under consideration.

Solution. Let T € £(R?) be given by T'(z,y) = (y, ). The matrix of T with respect to the

standard basis of R? is

Furthermore, T is invertible since T? = I.
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Exercise 5.C.5. Give an example of an operator whose matrix with respect to some

basis contains only nonzero numbers on the diagonal, but the operator is not invertible.

Solution. Let T € £(R?) be given by T'(z,y) = (z + y,x + y). The matrix of T with respect
to the standard basis of R? is
(1)
11)°

Furthermore, T is not invertible because T is not injective: T'(1,—1) = (0, 0).

Exercise 5.C.6. Suppose F = C, V is finite-dimensional, and T' € £(V). Prove that if

ke {l,..,dimV}, then V has a k-dimensional subspace invariant under 7.

Solution. By 5.47 there is a basis vy, ...,v,, of V such that the matrix of T" with respect to

Uy, ..., v, is upper-triangular. It follows from 5.39 that for each k € {1,...,n}, the subspace

span(vq, ..., v;) is k-dimensional and invariant under T'.

Exercise 5.C.7. Suppose V is finite-dimensional, T' € £(V), and v € V.

(a) Prove that there exists a unique monic polynomial p, of smallest degree such that
p,(T)v = 0.

(b) Prove that the minimal polynomial of T' is a polynomial multiple of p,.

Solution.

(a) If v =0 then we can take p, = 1, so suppose that v # 0. The list v, Twv,..., 749 Vy
has length 14+ dimV and hence must be linearly dependent. By the linear de-
pendence lemma (2.19), there exists a least integer k€ {1,...,dimV} such that
TFky e U = span(v, Tv,..., kalv) and such that v, T, ..., T* v is linearly independent,
so that dim U = k. Note that U is invariant under T because T*v € U. Let p, be the

minimal polynomial of T'|;; and observe that, since v € U,
pv(T)U = pv(T’U)U = 0.

If ¢ is a polynomial of degree ¢ < degp, < dimU =k such that ¢(T)v =0 then
Tt € span(v,TU, ...,Tfflv), contradicting the minimality of k. Thus the degree of
p, is minimal. If r is a monic polynomial of degree degp, satisfying r(T)v = 0 then
p, — r satisfies (p, — r)(T)v = 0 and deg(p, — ) < degp,. If p, — r were not zero then
we could divide by the leading coefficient to obtain a monic polynomial s satisfying
s(T)v =0 and degs < degp,, which contradicts the minimality of degp,. Thus p, is

unique.

(b) This is immediate from part (a) and 5.31.
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Exercise 5.C.8. Suppose V is finite-dimensional, T € £(V'), and there exists a nonzero
vector v € V such that T?v + 2Tv = —2v.

(a) Prove that if F = R, then there does not exist a basis of V' with respect to which

T has an upper triangular matrix.

(b) Prove that if F = C and A is an upper-triangular matrix that equals the matrix of

T with respect to some basis of V', then —1 + ¢ or —1 — ¢ appears on the diagonal
of A.

Solution.

(a) Let q(x) = 22 + 2z + 2, so that ¢(T)v = 0, and let p, be defined as in Exercise 5.C.7.
Note that degp, > 1 since v # 0. A straightforward modification of 5.29 shows that
g must be a polynomial multiple of p,. It follows that degp, > 2 since ¢ has no real
roots. The minimality of degp, then implies that p, = ¢ and thus, by Exercise 5.C.7
(b), the minimal polynomial of T" must be a polynomial multiple of q. Thus the minimal
polynomial of T' does not split into linear factors and it then follows from 5.44 that

there is no basis of V' with respect to which T has an upper-triangular matrix.

(b) Let q(2) =22+ 22+ 2= (2+1—1i)(2 + 1 +1), so that ¢(T)v = 0, and let p, be defined
as in Exercise 5.C.7. Note that degp, > 1 since v # 0. A straightforward modification
of 5.29 shows that ¢ must be a polynomial multiple of p,. There are then three possi-
bilities:

p,=2+1—14, p,=2+141 or p,=gq.

In any case, at least one of —1 44, —1 — ¢ is a root of p,. It follows from Exercise 5.C.7
(b) that at least one of —1 +¢,—1 — 4 is a root of the minimal polynomial of T" and
hence, by 5.27, at least one of —1 +4,—1 — ¢ is an eigenvalue of T'. 5.41 allows us to

conclude that at least one of —1 + 4, —1 — 7 appears on the diagonal of A.

Exercise 5.C.9. Suppose B is a square matrix with complex entries. Prove that there
exists an invertible square matrix A with complex entries such that A= BA is an upper-

triangular matrix.

Solution. Suppose B is an n-by-n matrix and let T € £(C™) be given by Tx = Bz, where
we think of elements of C™ as column vectors. Evidently, the matrix of T with respect to
the standard basis e, ...,e,, of C" is B. By 5.47 there is a basis vy, ...,v,, of C™ such that

M(T, (vy,...,v,)) is upper-triangular. Let A = M (I, (vq,...,v,,),(€1,..,€,)); as 3.84 shows,

it follows that A" BA equals the upper-triangular matrix M (T, (vq, ..., v,,))-

161 / 366



Exercise 5.C.10. Suppose T € £(V) and vy, ...,v,, is a basis of B. Show that the fol-

lowing are equivalent.

n

(a) The matrix of T' with respect to vy, ...,v,, is lower triangular.

(b) span(vg, ...,v,,) is invariant under T' for each k =1, ..., n.

(¢) Tv, € span(vy,...,v,,) for each k=1, ..., n.

A square matrix is called lower triangular if all entries above the diagonal are 0.

Solution. Suppose that (a) holds and let k € {1,...,n} be given. For any j € {k,...,n} we
have T'v; € span(vj, ey vn) since the matrix of T" with respect to vy, ..., v,, is lower-triangular.
Because span(vj, ey vn) C span(vy, ..., v, ) for j > k, it follows that Tw; € span(vy, ...,v,,) for
each j € {k,...n}. Thus span(vy, ...,v,,) is invariant under 7', i.e. (b) holds.

Now suppose that (b) holds. For any k € {1,...,n} we have v, € span(vy,...,v,,), which is
invariant under 7' by assumption. Thus Tv,, € span(vy,...,v,,), i.e. (¢) holds.

oy Up

Suppose that (c¢) holds, so that each T'v,, can be written as a linear combination of the basis
vectors vy, ..., v,, only. It follows that each entry above the diagonal of M (T') is zero, i.e.
M(T) is lower-triangular. Thus (a) holds.

Exercise 5.C.11. Suppose F = C and V is finite-dimensional. Prove that if T € £(V),

then there exists a basis of V' with respect to which T" has a lower-triangular matrix.

Solution. By 5.47 there is a basis vy, ...,v,, of V with respect to which the matrix of T is
upper-triangular. For each k € {1,...,n} define u, = v,_, ., and observe that, using 5.39,

Tuy, =TV, _jy1 € SPAN(V1, Vg, ooy Upy_ g, Upp_or1) = SPAN(Upy, Upy 15 ooy Upep 1, Uy )-

It follows from Exercise 5.C.10 that the matrix of T with respect to uy, ..., u,, is lower-trian-

gular.

Exercise 5.C.12. Suppose V is finite-dimensional, T' € £(V') has an upper-triangular
matrix with respect to some basis of V', and U is a subspace of V' that is invariant under
T.

(a) Prove that T'|;; has an upper-triangular matrix with respect to some basis of U.

(b) Prove that the quotient operator T/U has an upper-triangular matrix with respect
to some basis of V/U.

The quotient operator T/U was defined in Exercise 38 in Section 5A.

Solution.

(a) Let p be the minimal polynomial of T" and let ¢ be the minimal polynomial of T'|;.
By 5.31 and 5.44, p is a product of linear factors and also a polynomial multiple of

162 / 366



g. It follows that ¢ is a product of linear factors and thus, by 5.44, T'|; has an upper-

triangular matrix with respect to some basis of U.

(b) Similarly to part (a), let p be the minimal polynomial of 7" and let ¢ be the minimal
polynomial of T/U. By Exercise 5.8.25 (a) and 5.44, p is a product of linear factors
and also a polynomial multiple of q. It follows that ¢ is a product of linear factors and

thus, by 5.44, T/U has an upper-triangular matrix with respect to some basis of V/U.

Exercise 5.C.13. Suppose V is finite-dimensional and T' € £(V'). Suppose there exists
a subspace U of V that is invariant under T' such that T'|; has an upper-triangular
matrix with respect to some basis of U and also T/U has an upper-triangular matrix
with respect to some basis of V/U. Prove that T has an upper-triangular matrix with

respect to some basis of V.

Solution. Let p,q,r be the minimal polynomials of T',T|;;, and T/U. By Exercise 5.B.25
(b) and 5.44, ¢ and r are products of linear factors and ¢r is a polynomial multiple of p.
It follows that p is a product of linear factors and thus, by 5.44, T has an upper-triangular

matrix with respect to some basis of V.

Exercise 5.C.14. Suppose V is finite-dimensional and T' € £(V'). Prove that T has an
upper-triangular matrix with respect to some basis of V' if and only if the dual operator

T’ has an upper-triangular matrix with respect to some basis of the dual space V’.

Solution. Exercise 5.3.28 shows that T and T” have the same minimal polynomial. The

desired equivalence now follows from 5.44.
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5.D. Diagonalizable Operators

Exercise 5.D.1. Suppose V is a finite-dimensional complex vector space and T' € £(V).
(a) Prove that if T% = I, then T is diagonalizable.
(b) Prove that if 7% = T, then T is diagonalizable.
(c) Give an example of an operator T € £(C?) such that T* = T2 and T is not diag-

onalizable.

Solution.

(a) Let q(z) =2t —1=(2—1)(2+1)(2 —i)(z + 9), let p be the minimal polynomial of T,
and note that ¢(T') = 0. It follows from 5.29 that ¢ is a polynomial multiple of p and
so p must be a product of distinct linear factors. Thus, by 5.62, T' is diagonalizable.

(b) Let q(z) = 2* — 2= 2(2— 1) (z + % — ‘?z) (z + % + %gz), let p be the minimal polyno-
mial of T, and note that ¢(T) = 0. It follows from 5.29 that ¢ is a polynomial multiple
of p and so p must be a product of distinct linear factors. Thus, by 5.62, T' is diagonal-
izable.

(c) Let T € £(C?) be given by T(w, z) = (z,0) and notice that 7% = T* = 0. The matrix
of T with respect to the standard basis of C? is

(00
00/
Thus, by 5.41, the only eigenvalue of T is 0. Letting p be the minimal polynomial of

T, 5.27 shows that p is of the form 2* for some k € {1,2}. Since T # 0, it must be that
p(z) = 22. Tt follows from 5.62 that T is not diagonalizable.

Exercise 5.D.2. Suppose T' € £(V') has a diagonal matrix A with respect to some basis
of V. Prove that if A € F, then A appears on the diagonal of A precisely dim E(\, T)

times.

Solution. Suppose vy, ...,v,, is a basis of V such that A := M (T, (v, ..., v,,)) is diagonal and
let Ay, ..., A,, denote the diagonal entries of A. Note that the list of those Tv,, = A\, v, such

that A, # 0 is linearly independent since vy, ...,v,, is linearly independent. Thus, letting d

n

be the number of indices k € {1,...,n} such that A\, =0, we have dimrangeT >n —d. It
follows that

dimnull T < d. (1)

For A € F, let d, be the number of times A appears on the diagonal of A. By replacing T
with T'— AI in (1), we find that dim E(X\,T') < d,. Now observe that, by 5.55(d),
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> dmENT)=n= )Y d,. (2)

AeF AeF

(Both of these are finite sums since dim E(X,T) = d, = 0 for all but finitely many A € F.)
It follows that each inequality dim E(\,T") < d, must in fact be an equality, otherwise the
left-hand side of (2) would be strictly less than the right-hand side.

Exercise 5.D.3. Suppose V is finite-dimensional and T' € £(V'). Prove that if the op-
erator T is diagonalizable, then V' = nullT & range T'.

Solution. Let Ay, ..., A,,, be the distinct non-zero eigenvalues of T' (this list may be empty).
By 5.55, we have

V=FE®O0,T)®EMXN,T)®®E\,,T) =nullTeW,

where W = E(A\,T) ® - ® E(\,,, T); if the list A\, ..., \,,, is empty then take W = {0}. Let

Tv € rangeT be given. The direct sum expression above shows that v is of the form
v=u4+w, +4w, EnullTOW = Tv=\w +---+A,w, €W.
Thus rangeT C W. Now let w; + --- + w,,, € W be given. Because each A\, # 0, it follows that
wy + - +w,, = TAT w; + - + X\ w,,) € range T

Thus W = rangeT" and we may conclude that V = nullT @ rangeT'.

Exercise 5.D.4. Suppose V is finite-dimensional and T € £(V'). Prove that the follow-

ing are equivalent.
(a) V =nullT @ rangeT.
(b) V =nullT + rangeT.
(¢) nullT NrangeT = {0}.

Solution. Certainly (a) implies (b). Suppose that (b) holds. By 2.43, we have
dim(null 7 NrangeT) = dimnull 7" 4+ dimrange 7' — dim(null 7" + range T').

By assumption dim(null7T 4 rangeT') = dim V' and the fundamental theorem of linear maps
(3.21) shows that dim null T + dim range T' = dim V" also. Thus dim(null 7" NrangeT) = 0, so
that null T NrangeT = {0}, i.e. (¢) holds.

Suppose that (c) holds. It follows from 1.46 that the sum nullT @ rangeT is direct. Fur-

thermore,
dim(nullT @ rangeT') = dimnull7 + dimrange T = dim V'

by 1.46 and 2.43. Thus, by 2.39, V = nullT @ range T, i.e. (a) holds.
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Exercise 5.D.5. Suppose V is a finite-dimensional complex vector space and T' € £(V).

Prove that T is diagonalizable if and only if
V = null(T — A\I) & range(T — \I)

for every \ € C.

Solution. Suppose that T' is diagonalizable, so that there is some basis of V' with respect

to which the matrix of T' is diagonal:

For any A € C, the matrix of the operator T'— Al with respect to this same basis is also

diagonal:
AL — A 0

0 A, — A

So T'— AI is also diagonalizable and thus by Exercise 5.D.3 we have
V =null(T — A\I) & range(T — AI).
Here are two proofs of the converse.

(1) By contrapositive: suppose that 7" is not diagonalizable. Let A, ..., A,, be the distinct
eigenvalues of T' and let p be the minimal polynomial of T'; by 5.27(b) we have

p(z) = (2= A)" (2= A

)"
m

for some positive integers nq,...,n,,. Because T is not diagonalizable, 5.62 shows that

there must be some k € {1,...,m} such that n, > 2. Let g be the polynomial given by

a(2) = (2= A" T (=A™

Ik
Notice that p(z) = (z — A)q(2), so that degq < degp, and, for any v € V|
0=pTv=(T—-NDg(T)v = ¢q(T)venull(T—\,]I),
n,—1>1 = ¢q(T)v €range(T — A\, ).
Thus q(T)v € null(T — A\, I) Nrange(T — A\ I) for all v € V. Since deg ¢ < degp it must

be the case that ¢(T) # 0, i.e. there exists some v € V such that ¢(T)v # 0. It follows
that

null(T" — A\, I) Nrange(T — A\, 1) # {0}

and hence, by Exercise 5.D.4, V % null(T — A\, I) & range(T — A, I).
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(2) By strong induction on dim V. Let P(n) be the following statement: if V' is an n-di-

mensional complex vector space, T' € £(V), and
V =null(T — AI) & range(T — \I)

for all A\ € C, then T is diagonalizable. The truth of P(0) is clear, so suppose that
P(0), ..., P(n) all hold for some n > 1. Let V be an (n 4 1)-dimensional vector space
and suppose that T' € £(V) satisfies

V = null(T — A\I) @ range(T — \I)

for all A € C. By 5.19 there exists an eigenvalue Ay € C of T'; let U = range(T — A\yI)
and note that U is invariant under T by (5.18). Note further that, for any A € C,

null(T|,; — M |y) Nrange(T |y — M |y) C null(T — AI) Nrange(T — AI) = {0}.
It follows that U = null(T|; — M |y) @ range(T'|; — M) for every A € C, where
we have used the equivalence of (a) and (c) in Exercise 5.D.4. By assumption
V =E(\,T) ® U; since A, is an eigenvalue of T' we have dim E(Ay,7T") > 1 and thus
dimU < dim V. Our induction hypothesis now guarantees that there is a basis of U
consisting of eigenvectors of T'|;;, which must also be eigenvectors of T'. Combining this
basis with a basis of E(\y,T"), we obtain a basis of V' consisting of eigenvectors of T'.

It follows from 5.55 that T is diagonalizable. This completes the induction step and
the proof.

Exercise 5.D.6. Suppose T € £(F®) and dim E(8,T) = 4. Prove that T — 21 or T — 61

is invertible.

Solution. We will prove the contrapositive statement. Suppose that neither T'— 21 nor
T — 61 is invertible, so that dim E(2,7) > 1 and dim E(6,7) > 1. If 8 is an eigenvalue of
T then 5.54 shows that dim FE(8,T) + dim E(2,T) + dim E(6,T) < dimF®, and if 8 is not
an eigenvalue of T' then 5.54 together with dim F(8,7T) = 0 gives us the same inequality. In

either case,
dim E(8,T) + dim E(2,T) + dim E(6,T) < dimF® = 5
= dimE(8,T) <5—dim E(2,T) — dim E(6,T) < 3 < 4.
Thus dim E(8,T) + 4.
Exercise 5.D.7. Suppose T' € £(V) is invertible. Prove that
—g(i
TN 10 = E(A,T )

for every A € F with A # 0.

Solution. This follows from the equivalence, for A # 0 and any v € V,
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Tv=X\v < T lv=X\1lo

Exercise 5.D.8. Suppose V is finite-dimensional and T' € £(V'). Let Ay, ..., A,,, denote

the distinct nonzero eigenvalues of T'. Prove that

dim E(\,,T) + -+ dim E()\,,,T) < dimrangeT'.

Solution. Note that
dim E(0,T) + dim E(A\,,T) 4 -+ dim E(A,,,,T) < dimV (1)

follows from 5.54: if 0 is an eigenvalue of T then the inequality is immediate from 5.54, and
if 0 is not an eigenvalue of T' then dim F(0,7) =0 and thus we can add dim E(0,7T) to
the left-hand side of the inequality in 5.54. The fundamental theorem of linear maps (3.21)
shows that

dimV = dimnull T + dimrangeT = dim E(0,T") + dimrange 7.

Combining this with inequality (1) gives us the desired inequality.

Exercise 5.D.9. Suppose R,T € £(F?) each have 2,6,7 as eigenvalues. Prove that
there exists invertible operator S € £(F?) such that R = S~'T'S.

Solution. Since R and T both have 3 = dim F? distinct eigenvalues, 5.58 shows that they

are both diagonalizable, i.e. there exists a basis u;, uy, u3 and a basis v, vy, v of V such that
Ru1 - 2“1, RUZ — 6'LL2, RU3 — 7U3, T’Ul - 2/01, T’UQ - 6’(]2, T'U3 — 7U3.

Define S € £(F?) by Su;, = v), and note that S is invertible since it maps a basis to a basis.

Furthermore,
Similarly, S~'TSu,, = Ruy, for k € {2,3}. Thus S~!T'S = R.
Exercise 5.D.10. Find R, T € £(F*) such that R and T each have 2,6, 7 as eigenval-

ues, R and T have no other eigenvalues, and there does not exist an invertible operator
S € £(F*) such that R = S7'TS.

Solution. Let R and T be the operators which have the matrices

2000 2000
0200 0600

M(R) = d M(T) =

B =10060| *® T=10060
0007 0007

with respect to the standard basis e;,e,,es,e, of F4. Since these matrices are upper-tri-
angular, 5.41 shows that the eigenvalues of R and T are precisely 2,6,7. To disprove the
existence of an invertible operator S € £(F4) such that R = S71TS, let S € L’(F4) be any
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invertible operator. By Exercise 5.A.13, S7'T'S also has 2 as an eigenvalue. Furthermore,
the eigenspace E(2,T) is the image under S of the eigenspace E(2,S1TS). A restriction of
S thus provides us with an isomorphism between E(2,T) and F(2,S7'TS); in particular,

these eigenspaces must have the same dimension. However, note that
dim E(2,T) = dimspan(e;) = 1 # 2 = dimspan(e;, e5) = dim F(2, R).

Thus there cannot exist an invertible S € £(F*) such that R = S~'T'S.

Exercise 5.D.11. Find T € £(C3?) such that 6 and 7 are eigenvalues of T' and such

that T does not have a diagonal matrix with respect to any basis of C3.

Solution. Let T be the operator which has the matrix

610
]V[(T)—(OGO)
007

with respect to the standard basis ey, e5, e3 of C3. Since this matrix is upper-triangular, 5.41
shows that the eigenvalues of T" are precisely 6 and 7. Some routine calculations reveal that
E(6,T) = span(e;) and E(7,T) = span(es). It follows that

dim E(6,T) + dim E(7,T) = 2 # 3 = dim C3.

Thus, by 5.55, T' is not diagonalizable.

Exercise 5.D.12. Suppose T' € £(C?) is such that 6 and 7 are eigenvalues of T'. Fur-
thermore, suppose T does not have a diagonal matrix with respect to any basis of C3.
Prove that there exists (21, 25, 23) € C3 such that

Solution. Since dim C3 = 3, it must be the case that 6 and 7 are the only eigenvalues of
T; if T had another distinct eigenvalue then, by 5.58, T" would be diagonalizable. It follows
from 5.7 that T'— 81 is surjective and thus there exists (2, 25, 23) € C3 such that

(T - 8[)(21,22723) = (6> 75 13) < T(zl7227z3) = (6 + 8Z177 + 8Z27 13 + 823)

Exercise 5.D.13. Suppose A is a diagonal matrix with distinct entries on the diagonal
and B is a matrix of the same size as A. Show that AB = BA if and only if B is a

diagonal matrix.

Solution. Suppose A has diagonal entries a, ..., a,,. If B is also diagonal with diagonal en-
tries by, ..., b,,, then

9y Uns
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a, 0 b, 0 a, by 0 b, 0 a, 0
AB = = = = BA.
0 a 0 b 0 a,b

n-n n n

Now suppose that B is not diagonal, i.e. there exist j,k € {1,...,n} such that j # k and
B; i, # 0. Observe that

n n

(AB);, =Y A;,.B,,=a;B;; # Bja, =Y B; A, = (BA),,

r=1 r=1

where a;B; , # B, ra;, follows since B; ; # 0 and a; # a;. Thus AB # BA.

J

Exercise 5.D.14.

(a) Give an example of a finite-dimensional complex vector space and an operator T

on that vector space such that T? is diagonalizable but T is not diagonalizable.

(b) Suppose F = C, k is a positive integer, and T' € £(V) is invertible. Prove that T

is diagonalizable if and only if T* is diagonalizable.

Solution.

(a) Define T as in Exercise 5.D.1 (¢). As we showed there, T is not diagonalizable. However,

T? = 0 is certainly diagonalizable.

(b) Suppose that T is diagonalizable, so that there exists a basis v, ..., v,, of V with respect

to which the matrix of T is diagonal, say

for some A, ..., A, € C. It follows from 3.43 and direct calculation that
Ak 0
M(T*) = (M(T))* =
0 Ak
Thus T is diagonalizable.

Now suppose that T* is diagonalizable and let p be the minimal polynomial of T*.
By 5.27 and 5.62 we have p(z) = (z — Ay) - (2 — A,,,), where A, ..., A, are the distinct
eigenvalues of T%. Note that T is invertible since T is invertible; it follows that each Aj
is non-zero. [t can be shown that any non-zero complex number has exactly k distinct
k™ roots. For each j € {1,...,m}, let uy j, ...,y ; be the k distinct solutions to 2k = Aje
Observe that, for any a,i € {1,...,k},

bEG = NFEN e wh FEub =, o

Thus, if we let g be the polynomial given by

170 / 366


https://en.wikipedia.org/wiki/Nth_root#nth_roots

qa(z) = (¥ = A) - (FF = Ap) = ﬁﬁ(z — Hij);

then ¢ is a product of distinct linear factors. Notice that ¢(T') = p(T k) = 0; it follows
from 5.29 that ¢ is a polynomial multiple of the minimal polynomial of T". Thus the
minimal polynomial of T" is a product of distinct linear factors. 5.62 allows us to con-

clude that T is diagonalizable.

Exercise 5.D.15. Suppose V is a finite-dimensional complex vector space, T' € £(V),

and p is the minimal polynomial of T'. Prove that the following are equivalent.

(a) T is diagonalizable.

(b) There does not exist A € C such that p is a polynomial multiple of (z — \)>.

)
(c) p and its derivative p’ have no zeros in common.
(d) The greatest common divisor of p and p’ is the constant polynomial 1.

The greatest common divisor of p and p’ is the monic polynomial q of largest degree
such that p and p’ are both polynomial multiples of q. The Euclidean algorithm for
polynomials (look it up) can quickly determine the greatest common divisor of two
polynomials, without requiring any information about the zeros of the polynomials.
Thus the equivalence of (a) and (d) above shows that we can determine whether T' is

diagonalizable without knowing anything about the zeros of p.

Solution. By 5.27(b), p is of the form p(z2) = (z — A;)™ - (z — \,,,)"™, where Ay, ..., \,, is

a list of the distinct eigenvalues of T" and each n,, is a positive integer.

Note that (b) is equivalent to ny = --- = n,,, = 1, which by 5.62 is equivalent to (a). Thus (a)

and (b) are equivalent.

Certainly p has m distinct zeros, and observe that n; = .- =n,, = 1 if and only if degp = m.

Exercise 4.8 now shows that (b) and (c¢) are equivalent.

Suppose the negation of (b) holds, so that p(z) = (z — A)*s(z) for some polynomial s; the
product rule gives us p’(z) = (z — A)(2s(2) + (z — A)s’(z)). Thus the greatest common divi-
sor of p and p” must have degree at least 1, so that (d) does not hold. The contrapositive of
this and the equivalence of (b) and (c) shows that (d) implies (c).

Let g be the greatest common divisor of p and p” and suppose the negation of (d) holds, so
that degq > 1. The fundamental theorem of algebra shows that ¢ has some zero, which must

also be a zero of p and p’, i.e. the negation of (c¢) holds. Thus (c¢) and (d) are equivalent.
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Exercise 5.D.16. Suppose that T' € £(V) is diagonalizable. Let Aq, ..., \,,, denote the
distinct eigenvalues of T'. Prove that a subspace U of V is invariant under T if and
only if there exist subspaces Uy, ...,U,, of V such that U, C E(\;,T) for each k and
U=U,®-aU,.

Solution. Suppose there exist such subspaces and let v = u; + - 4+ u,, € U be given. Ob-

serve that
Tu=Tu, + - +Tu,, =\u, +-+\,u, €U, &--0U, =U.
Thus U is invariant under 7.
Now suppose that U is invariant under T'. Because T is diagonalizable, (5.55) shows that
V=EMNT)®-®EW\,,T).

For each ke {1,...,m}, let U, =UNE(\,,T) C E(A\;,T). The directness of the sum
U, & ®U, is immediate from the directness of the sum E(\,T)® - ® E()\,,,T), and
since each U, CU we have U; @---®U,, CU. For any u € U we have u =v; +---+v,,,
where each v, € E(A,,T). Lemma [.4 shows that each v, € U and thus u belongs to
U,e-&U, sothat U CU, & ®U,,. We may conclude that U =U, &---® U,,.

Exercise 5.D.17. Suppose V is finite-dimensional. Prove that £(V) has a basis con-

sisting of diagonalizable operators.

Solution. Let vy, ...,v,, be a basis of V; in what follows, all matrices of operators are with
respect to this basis. For 4,5 € {1,...,n} such that i # j, define T, ; € £(V') by
k'Uk if k # j,
T; jup = . .
’ kv, +v; if k=j.
Thus the matrix of 7} ; has diagonal entries 1,...,n, a 1 in the i"* row and j" column, and
0’s elsewhere. Notice that this matrix is either upper- or lower-triangular. It follows that
the eigenvalues of T; ; are precisely 1, ...,n and hence T; ; is diagonalizable by 5.58. For each

j €{1,...,n}, define S; € £L(V) by

S . ’Uk lfk':],
R =0 itk

Notice that the matrix of S; has a 1 in the j row and j column, and 0’s elsewhere. Thus
each S, is diagonalizable.

Suppose we have a linear combination of the list

B:: T1,27"‘7T1,n7"'7Tn,17"' T Sl""’S

y -n,n—1 n
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which equals zero. For i # j, only the operator T; ; has a non-zero entry in the i** row and
J" column of its matrix. It follows that the coefficient of T} ; in the linear combination must
be zero and we are left with a linear combination a;S; + -+ «a,,S,, = 0, which clearly im-
plies a; = --- = a,, = 0. Thus 3B is linearly independent. A straightforward counting argument
shows that B has length n? and so we may conclude that B is a basis of £(V) consisting of

diagonalizable operators.

Exercise 5.D.18. Suppose that T' € £(V) is diagonalizable and U is a subspace of
V that is invariant under T'. Prove that the quotient operator T/U is a diagonalizable

operator on V/U.

The quotient operator T/U was defined in Exercise 38 in Section 5A.

Solution. By 5.62 and Exercise 5.B.25 (a), the minimal polynomial of T' is a product of
distinct linear factors and also a polynomial multiple of the minimal polynomial of T/U; it
follows that the minimal polynomial of T/U is a product of distinct linear factors and 5.62

allows us to conclude that T/U is diagonalizable.

Exercise 5.D.19. Prove or give a counterexample: If T € £(V') and there exists a sub-
space U of V that is invariant under T such that T'|;; and T/U are both diagonalizable,
then T is diagonalizable.

See Exercise 13 in Section 5C for an analogous statement about upper-triangular ma-

trices.

Solution. This is false. For a counterexample, consider the operator T' € £ (F2) given by
Te, = 0 and Te, = e;, where e, e, is the standard basis of F2. It is straightforward to verify
that the only eigenvalue of T' is 0 and that E(0,T) = span(e;). It then follows from 5.55 that
T is not diagonalizable. However, if we let U be the T-invariant subspace E(0,T'), then T'|;

and T/U are both operators on 1-dimensional vector spaces and hence are diagonalizable.

Exercise 5.D.20. Suppose V is finite-dimensional and T' € £(V'). Prove that T is di-

agonalizable if and only if the dual operator T is diagonalizable.

Solution. By Exercise 5.B.28, T and T’ have the same minimal polynomial. The desired

equivalence is then immediate from 5.62.
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Exercise 5.D.21. The Fibonacci sequence Fy, F}, F,, ... is defined by
F,=0,F,=1and F,=F, ,+F, ; forn>2.
Define T € £(R?) by T'(z,y) = (y,z + y).
(a) Show that T"(0,1) = (F,,, F,,,;) for each nonnegative integer n.
(b) Find the eigenvalues of T'.
(c) Find a basis of R? consisting of eigenvectors of T'.
)

(d) Use the solution to (c) to compute T"(0,1). Conclude that

sl ()

for each nonnegative integer n.

(e) Use (d) to conclude that if n is a nonnegative integer, then the Fibonacci number

F, is the integer that is closest to

i1+\@n
VB 2 '

Each F,, is a nonnegative integer, even though the right side of the formula in (d) does

not look like an integer. The number

1++5
9

is called the golden ratio.

Solution.

(a) We will proceed by induction. The base case m =0 is clear, so suppose that

T"(0,1) = (F,, F,,,) holds for some non-negative integer n and observe that
T7(0,1) =T(T™(0,1)) =T (F,,, Fyy1) = (Fpy1, Epy + Fryq) = (Fy1, Fis).
This completes the induction step and the proof.
(b) We are looking for solutions (z,y) # (0,0) and A € R of the equation
T(z,y) = (y,z +y) = (A, Ay).
From the equation y = Az we see that x = 0 implies y = 0, so we may assume that z is
non-zero. Substituting y = Az into the equation = + y = Ay and cancelling x gives us
the equation A2 — X\ — 1 = 0, which has two distinct real solutions:

14++/5 1—+/5
= and A\, = 5

A
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These are indeed eigenvalues, since
T(17 >‘1) = ()‘15 )‘1 + 1) = ()\17 )‘%) = )‘1(17 >‘1)7

where we have used that \; satisfies the equation A\ — X\; — 1 = 0 for the second equal-
ity. Similarly, T'(1, A\y) = X\5(1,\5). Since dimR? = 2, 5.12 allows us to conclude that

the eigenvalues of T" are precisely A\; and A,.

(c) Since A; # Ay, the eigenvectors v; = (1, ;) and v, = (1, A;) found in part (b) are lin-
early independent by 5.11 and thus form a basis of R2.

(d) Observe that
vy — vy = (0, A\] — Ay) = (O \/_>

Thus (0,1) = \/Lg(vl — v,). For any positive integer n, it follows that

[y

T"(0,1) = (T — TMv,) = ()\?Ul A5vy) = ()‘n A3, )\?H - )\SH)-

-
a|~

V5

Given the result of part (a), we may conclude that

Lo e L1+ (1=-vB\"
regreron - 5| (557) - () |

e) Certainly F, = 0 is the closest integer to —=. For any positive integer n, observe that
0 V5

1—+/5 1

<
2 2
1—v5)
N —1<<—\/_) <1
2
N 1 1—v5 ”<1
5 V5 2 V5
Lol 1—v5 ”<1
2 AUE 2

It then follows from part (d) that

2<vV5<3 = —-1<

1L yn_1 A yn 1

i.e. F,, is an integer belonging to the open interval (\%Xi‘ — %, }Xi‘ + %), which has
length 1. We may conclude that F), is the integer closest to f)‘?
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Exercise 5.D.22. Suppose T' € £(V') and A is an n-by-n matrix that is the matrix of

T with respect to some basis of V. Prove that if

4551 > ) |4l
k=1
ki
for each j € {1,...,n}, then T is invertible.

This exercise states that if the diagonal entries of the matrix of T' are large compared

to the nondiagonal entries, then T’ is invertible.

Solution. If T" has no eigenvalues then certainly 0 is not an eigenvalue of T' and thus
T is invertible. Otherwise, let A € F be an eigenvalue of T'. 5.67 shows that there exists a
j € {1,...,n} such that

A=Al <D Al <[4l = PI>0 = Ao
k=1
k#j

Thus 0 is not an eigenvalue of T and it follows that T is invertible.

Exercise 5.1D.23. Suppose the definition of the Gershgorin disks is changed so that the
radius of the k™ disk is the sum of the absolute values of the entries in column (instead
of row) k of A, excluding the diagonal entry. Show that the Gershgorin disk theorem
(5.67) still holds with this changed definition.

Solution. Suppose T € £(V) and vy, ...,v,, is a basis of V. Let A be the matrix of T' with
respect to vy, ..., v,,; it follows from 3.132 that A* is the matrix of T” with respect to the dual
basis ¢y, ..., ¢, of V'. Let A € F be an eigenvalue of T'. Exercise 5.A.15 shows that A is also

an eigenvalue of 7" and thus, by 5.67, there exists a k € {1, ...,n} such that

IX— Ay, < Z]Agw. = |4,
j=1 j=1

itk itk

Thus A is contained in the k" Gershgorin “column-disk” of T with respect to vy, ...,v,,.
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5.E. Commuting Operators

Exercise 5.E.1. Give an example of two commuting operators S, T on F* such that
there is a subspace of F# that is invariant under S but not under 7 and there is a

subspace of F# that is invariant under T but not under S.

Solution. Let S,T € £(F*) be given by
S(l‘l,$2,$3,x4) = (x27x17070) and T(I‘l,$2,1‘3,$4) = (0,0,@'4,1’3)-

Notice that S and T' commute, since for any z € F4 we have STx = T'Sx = 0. Notice further
that, for any A € F,

S(X,0,0,0) = (0,),0,0), T(,0,0,0)=0, S(0,0,),0)=0, T(0,0,0)=(0,0,0,\).

It follows that span((1,0,0,0)) is invariant under 7" but not under S, and span((0,0,1,0))

is invariant under S but not under T'.

Exercise 5.E.2. Suppose £ is a subset of £(V') and every element of & is diagonalizable.
Prove that there exists a basis of V' with respect to which every element of & has a

diagonal matrix if and only if every pair of elements of & commutes.

This exercise extends 5.76, which considers the case in which £ contains only two el-
ements. For this exercise, & may contain any number of elements, and £ may even be

an infinite set.

Solution. Suppose there exists such a basis v, ...,v,, and let S, T € &£ be given. The matrices
of S and T with respect to vy, ..., v, are diagonal and hence commute. It follows from 5.74
that S and T" commute.

Suppose that every pair of elements of & commutes and suppose that dim V' = n. Because
dim £(V) = n?, there must exist a subset F C & of cardinality at most n? such that every
operator in & is a linear combination of operators in &. Suppose that & = {1}, ...,T,,} for
some m < n?. Since T} is diagonalizable, 5.55 shows that
V= EO,T);
A EF

note that, since T has at most n distinct eigenvalues, all but finitely many of the summands
E(X\;,T;) are equal to {0}, so that this direct sum is finite. Let A\; € F be given. Because T}
and T, commute, 5.75 shows that E(A;,T}) is invariant under 7. It then follows from 5.65
that Ty| g5, r,) is diagonalizable and thus, by 5.55,

E\T) = P E(X Tolpo, 1y )
Ao €F

again, this direct sum is finite since 75 has at most n distinct eigenvalues. Notice that
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E<)‘27T2’E()\1,T1)> ={ve€ E(\,Ty) : Tov = A\yv}
={veV :Tiv= X \vand Thu = A} = E(A;,T;) N E(Ay, T).
Combining this with V = @, cp E(A\;,Ty) and E(A,T}) = @y,cr E(X2, Tolpr, 1y))s We

see that

V= @ (E()‘laTl)ﬂE(/\%TZ))'
A1, A€F

If we continue this process, we find that

= P (EKNT)N-NEN,T,)),

where this direct sum is finite because each T}, has at most n distinct eigenvalues. If we take
a basis for each non-zero summand E(A;,T}) N---N E(A,,,T,,) and combine these bases, we
obtain a basis vy, ...,v,, of V such that each basis vector is an eigenvector of each T}. Thus

the matrix of each T} with respect to vy, is diagonal. Because each T € & is a linear

ey Uy,
combination of 77, ..., T,,, and a linear combination of diagonal matrices is a diagonal matrix,

we see that the matrix of each T' € £ is diagonal with respect to vy, .., v,,.

Exercise 5.E.3. Suppose S,T € £(V) are such that ST = T'S. Suppose p € P(F).
(a) Prove that nullp(S) is invariant under 7.
(b) Prove that range p(S) is invariant under 7.
See 5.18 for the special case S = T.

Solution. Suppose p = > 1, ¢, 2.
(a) Let v € nullp(S) be given and observe that

chsk (Tw) (Z . SF ) = T(p(S)v) = T(0) = 0,

where we have used that T is linear and that T' commutes with S for the second equal-

ity. Thus null p(S) is invariant under 7'

(b) Let v € rangep(S) be given, so that v = p(S)w for some w € V', and observe that
Tv=T (Z ckSkw) = Z ¢, S*(Tw) = p(S)(Tw) € range p(S),
k=0 k=0

where we have used that T is linear and that T' commutes with S for the second equal-

ity. Thus range p(S) is invariant under T'.

Exercise 5.E.4. Prove or give a counterexample: If A is a diagonal matrix and B is an

upper-triangular matrix of the same size as A, then A and B commute.
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Exercise 5.E.5. Prove that a pair of operators on a finite-dimensional vector space

commute if and only if their dual operators commute.

See 3.118 for the definition of the dual of an operator.

Solution. Suppose V is a finite-dimensional vector space and S,T € £(V). Let vy, ..., v,, be

a basis of V| let ¢4, ..., ¢, be the corresponding dual basis of V', and let
A=M(S, (vy,...,v,)) and B=M(T,(vq,...,v,)).

oy Up

It follows from 3.132 that the matrices of S and T’ with respect to ¢, ..., p,, are A* and
Bt. To show that S and T commute if and only if S’ and T’ commute, it will suffice, by
5.74, to show that A and B commute if and only if A* and B* commute. Indeed, using

Exercise 3.C.15,

AB=BA < (AB)'=(BA)' < B'A'= A'B".

Exercise 5.E.6. Suppose V is a finite-dimensional complex vector space and
S,T € £(V) commute. Prove that there exist a, A € C such that

range(S — al) + range(T — A\I) # V.

Solution. By 5.80 there is a basis vy, ...,v,, such that the matrices M (S) and M(T) are

n

both upper-triangular, say

for some a, A € C. It follows that

M(S—al) = (* *> and M(T — )= (* *)
0 - 0 0 - 0

and hence that range(S — o) and range(T' — A\I) are both contained in span(vy,...,v, 7).
Thus range(S — al) + range(T — AI) C span(vy, ...,v,,_1) # V.

Exercise 5.E.7. Suppose V is a complex vector space, S € £(V) is diagonalizable, and
T € £(V) commutes with S. Prove that there is a basis of V' such that S has a diagonal
matrix with respect to this basis and 7' has an upper-triangular matrix with respect to
this basis.
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Solution. We will proceed by induction on dim V. Certainly the result is true for dimV =1,
since all 1-by-1 matrices are diagonal. Let V' be a complex vector space of dimension n > 1,
suppose the result holds for all complex vector spaces of smaller dimension, let S € £(V') be
diagonalizable, and suppose T € £(V) commutes with S. By 5.19 there exists an eigenvalue
A € C of S and it then follows from Exercise 5.D.5 that V = U @ W, where

U=null(S—AI) and W =range(S— ).

If S = AI then the matrix of S with respect to any basis of V' is diagonal and thus the desired
basis of V' is given by 5.47. If S # Al then 1 < dimU < n and 1 < dim W < n. Furthermore,
Exercise 5.F.3 shows that U and W are invariant under both S and T. Because S and T
commute, their restrictions to any subspace of V' will also commute and thus we can apply
our induction hypothesis to both U and W to obtain a basis vy, ...,v,, of U and a basis

Vppy1s - Uy, Of W osuch that each vy, is an eigenvector of S and such that
Tv,, € span(vy,...,v;) for k € {1,...,m},
and Twv, € span(v,,, 1, ...,v;) C span(vy, ..., v;) for k € {m +1,...,n}.

is a basis of V such that M (S, (vq,...,v,)) is diagonal and such that

oy Up

Thus vy, ...,v,

M(T, (vy,...,v,)) is upper-triangular. This completes the induction step and the proof.

Exercise 5.E.8. Suppose m = 3 in Example 5.72 and D, D, are the commuting partial
differentiation operators on P4(R?) from that example. Find a basis of P5(R?) with

respect to which D, and D, each have an upper-triangular matrix.

Solution. Consider the list
B:=1,z,y,2% zy,y?, 2, %y, xy?, y°.

From the definition of 5(R?), it is clear that B spans P5(R?). Suppose we have a linear

combination
o0+ a1 0T+ ag 1Y + as oT? + ay 12y + 24+ S+ 2y + ‘4 3=0
0,0 1,0 0,1Y 2,0 1,12Y T Gg oY a3 o Ay 1T7Y T Q1 2TY ag 3y~ = U.

Taking y = 0 shows that ago =a; o =ay9=a3, =0, given the linear independence of
1,z,2% 2° in P(R), and similarly taking « = 0 gives us ay; = ago = a9 3 = 0. Thus we are

left with the linear combination
ay 12y + ag 1 2%y + ay pzy® = 0.

Taking (z,y) € {(1,1),(2,1),(1,2)} gives us the system of linear equations

111 a1 0
2 4 2 a1l =10{,
2 2 4) \Y1,2 0

180 / 366



which has the unique solution a; ; =ay, = a; 5 =0. Thus B is linearly independent and
hence forms a basis of P5(R?). Now observe that applying D, to each vector in B gives us
the list

07 17 0’ 23’;5 y’ 07 3'CL.27 2xy7 y27 0'

It follows that the matrix of D, with respect to B is upper-triangular:

OO OO OO OO OO
OO OO OO O OO
OO OO OO OO OO
OO OO OO OO NNO
OO O OO OO+ OO
OO OO OO OO OO
O OO O OO WO oo
O OO OO NO O OO
SO O OO OO O
OO OO OO OO OO

Similarly, we find that the matrix of D, with respect to B is upper-triangular.

Exercise 5.E.9. Suppose V is a finite-dimensional nonzero complex vector space. Sup-
pose that & C £(V) is such that S and T commute for all S,T € &.

(a) Prove that there is a vector in V' that is an eigenvector for every element of &.

(b) Prove that there is a basis of V' with respect to which every element of £ has an

upper-triangular matrix.

This exercise extends 5.78 and 5.80, which consider the case in which £ contains only
two elements. For this exercise, & may contain any number of elements, and & may

even be an infinite set.

Solution.

(a) Suppose that dim V = n. Because dim £(V) = n?, there must exist a subset F C & of
cardinality at most n? such that every operator in £ is a linear combination of operators
in &. Suppose that F = {Ty, ...,T,,} for some m < n?. By 5.19 T} has an eigenvalue
A1, and because T and T, commute, 5.75 shows that E(\;,T;) is invariant under T5,.
Another application of 5.19 shows that 75| g, 7,) has an eigenvector, which must also
be an eigenvector of T;. Thus E(A\,T}) N E(\,,T,) # {0}. Since T3 commutes with
both T} and Ty, 5.75 shows that E(A;,T}) and E(A\y,T,) are both invariant under
T5 and thus, by Exercise 5.A.3, the intersection E(A;,T;) N E()Ay, Ty) is also invariant
under T5. It then follows from 5.19 that T restricted to E(A;,T}) N E(Ay,T5) has an
eigenvector, which must also be an eigenvector of 7} and T,. By continuing in this

manner, we obtain a v € V' that is an eigenvector of each T}, say T,v = A v for some
A, € C.
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Let T € &£ be given. As noted above, T' must be a linear combination of operators in
F,say T = > 10 ¢, Ty. It follows that

Tv = (i cka) v = in: CLALV = (i ck)\k> v.
k=1 k=1 k=1

Thus v is an eigenvector of T'.

Let us first consider the special case where &£ is finite. Our proof here is a generaliza-
tion of the proof of 5.80. For a positive integer n, let P(n) be the statement that if

V is an n-dimensional complex vector space and {7}, ..., T, } is a collection of pairwise
commuting operators on V for some m > 2, then there is a basis of V' with respect to

which each T} has an upper-triangular matrix.

The truth of P(1) is clear. For some n > 1, suppose that P(n — 1) holds, let V' be
an n-dimensional complex vector space, and let {T},...,T,,} be a collection of pair-
wise commuting operators on V for some m > 2. By part (a) there exists a v; € V
which is an eigenvector of each T}, so that T,v; € span(v;). Using 2.33, let W be
such that V = span(v;) @ W and define P € £(V,W) by P(av; + w) = w. For each
ke {1,..,m}, define T}, € £L(W) by T,w = P(T,w). Because each pair of operators
in {T},...,T,,} commutes, the proof of 5.80 shows that each pair of operators in
{T 1 ,T m} also commutes. We can now apply our induction hypothesis to obtain a
basis vy, ...,v,, of W with respect to which the matrix of each T} is upper-triangular.
The list vy, ...,v,, is a basis of V. For each j € {2,...,n} and each k € {1, ..., m}, there
exists a; ;, € C such that

Because Tkvj € span(vz, . vj), this equation implies that Tyv; € Span(vl, ey vj). Thus
the matrix of each T} with respect to the basis vy, ..., v,, is upper triangular. This com-

pletes the induction step and the proof.

Now let us consider the general case where & may be infinite. Because dim £(V) = n?,
there must exist a subset F C & of cardinality at most n? such that every operator in
€ is a linear combination of operators in &. Suppose that & = {T3,...,T,,} for some

m < n?. The special case we just proved implies that there is a basis vy, ..., v,, of V with
respect to which each T}, has an upper-triangular matrix. Because a linear combination
of upper-triangular matrices is again an upper-triangular matrix and each T' € &£ is a
linear combination of the operators {1}, ..., T, }, we see that the matrix of each T' € &£

with respect to vy, ...,v,, is upper-triangular.

n
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Exercise 5.E.10. Give an example of two commuting operators S,7T on a finite-di-
mensional real vector space such that S 4+ T has an eigenvalue that does not equal an
eigenvalue of S plus an eigenvalue of T" and ST has an eigenvalue that does not equal

an eigenvalue of S times an eigenvalue of T'.

This exercise shows that 5.81 does not hold on real vector spaces.

Solution. Let S,T € £(R?) be given by S(z,y) = (—y,z) and T = —8, i.e. S is a counter-
clockwise rotation about the origin by 90° and T is a clockwise rotation about the origin
by 90°. It follows that S+ 7T =0 and ST = I, so that 0 is an eigenvalue of S+ T and 1 is
an eigenvalue of ST. However, we may not express either of these eigenvalues as a sum or

product of eigenvalues of S and T, because S and T' do not have eigenvalues (see 5.9(a)).
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Chapter 6. Inner Product Spaces

6.A. Inner Products and Norms

Exercise 6.A.1. Prove or give a counterexample: If v, ...,v,, € V, then

Solution. Suppose we have a sequence of vectors v;,vy,vs,... in V. We will use induction

on m to prove that

||U1 + et vm”2 = ZZ(U] v

=1 k=1

for each positive integer m. The base case is clear, so suppose that the result holds for some

positive integer m and observe that
vy + -+ vy +vm+1H (Vg 4+ v, + Vi1, V1 + 0+ Uy F Vpiq)
= </U1 + ot VU U1 + ot Um> + <U1 + ot Um,» Um—f-l)

+ (U1, V1 + V) H (Vi1 Upgr)

m m m m
= Z Z(vj’ vk) + Z<UJ7 Um—l—l) + Z(Um+17vk> + <Um+17 vm—l—l)
j=1 k=1 J=1 k=1
m+1m+1
=2 > (u)
7j=1 k=1

This completes the induction step. The desired inequality is now immediate:

ZZ = vy + - + v, [° > 0.
Jj=

1 k=1

Exercise 6.A.2. Suppose S € £(V). Define (-, -); by
(u,v)1 = <Su7 SU)

for all u,v € V. Show that (-,-); is an inner product on V if and only if S is injective.

Solution. If § is not injective then there exists some non-zero v € V such that Sv =0. It
follows that
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(v,v); = (Sv, Sv) = (0,0) = 0.
Thus (-,-); fails to have the definiteness property required by 6.2 and hence is not an inner
product on V.
Now suppose that S is injective. We verify each property required by 6.2.
Positivity. We have (v,v); = (Sv, Sv) > 0 for all v € V by the positivity of (-, ).

Definiteness. We have (v,v); = (Sv, Sv) =0 if and only if Sv =0 by the definiteness of
(,-), and Sv = 0 if and only if v = 0 by the injectivity of S. Thus (v,v); = 0 if and only if
v=0.

Additivity in the first slot. Let u,v,w € V be given and observe that
(u+v,w); = (S(u+v),Sw) = (Su+ Sv, Sw) = (Su, Sw) + (Sv, Sw) = (u, w); + (v, w),,
where we have used the linearity of S and the additivity in the first slot of (-, ).
Homogeneity in the first slot. Let A € F and u,v € V be given and observe that
(Au,v); = (S(Au), Sv) = (ASu, Sv) = A(Su, Sv) = A(u,v),,
where we have used the linearity of S and the homogeneity in the first slot of (-, -).

Conjugate symmetry. Let u,v € V be given and observe that

(v,u); = (Sv, Su) = (Su, Sv) = (u,v),,

where we have used the conjugate symmetry of (-, -).

Exercise 6.A.3.

(a) Show that the function taking an ordered pair ((xy,z5), (y;,¥,)) of elements of

R? to |21y | + |75y, is not an inner product on R2.

(b) Show that the function taking an ordered pair ((xy, z,, Z3), (Y1, Ya, Y3)) of elements

of R? to x,y; + T3y; is not an inner product on R3.

Solution.
(a) Let f be the function in question, i.e. f: R? x R? — R is given by
f((z1,22), (1,92)) = [T191] + [229s],

and notice that
f((=1,0),(1,0)) =1 # —1=—f((1,0),(1,0)).
Thus f is not homogeneous in the first slot and hence is not an inner product on R2.
(b) Let f be the function in question, i.e. f: R3 x R3 — R is given by

f((zq, 2, 23), (Y1, Y2, Y3)) = T1Y1 + T3Y3,

and notice that
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£((0,1,0),(0,1,0)) = 0.

Thus f fails to have the definiteness property required by 6.2 and hence is not an inner

product on R3.

Exercise 6.A.4. Suppose T' € £(V) is such that |Tv| < ||v| for every v € V. Prove that
T — /21 is injective.

Solution. We will prove the contrapositive statement. If T — /21 is not injective then there
is some non-zero v € V such that Twv = v/2v. Because v # 0 we have |v| # 0 and thus

ITv] = |[V2v| = V2|o] > [o].

Exercise 6.A.5. Suppose V is a real inner product space.
(a) Show that (u+ v,u —v) = |lu|® — |v|? for every u,v € V.
(b) Show that if u,v € V have the same norm, then u + v is orthogonal to u — v.

(c) Use (b) to show that the diagonals of a rhombus are perpendicular to each other.

Solution.

(a) For any u,v € V we have
<’Ll, +v,u— U> = <U’a U> - <U,’U> + <’U,’U,> - <Ua ’U> = ||U||2 - ||/U||2
(b) This is immediate from part (a).

(¢) In plane geometry, a rhombus is a quadrilateral whose four sides have the same length.
Letting v and v denote the two non-parallel sides, the diagonals are given by u + v
and u —v. Since |u| = ||v||, part (b) shows that u + v and u — v are perpendicular to

each other.
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Exercise 6.A.6. Suppose u,v € V. Prove that (u,v) =0 < |ul| <|u+ av| for all
acF.

Solution. Suppose that (u,v) = 0 and let a € F be given. Observe that
(u, av) = a(u,v) = 0.
Thus u and av are orthogonal. It follows from the Pythagorean Theorem (6.12) that
2 2 2 2
lu+ av]” = ful” + |av]” = Ju]”.
Taking square roots gives the desired inequality.

Now suppose that (u,v) # 0. By 6.11 it must be the case that v # 0. Thus we can define
c and w as in 6.13, so that (w,v) =0 and u = cv + w. Since w and v are orthogonal, the
Pythagorean Theorem (6.12) shows that

2 2 2 12 2 2 2
lul™ = llev+w|” = [e[*|v]” + |w|” > |w]” = v —cv]
the inequality is strict here because ¢ # 0 and v # 0. Taking square roots gives us

|ul]| > |u — cv| and thus a choice of a = —c gives us the desired result.

Exercise 6.A.7. Suppose u,v € V. Prove that ||au + bv| = ||bu + av| for all a,b € R if

and only if |u| = |Jv|.
Solution. For any a,b € R, note that

lau + bv|| = |bu + av| < [au+ bo|* = |bu + av|’.

Note further that

law + bo]* = a?|lul” + 2ab(u, v) + b?|v]*

and  |bu + av|® = b2|ul® + 2ab(u, v) + a2||v|>.
Thus |au + bv|* = |bu + av|” holds if and only if
(@ = 62)(Jul® — JoI?) = .

Given this, it will suffice to show that (a? — b?) (||u||2 — ||v||2) =0 for all a,b € R if and only
if |u| = |v|- The reverse implication is clear; for the forward implication, simply take a = 1
and b = 0.

Exercise 6.A.8. Suppose a,b,c,z,y € R and a? + b2 + ¢ + 22 + y? < 1. Prove that
a+b+c+4zx+ 9y < 10.

Solution. Let u,v € R5 be given by u = (a,b,¢,z,y) and v = (1,1,1,4,9). The Cauchy-
Schwarz inequality (6.14) shows that
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a+b+c+4z+9y <l|a+b+c+ 4z +9y| = |[(u,v)|

< |ullv] = Va2 +b2 +c2 + 22+ y2V1+1+ 1+ 16 + 81 < 10.
Exercise 6.A.9. Suppose u,v € V and |Ju| = ||v| =1 and (u,v) = 1. Prove that u = v.

Solution. Observe that
<’U, —v,u— U) = <’LL, u) - (u,v) - </Ua ’LL> + <U, U> = ||u||2 — 2R‘e<uvv> + ”UH2 =0.

It follows from definiteness that v — v = 0.

Exercise 6.A.10. Suppose u,v € V and |ju| < 1 and |v|| < 1. Prove that

V1= TelPy/1 = ol < 1= [(u,0)]

Solution. Observe that
0< (Jul = [0)* <0< |ul® —2]u|lv] + o]’

& —lul® = Jol* < —2]ullo]

& 1= Jul® = JolI® + ful*lo]* < 1= 2fullo] + fulv]*

& (1= lul®) (1= 1ol?) < (1= Julllol)*.

Since |Ju| < 1 and |Jv| < 1, the quantities 1 — |u||®, 1 — [v||*, and 1 — |u||v| are non-negative.

Thus we may take square roots to obtain the inequality

2 2
V1= Jul?y/1 = ol < 1= Julfol.

The Cauchy-Schwarz inequality (6.14) shows that 1 — |Juf|v| <1 — |(u,v)| and thus

V1= TelPy/1 = ol < 1= [{u,0)]

Exercise 6.A.11. Find vectors u,v € R? such that u is a scalar multiple of (1,3),v is
orthogonal to (1,3), and (1,2) = u + v.

Solution. Let x = (1,2),y = (1,3), and let

C(my) 7

c= ||y||2 =10’ u=-cy, and v==zx—cy.

Then u is a scalar multiple of y and, as 6.13 shows, (v,y) =0 and z = u + v.
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Exercise 6.A.12. Suppose a, b, ¢, d are positive numbers.

1,1.,1,1
(a) Prove that (a+b+c+d)(:+ 3+ <+ 3) > 16.

(b) For which positive numbers a, b, ¢, d is the inequality above an equality?

Solution.
(a) If we let
1 1 1 1
U= (\/57 \/57 \/Ea \/E) and v = (—,—,_,_>,
a b c d
then
1 1 1 1
(u,v) =4, |u|=vVa+b+c+d, and ||v||:\/—-|-__|___|__‘
a b ¢ d

Squaring both sides of the Cauchy-Schwarz inequality (6.14) gives the desired inequal-
ity.
For positive numbers a, b, ¢, d, we claim that

1 1 1 1
(a+b+c+d)(—+—+—+—) =16 & a=b=c=d.
a b ¢ d
The reverse implication is straightforward to check. For the forward implication, define
uw and v as in part (a) and note that the Cauchy-Schwarz inequality is an equality if
and only if one of u, v is a scalar multiple of the other. If u = A\v for some A € R, then

necessarily A > 0 since a > 0 and

A
\/a:ﬁ = a= )\

Similarly we find that b =c =d = A. If v = Au for some A € R then again A must be

positive and

1 1

Bl

a

Similarly we find that b=c=d = % In either case we have a = b =c =d.

Exercise 6.A.13. Show that the square of an average is less than or equal to the av-

erage of the squares. More precisely, show that if aq, ...,a, € R, then the square of the

average of aq, ...,a

. 2 2
. is less than or equal to the average of a7, ...,a;.

Solution. For a positive integer n and real numbers a4, ..., a,,, let

eey n

1 1

u=(ay,...,a,) €ER" and v= (Z’ vy 5) e R".

Observe that
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al _|_..._|_an

2
1
) Il =ttt ad, and ol =k
n

(w0’ = (

Squaring both sides of the Cauchy-Schwarz inequality (6.14) gives us the desired inequality.

Exercise 6.A.14. Suppose v € V and v # 0. Prove that v/|Jv| is the unique closest ele-
ment on the unit sphere of V' to v. More precisely, prove that if u € V and |ul| = 1, then

o= 2] <o
v——| < |v—u

o] ’
with equality only if u = v/|v].

Solution. Some routine calculations show that

2

v = o> +1—=2|v] and |v—u|®=|v]>+1—2Re(v,u).

v
el

Thus

2

Hv_”_””Hgnv—uu & o <lo—ul® & Re(v,u) < [ol.
v

v

ol

Indeed, using the Cauchy-Schwarz inequality,
Re(v, u) < [(v,u)| < [Jvf[lu] = |v].

As the proof of 6.17 shows, we have equality here if and only if one of u, v is a non-negative

real multiple of the other. If u = Av for some A > 0, then

1 v
L= |ul =[Ao] =Al] = A== = U=

el

and if v = Au for some A > 0 then

(Y
ol = Aul =X = w=—.
[l

Exercise 6.A.15. Suppose u, v are nonzero vectors in R2. Prove that
(u,v) = [lulv] cos®,

where 6 is the angle between u and v (thinking of w and v as arrows with initial point

at the origin).

Hint: Use the law of cosines on the triangle formed by u, v, and u — v.

Solution. The law of cosines applied to the triangle formed by u, v, and u — v states that

2 2 2
Ju =l = Jul” + o = 2ul[v] cos 6.
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This expression together with the identity |u— v|* = |u|* + |v|* — 2(u, v) gives us the de-
sired equality.

Exercise 6.A.16. The angle between two vectors (thought of as arrows with initial
point at the origin) in R? or R?® can be defined geometrically. However, geometry is
not as clear in R™ for n > 3. Thus the angle between two nonzero vectors z,y € R” is
defined to be

(z,y)
Iz lyl’

arccos

where the motivation for this definition comes from FExercise 15. Explain why the

Cauchy-Schwarz inequality is needed to show that this definition makes sense.

Solution. The arccos function is only defined on the interval [—1,1]; for the definition in

question to make sense, we must have

(z,y)

lz[ly]

(=, )]

lz[lyl

€ [_1) 1] € [0, 1]
for any non-zero z,y € R". The Cauchy-Schwarz inequality ensures this.
Exercise 6.A.17. Prove that

($o0) = (Eo) (£7)

for all real numbers a4, ...,a,, and by, ..., b

.
Solution. Let n be a positive integer and let a4, ...,a,,b, ...,b, be real numbers. Define

b, b b

Then

n

n n 1/2 1/2
o) =3 aghs ||u||=(2kaz> ' and ||v||=( ) |

IS
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Squaring both sides of the Cauchy-Schwarz inequality gives us the desired inequality.

Exercise 6.A.18.

(a) Suppose f:[1,00) — [0,00) is continuous. Show that

([mf)2s[mx%ﬂmfdm

(b) For which continuous functions f : [1,00) — [0, 00) is the inequality in (a) an equal-
ity with both sides finite?

Solution.

(a) For t > 1 consider the vector space of continuous real-valued functions on the interval

[1,t] equipped with the inner product
t
(g.1) = [ g(@)h(a) do
1

The Cauchy-Schwarz inequality shows that

(/:f(x)dx)z_ (/jzf(x)dx)2< (/1tl'2(f(w))2dw> (/:%dx)
= ([wz(f(x))zdx) (1—%).

Because f is non-negative, both integrals floo f(x) dx and floo 22(f(z))® dz either con-
verge or diverge to infinity. If floo 22(f (w))2 dx = oo then the desired inequality cer-
tainly holds, and if | loo 22(f (:1:))2 dx converges then the inequality

(/j (@) dm>2 < (/j x2(f(m))2dm) (1_%)

shows that [ loo f(z) dz also converges and furthermore that

([wawm)zszwx%ﬂmfdw

(b) The Cauchy-Schwarz inequality used in part (a) is an equality if and only if z f(x) and
x~ ! are linearly dependent as functions on [1,00), i.e. if and only if f(z) = Az ™2 for all

z > 1 and some A > 0. In this case we obtain

(/100 f(x) dx) 2 = /100 22(f(z))? dz = \2.
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Exercise 6.A.19. Suppose vy, ...,v,, is a basis of V and T' € £(V). Prove that if A is

n

an eigenvalue of T', then

n n
2 2
AF <D D (M@l
j=1 k=1
where M (T'); ;, denotes the entry in row j, column & of the matrix of T' with respect to
the basis vy, ...,v

n:

Solution. It is straightforward to verify that
(@101 + = 4 a0, 101 + -+ b,0,,) = arby + - +a,b,

is an inner product on V (this is essentially the Euclidean inner product after identify-
ing V with F™). Because A is an eigenvalue of T, there is a non-zero v € V' such that
Tv = Av; by replacing v with v/|v|| if necessary, we may assume that |v| = 1. Suppose that

v =a,v; + -+ a,v, and observe that

Ty =

n n n n

a Tvg = ag ) M(T);0;= (Z “kM(T)j,k> vj
=1 k=1

k=1 k=1 j=1

2
n

= o> =)

J=1

Z apM(T);k
k=1

For each j € {1, ...,n}, applying the Cauchy-Schwarz inequality to the vectors

(ar,-sa,) and (D)1, M(T);)
in F” with the Euclidean inner product shows that

< (i‘%ﬁ) (z": ’M(T)j,k’2>
k=1 k=1

Z apM(T);
k=1

= Jlv]? (i: \M(T)j,k\2> = Zn: (M (T); ]

k=1
Thus

2
n

2

J=1

2 2 2
A" = 2ol]™ = [Tv]

Z apM(T);k
k=1

Exercise 6.A.20. Prove that if u,v € V then ||u| — |v|| < |u — v].

The inequality above is called the reverse triangle inequality. For the reverse triangle

inequality when V. = C, see Exercise 2 in Chapter 4.

Solution. Notice that
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Jul = Ju—v+ol < fu—ol + ol = Jul = ol < Ju—l,
ol = o —utul < Ju—vl+Jul = ol - ful < Ju—o.
Thus [[u] = [o]| < [u = wv].
Exercise 6.A.21. Suppose u,v € V are such that
lul =3, |u+v|=4, [u—2v|=S8.

What number does |Jv|| equal?

Solution. Rearranging the parallelogram equality (6.21) for |v| gives

1/2
R e 2
vl = — [l :

2

Substituting the given values, we find |v| = V17.

Exercise 6.A.22. Show that if u,v € V, then

2 2
Ju+ vl — ol < Jul”+ o]

Solution. Notice that
2 2
0< (lut+v]—=lu—=2o])” < 4utovllu—2v] < (luto]+ |u—2])
2 2 2
& Jutolfu—of < 50w+ + Ju—v])* — fu+ollu—vf = [u]” + o],
where the last equality is the parallelogram equality (6.21).
Exercise 6.A.23. Suppose vy, ...,v,, € V are such that |v,|| <1 for each k=1,...,m.
Show that there exist a4, ...,a,, € {1,—1} such that
”alvl + ot a‘mvm” < \/E
Solution. We will inductively define the integers a4, ...,a,,. To begin, simply take a; = 1.
For k € {1,...,m — 1}, suppose we have chosen ag,...,a; € {1,—1} such that
lu| < VE, where u=a;v, + -+ a,v,.
It follows from Exercise 6.A.22 that
2 2
Jut vkl = s | < Tal? + o> < b 1.

Thus at least one of Hu+ ka”, ||u— vk+1|| is less than or equal to vk + 1. Let a;,; =1
if Hu—i—vk+1H <Vvk+1 and let a;,; =—1 otherwise. By repeating this process until

k =m — 1, we obtain the desired integers aq, ..., a,,.
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Exercise 6.A.24. Prove or give a counterexample: If ||-| is the norm associated with

an inner product on R?, then there exists (z,y) € R? such that |(x,y)| # max{|z|, |y|}.

Solution. Let f: R? — R be given by f(z,y) = max{|z|,|y|}, let v = (1,0) and v = (1,1),

and observe that
[fu+0) + [flu—v)]® =5+#4=2([fw)] + [f(v)]").

Since a norm associated with an inner product must satisfy the parallelogram equality (6.21),
it follows that any norm |- | associated with an inner product on R? cannot be given by f.
That is, there must exist some (z,y) € R? such that ||(z,v)| # f(z,v).

Exercise 6.A.25. Suppose p > 0. Prove that there is an inner product on R? such that

the associated norm is given by
1
@)l = (lef” + lyi") "
for all (z,y) € R? if and only if p = 2.

Solution. Let f : R? — R be given by f(z,y) = (|z|” + |y|p)1/p, let u = (1,0) and v = (0, 1),

and observe that
[flut o)) + [flu—o)]* =227 and  2([f(w)]* + [f(v)]*) = 4.

If f was indeed a norm arising from an inner product then f would satisfy the parallelogram
equality (6.21). Since the quantities above are equal if and only if 2'+2/P = 4, i.e. if and only
if p = 2, the only possible value for p is 2, which indeed gives the norm associated with the

Euclidean inner product on R?, as 6.8(a) shows.

Exercise 6.A.26. Suppose V is a real inner product space. Prove that

2 2
_ Jutol” = fu—vl

(u,0) = ;

for all u,v € V.

Solution. For any u,v € V, observe that
lu+ o) = Ju—o)® = (u+v,u +v) — (u—v,u—v)
= (u,u) + 2(u, v) + (v,v) — (u,u) + 2{u, v) — (v, v)

= 4(u, v).
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Exercise 6.A.27. Suppose V is a complex inner product space. Prove that

[u+ o) — Ju—of* + Jlu + dv]*i — Ju —iv|*

<u> 1)) = A

for all u,v e V.

Solution. For any u,v € V, observe that

lu+o* = Ju—of* = (u+v,u+v) = (u—v,u—wv)

= (u,u) + (u, v) + (u,v) + (v, v)
— (u, u) + (u,v) + (u,v) — (v, v)
= 2((u,v) + (u, v))
= 4 Re(u, v).
Furthermore,
ilu+ iv)® —ifu— iv)® = i(u+ iv, u + iv) — i(u — v, u — iv)

= i(u, u) — i%(u, v) + 3% (u, v) + (v, v)

= 2(<ua v) _m>
= 4Im(u,v).

It follows that

lu+ol* = Ju = of* + Ju +v]*i — Ju — iv]*i = 4(u, v).

Exercise 6.A.28. A norm on a vector space U is a function
|-I: U = [0,00)

such that |u| =0 if and only if u = 0, |aul| = |a||u| for all & € F and all uw € U, and
|u+v| < |u| + |v| for all u,v € U. Prove that a norm satisfying the parallelogram
equality comes from an inner product (in other words, show that if |-| is a norm on
U satisfying the parallelogram equality, then there is an inner product (-,-) on U such
that |u| = (u,u>1/2 for all w € U).

Solution. Let us first consider the case where U is a real vector space. Define
(w):UxU — R by

2 2
_ut ol — Ju—vf
(u,0) = -
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For any u € U we have

2
24

2
o =l

(u,u)

Thus the norm is given by |lul| = (u, u)l/Q. We now show that (-,-) is an inner product on U.

Positive-definiteness. Combining the identity (u,u) = |u|* with the properties of the norm

|| shows that (-,-) is positive-definite.

Symmetry. For any u,v € V, observe that |v— u| = |-1||u — v| = |u — v|; it follows that

2 2 2 2
_ et = fu—ol”  Jotul” = o —uf”

(u,v) = 1 1 = (v, u).

Additivity in the first slot. Let u,v,w € U be given. Since |- | satisfies the parallelogram

equality, we have
o+ 2w]* + o] = 2Jo + w|* + 2]w|?,
lo = 2w]* + Jo]* = 2Jv — w|” + 2[w|*.
Subtracting the latter of these equations from the former gives us
o+ 2w]* — v — 2w|* = 2|v+ w|* — 2Jv — w]*. (1)
Now we use the parallelogram equality two more times:
2w+ v+ w|® + 2u—w|* = v+ 2ul® + v+ 2w|?,
2+ v —w|® + 2Ju + w|* = v+ 2ul* + o — 2|,
Subtracting the latter of these equations from the former gives us
2(fu v+ wf? + = wl?) = 2+ 0 — wl® + -+ w]?) = o+ 20l — o — 20®.
Combining this with equation (1), we see that
2o v+ wf? + = wl?) = 2+ 0 — wl® + o+ w]?) = 20+ wl — 2o~ w®

Equivalently,

lut o+ wl]* —Jutv—w]® _ Jutw]® —u—w]®+ o+ v’ — v —w]”
4 4 ’

which is exactly the statement (u + v, w) = (u, w) + (v, w).

Homogeneity in the first slot. Suppose u,v € U. First, we will use induction to show
that (nu,v) = n(u,v) for all positive integers n. The base case n = 1 is clear, so suppose that

the result holds for some positive integer n and observe that
((n + L)u,v) = (nu+u,v) = (n,v) + (u,v) = nfu,v) + (u,0) = (n+1)(,v),

where we have used additivity in the first slot and the induction hypothesis. This completes

the induction step and thus (nu,v) = n(u,v) for all positive integers n. Certainly (0,v) =0
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and so we may extend this result to all non-negative integers. If n is a positive integer then

observe that
(—nu, v) + n{u,v) = (—nu,v) + (nu,v) = (0,v) =0,

where we have used additivity in the first slot and homogeneity in the first slot for positive
integers. It follows that (—nu,v) = —n(u,v) and thus we have homogeneity in the first slot

for all integers.

To extend homogeneity in the first slot to rational numbers, let n be a positive integer. By

additivity in the first slot, we have

n{n~lu,v) =35 (n"lu,v) = <Z§L:1 n‘lu,v> = (u,v),

which implies that (n~*u,v) = n~!(u,v). Combining this with homogeneity in the first slot

for integers allows us to extend homogeneity in the first slot to rational numbers.

Finally, to obtain homogeneity in the first slot for all real numbers, let A € R be given. There

exists a sequence (r,) of rational numbers satisfying lim = A. The reverse triangle

n—o0 TTL
inequality (Exercise 6.A.20) shows that the function U — R given by u > |u| is continuous.
Combining this with standard results on compositions and linear combinations of continuous

functions, we have

Mu,v) = lim r, (u,v)
n—oo

= Jim (r0.0)

2 2
el

n—00 4

[Xu+ of* — [Au— o]
4

= (Au, v).

Now let us consider the case where U is a complex vector space. Define B: U x U — R by

Jutof* — Ju— |’

B(u,v) = | 2

and define (-,-) : U x U — C by

2 2 .2 . 02
(u,v) = B(u,v) + iB(u, iv) = [u+ 2] 4£||u of” | luti 4Hu |

Observe that for any u € U we have B(u,u) = ||u|® and

RN R U R el R Y

Thus |u| = (u, u)l/z. We now show that (-, -) is an inner product on U.
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Positive-definiteness. Combining the identity (u,u) = |u|* with the properties of the norm

||| shows that (-,-) is positive-definite.

Conjugate symmetry. For any u,v € U, note that

(v,u)y = B(v,u) + iB(v,iu) = B(u,v) — iB(v, iu),

where we have used that B is real-valued and symmetric (we showed this in the case where
U is a real vector space.) Given the expression above, to verify conjugate symmetry of (-, -)
it will suffice to show that B(u,iv) = —B(v,iu). Indeed,

. . 2 . 2 . . 2 . . 2
—4B(v,iu) = o — iul® — o+ iul* = |—i(u + w)|* — Ji(u — )|
= [=i*fu + ol — il u — 0] = Ju+ iv]? — Ju— iv]® = 4B(u, iv).

Additivity in the first slot. Let u,v,w € U be given. The proof of additivity in the first
slot we gave for the case where U is a real vector space equally shows that B is additive in
the first slot. It follows that

(u+v,w) = B(u~+ v,w) + iB(u + v, iw)
= B(u,w) + iB(u,iw) + B(v,w) + iB(v,iw) = (u, w) + (v, w).

Homogeneity in the first slot. Let u,v € U be given. The proof of homogeneity in the
first slot we gave for the case where U is a real vector space equally shows that B is homo-
geneous in the first slot with respect to real numbers. It follows that for any A € R we have
(Au,v) = A(u,v). Now observe that

A(iu, v) = Jiu + o* — Jiv — v]* + i(Jiv + iv]* — Jiu — iv]?)
= Jiu —iv)|” = Ji(u + iv)|” +i([[i(u+0)|* = Jitu —v)|")
= Ju—dv|* — Ju+ dv|* +i(u+o]* — Ju—o]*)
= i(fu ol — b= ol it il — o iol?))
= 4i(u,v).
Thus (iu,v) = i(u,v). It follows that, for any = + iy € C,

((x +iy)u, v) = (xu + iyu, v) = (xu,v) + (iyu,v) = z{u,v) + iy{u,v) = (z + iy){u,v).

Exercise 6.A.29. Suppose V;, ...,V are inner product spaces. Show that the equation
<(u17 000g um)? (Ula o00g ’Um)> = <u1,v1> T+t (um,vm)
defines an inner product on V; x - x V.

In the expression above on the right, for each k = 1, ..., m, the inner product (uy, vy,)
denotes the inner product on V. Each of the spaces V, ...,V may have a different

inner product, even though the same notation is used here.
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Solution. For convenience, let V=V, x .- x V. . We verify each property in definition 6.2.
Positivity. Let (vq,...,v,,) € V be given and observe that

(V15 ees V), (U1 ey 0,)) = (v, 01) + -+ (U, V) -
Since each (v, v,) is non-negative, it follows that ((vy,...,v,,), (v1,...,v,,)) is non-negative.

Definiteness. For (vq,...,v,,) € V, note that (vq,.. =0 if and only if each v, = 0.

V) =

By the definiteness of the inner product on each V, this is the case if and only if each

(vg, v) = 0. From the non-negativity of the expression
<(v15"'7vm)7(vla"' )) <U1,’U1>+"'+<Um,vm>,
we see that each (v, v,) = 0 if and only if ((vy,...,v,,), (v1,...,v,,)) = 0.

Additivity in the first slot. Let (uq,...,u,,), (v1, ..., v,,), (W1, ..., w,,) € V be given and

observe that
((Ugy ooy Upy) F (V1 ey U, ), (Wey ey w,,))
= ((ug + vy, ey Uy, +0,,), (W, ey w,,))
= (uy + v, wy) + o F (U + Uy, Wiy
= (uy, wy) + (U, wy) + -+ (U, W) + (Vy, W)
= (up,wy) + -+ (U, Wy,) + (v, wy) + -+ (U, W)
= ((Uyyeeey Upp,), (W, ey W) + (V1 oery U, (Wey ooy w,,)),

where we have used the additivity in the first slot of the inner product on each V..

Homogeneity in the first slot. Let A € F and (uq, ..., u,,), (v, ...,,,) € V be given, and

observe that

(A(Ugy ooyt )y (V1 ey 0,,)) = (A, ooy Ay, ), (U1, oy 0,,))
<>‘u1’ Ul> + ot <>‘uma m>

= )\(Ul,U1> + - +)\< U m)
= )\((Ul,’U1> + -+ <um7vm>)
= M(tyy eoey Uy ), (V15 w0y Uy )Y,

where we have used homogeneity in the first slot of the inner product on each V.

Conjugate symmetry. Let (uq,...,u,,), (vy,...,v,,) € V be given and observe that

<(U1’ ) Um)a (ula ey um)) = <U17u1> + et <Um7um>

= <U1’u1> T+t <vm’um> = <u1avl> + - +< U s m> = <(u1> "'7um)a (U17 "'7vm)>7

where we have used the conjugate symmetry of the inner product on each V.
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Exercise 6.A.30. Suppose V is a real inner product space. For u,v,w,x € V, define
(u+ v, w+iz)c = (u,w) + (v, z) + (v, w) — (u, x))i.
(a) Show that (-,-) makes V into a complex inner product space.
(b) Show that if u,v € V, then
(u,0)g = (u,0) and [u+iv]g = Jul® + o] *.

See EXerciseISiimNSectionB for the definition of the complexification V.

Solution.
(a) We verify each property in definition 6.2.
Positive-definiteness. For any u + v € V,
(u+iv,u+ ) = (u,u) + (v,v) + ((v,u) — (u,v))i = (u,u) + (v, v),

where we have used the symmetry of (-,-). The positivity of (-,-) and the expression

above gives us the positivity of (-, ). Moreover,
(u+iv,u+iv) e =0 < (u,u)=0and (v,v)=0 < uwu=v=0 < u+iv=0.

Conjugate symmetry. For any u + v, w + iz € V5, observe that

(w+iz,u+ i) = (w,u) + (z,v) + ((z,u) — (w,v))i
= (u,w) + (v, x) + ((v,w) — (u, z))i = (u + v, w +ix)c,
where we have used the symmetry of (-, -).
Additivity in the first slot. Let u + iv, w + iz, y + iz € V be given and observe that
(u+ )+ (w+iz),y+iz)c = (u+w) +i(v+z),y+ iz2)c
=(u+wy + v+, 2+ ((v+z,y) — (ut+w,z2))i
= (u,y) + (w, ) + (v, 2) + (2, 2)
+ (v, 9) + (2, ) — (u, 2) — (w, 2))i
= (u, ) + (v, 2) + (v, 9) — (v, 2))i
+(w,y) + (2, 2) + ({2, y) — (w, 2))i
= (u+iv,y+i2)c + (w+ iz, y + i2)c,
where we have used the additivity in the first slot of (-, -).

Homogeneity in the first slot. Let u + iv,w + ix € Vs and a + b € C be given and

observe that
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(@ + bi)(u + i), w + iz) ¢ = ((au — bv) +i(av + bu), w + i) g
= (au — bv, w) + (av + bu, z)
+ ({av + bu, w) — (au — bv, z))i
= a(u, w) — b(v, w) + a(v, z) + b(u, z)
+ (alv, w) + blu, w) — alu, z) + blv, z))i
= [a({u, w) + (v, z)) — b((v,w) — (u, z))]
+ [a((v,w) — (u,z)) + b({u, w) + (v, 2))]s
= (a+bi)[(u, w) + (v,2) + ({v, w) — (u, )]
= (a + bi)(u + v, w + iz) g,
where we have used the homogeneity in the first slot of (-, -).
(b) For u,v € V we have
(u,v) G = (u,v) + (0,0) + ((0,v) — (u,0))i = (u, ).

Furthermore, as we showed in part (a) when we verified the positive-definiteness of
<" '>Cv

[u+ivle = (u+ iv,u+iv)e = (u,u) + (v,0) = Ju]” + o] "

Exercise 6.A.31. Suppose u,v,w € V. Prove that

2 2 2
_ o =" 4w —o]”  Ju—

2
oo~ 3+ 0)] : .

Solution. It will suffice to prove that
4w = Fu+ )] = 2(w — ul® + hw—of*) = Ju— o,
which is equivalent to
2w — w —o]* + Ju —o]* = 2(Jlw — u]* + w —]*),

which follows immediately from the parallelogram equality (6.21).

Exercise 6.A.32. Suppose that E is a subset of V with the property that u,v € E
implies %(u +v) € E. Let w € V. Show that there is at most one point in E that is

closest to w. In other words, show that there is at most one u € E such that
|w—u] < |lw— 2|

forall z € F.
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Solution. Suppose u,v € E are both closest to w, so that |w — u| = |w — v|. It follows from
Exercise 6.A.31 that

2
Ju — vl

=l —ul’ = o —u+v)|”

Since u and v belong to E we must have =(u+ v) € E, and then since u is a point in E

1
2
closest to w we must have |w — u|| < |w — 3(u + v)||. It follows that |u — v <0, which is

the case if and only if u = v.

Exercise 6.A.33. Suppose f, g are differentiable functions from R to R".
(a) Show that

(f(1),9()" = (f'(8), 9(t) + (£(), ' (2))-

(b) Suppose ¢ is a positive number and |f(t)| =c¢ for every t € R. Show that
(f'(t), f(t)) =0 for every t € R.

(c) Interpret the result in (b) geometrically in terms of the tangent vector to a curve

lying on a sphere in R™ centered at the origin.

A function f : R — R™ is called differentiable if there exist differentiable functions
fis -y fnfrom R to R such that f(t) = (f,(t), ..., f,,(t)) for each t € R. Furthermore,
foreacht € R, the derivative f'(t) € R™ is defined by f'(t) = (fi(t), ..., f,,(1)).

Solution.

(a) Suppose that f(t) = (f,(t), ..., f,,(t)) and g(t) = (g,(t), ..., g,,(t)) for some differentiable
functions fy,..., f,, 91, ---» 9, : R = R. By the usual rules of differentiation we have

(f(£),9(8))" = (fr(£)g1 () + - + £, (1)g, (1))’
= fi(t)g1(t) + f1(H)g1(t) + - + L (D) gn(t) + fn(t)gn (D)
= f1(0)g1 (&) + -+ fr(£)gn (1) + f1(£)g1 (1) + - + [ (8) g, (1)
= (f'(£), 9(2)) + (f(¢), ' (2)).
(b) By part (a) we have
0=(c?) = (||f(t)||2)/ = (f(t), F(1))" = 2(f' (1), F(1)).

Thus (f(£), £(2)) = 0.
(c) Suppose ¢ > 0. A differentiable function f:R — R"™ satisfying | f(¢)| = ¢ for every
t € R traces out a curve which lies on an (n — 1)-sphere of radius ¢ centered at the
origin in R™. The tangent vector to this curve is given by f’; the result of part (b)

states that this tangent vector is always orthogonal to the curve f.
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Exercise 6.A.34. Use inner products to prove Apollonius’s identity: In a triangle with
sides of length a,b, and ¢, let d be the length of the line segment from the midpoint of
the side of length ¢ to the opposite vertex. Then

a? 4+ b2 = %C2 + 2d2.

Solution. Set up the triangle as follows.

Thus

lul =a, [ol=3c, Ju—vl=d, [u—2v]=b.

Consider the parallelogram formed by the vectors u — v and v. The parallelogram equality
states that

2 2 2 2
Jul™ = flu—2v]" = 2[v]” + 2[u — o]
Substituting the given side lengths, we obtain

a? 4+ b2 = %cz + 2d2.
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Exercise 6.A.35. Fix a positive integer n. The Laplacian Ap of a twice differentiable
real-valued function p on R"™ is the function on R™ defined by
0%p 0%p

Ap=—L .., 27
b z? O0x2

The function p is called harmonic if Ap = 0.

A polynomial on R™ is a linear combination (with coefficients in R) of functions of the

1

form x7 - 2™ where m m, are nonnegative integers
1 n il 9 cco9 n g g o

Suppose ¢ is a polynomial on R™. Prove that there exists a harmonic polynomial p on
R"™ such that p(x) = q(x) for every z € R™ with |z| = 1.

The only fact about harmonic functions that you need for this exercise is that if p is a
harmonic function on R™ and p(x) = 0 for all x € R™ with |z| = 1, then p = 0.

Hint: A reasonable guess is that the desired harmonic polynomial p is of the form
q+ (1 — ||a:||2)7" for some polynomial r. Prove that there is a polynomial r on R"
such that q + (1 — ||:1:||2)7" is harmonic by defining an operator T on a suitable vector

space by
Tr= A((l — Hx”2>r)

and then showing that T' is injective and hence surjective.

Solution. Let us first provide a few definitions. A monomial on R™ is a polynomial on
R" of the form z|**-- 2"~ where m,...,m, are non-negative integers. The degree of such
a monomial is the sum m; + - +m,,. The degree of a non-zero polynomial p on R™ is the
greatest degree amongst its monomial terms z]"*--- ™" and the degree of the zero polynomial

is defined to be —oo.

Define P} (R) to be the collection of all polynomials on R™ of degree at most m and note
that 27 (R) is a subset of the vector space RR"; in fact, size the zero polynomial is simply
the zero function, and addition and scalar multiplication of polynomials of degree at most
m will not result in a polynomial of degree greater than m, P, (R) is a vector subspace of
RR".

It is straightforward to verify that the collection of all monomials of degree at most m forms a

basis of P (R). This collection is finite and thus 27 (R) is a finite-dimensional vector space.

Clearly, the Laplacian Ap of a polynomial p on R"™ is itself a polynomial and furthermore
satisfies either deg Ap = —oo or deg Ap = degp — 2. Thus the Laplacian defines an operator
A € L(P7(R)); the linearity of A follows from the linearity of partial differentiation.

The function

z=(zy,.,z,) ER" > |z|* =22 + - + 22
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is a polynomial on R™ of degree 2. Given this, if r is a non-zero polynomial on R"™, then
(1 — ||x||2>r is also a polynomial on R™ of degree r + 2; if r is the zero polynomial then so

is (1 — ||x||2)7" It follows that A(l — ||:c||2>r is a polynomial on R™ of degree at most degr.
Let g be a polynomial on R™ and let m = degq. By our previous discussion, the operator
T € £(P},(R)) given by
2
T(r) = A((1 - J=*)r)
is well-defined; the linearity of T follows from the linearity of A and distributivity on R.

We claim that T is injective. If T'(r) = 0 for some r € 7', (R) then (1 — Hwﬂz)r is a harmonic
polynomial on R™ which satisfies (1 — ||x||2)7" = 0 for all x € R™ such that |z| = 1; the fact
about harmonic functions given in the exercise then implies that (1 — ||x||2)r = 0. It follows
that r is identically zero on the open set {z € R™ : |z| = 1}° and hence that r is the zero

polynomial. Thus nullT" = {0}, i.e. T is injective.
By 3.65 T must be surjective. Hence there exists some r € 27, (R) such that T'(r) = A(—q),

which by linearity is equivalent to
2
Ag+ (1= z)*)r) =o0.

Thus p = q + (1 — ||x||2)7" is a harmonic polynomial on R™ which satisfies p(x) = ¢(z) for all
z € R™ with |z| = 1.
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6.B. Orthonormal Bases

Exercise 6.B.1. Suppose e, ...,e,, is a list of vectors in V' such that
2 2 2
lares + -+ amen|” = lay[" + - + [ay,]
for all aq, ...,a,, € F. Show that e,, ..., e, is an orthonormal list.

This exercise provides a converse to 6.24.

Solution. For each k € {1,...,m}, taking each of a, ..., a,, to be 0 except a;, = 1 shows that
lex]| = 1. Suppose j, k € {1,...,m} are such that j # k and let a € F be given. Observe that

2 2 2
lejI” =1 <1+ a]” = lle; +ae|” = le;ll < le; + aey.

Jl

It follows from Exercise 6.A.6 that (e;, e,) = 0. Thus ey, ..., €, is an orthonormal list.

Exercise 6.B.2.
(a) Suppose 6 € R. Show that both
(cosf,sinf),(—sinf,cosfd) and (cosf,sinh), (sinf, —cosf)
are orthonormal bases of R?.

(b) Show that each orthonormal basis of R? is of the form given by one of the two

possibilities in (a).

Solution.
(a) Observe that
{(cos0,sin6), (cosf,sin#)) = ((—sin b, cos ), (—sinf, cosf)) = cos? § +sin? 0 = 1,
((cosf,sinf), (—sinf,cosf)) = cosfsinf — cos fsinf = 0.
Thus (cosf,sin @), (—sin@, cos ) is an orthonormal basis of R2. A similar calculation
shows that (cos,sin @), (sin @, — cos ) is also an orthonormal basis of R2.

(b) Suppose u,v is an orthonormal basis of R?. Let 6 be the angle that u makes with the

positive x-axis, as shown below.
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Note that |u| = 1, so that u lies on the circle of radius 1 centered at the origin in R?.
It follows that u = (cos#,sin§).

Since v and v are orthogonal, plane geometry tells us that v either makes an angle of
0+ 5 or 6 — 5 with the positive z-axis, and since |v| = 1 we know that v also lies on

the circle of radius 1 centered at the origin. It follows that

= (cos(f+ Z),sin(0 + Z)) = (—sin#, cos6)

or v=(cos(d—3%),sin(0—7%))=(sinf,—cos¥).

Exercise 6.B.3. Suppose e, ...,e,, is an orthonormal list in V and v € V. Prove that

m

2 2 2
[ol” = v, e)|” + -+ [{v,e,)[" & v espan(es, ..., ep).

Solution. Suppose v € span(eq, ..., €,,). Note that e, ... is linearly independent by 6.25

°) m

and hence is a basis of span(eq, ..., ¢,,). It follows from 6.30 that
[ol* = (v, e0)* + - + (v, €)[ -

Now suppose that [[v]* = |[(v,e,)|* + - + [(v,e,,) %, let u= (v,e,)e, + -+ (v,e,,)e,,, and
note that |u|®> = |v|* by 6.24. Observe that

m m

(u,v) = <ZZL:1<U7 €k>€k7v> = Z((U €)€xy U Z’ v, )] |UH

k=1 k=1

Thus
2 2 2 2 2
lu —o" = [ul” + [[v]|” — 2Re(u, v) = 2|jv|” — 2|jv||” =

from which it follows that v = u € span(eq, ...,e,,).
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Exercise 6.B.4. Suppose n is a positive integer. Prove that

1 cosxz cos2x cosnx sinz sin2z sin nx
\/ﬂ’ ﬁ ) »\/E AR ﬁ ) »\/E ) —\/E 9 °) ﬁ

is an orthonormal list of vectors in C|—m, 7|, the vector space of continuous real-valued
functions on [—m, 7| with inner product

(f.9) = /_:fg-

Hint: The following formulas should help.

sin(z — y) + sin(z + y)

(sinz)(cosy) = :
(sinz)(siny) = cos(z — y) g cos(z +y)
(cosz)(cosy) = cos(z — y) —;— cos(z +y)

Solution. We calculate, for k € {1,...,n},

()~ () e [

cos kx 2 [k 1 —k
dz = 2ydy = —[y+sinycosy]’ " =1,
( ) T = /0 cos”y dy = -~ ly ycosyl' g

< C(j]—w Cojl—w >

k k k 2 [km 1 .
<Sl\n/;c sin $> = (Sm a:) dz = _’“T/o sin’ y dy = - ly — sinycosy]z;]g =1
1 cos ka: 1 cos k‘ZE V2 [k V2 y= kﬂ
de = — cosydy——[smy] =0;
2 - km J,

< 1 sin k:w> / sin k:x
dz =0,
2V o 7T Vi 27r

where we have used that sin kz is an odd function for the last equality. For j,k € {1,...,n}
such that j # k, we have

j k 4 ] k 1 [
<TJT>: / ﬂ sz ar=1 / cos((j — k)z) + cos((j + k)) dz

T j+k o

209 / 366



k k L ["
<smaw sin fv> / sin jz sin = / cos((j — k)) — cos((j + k)a) dz
_ s

0

1 [sin((j — lf)yc)r:7r 1 [sin((j + k)ac)rz7r _0
o j—k o T j+k :v:O_ '
Finally, for any j, k € {1,...,n} we have
cos jx sinkzx /7r cos jx sin kx d 0
) = r =U,
NNV VN
where we have used that cos jx sin kx is an odd function for the last equality.
Exercise 6.B.5. Suppose f : [—m, 7] = R is continuous. For each nonnegative integer
k, define
= %/ f(z)cos(kx) dr and b, = #/_ f(z)sin(kz) dz.
Prove that

2 o0 T
) 2 2
7 TR <[ r

—Tr

The inequality above is actually an equality for all continuous functions
f : [-=m,w] = R. However, proving that this inequality is an equality involves Fourier

series techniques beyond the scope of this book.

Solution. Consider C[—m, 7|, the vector space of continuous real-valued functions on [—, 7],

(f.g) = /_:fg.

1 cosx cos2zx cosnx sinz sin2z sin nx
\/%7 ﬁ ) \/7—1_ AR ﬁ ) \/7—1_ ) \/E AR ﬁ

is an orthonormal list of vectors in C[—m, n| for any n > 1. Observe that, for k > 1,

0=k [ f@ar=va(s o)
asz/ f(z cos(kx)dx—<f,co\j]_m>,

bk—\/—/ f(z)sin kx)dw—<f,Sl\n/Ex>.

with inner product

As we showed in Exercise 6.B.5,
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Thus, by Bessel’s inequality (6.26),

n

+ (ai+bi)£||f||2=/ 7.

k=1 —T

v | S

for all n > 1. It then follows from the monotone convergence theorem that >"po; (ai + b7) is

a convergent series. Furthermore,
a% o0 ™
Py @< £
-7

Exercise 6.B.6. Suppose e, ..., e,, is an orthonormal basis of V.

(a) Prove that if vy, ..., v, are vectors in V such that

1
lex — vl < —=

Vn

for each k, then vy, ...,v,, is a basis of V.

n

(b) Show that there exist vy, ...,v, € V such that

1
||€k - Uk” < —

vn

for each k, but vy, ..., v,, is not linearly independent.

n

This exercise states in (a) that an appropriately small perturbation of an orthonormal
basis is a basis. Then (b) shows that the number 1/+/n on the right side of the inequality

in (a) cannot be improved upon.

Solution.

(a) It will suffice to show that v,,...,v, is linearly independent, so suppose that

S a,v, = 0 and observe that
S lal = [ Sio ae” (6.24)
= || 2 k=1 anler — Uk)||2 (Zzzl apvE = 0)
< (Sialaglle, —vgl)’ (triangle inequality)

< (Zzzl |ak|2) (ZZ=1 le, — vg ||2) (Cauchy-Schwarz inequality)

By assumption we have S 7_; e, — vg|* < 1. It follows that Y7, |a,|> = 0, which is

the case if and only if each a;, = 0. Thus vy, ..., v,, is linearly independent.
(b) For each k € {1,...,n} let

e, +--+e
Uk = ek — % — (-%)el +.+ (1 — %)ek +...+ (_%)en

211 / 366



Notice that v; 4+ -+ v,, =0, so that vy, ...,v,, is linearly dependent. Furthermore, for

each k € {1,...,n}, 6.24 shows that

1 1 1 1 1 1
lex —vell = [ pex + -+ pex+ -+ men| = gller + -+ enl = - V= o=

Exercise 6.B.7. Suppose T € £(R3) has an upper-triangular matrix with respect to
the basis (1,0,0),(1,1,1),(1,1,2). Find an orthonormal basis of R® with respect to

which 7" has an upper-triangular matrix.

Solution. Performing the Gram-Schmidt procedure on the basis (1,0,0),(1,1,1),(1,1,2)

yields the orthonormal basis

1 1 1 1
(17070)7 (07\/57\/5)7 (Oa_ﬁaﬂ)
As the proof of 6.37 shows, the matrix of T" with respect to this orthonormal basis must also

be upper-triangular.

Exercise 6.B.8. Make P,(R) into an inner product space by defining (p, q) = fol g
for all p,q € P,(R).
(a) Apply the Gram-Schmidt procedure to the basis 1,z,z? to produce an orthonor-
mal basis of P,(R).
(b) The differentiation operator (the operator that takes p to p’) on P4(R) has an up-

per-triangular matrix with respect to the basis 1, z, £2, which is not an orthonormal
basis. Find the matrix of the differentiation operator on P, (R) with respect to the

orthonormal basis produced in (a) and verify that this matrix is upper triangular,

as expected from the proof of 6.37.

Solution.

(a) By applying the Gram-Schmidt procedure we obtain the orthonormal basis
1, 2\/§(x — %), 6\/5(:1:2 — x4+ %)

(b) Some routine calculations reveal that the matrix of T" with respect to the orthonormal
basis found in part (a) is

0 0 0
02V3 0

5
00 63

which is indeed upper-triangular.
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Exercise 6.B.9. Suppose ey, ...,e,, is the result of applying the Gram-Schmidt pro-
cedure to a linearly independent list vq,...,v,, € V. Prove that (v,,e,) >0 for each

Y Ym

k=1,...m.

Solution. Let u,...,u,, be alist in V and let f;,..., f,,, be an orthonormal list in V' with the

property that span(fy, ..., fr) = span(u, ...,u;) for each k € {1,...,m}. We will prove that

(ug, fr) =0 for some k € {1,....,m} = wuq,..,u,, is linearly dependent.

The contrapositive of this implication will give us the desired result.

Suppose that there exists some k€ {1,...,m} such that (ug,f,)=0. Notice that
uy, € span(uy, ..., u) = span(f, ..., f); it follows from Exercise 6.3.3 that

||uk||2 = |<ukaf1>|2 + et |<uk7fk71>|2 + |<uk7fk>|2 = |<uk7f1>|2 + ot |<ukafk—1>|2'

Another application of Exercise 6.8.3 shows that u;, € span(fy, ..., fr_1) = span(uy, ..., up_1).

Thus w4, ..., u,, is linearly dependent.

Exercise 6.B.10. Suppose wvy,...,v,, is a linearly independent list in V. Explain

m

why the orthonormal list produced by the formulas of the Gram-Schmidt proce-
dure (6.32) is the only orthonormal list eq,...,e,, in V such that (v, e,) >0 and

span(vq, ..., v;) = span(eq, ...,e;) for each k=1, ..., m.

The result in this exercise is used in the proof of 7.58.

Solution. Here is a useful lemma.
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Lemma L.10. Suppose vy, ..., v,, is a linearly independent list in V" and let e, ..., e,, be

the orthonormal list obtained by applying the Gram-Schmidt procedure to vy, ...,v,,.
Let S={Ae€F: |\ =1} (if F=R then S = {—1,1} and if F = C then S is the unit
circle in the complex plane) and let S™ be the collection of functions {1,...,m} — S.

The orthonormal lists uy, ..., u,, satisfying span(uy, ..., u;) = span(vy,...,v;) for each

k€ {1,...,m} are exactly those of the form f(1)e,, ..., f(m)e,, for some f € S™.

Proof. Let f € S™ be given and suppose j, k € {1,...,m} are such that j # k. Observe
that

|f(k)erll = [f(K)llex =1 and (f(5)e;, f(k)er) = f(7)f(K)(e;,ex) = 0.

Furthermore, since 0 ¢ S we have for each k € {1, ..., m},
span(f(l)ey, ..., f(k)ey) = span(ey, ..., €;) = span(vy, ..., vy).

Thus f(1)eq,..., f(m)e,, is an orthonormal list satisfying

span(f(l)eq, ..., f(k)e) = span(vy, ..., vy)
for each k € {1,...,m}.

Now suppose that uq,...,u,, is an orthonormal list satisfying

m
span(uq, ..., u;) = span(vy, ..., v;) = span(ey, ..., €)

for each k € {1,...,m}. In particular span(e;) = span(u, ), from which it follows that
u; = A\je; for some A\, € F. Because |u,| =|e;]| =1 we see that |A\;| =1, so that

Given that span(e;,es) = span(uy,u,), notice that e;, e, is an orthonormal basis of

span(eq, e,) and that u, € span(e;,e,). It follows from 6.30 that
Uy = (Uy, €1)€; + (Uy, €3)€y.
The orthonormality of the list u;, u, shows that
0= (uy,up) = (F(L)eg, ug) = f(1)(e, ug),

which implies (e;,uy) = 0 since f(1) # 0. Thus uy = A\ye, for some A € F. Because
[us|l = [les] = 1 we see that |[Ay| = 1, so that A, € S; let f(2) = A,.

By continuing in this manner we obtain an f € S™ such that u, = f(k)e, for each
ke{l,.. m}. O

Returning to the exercise, 6.32 and Exercise 6.3.9 show that the orthonormal list eq, ..., €e,,

produced by the Gram-Schmidt procedure indeed satisfies (v, e;) > 0 and
span(vq, ..., v;) = span(eq, ..., €x)
for each k € {1,...,m}.
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Conversely, suppose that uq, ..., u,, is an orthonormal list in V' such that (v, u;) > 0 and

m
span(vq, ..., v;) = span(uq, ..., u)

for each k € {1,...,m}. Lemma L.10 shows that uq,...,u,, is of the form f(1)e,..., f(m)e,,

tr'm

for some f: {1,...,m} — F satisfying |f(k)| = 1 for each k € {1,...,m}. For such a k, observe
that

(Vg ug) >0 & f(k)(vy, ex) > 0.

Since (v, e) > 0 by Exercise 6.B.9, f(k) must be a positive real number. Combining this
with |f(k)| = 1, we see that f(k) =1 for each k € {1,...,m}. Thus u,, ..., u,, is nothing but

€15 €y

Exercise 6.B.11. Find a polynomial ¢ € P,(R) such that p(%) = fol pq for every
p € Po(R).

Solution. Equip ?,(R) with the inner product (p,q) = fol pq and define ¢ € (P,(R))" by
o(p) = p(%) As the proof of 6.42 shows, if we take

q=p(ey)e; + pley)es + ples)es = —152% + 15z — %>

where ey, €5, €3 is the orthonormal basis of P,(R) found in Exercise 6.B.8 (a), then
1
v(p) =p(3) = (p,0) = / P
0
for every p € P5(R).
Exercise 6.B.12. Find a polynomial ¢ € P,(R)) such that
1 1
/ p(x) cos(mz) dx z/ Pq
0 0
for every p € P5(R).

Solution. Equip ?,(R) with the inner product (p,q) = fol pq and define ¢ € (P,(R)) by
o(p) = fol p(x) cos(mz) dz. As the proof of 6.42 shows, if we take

Ch

where eq, ey, €5 is the orthonormal basis of P,(R) found in Exercise 6.B.8 (a), then

24

q=p(e))e; +pley)es + p(ez)es = )

1 1
w(p) = / p(z) cos(mx) dz = (p,q) = / Pq
0 0

for every p € P5(R).
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Exercise 6.B.13. Show that a list vy, ..., v,,, of vectors in V is linearly dependent if and

only if the Gram-Schmidt formula in 6.32 produces f;, = 0 for some k € {1, ..., m}.

This exercise gives an alternative to Gaussian elimination techniques for determining
whether a list of vectors in an inner product space is linearly dependent.
Solution. If v,,...,v,, is linearly independent then each f, must be non-zero, as the proof
of 6.32 shows.

m

Suppose that vq,...,v,, is linearly dependent. If v; =0 then f; =0; otherwise, let
k € {2,...,m} be the least integer such that v, € span(vy,...,v;_;) and note that vy, ...,v,_4
is linearly independent. This linear independence allows us to construct fi, ..., fr_; as in 6.32
so that:

e cach f; #0;

o span(vq,...,v;) = span(fy, ..., f;) for each i € {1,....k — 1};

e fi,., fi_1 is pairwise orthogonal.
It follows that v, € span(fy,..., fr_1), say v, = ayf; + -+ ap_1 fr_1- Notice that, for each
ie{l,....k—1},

<vka fz) )
il

(O, £) = asfi, fy = @l filP = a;=
Thus, using the formula for f;, in 6.32,

fo=w —kzi@k’f Zaf v, — v, = 0.
e I1£1? SRR

Exercise 6.B.14. Suppose V is a real inner product space and vy, ...,v,, is a linearly
independent list of vectors in V. Prove that there exist exactly 2" orthonormal lists

€1, ..., €, of vectors in V' such that
span(vq, ..., v;) = span(eq, ..., €x)

for each k € {1,...,m}.

Solution. Let e, ...,e,, be the orthonormal list obtained by applying the Gram-Schmidt
procedure to vy, ...,v,,. Lenuna [L.10 shows that the orthonormal lists uy, ..., u,, satisfying

span(vy, ..., v;,) = span(uq, ..., uy) for each k € {1,...,m} are precisely those of the form

fWey, ., f(m)ep,

for some f:{1,..,m}— {—1,1}. Tt is straightforward to verify that there are 2™
such functions, and that each f:{1,....,m} — {—1,1} gives a distinct orthonormal list
f(Deq, ..., f(m)e,,. Thus there 2™ orthonormal lists u,, ..., u,, of vectors in V' such that

span(vq, ..., v;) = span(uq, ..., u)
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for each k € {1, ..., m}.

Exercise 6.B.15. Suppose (-,-); and (-,-), are inner products on V such that
(u,v); =0 if and only if (u,v), = 0. Prove that there is a positive number ¢ such that
(u,v); = (u,v)y for every u,v € V.

This exercise shows that if two inner products have the same pairs of orthogonal vec-

tors, then each of the inner products is a scalar multiple of the other inner product.

Solution. If V = {0} then we may take any ¢ > 0 we like, since the only inner product on
V is the map (0,0) — 0. Suppose therefore that V' # {0} and for each non-zero v € V' define
(v, v)

C’U = <v’ v) ;

—

N

notice that c, is positive. Suppose u,v € V are non-zero. Using orthogonal decomposition

(= ),

Our assumption is that orthogonality with respect to (-,-), is equivalent to orthogonality

6.13, we have

with respect to (-,-); and thus

_<u’v>2vv = u, v —<u’v>2vv = u,V); = c, (U, v
<u <v,v>2’>1°‘i’<’>1 () =0 & (o) = cyfu o).

Reversing the roles of u and v shows that (v, u); = ¢, (v, u)5 and combining this with conju-

gate symmetry gives us

cp(u, v)y = (u,v)y = (v, u)y = ¢, (v, u)y = ¢, (U, ).
Thus, for all non-zero u,v € V, we have
(1) (w,0)1 = ¢, (u, v);
(2) ¢, (u, )y = ¢, (u, v),.

Given non-zero u,v € V, there exists a non-zero w € V such that (w, u), # 0 and (v, w), # 0:
if (u,v)5 # 0 then take w = w and if (u, v), = 0 then take w = u + v. Using (2), it follows that

co{w,u)g = ¢ (w,u)y and ¢, (v, w)y = c, (v, w),.

Since (w, u), # 0 and (v, w)4 # 0, these two equations imply that ¢, = ¢,, = ¢,. If we denote
this common value by ¢ (noting that ¢ > 0), then we have shown that ¢, = ¢ for all non-
zero v € V. It follows from (1) that (u,v); = c{u,v), for all non-zero u,v € V. Certainly this

equation also holds if u =0 or v = 0 and thus (u,v); = c(u,v), for all u,v € V.
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Exercise 6.B.16. Suppose V is finite-dimensional. Suppose (-, -) . (-, ) , are inner prod-
ucts on V' with corresponding norms |-, and |-||,. Prove that there exists a positive

number ¢ such that [v], < cfv], for every v e V.

Solution. By 6.35 there exists an orthonormal basis e, ...,e, of V' with respect to (-,-),.

Let v € V be given, so that v = a,e; + - + a, e, for some scalars a, ...,a,,. Observe that

2 2
0y + - + |a] < nmax{lay|, . [, ]} < ny/Jay + - + lag > = o], (1)

where the last equality follows from 6.24. If we let M = max{“elﬂl, e, ||1}, which is pos-
itive since each e, # 0, then it follows from (1) and the triangle inequality that

[ol, <lailledlly + -+ lanlle,l, < M(lai| + -+ la,]) < nM]ovl,.

Thus the desired positive constant is ¢ = nM.

Exercise 6.B.17. Suppose F = C and V is finite-dimensional. Prove that if T is an
operator on V such that 1 is the only eigenvalue of T" and |Tv| < |v| for all v € V, then
T is the identity operator.

Solution. By Schur’s theorem (6.38), there is an orthonormal basis e, ...,e,, of V with re-
spect to which the matrix of T is upper-triangular; because the only eigenvalue of T is 1,

the diagonal entries of this matrix must equal 1. Thus, for each k € {1,...,n},
Tep=Ape; + -+ A 1€ 1 +e, = ||T@k||2 = ‘Al,k‘z + et ‘A1,k_1|2 +1,
where we have used 6.24. By assumption |Te,|* < |le,|* = 1 and thus
|A1,k:|2 Tt ’Al,kqf <0 = A p=-=A4,,=0.
It follows that the matrix of T with respect to ey, ..., e,, is diagonal. Since each diagonal entry

is equal to 1, we may conclude that 7' is the identity operator.

Exercise 6.B.18. Suppose uy,...,u,, is a linearly independent list in V. Show that
there exists v € V such that (u,v) =1 for all k € {1,...,m}.

Solution. Let U = span(uy,...,u,,), so that u,,...,u,, is a basis of U, let ¢, ...,p,, be

m
the dual basis of U’, and let ¢ = ¢; + -+ ¢,,. The Riesz representation theorem (6.42)
shows that there is a unique v € U such that ¢(u) = (u,v) for each u € U. In particular,

(uy,v) = @(uy) =1 for each k € {1,...,m}.
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Exercise 6.B.19. Suppose vy, ...,v,, is a basis of V. Prove that there exists a basis
Uq, ..., u, of V such that

(v, ) = 0 ifj+k,
37k 1 ifj=k.

Solution. Let ¢y,..., ¢, be the dual basis of vy,...,v,. For each k € {1,...,n}, the Riesz
representation theorem (6.42) shows that there is some u; € V such that ¢, (v) = (v, uy,) for
every v € V. It follows that

0 ifj+k,
(v us) = i) = {1 if j = k.

Suppose aq, ..., a,, are scalars such that a;u; + -+ + a,u,, = 0. For each k € {1, ...,n}, observe
that

0= (ayuy + -+ ayuy,, vp) = ay Uy, vg) + - + @, (U, vg) = ay.

It follows that wuq, ..., u,, is linearly independent and hence forms a basis of V.

n

Exercise 6.B.20. Suppose F = C, V is finite-dimensional, and & C £(V) is such that
ST =TS

for all S,T € &£. Prove that there is an orthonormal basis of V' with respect to which

every element of £ has an upper-triangular matrix.

This exercise strengthens Exercise 9(b) in Section 5E (in the context of inner product

spaces) by asserting that the basis in that exercise can be chosen to be orthonormal.

Solution. By Exercise 5.E.9 (b) there is a basis vy, ...,v,, of V with respect to which every

element of £ has an upper-triangular matrix, i.e. such that
Te, € span(vy, ..., v)

for every k € {1,...,m} and every T € &. Let eq, ..., €,, be the orthonormal basis obtained by
applying the Gram-Schmidt procedure (6.32) to v, ..., v,, and note that

Te, € span(vq,...,v;) = span(eq, ..., €)

for every k € {1,...,m} and every T € £. Thus ey, ..., e, is an orthonormal basis of V' with

respect to which every element of & has an upper-triangular matrix.

Exercise 6.B.21. Suppose F = C,V is finite-dimensional, T' € £(V), and all eigenval-
ues of T' have absolute value less than 1. Let € > 0. Prove that there exists a positive

integer m such that |T™v| < g|v| for every v € V.
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Solution. We will first translate the problem into a statement involving column vectors in
C™! and matrices in C™", where n = dim V. We shall use the following notation, which

differs from the notation of the question.
o ()y : VxV — C. This is the given inner product on V.
e ||y :V —[0,00). This is the norm on V arising from (-, ), i.e.

[olv =/ (v; v}y

e (-,-): C™! x C™! — C. This is the Euclidean inner product on C™1, i.e.

n Ty Y1
(z,y) = Zxk%, wherez=| ¢ | and y =
k=1 Tn Yn
e |-]:C™! —[0,00). This is the Euclidean norm on C™! arising from (-, -), i.e.
n 1/2 L1
|zl = +/(z, ) = (Z !$k|2) , where x =
k=1 z,

Schur’s theorem (6.38) implies that there is an orthonormal (with respect to (-,-)y/) basis

€1, ...,e, of V such that the matrix A € C™" of T with respect to ey, ..., e,, is upper-trian-

n

gular. Given v = z,e; + -+ x,e, € V, observe that

n 1/2
2
o]y = (Zmy ) = |z|, where z =
k=1

Thus it will suffice to show that there exists a positive integer m such that

Ty

Tn

|A™z| < g|z| for all x € C™!.

In what follows, by a strictly upper-triangular matrix we mean a matrix that is upper-tri-
angular and whose diagonal entries are zero. We shall use the following two easily verified

facts about strictly upper-triangular matrices:

(i) if D € C™™ is diagonal and N € C™" is strictly upper-triangular then DN and ND

are both strictly upper-triangular;
(ii) if N € C™™ is strictly upper-triangular then N™ = 0.

Let D be the diagonal matrix whose diagonal entries are exactly those of U and let N be
the strictly upper-triangular matrix whose entries above the diagonal are exactly those of
U, sothat U =D+ N. Let

} = max{‘Ul’l‘, e ‘Un’n‘}

and note that 0 < p < 1 since the diagonal elements of D and U are precisely the eigenvalues
of T'. Note further that

p = max{|D1,1‘, ) ‘Dn,n

2 9 2 9 1/2
1Dl = (D1 *los P + 4 [ Dy o2 ) < ol
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for any z € C™!. Let

C= Z‘ Jk‘

7=1 k=1

a calculation similar to the one given in Exercise 6.A.19 shows that |Nz| < C|z| for all

x € C™!. Putting everything together, for any integer m > n we have the inequality
n—1
m m m m—
[omel = (D +N)"al < Y () o ECFlal.
k=0
This can be shown using induction, but is best illustrated by example. If m = 3 and n = 2
then (i) and (ii) show that DNN = NDN = NND = NNN = 0. Thus
[U™z| = (D + N)" =
< |(DDD+ DDN + DND+ NDD + DNN + NDN + NND + NNN)zx||
= |(DDD + DDN + DND + NDD)x|

< |DDDz| + |DDNz| + | DN Dz| + [NDDz|

< plp(pllz])) + p(p(Clal)) + p(Clplal)) + C(e(plal))
— - 3 3—kk
=3 ()" el

For any 0 <k <n—1 we have (7:) <m™ ! and pmF < p™"*1 since 0 < p < 1. Thus,
letting u = max{1,C, ..., "'}, we have the inequality

—1
MWHZUWWWKWWWWM
k=0

for any z € C™1. Because 0 < p < 1 we have lim,, , . m" 1p™ "1 = (. Thus there exists a

positive integer m such that |[U™z| < g|z| for every x € C™1.
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Exercise 6.B.22. Suppose C[—1, 1] is the vector space of continuous real-valued func-

tions on the interval [—1, 1] with inner product given by

<f,g>=/11fg

for all f,g € C[—1,1]. Let ¢ be the linear functional on C[—1, 1] defined by ¢(f) = f(0).
Show that there does not exist g € C[—1, 1] such that

e(f) =(f.9)
for every f € C[—1,1].

This exercise shows that the Riesz representation theorem (6.42) does not hold on infi-

nite-dimensional vector spaces without additional hypotheses on V' and .
Solution. Suppose such a g exists and define h € C[—1,1] by h(x) = z2g(x). Observe that
1
0= h(0) = p(h) = (1) = [ [agle))* .
~1

Because the integrand is non-negative and continuous, we have f_ll [zg(z)]> dz = 0 if and
only if zg(xz) = 0 for all € [—1,1]. This implies that g(z) =0 for all x € [—1,1] \ {0}; the
continuity of g then implies that g(0) = 0 also. Thus

f(0)=/_11 F()g(=) dxzf_jodx:o

for every f € C[—1, 1], which is certainly not true. We may conclude that no such g exists.

Exercise 6.B.23. For all u,v € V, define d(u,v) = |u — |
(a) Show that d is a metric on V.

(b) Show that if V' is finite-dimensional, then d is a complete metric on V (meaning

that every Cauchy sequence converges).

(c) Show that every finite-dimensional subspace of V is a closed subset of V (with

respect to the metric d).

This exercise requires familiarity with metric spaces.

Solution.

(a) Certainly d is non-negative. The equivalence of d(u,v) =0 and u = v follows from
6.9(a). The symmetry of d follows from 6.9(b), and the triangle inequality for d is

immediate from 6.17.

(b) Let vy, ...,v,, be a basis of V' and consider the 1-norm with respect to this basis:

[oly = las| + -+ la,],
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where v = a,v; + - + a,v,,. By Exercise 6.8.16, it will suffice to show that V is com-
plete with respect to |-|;.
Let (v,,,)me—y be a Cauchy sequence in (V, |- ||1), where v,, = a,, 191 + - + a,, ,v,,. For

any j € {1,...,n} and any positive integers k and m, we have the inequality

‘am,j - ak,j < ”vm _ vk”l‘

It follows that (am’ j)oo is a Cauchy sequence in the complete metric space F and thus

m=1

there exists some a; € F such that lim a

0o = a;. Define v = ayv; + -+ + a,,v,, and

m,j

observe that
| — vy = |@p 1 —ay| + -+ |ap, , —a,| = 0 as m — oo.

Thus (v,, )y is convergent. We may conclude that V is complete with respect to || .

Suppose U is a finite-dimensional subspace of V and (u,, ). _; is a sequence contained
u,, — v| for some v € V. We need to show that v € U. The

in U satisfying lim,,_, |
norm |-| restricts to a norm on U; by part (b), this normed space (U, |-|) must be
complete since U is finite-dimensional. Because convergent sequences are necessarily
Cauchy, completeness implies that the sequence (u,,),._; converges to some u € U.

Since limits of sequences are unique it follows that v = u € U, as desired.
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6.C. Orthogonal Complements and Minimization Problems

Exercise 6.C.1. Suppose vy, ...,v,, € V. Prove that

Y Ym

L L
{vy,..,v,,} = (span(vy, ..., v,,)) "

Solution. Suppose that v € (span(vy, ..., vm))L. In particular, for every k € {1,...,m},
v € span(vy,...,v,,) = (v,vg) =0.
It follows that v € {v,,...,v,,}" and hence that (span(vy,...,v,.))" C {vy, ..., v, }".

Now suppose that v € {vy,...,v,,}" and let a,v, + -+ a,,v,, € span(vy,...,v,,) be given.
Observe that

<U7 a1y + et amvm> = (1_1<’U, vl) + +m<vv Um) = 0.

It follows that v € (span(vy, ...,v,,))" and hence that {vy,...,v,,}" C (span(v,, ..., v,,))". We

m

may conclude that

1 1
{v1y...,v,,}" = (span(vy, ..., v,,))" .

Exercise 6.C.2. Suppose U is a subspace of V with basis uq, ..., u,, and

Upyeeey Upyy Uy eeey U

T m) n

is a basis of V. Prove that if the Gram-Schmidt procedure is applied to the basis of V'

above, producing a list e, ...,e,,, f1, ..., f,,, then e, ..., e,, is an orthonormal basis of U

m

and fi, ..., f, is an orthonormal basis of U*.

Solution. The Gram-Schmidt procedure guarantees that

span(eq, ..., €,,) = span(uy, ..., u,,) = U,

and 6.25 shows that e, ..., e,, is linearly independent. Thus ey, ..., e,,, is an orthonormal basis
of U.

The Gram-Schmidt procedure also guarantees that for any k € {1,...,n} the vector f, is

orthogonal to each vector in the list ey, ..., e,. By Exercise 6.C.1, this implies that

fx € (span(ey, ..,e,,))" = UL,

Note that f;,..., f,, is linearly independent by 6.25 and dimU+ = dimV —dimU = n by
6.51. Thus, by 2.38, fi, ..., f,, is an orthonormal basis of U~.
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Exercise 6.C.3. Suppose U is the subspace of R* defined by
U = span((1,2,3,—4), (—5,4,3,2)).

Find an orthonormal basis of U and an orthonormal basis of U~.

Solution. It is straightforward to verify that
=(1,2,3,-4), uy,=(-5,4,3,2), v, =(1,0,0,0), v, =(0,1,0,0)

is a basis of R*. Certainly u;,u, is a basis of U. Performing the Gram-Schmidt procedure

on this list yields the orthonormal list

1 1
e = 7=(1,2,3,—4), ey = Z=——(~T7,56,39,38),
fi = == (190,117,60,151),  f, = 9\/F(0 81,90, 27).

As we showed in Exercise 6.C.3, e;, e5 must be an orthonormal basis of U and f;, f, must

be an orthonormal basis of U~.

Exercise 6.C.4. Suppose eq,...,e, is a list of vectors in V with |e.|| =1 for each

k=1,..,n and

n

2 2 2
[ol” = v, e)|” + -+ [{v, e,)]
for all v € V. Prove that ey, ..., e,, is an orthonormal basis of V.

This exercise provides a converse to 6.30(b).

Solution. Let k € {1,...,n} be given and observe that

n

lel® = Hexe) >+ > [ene)|” & 1=1+ Z (exse;
j=1, j#k J=1, j#k
n

= Y ewey) =0

J=1,3#k
Thus (ek, ej> = 0 for each j # k. It follows that eq,...,e,, is an orthonormal list and hence,
by 6.25, ey, ..., e, is linearly independent. Suppose that v € {eq, ..., en}l and observe that
[o* = [(w,en)* + - + (v, e,)[* =0 & v=0.

Thus {eq,...,e, } = {0}. It follows from Exercise 6.C.1 and 6.54 that span(ey,...,e,) = V.

We may conclude that ey, ..., e,, is an orthonormal basis of V.

Exercise 6.C.5. Suppose that V is finite-dimensional and U is a subspace of V. Show
that Pp;. = I — Py, where [ is the identity operator on V.
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Solution. By 6.49 and 6.52, for any v € V we can write v =u + w for unique vectors
uelU= (UL)L and w € U*. Tt follows that

Py(v) + Pyi(v) =u+w=w.

Thus Py + Py = 1.

Exercise 6.C.6. Suppose V is finite-dimensional and T' € £(V,W). Show that

=P

T=TP rangeTT'

(null T)*

Solution. By 6.49 we have V =nullT & (nullT)l. Thus, for any v € V, we can write
v=21x+y, where z € nullT and y € (null T)L. It follows that

Tv=Ty=TF, 1) (v)

and hence that T' = TP(null )t
Because range T is finite-dimensional, 6.49 allows us to write W = range T' @ (range T)L. For

any v € V, observe that Tv =Tv 4+ 0 € rangeT & (range T’ )l. It follows that

T

Tv=P,yperTv
and hence that T' = P, .. 7T

Exercise 6.C.7. Suppose that X and Y are finite-dimensional subspaces of V. Prove
that Py Py = 0 if and only if (z,y) =0 forallz € X and ally € Y.

Solution. Suppose that (z,y) =0 forallz € X andy € Y. For v € V write v = y + z, where
y €Y and z € Y, so that Pyv = y. Our hypothesis ensures that y € X* and thus

PXPYU = PXU = O
by 6.57(c). Hence Py Py = 0.

For the converse, suppose that Py Py = 0 and let x € X and y € Y be given. Using 6.57(b)
and 6.57(e), observe that

Pyy=PxPyy=0 = yenullPy = yeXt = (z,y)=0.
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Exercise 6.C.8. Suppose U is a finite-dimensional subspace of V and v € V. Define a

linear functional ¢ : U — F by
p(u) = (u,v)

for all uw € U. By the Riesz representation theorem (6.42) as applied to the inner product

space U, there exists a unique vector w € U such that
p(u) = (u, w)

for all w € U. Show that w = Ppv.

Solution. We have (u,v) = (u,w) for every u € U. Equivalently, (u,v —w) =0 for every
u € U, so that v—w € U*. It follows that v =w+ v — w, where w e U and v —w € U™,
Thus Pyv = w.

Exercise 6.C.9. Suppose V is finite-dimensional. Suppose P € £(V) is such that
P2 = P and every vector in null P is orthogonal to every vector in range P. Prove that
there exists a subspace U of V such that P = F;.

Solution. By Exercise 3.B.27 and 6.49 we have the decompositions
V =range P®nullP and V =rangeP @ (range P)L,

which implies dimnull P = dim (range P)L. Combining this with the hypothesis
null P C (range P)*, we sce that null P = (range P)". Let U = range P; we claim that
P = P;. Let v=Px+w €V be given, where Pz € range P and w € (range P)l = null P.
Observe that

Pyv = Pz = P(Px + w) = Pu,

where we have used P2 = P and w € null P for the second equality. Thus P = P;.

Exercise 6.C.10. Suppose V is finite-dimensional and P € £(V) is such that P? = P

and
|Pv] < vl

for every v € V. Prove that there exists a subspace U of V such that P = F;.

Solution. Suppose w € null P and Px € range P. Our hypothesis gives us the inequality
|Pz| = P(Pz + Aw)| < [Pz + Aw|

for any A\ € F. It follows from Exercise 6.A.6 that (w, Px) = 0 and hence that null P is con-
tained in (range P)L. We can now let U = range P and proceed as in Exercise 6.C.9 to see
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Exercise 6.C.11. Suppose T € £(V) and U is a finite-dimensional subspace of V.
Prove that

U is invariant under T' & PyTP; =TF.

Solution. Suppose that U is invariant under T and let v € V be given. Observe that
PyjwelU = TPyveU = PyTPy;v=TPyv,
where the last implication follows from 6.57(b). Now suppose that U is not invariant under
T, i.e. there is some u € U such that Tu ¢ U. Note that
TPyu=Tu¢U and PyTPyucU,
where we have used 6.57(b) and 6.57(d). It follows that
P,TPyu+ TPyu = PyTP,; + P,T.

Exercise 6.C.12. Suppose V is finite-dimensional, T' € £(V'), and U is a subspace of
V. Prove that

U and U are both invariant under T <« P,T =TP,.

Solution. Suppose that U and Ut are both invariant under T and let v =u 4w € V be
given, where v € U and w € U*. By assumption we have Tu € U and Tw € U*; using 6.57,
it follows that

PyTv = Py(Tu+ Tw) =Tu =TPyu =TPy(u+ w) =TPyv.
If U is not invariant under T" then there exists some u € U such that Tu ¢ U. It follows that
TPyju=Tu¢U and PyTuecU,

so that TP, # P, T. Similarly, if U+ is not invariant under T' then there exists some w € U+
such that Tw ¢ U*. It follows that

TPyw=T(0)=0 and PyTw+#0,

so that TP # PyT.
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Exercise 6.C.13. Suppose F = R and V is finite-dimensional. For each v € V, let ¢,

denote the linear functional on V' defined by
o, () = (u, )
for all u € V.
(a) Show that v = ¢, is an injective linear map from V to V.

(b) Use (a) and a dimension-counting argument to show that v i ¢, is an isomor-

phism from V onto V’.

The purpose of this exercise is to give an alternative proof of the Riesz representation
theorem (6.42 and 6.58) when F = R.. Thus you should not use the Riesz representa-

tion theorem as a tool in your solution.

Solution.
(a) Let u,v,w € V be given and note that
Py (1) = (U, v+ w) = (u,0) + (u, w) = @, (u) + ¢, (u).
Similarly, for any u,v € V and any A € R,
Pa(1) = (u, Av) = Mu,v) = Ap, (u).

Thus v - ¢, is linear. Suppose that v € V' is such that ¢, = 0, i.e. (u,v) = 0 for every
u € U. Tt follows that v € V+ and hence, by 6.48(c), v = 0. Thus v = ¢, is injective.

(b) By 3.111, 3.65, and part (a), the map v - ¢, must be an isomorphism.

Exercise 6.C.14. Suppose that e, ...,e,, is an orthonormal basis of V. Explain why

the dual basis (see 3.112) of eq, ..., ¢, is eq, ..., e, under the identification of V' with V
provided by the Riesz representation theorem (6.58).

Solution. Let ¢y, ..., ¢, be the dual basis of e, ..., e,. Using the notation of 6.58, for any
j,k€{l1,...,n} we have

1 if j=k,
Pe, (€5) = (€5, €x) = {0 if j # k.

Thus ¢e, = ¢}, for each k € {1,...,n}, i.e. we may identify e, with .

Exercise 6.C.15. In R, let
U =span((1,1,0,0),(1,1,1,2)).

Find uw € U such that |u — (1,2,3,4)| is as small as possible.
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Solution. Let u; = (1,1,0,0) and u, = (1,1,1,2), so that u;, u, is a basis of U. Performing
the Gram-Schmidt procedure on the list u, uy yields the list

1 1

61:\/5( 62:\/5(

which is an orthonormal basis of U. Let v = (1,2, 3,4). According to 6.61, to minimize |u — v||

1,1,0,0), 0,0,1,2),

we should take u = Pyv. This can be calculated using 6.57(i):

3 3 11 22
PUU = ('U, 61>€1 + <U7 62>€2 = (5’ 215 g)

Exercise 6.C.16. Suppose C[—1,1] is the vector space of continuous real-valued func-

tions on the interval [—1, 1] with inner product given by

<f,g>=/_11fg

for all f,g € C[—1,1]. Let U be the subspace of C[—1, 1] defined by
U={feCl-1,1]: f(0) = 0}.
(a) Show that U+ = {0}.
(b) Show that 6.49 and 6.52 do not hold without the finite-dimensional hypothesis.

Solution.

(a) Certainly 0 € UL. Suppose that g € U*. Let f: [—1,1] — R be given by f(z) = z2g(z)
and note that f € U, so that

o=<ﬁg>=1/ [zg(2)]? de.

-1

Because the integrand [zg(x)]® is continuous and non-negative we must have zg(z) = 0
for every x € [—1, 1], which implies g(x) = 0 for all non-zero = € [—1, 1]. The continuity

of g gives us g(0) = 0 also and thus g = 0. We may conclude that U+ = {0}.

(b) From part (a) we have U @ Ut = U # C[—1,1] and thus 6.49 does not hold. Part (a)
and 6.48(b) give us

UH)" = {0}t =C[-1,1] # U,

so that 6.52 does not hold.
Exercise 6.C.17. Find p € P5(R) such that p(0) =0, p’(0) = 0, and
1
/ 2 + 3z — p(z)|* da
0

is as small as possible.
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Solution. Equip P;(R) with the inner product

1
(p,q) = / p(z)q(x) dx
0

and let U = {p € P5(R) : p(0) = p’(0) = 0}. It is straightforward to verify that U is a sub-
space of P5(R) and that 22, 23 is a basis of U. Performing the Gram-Schmidt procedure on

this basis yields the orthonormal basis e;, e, of U, where
e, = V522, ey =6V7(a® - 3z2).

Let g(z) =2+ 3z. According to 6.61, to minimize |q—p|*> = fol 2 + 3z — p(a)|* dz we
should take p = Pp;q. This can be calculated using 6.57(i):

203
Pyq = <q,61>€1 + <q,62>62 = U2 — 1_0563.

Exercise 6.C.18. Find p € P;(R) that makes f:r sinz — p(x)|* dz as small as pos-
sible.

The polynomial 6.65 is an excellent approximation to the answer to this exercise, but
here you are asked to find the exact solution, which involves powers of m. A computer

that can perform symbolic integration should help.

Solution. Equip C[—m, 7] with the inner product

(p,q) = /ﬁ p(z)q(x) dzr

—Tr

and let U = P<(R). Performing the Gram-Schmidt procedure on the basis 1, z, z2, 3, x4, x5

of U gives us the orthonormal basis

1 7 3
e, = —5\/ F(?)T(Ql‘ —523), ey = ——(3n* — 30m%z? + 35z%),

8V 219

1 11
€% ="3 ﬁ(l&r‘lx — 707?23 + 632°).
According to 6.61, to minimize [sinz — p|*> = f:r sinz —p(z)|*dz we should take
p = Py(sinz). This can be calculated using 6.57(i):
105(1465 — 15372 + 1) 315(1155 — 12572 + 1)
86 v 478

CL‘3

Py (sinz) =

693(945 — 10572 + 7'('4)
87T10

xd.
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Exercise 6.C.19. Suppose V is finite-dimensional and P € £(V) is an orthogonal pro-
jection of V onto some subspace of V. Prove that PT = P.

Solution. Suppose U is the subspace of V such that P = Py;. Using 6.57(e) and 6.52, ob-
serve that
(null P)* = (null P))* = (UH)" =U.

Thus P|(nuup)i = P|y. Since P = Py, 6.57(b) shows that P|(nullP)L is simply the identity
operator on (null P)™ = U. Combining this with 6.57(d), we have

PT = (P|(nullP)J')_1PrangeP = PU = P.

Exercise 6.C.20. Suppose V is finite-dimensional and T € £(V,W). Show that

null Tt = (rangeT)* and rangeT! = (nullT)".

Solution. Because (T'|y 7)) " is injective (by 6.67), we have
null T = null P, .+ = (range T)",
where we have used 6.57(e) for the last equality.

6.57(d) shows that P, ... is a surjection from W onto rangeT’, and 6.67 shows that
(T)man)*) " is a surjection from rangeT onto (null 7). Thus range T = (null T)*.

Pran e (T‘ null T’ l)71
w e range T’ ol ) » (null T)*

Exercise 6.C.21. Suppose T € £(F3,F?) is defined by
T(a,b,c) = (a+b+c,2b+ 3c).
(a) For (z,y) € F2, find a formula for TT(z,y).

(b) Verify that the equation TTT = P anger from 6.69(b) holds with the formula for
Tt obtained in (a).

(c) Verify that the equation TTT = Pyt from 6.69(c) holds with the formula for
T obtained in (a).

Solution.

(a) We proceed as in example 6.71. Note that T' is surjective, so that P, .. is the identity
operator on W. Note further that

null7 = {(a,b,c) € F3:a+b+c=0,2b+ 3c =0} = span((1,—3,2)).

For (z,y) € F?, it follows that
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TT(x,y) = (T|(nullT)L)71PrangeT(may) = (T|(nu11T)l)7l(xvy)'

If (T|(nu11T)L)_1(:c,y) = (a,b,c) € F3 then (a,b,c) must satisfy T(a,b,c) = (z,y) and
((a,b,c),(1,—3,2)) = 0. In other words, (a,b,c) must satisfy the following equations

a+b+c=r,
2b+3c =y,
a—3b+2c=0.

Solving this system of equations yields the solution

a=%13z—5y), b=15Bx+y), c=3i(—z+2).

i

Thus
TH(z,y) = 5 (13z — 5y, 3z + y, —2z + 4y).
(b) As noted in part (a), P,

range T’

TT'(z,y) = 1T (13z — 5y, 3z + y, —2z + 4y) = £ (142, 14y) = (z,y).

is the identity operator on W. Observe that

Thus TTT = P,ypper-
(c) As noted in part (a), nullT = span((1,—3,2)). Thus

(null T)* = {(a,b,c) € F?:a—3b+2c =0}

It is straightforward to verify that (1,1,1),(0,2,3) is a basis of (nullT)L. Performing

the Gram-Schmidt procedure on this basis gives us the orthonormal basis
1 1
V3 V42
A tedious calculation using the formula for Tt found in part (a) and the formula for

Pyt given by 6.57(i) shows that

T'T(a,b,c) = P,

(1,1,1), (—5,1,4).

nall T (a,b,c) = 1—14(13a + 3b — 2¢,3a + 5b + 6¢, —2a + 6b + 10c¢).

Exercise 6.C.22. Suppose V is finite-dimensional and T' € £(V,W). Prove that
TTIT =T and TITT'=TT.

Both formulas above clearly hold if T' is invertible because in that case we can replace
TT with T—1.

Solution. By 6.69(b) we have TTT = P, It follows that TTTT = P, .oT =T, since
P, ... is the identity operator on rangeT by 6.57(b).

range

ange T'*

v and thus TTTTY = P 1

L

By 6.69(c) we have TTT = P

(null T)
(null T)* and Punr)t is the identity operator on (null T")

LTt =TT, since TT maps into
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Exercise 6.C.23. Suppose V and W are finite-dimensional and T' € £(V,W). Prove
that

() =T.

The equation above is analogous to the equation (T_l)_1 =T that holds if T is in-

vertible.

Solution. By Exercise 6.C.20 and 6.52 we have

t -1 -1 -1
(TT) = (T”(nullTT)L) Pranget = (TT|((rangeT)L)l> P(nuHT)L = (TT|rangeT) P(nullT)J"

Because P, is the identity operator on rangeT” we have TT\rangeT = (T (nunl T)i)_l. Thus

ange 1"

f —1\!
(TT) = ((T|(nu11T)L) ) P(nuuT)l = T|(nuuT)L P(nuuT)L = TP(nullT)J“
For any v € V' we have v = u + w, where u € nullT and w € (null T)l. It follows that
.i.
(TT) (v) = TP(nuHT)J_(’U) =Tw="To.

Thus (T1)" =T
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Chapter 7. Operators on Inner Product Spaces

7.A. Self-Adjoint and Normal Operators

Exercise 7.A.1. Suppose n is a positive integer. Define T' € L(F™) by
T (21, 2) = (0,29, ey Zp_1)-

Find a formula for T% (2, ..., 2,,)-

Solution. Observe that

(e, ey wy,), T (21, ey 2,,))

Il
—
N
—
g
=
S
S
~
—~
I\
=
N
S
~—
~

=wWizg ot w, g2,
= ((wy, e, W,,), (29, ooy 2,,,0)).

Thus T*(21, ..., 2,,) = (29, ..y 2., 0).

Exercise 7.A.2. Suppose T' € £(V,W). Prove that
T=0 & T"=0 & T"'T=0 < TT*=0.

Solution. Suppose T' = 0, fix w € W, and observe that
(v, T*w) = (Tv,w) = (0,w) =0

for any v € V. Thus T*w € V. It follows from 6.48(c) that T*w = 0 and hence that T* = 0.
Combining this with 7.5(c) shows that 7' = 0 if and only if 7 = 0.

That T'= 0 implies T*T = 0 is clear. Suppose that T*T = 0, let v € V' be given, and observe
that

0=(0,v) = (T*Tw,v) = (Tv, Tv) = |To|* = Tv=0.

Thus T = 0, so that T'= 0 if and only if T*T = 0. Replacing T" with T™ in this result and
using 7.5(c) shows that 7% = 0 if and only if TT* = 0.

Exercise 7.A.3. Suppose T' € £(V) and A € F. Prove that

)\ is an eigenvalue of T < ) is an eigenvalue of T*.
Solution. Observe that
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A is an eigenvalue of ' < T — Al is not surjective (5.7(c))

— M is not injective

& range(T —AN) #V

< (range(T — XI))* # {0} (7.48(c))
< null (T — \)* + {0} (7.6(a))
< null (T* — XI) # {0} (7.5(a), (b), (e))
<~

<~

) is an eigenvalue of T*. (5.7(b))

Exercise 7.A.4. Suppose T' € £(V) and U is a subspace of V. Prove that

U is invariant under T < U< is invariant under T*.

Solution. Suppose that U is invariant under T and let v € U+ be given. Observe that

(u, T*v) = (Tu,v) =0
for any u € U, where the last equality follows since Tu € U and v € U*. Thus T*v € U+ and
it follows that U~ is invariant under T"*.

Now suppose that U+ is invariant under 7. The previous paragraph shows that (U L)l is
invariant under (7*)", which by 6.52 and 7.5(c) is exactly the statement that U is invariant
under 7'.

Exercise 7.A.5. Suppose T € £(V,W). Suppose ey, ..., e,, is an orthonormal basis of
V and f, ..., f,, is an orthonormal basis of W. Prove that

2 2 . p |2 2
|Tes]” + -+ |Te,|” = 1T fol” + - + 1T £l ™

The numbers |Te, |, ..., |Te,, | in the equation above depend on the orthonormal ba-
Thus the

equation above shows that the sum on the left side does not depend on which orthonor-

Sis ey, ..., €, but the right side of the equation does not depend on eq, ..., e,,.

mal basis e, ..., e, is used.

Solution. Using 6.30(b), observe that

ZuTejuz ZZ\ Te,, 0l = 33 (e, T £l

=1 k= j=1 k=1
n n

= (T frr€5) ZHT*f 2.

k=1 j=1
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Exercise 7.A.6. Suppose T' € £(V,W). Prove that
(a) T is injective < T is surjective;

(b) T is surjective < T™ is injective.

Solution.

(a) Observe that

T is injective < nullT = {0}
& (rangeT*)" = {0} (7.6(c))
& rangeT* =V (7.48(¢))
& T* is surjective.

(b) Part (a) shows that T* is injective if and only if (T*)" is surjective, which by 7.5(c) is

exactly the statement that T is injective if and only if T is surjective.

Exercise 7.A.7. Prove that if T' € £(V, W), then
(a) dimnull7* = dimnull T + dim W — dim V;

(b) dimrangeT™* = dimrange T

Solution.

(a) We have
dim null 7* = dim (range T)" = dim W — dim range T
=dimnull7” + dim W — dim V,

where the first equality is 7.6(a), the second equality is 6.51, and the last equality

follows from the fundamental theorem of linear maps (3.21).
(b) We have
dim range T* = dim (null 7)" = dim V — dim null T = dim range 7,

where the first equality is 7.6(b), the second equality is 6.51, and the last equality

follows from the fundamental theorem of linear maps (3.21).

Exercise 7.A.8. Suppose A is an m-by-n matrix with entries in F. Use (b) in Exercise

7 to prove that the row rank of A equals the column rank of A.

This exercise asks for yet another alternative proof of a result that was previously
proved in 3.57 and 3.133.
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Solution. For a column vector v with entries in F, let ¥ denote the column vector obtained

by taking the complex conjugate of each entry of v, e.g.

1—1 141
v= | 7™+ 9 = 7= |7m—9%

V2 V2

For a matrix M with entries in F, let M be the matrix obtained by taking the complex
conjugate of each entry of M. Suppose that vy, ..., v, is a basis of the span of the columns of
M. We claim that the list vy, ..., v, is linearly independent. Indeed, for scalars a,...,a, € F,

observe that
a1a+"'+aev_e:0 = G/_1IU1+"'+G/_£,U[:O
= a_lz':a/—ezo = a1:"‘:a/£:0.

It follows that the column rank of M is greater than or equal to the column rank of M. By
replacing M with M in this result, we see that the column rank of M must equal the column
rank of M.

Let T € £(F™,F™) be such that the matrix of T with respect to the standard orthonormal
bases of F™ and F™ is A; 7.9 shows that the matrix of T* with respect to the standard
orthonormal bases of F™™ and F™ is A*. Using FExercise 7.A.7 and our previous discussion, it
follows that

column rank of A = dimrangeT = dimrange T

= column rank of A* = column rank of A® = row rank of A.

Exercise 7.A.9. Prove that the product of two self-adjoint operators on V is self-ad-

joint if and only if the two operators commute.

Solution. Suppose S,T € £(V) are self-adjoint and observe that, by 7.5(d),
(ST) =T*S*=TS.
Thus (ST)" = ST if and only if T'S = ST. That is, ST is self-adjoint if and only if S and T
commute.
Exercise 7.A.10. Suppose F = C and T € £(V). Prove that T is self-adjoint if and
only if
(Tv,v) = (T*v,v)

forallve V.

Solution. Note that
(Tv,v) = (T"v,v) forallveV < (T —T*)v,v)=0forallveV.
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The desired equivalence then follows from 7.13.

Exercise 7.A.11. Define an operator S : F2 — F2 by S(w, z) = (—z,w).
(a) Find a formula for S*.
(b) Show that S is normal but not self-adjoint.
(c¢) Find all eigenvalues of S.

IfF = R, then S is the operator on R? of counterclockwise rotation by 90°.

Solution.
(a) Observe that
(S(w,2), (z,y)) = (=2, w), (z,y)) = =2z + wy = ((w, 2), (y, —2)).
Thus S*(z,y) = (y, —x).
(b) Certainly S* # S, but notice that S* = S~1. It follows that SS* = I = S*S, so that S

is normal.

(c) As shown in Example 5.9, S has no eigenvalues if F = R and S has +i as eigenvalues
if F=C.

Exercise 7.A.12. An operator B € £(V) is called skew if
B*=—-B.

Suppose that T' € £(V). Prove that T is normal if and only if there exist commuting
operators A and B such that A is self-adjoint, B is a skew operator, and "= A + B.

Solution. Suppose there exist such operators A and B. Observe that
TT* —T*T = (A+ B)(A* + B*) — (A* + B*)(A+ B)
=(A+B)(A-B)— (A—B)(A+B)=A*>-B>—- A>+ B> =0,
where we have used 7.5(a) for the first equality, that A is self-adjoint and B is skew for the
second equality, and that A and B commute for the third equality. Thus T is normal.
Suppose that T is normal and define

THT T 1T

A and B =
2

Certainly A+ B =T, and 7.5(a), (b), and (c) show that A is self-adjoint and B is skew.
Observe that

(T+TNT —T*)— (T =TT +T*) =T — (T*)> = T2 + (T*)* = 0,

where we have used that T' and T* commute for the first equality. It follows that 4AB = 4BA

and hence that A and B commute.
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Exercise 7.A.13. Suppose F = R. Define A € £(£L(V)) by AT =T"* forall T € £(V).
(a) Find all eigenvalues of A.
(b) Find the minimal polynomial of A.

Solution.

(a) We are looking for T'# 0 and A € R such that T* = A\T. Taking the adjoint of both
sides of this equation and using 7.5 shows that 7' = AT* and thus T* = \2T*. Exercise
7.A.2 shows that T* # 0 since T' # 0 and thus A\? = 1, so that &1 are the only possible

eigenvalues of A. These are indeed eigenvalues of A, since
I*=1 and (-I)"=-I"=-1I,
where we have used 7.5.

(b) By part (a) and 5.27(a), the minimal polynomial of A has two distinct zeros and hence

must have degree at least two. Using 7.5(c), observe that
(A2~ 1)(T) = (T") ~T =0

for any T € £(V). Thus 2% — 1 is the minimal polynomial of A.

Exercise 7.A.14. Define an inner product on P4(R) by (p,q) = fol pq. Define an op-
erator T' € £(P5(R)) by

T(aa:2 + bz + ¢) = bz.
(a) Show that with this inner product, the operator T is not self-adjoint.

(b) The matrix of T with respect to the basis 1, z, 22 is

000
010].
000

This matrix equals its conjugate transpose, even though T is not self-adjoint. Ex-

plain why this is not a contradiction.

Solution.

(a) Let p,q € P5(R) be given by p = 2z and ¢ =1, so that Tp = p and T'q¢ = 0. Observe
that

1
(T'p, q) =/ 2zdz =1+#0=(p,Tq).
0

Thus T is not self-adjoint.
(b) The result in 7.9 requires that the basis of ,(R) is orthonormal, but 1, x, z? is not an

orthonormal basis:
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(1,3:)2/0196(13::%#0.

Exercise 7.A.15. Suppose T € £(V) is invertible. Prove that
(a) T is self-adjoint <« T~ ! is self-adjoint;

(b) T is normal < T ! is normal.

Solution.
(a) Suppose that T is self-adjoint. Using 7.5(f), observe that
() = (@) =T
Thus 7! is self-adjoint. Replacing T with T~! in the previous result and using that

(T_l)f1 = T gives us the desired equivalence.

(b) Suppose that T" is normal. Using 7.5(f), observe that

*

T T Y =T YT = (T*T)" = (TT*) " = (T*)'T = (T)'T.

Thus 7! is normal. Replacing T with T~! in the previous result and using that

(T *1)_1 = T gives us the desired equivalence.

Exercise 7.A.16. Suppose F = R.
(a) Show that the set of self-adjoint operators on V is a subspace of £(V).
(b) What is the dimension of the subspace of £(V') in (a) [in terms of dim V|?

Solution.

(a) The zero operator is self-adjoint by Exercise 7.A.2; closure under operator addition and

closure under scalar multiplication follow from 7.5(a) and 7.5(b).

(b) Suppose dimV = n. By 3.71 and 7.9, it will suffice to find the dimension of the sub-
space € of R™" consisting of those matrices A such that A = A". For k € {1,...,n}
let Fy ; be the matrix with a 1 in the k"™ diagonal entry and zeros elsewhere, and for
Jyk €{1,...,n} with j < klet E; ; be the matrix with a 1 in the j* row and k™ column,
a 1 in the k' row and j* column, and zeros elsewhere. Let B be the list consisting of the
matrices E, , with j < k. It is straightforward to verify that 3 is linearly independent.
Since any A € & satisfies A = A%, the entry in row j and column k of A must equal the
entry in row k and column j of A. It follows that B spans £ and hence that B is a basis

of £. A simple counting argument shows that B has length n(n + 1)/2 and thus

1
dim & = @
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Exercise 7.A.17. Suppose F = C. Show that the set of self-adjoint operators on V is
not a subspace of £(V).

Solution. 7.5(e) shows that the identity operator I is self-adjoint. Let v € V' be non-zero

and observe that
(i) (v) = iv #+ —iv = (il )(v) = (iI)"(v),

where we have used 7.5(b). It follows that I is not self-adjoint, hence that the set of self-
adjoint operators on V is not closed under scalar multiplication, and hence that this set is

not a subspace of V.

Exercise 7.A.18. Suppose dim V' > 2. Show that the set of normal operators on V is
not a subspace of £(V).

Solution. Let ey, ey, ..., e, be an orthonormal basis of V and let S, T € £(V') be the opera-

tors whose matrices with respect to this basis are

100 -0 0 10--0
000--0 —100--0
A=1000-0 and B=10 00 -0
000 -0 0 000
Note that S is self-adjoint and hence normal. Note further that T satisfies T* = —T', so that
TT* = T*T = —T?; it follows that T is also normal. However, some calculations reveal that
2 =100 2100
-1 100 1100
(A+B)A+B)=]0 00--0|#A+BA+B) =000 -0
0 0 0--0 000 -0

Thus S 4+ T is not normal. It follows that the set of normal operators on V is not closed

under addition and hence cannot be a subspace of £(V).

Exercise 7.A.19. Suppose T' € £(V) and |T*v| < |Tv|| for every v € V. Prove that T

is normal.

This exercise fails on infinite-dimensional inner product spaces, leading to what are

called hyponormal operators, which have a well-developed theory.

Solution. Let ey, ...,e,, be an orthonormal basis of V. It follows from Exercise 7.A.5 that

2 2 * 2 * 2
[Ter” 4+ [Ten|” = [T e |” + - + [T7e, " ()
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By assumption we have |T*e,| < |Te,| for each k € {1, ...,n}. In fact, each of these inequal-
ities must be an equality, otherwise the right-hand side of (x) would be strictly less than
the left-hand side. Because e, ..., e, was an arbitrary orthonormal basis of V', we have now

shown that |T*e,| = |Te;| for any e; € V such that |e;| = 1. Thus for any non-zero v € V

* v v *
(= =T )| = 1T =|Tv|.
[ [

7.20 allows us to conclude that 7' is normal.

we have

Exercise 7.A.20. Suppose P € £(V) is such that P2 = P. Prove that the following are

equivalent.
(a) P is self-adjoint.
(b) P is normal.
(¢) There is a subspace U of V such that P = Py;.

Solution. Certainly (a) implies (b).
Suppose (b) holds and note that
null P = null P* = (range P)",
where the first equality is 7.21(a) and the second equality is 7.6(a). It follows from Exercise
6.C.9 that (c) holds.

Suppose that (c) holds, let v =u; + x; and w = uy, + z, be given, where u,,u, € U and

T,,T5 € UL, and observe that
(Pyo,w) = (uq, ug + Tg) = (U, Ug) = (uy + 21, up) = (v, Pyw).

Thus P = P is self-adjoint, i.e. (a) holds.

Exercise 7.A.21. Suppose D : Pg(R) — Pg(R) is the differentiation operator defined
by Dp = p’. Prove that there does not exist an inner product on Pg(R) that makes D

a normal operator.

Solution. If T € £(V) is normal then null7? = null T (we will prove a stronger result in
Exercise 7.A.27), since if v € null T? then v € null T*T by 7.20 and thus

(T*Tv,v) =0 < (Tv,Tv)=0 < Tv=0.

Notice that null D? # null D since D?*(xz) =0 but D(z) = 1. It follows from our previous
discussion that there does not exist an inner product on Pg(R) that makes D a normal

operator.
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Exercise 7.A.22. Give an example of an operator T' € £ (R3) such that T' is normal
but not self-adjoint.

Solution. Let T € £(R?) be the operator whose matrix with respect to the standard or-

0 10
—-100].
0 00

It follows from 7.9 that T* = —T and hence that TT* = T*T = —T2. Thus T is normal but
not self-adjoint (since T' # 0).

thonormal basis of R3 is

Exercise 7.A.23. Suppose T is a normal operator on V. Suppose also that v,w eV

satisfy the equations

[v| = lw| =2, Tv=3v, Tw=4w.
Show that |T'(v+ w)| = 10.
Solution. Because v and w are eigenvectors of T' corresponding to distinct eigenvalues, they
must be orthogonal by 7.22. The Pythagorean theorem then implies that
IT (v +w)|* = |3v + 4w|* = ||3v]* + |4w|* = 36 + 64 = 100.

Thus |T'(v + w)]|| = 10.

Exercise 7.A.24. Suppose T € £(V) and
ag+ a2+ as22 + - +a, 2™+ 2™
is the minimal polynomial of T'. Prove that the minimal polynomial of T™* is
Gg + a1z + 2" + o + T2+ 2
This exercise shows that the minimal polynomial of T* equals the minimal polynomial

of T if F = R.

Solution. For p € P(F), let p € P(F) be the polynomial whose coefficients are the complex
conjugates of the coefficients of p; notice that degp = degp. Letting p € P(F) be the minimal

polynomial of T, i.e.
p(z) =ag + a1z + a2® + - +a,, 2™+ 27,

our aim is to show that p is the minimal polynomial of T*. Notice that, by 7.5 and Exercise
7.A.2,

pT)=0 = [pT)" =0 = BT =0.
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Suppose s € P(F) satisfies deg s < degp. It follows that deg’s < degp and hence that
3(T)#+0 = [BT))]"+#0 = s(T*) +0.

Thus the minimal polynomial of T must have degree at least degp. Since p is monic,

degp = degp, and p(T™*) = 0, we may conclude that p is the minimal polynomial of 7.

Exercise 7.A.25. Suppose T' € £(V). Prove that T is diagonalizable if and only if T*

is diagonalizable.

Solution. Let p € P(F) be the minimal polynomial of T'; using the notation of Exercise
7.A.24, p is the minimal polynomial of T*. For o € F notice that

p@)=0 & plaj=0 < p@ =0.

It follows that if p is of the form p(z) = (z — ay) -+ (2 — «,,,) for some distinct ay, ..., ,,, € F
then p is of the form p(z) = (2 —a7) - (z — @,,), where @y, ..., @,, are distinct. By 5.62 this
is exactly the statement that T™* is diagonalizable if T is diagonalizable. Replacing T" with

T* in this implication and using that (T*)" = T gives us the desired equivalence.

Exercise 7.A.26. Fix u,x € V. Define T' € £(V) by Tv = (v, u)zx for every v € V.

(a) Prove that if V' is a real vector space, then T is self-adjoint if and only if the list

u, x is linearly dependent.

(b) Prove that T' is normal if and only if the list u, x is linearly dependent.

Solution. Note that example 7.3 gives us the formula
T*v = (v, z)u.
(a) Suppose that u,z is linearly dependent, say = Au for some A € R, and observe that
Tv = (v,u)x = AMv,u)u = (v, \u)u = (v, z)u = T*v
for any v € V. Thus T is self-adjoint.

Now suppose that T is self-adjoint. If w = 0 then we are done, so suppose that u # 0.

Since T is self-adjoint we must have
Tv = (v,u)x = (v,z)u = T*v

for every v € V. In particular,

(u,wyr = (u,z)u = x=

demonstrating that u, x is linearly dependent.
(b) Note that
(TT* —T*T)v = (v, z)(u, u)x — (v, u){x, z)u
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for any v € V. Suppose that u, x is linearly dependent, say x = Au for some X € F, and

observe that
(TT* —T*T)v = (v, x){u, u)x — (v,u){x,z)u
= A% (v, w) (u, wyu — |A|* (v, u) (u, uyu = 0
for every v € V. Thus T is normal.

Conversely, suppose that T' is normal. If u = 0 then we are done, so suppose that u #+
0 and observe that

(TT* —T*T)z = (z,z)(u,u)x — (z,u){z,z)u =0 = x=
demonstrating that u, x is linearly dependent.

Exercise 7.A.27. Suppose T € £(V) is normal. Prove that
null7% = nullT” and rangeT* = rangeT

for every positive integer k.

Solution. We will use induction to prove that nullT* = nullT for every positive integer
k. The base case k =1 is clear, so suppose that the result holds for some positive integer
k. Certainly null 7% C null T**!, so suppose that v € null TF*!. It follows from 7.20 that
v € null T*T* and hence that

(T*T*v, T* 1) =0 < (TFv,TFv) =0 < Trv=0.
Thus null T%*! = null T* = null T, where the last equality is our induction hypothesis. This
completes the induction step and the proof.

If T is normal then T* is normal, and 7.5(d) shows that (Tk)* = (T*)* for every positive

integer k. It then follows from the previous result that

range TF = (null (Tk)*)L (7.6(d))
— (null(T%)*)"
= (nullT*)* (T* is normal)
= rangeT (7.6(d))

for any positive integer k.

Exercise 7.A.28. Suppose T' € £(V) is normal. Prove that if A € F, then the minimal

polynomial of T" is not a polynomial multiple of (z — /\)2.
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Solution. We will prove the contrapositive. Suppose T' € £(V') has minimal polynomial
p € P(F) of the form p(z) = (z — \)?q(z) for some A € F and some q € P(F). Because
the polynomial (x — \)g(z) has degree strictly less than p, there must exist some v € V
such that q(T)v ¢ null(T — XI). Since p(T) = 0 we have ¢(T)v € null(T — AI)* and thus

null(T — AI)? # null(T — AI). Tt follows from Exercise 7.A.27 that T — Al is not normal.

The contrapositive of 7.21(d) allows us to conclude that T is not normal.

Exercise 7.A.29. Prove or give a counterexample: If ' € £(V') and there is an ortho-

normal basis eq,...,e,, of V such that |Te,| = |T*e;| for each k=1,...;n, then T is

n

normal.

Solution. This is false. Let T be the operator on F? whose matrix with respect to the

standard orthonormal basis e;, e, of F? is

(—11 (1))

As we showed in Exercise 7.A.18, T is not normal. However,

|Te;| = |T e, = V2 and |Tey| = |T ey = 1.

Exercise 7.A.30. Suppose that T' € £(F?) is normal and T'(1,1,1) = (2,2,2). Suppose
(21, 29, 23) € nullT. Prove that z; + z, + 23 = 0.

Solution. If u := (24, 29, 23) = 0 then we are done, so suppose that u # 0. It follows that
u is an eigenvector of T corresponding to the eigenvalue 0. Note that v:= (1,1,1) is an
eigenvector of T' corresponding to the eigenvalue 2. Since these are eigenvectors of a normal

operator corresponding to distinct eigenvalues, they must be orthogonal by 7.22. That is,

(u,v) = 2, + 29 + 23 = 0.

Exercise 7.A.31. Fix a positive integer n. In the inner product space of continuous

real-valued functions on [—m, 7] with inner product (f,g) = f:r fag, let
V = span(1, cos x, cos 2z, ..., cos nx, sin z, sin 2z, ..., sin nz).
(a) Define D € £(V) by Df = f’. Show that D* = —D. Conclude that D is normal
but not self-adjoint.
(b) Define T' € £(V) by Tf = f”. Show that T is self-adjoint.

Solution.
(a) For each k € {1,...,n}, let

1 _ cos kx sin kx

V= — ek—ﬁ, and fk: ﬁ
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If we let B=vw,eq,...,e,, f1,-- [,, then B is an orthonormal basis of V, as
shown in Exercise 6.B.4. Observe that Dv = 0, De;, = —kf,, and Df, = ke, for each
ke {1,..,n}. It follows from 7.9 that

D*'U - 0 - _DU, D*ek - kfk: - _Dek, and D*fk - _kek - _ka

for each k € {1,...,n}. Thus D* = —D, so that D* is normal (D*D = DD* = —D?) but
not self-adjoint (since V' # 0).

(b) Notice that T = D?. Tt follows from 7.5 that
T* = (D*)" = (D*)* = (-D)>=D*>=T.
Thus T is self-adjoint.
Exercise 7.A.32. Suppose T : V — W is a linear map. Show that under the standard
identification of V' with V' (see 6.58) and the corresponding identification of W with

W’, the adjoint map T* : W — V corresponds to the dual map T” : W’ — V’. More
precisely, show that

T/ (Sow) = Py

for all w € W, where ¢,, and ¢.,, are defined as in 6.58.

Solution. For any v € V and w € W, observe that

[T ()l = ¢ (Tv) = (Tv,w) = (v, T*w) = Py, (V).
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7.B. Spectral Theorem

Exercise 7.B.1. Prove that a normal operator on a complex inner product space is

self-adjoint if and only if all its eigenvalues are real.

This exercise strengthens the analogy (for normal operators) between self-adjoint op-

erators and real numbers.

Solution. Suppose V is a complex inner product space and T' € £(V) is normal. If T is self-
adjoint then 7.12 shows that every eigenvalue of T is real. Suppose that every eigenvalue of
T is real. The complex spectral theorem (7.31) implies that there is an orthonormal basis of
V with respect to which the matrix M (T') is diagonal. Because each eigenvalue of T is real,
the diagonal entries of M (T') must be real. It follows that M (T') equals its own conjugate

transpose and hence that T is self-adjoint.

Exercise 7.B.2. Suppose F = C. Suppose T' € £(V) is normal and has only one eigen-

value. Prove that T is a scalar multiple of the identity operator.

Solution. Suppose that A € C is the sole eigenvalue of T. The complex spectral theorem
(7.31) implies that there is an orthonormal basis of V' with respect to which M (T") is diag-
onal. Because A is the only eigenvalue of T', each diagonal entry of M (T) must be equal to

A. Thus T = Al

Exercise 7.B.3. Suppose F = C and T € £(V) is normal. Prove that the set of eigen-
values of T is contained in {0,1} if and only if there is a subspace U of V such that

Solution. If there exists a subspace U of V such that T = P, then T? = T and it follows

from Exercise 5.A.8 that the set of eigenvalues of T is contained in {0, 1}.

Suppose that the set of eigenvalues of T is contained in {0,1}. The complex spectral theorem
(7.31) implies that there is an orthonormal basis B of V' consisting of eigenvectors of T'.
Each basis vector in B must correspond either to the eigenvalue 0 or the eigenvalue 1. Let
Uy, ..., U, be those basis vectors in B corresponding to the eigenvalue 1 and let vq,...,v,
be those basis vectors in B corresponding to the eigenvalue 0; either of these lists may be
empty. Let U = span(uy, ..., u,,). Because B is an orthonormal basis of V, it follows that

U+t = span(vy, ...,v,,) and hence that

PUuk - ’U/k - Tuk and PU'Uk - 0 - T'Uk.

Thus T = Py.
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Exercise 7.B.4. Prove that a normal operator on a complex inner product space is
skew (meaning that it equals the negative of its adjoint) if and only if all its eigenvalues

are purely imaginary (meaning that they have real part equal to 0).

Solution. Suppose V is a complex inner product space and T € £(V) is normal. By the
complex spectral theorem (7.31) there is an orthonormal basis of V' with respect to which
M(T) is of the form

where A, ..., \,, € C are the eigenvalues of T'. Observe that
T isskew < M(T)=—[M(T)]" < each ), =)\,

< each )\ is purely imaginary < each eigenvalue of T' is purely imaginary.

Exercise 7.B.5. Prove or give a counterexample: If T' € £(C?) is a diagonalizable op-

erator, then T is normal (with respect to the usual inner product).

Solution. This is false. Consider the basis
v; = (1,0,0), vy =(0,1,0), w3 =(1,0,1)
of C? and define T € £(C?) by
Tv, =vy, Tvy=v,y, Tvg=2vs.

Observe that T is diagonalizable since C3 has a basis v;, vy, v3 consisting of eigenvectors of
T. Observe further that v;,vs are eigenvectors of T' corresponding to distinct eigenvalues,

and that v; and vy are not orthogonal: (vy,v3) = 1. It follows from 7.22 that T" is not normal.

Exercise 7.B.6. Suppose V is a complex inner product space and T' € £(V') is a normal
operator such that 79 = T®. Prove that T is self-adjoint and T? = T.

Solution. The complex spectral theorem (7.31) implies that there is an orthonormal basis
€1,-.-,e, of V consisting of eigenvectors of T, so that Te, = A e, for each k € {1,...,n},

where A;, ..., )\, are the eigenvalues of T'. By assumption we have
Tgek = Tsek = )\zek = )\ZGk = )\Z = )\z = )\k c {0, ]_}

It follows from Exercise 7.B.3 that T = P, for some subspace U of V, so that T? = T, and
Exercise 7.B.1 (or Exercise 7.A.20) shows that T is self-adjoint.
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Exercise 7.B.7. Give an example of an operator T" on a complex vector space such
that T° = T® but T? + T.

Solution. Let T be the operator on C? whose matrix with respect to the standard basis of

C?is
(00
00/
It follows that T° = T8 = T2 = 0 but T # 0.

Exercise 7.B.8. Suppose F = C and T € £(V). Prove that T is normal if and only if

every eigenvector of T' is also an eigenvector of T*.

Solution. If T is normal then every eigenvector of T' is an eigenvector of T* by 7.21(e).

Suppose that every eigenvector of T is also an eigenvector of T*. By Schur’s theorem (6.38)
of V with respect to which A :=M(T) is upper-

triangular. It follows that T'e; = A, ;e;, so that e; is an eigenvector of T'. Our assumption

there is an orthonormal basis ey, ..., e,

implies that e; is also an eigenvector of T, say T*e; = pye;. On the other hand, by 7.9,

Inn:

It follows from unique representation that A; 5 == A;, = 0. Thus Tey = A, 5,5, so that
e, is an eigenvector of 7. Our assumption implies that e, is also an eigenvector of T, say
T*eq = pyey. On the other hand, by 7.9,

T ey = Ay g€y + Ay se5+ -+ Ay €,

It follows from unique representation that Ay 3 = -+ = A, ,, = 0. Continuing in this manner,
we see that A is a diagonal matrix. The complex spectral theorem allows us to conclude that

T is normal.

Exercise 7.B.9. Suppose F = C and T' € £(V). Prove that T is normal if and only if
there exists a polynomial p € P(C) such that T* = p(T).

Solution. If there exists such a polynomial p then T' commutes with 7% = p(T') by 5.17(b).

Thus T is normal.

Suppose that T is normal. By the complex spectral theorem (7.31), there is an orthonormal
basis eq,...,e, of V such that each e, is an eigenvector of T'. Let Ay, ..., \,, be the distinct
eigenvalues of T'. Exercise 4.7 shows that there is a polynomial p € P(C) satisfying p()\j) = )\_J
for each j € {1,...,m}. For any k € {1,...,n} we have Te; = )¢, for some j € {1,...,m}. It
follows that

p(T)ey, = p(Aj)ek = )‘_jek =1T"¢y,
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where we have used 7.21(e) for the last equality. Thus p(T) = T™.

Exercise 7.B.10. Suppose V is a complex inner product space. Prove that every normal

operator on V has a square root.

An operator S € £(V) is called a square root of T € £(V) if S* = T. We will discuss

more about square roots of operators in Sections 7C and 8C.

Solution. Let T' € £(V') be normal. The complex spectral theorem (7.31) implies that there
is an orthonormal basis ey, ...,e, of V such that Te, = A e, for each k € {1,...,n}, where
Ai, -y A, € C are the eigenvalues of T'. Because any complex number has a square root, for
each k there exists some u, € C such that p? = \,. Define S € £(V) by Se, = e, and

observe that
SQGk = ,U/%ek - )\kek = Tek.

Thus S%2 =T.

Exercise 7.B.11. Prove that every self-adjoint operator on V has a cube root.

An operator S € £(V) is called a cube root of T € £L(V) if S® = T.

Solution. Let T' € £(V) be self-adjoint. The relevant spectral theorem (7.29 or 7.31) implies
that there is an orthonormal basis e, ..., e, of V such that Te; = A e, for each k € {1,...,n},
where A\, ..., \,, € F are the eigenvalues of T'. Note that each )\, must be real by 7.12. Because
any real number has a cube root, for each k there exists some y;, € R such that p3 = \,.
Define S € £(V) by Se;,, = ue; and observe that

S3€k = Miek = )\kek = Tek.
Thus % =T.

Exercise 7.B.12. Suppose V is a complex vector space and T' € £(V) is normal. Prove

that if S is an operator on V that commutes with 7', then S commutes with 7.

The result in this exercise is called Fuglede’s theorem.
Solution. By Exercise 7.B.9 there is a polynomial p =Y i, a.z* € P(C) such that

T* = p(T). Since ST =TS, a straightforward induction argument shows that ST* = T*S

for any non-negative integer k. It follows that

ST* = Sp(T) = S (Z aka) = @, STF = a,TFS = (Z aka> S =p(T)S =T*S.
k=0 k=0 k=0 k=0
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Exercise 7.B.13. Without using the complex spectral theorem, use the version of
Schur’s theorem that applies to two commuting operators (take & = {T',T*} in Exercise
20 in Section 6B) to give a different proof that if F = C and T' € £(V) is normal, then

T has a diagonal matrix with respect to some orthonormal basis of V.

Solution. Since T" and T™ commute, Exercise 6.8.20 implies that there is an orthonormal
basis ey, ..., e, of V such that M (T') and M (T*) are upper-triangular. Because M (T™) is the
conjugate transpose of M (T') (by 7.9), it must be that M (T') is also lower-triangular. Thus
M(T) is diagonal.

Exercise 7.B.14. Suppose F =R and T € £(V). Prove that T is self-adjoint if and
only if all pairs of eigenvectors corresponding to distinct eigenvalues of T" are orthogonal
and V=FE\,T)®--® E(\,,T), where A\q, ..., \,,, denote the distinct eigenvalues of
T.

Solution. If T is self-adjoint then 7.22 shows that all pairs of eigenvectors corresponding to
distinct eigenvalues of T' are orthogonal, and the real spectral theorem (7.29) shows that T

is diagonalizable, which by 5.55 is equivalent to
V=EMN,T)®--®E\,,T),
where A;, ..., ), are the distinct eigenvalues of T'.

Now suppose that all pairs of eigenvectors corresponding to distinct eigenvalues of T are

orthogonal and
V=E\,T)®--®E\,,T),

where Ay, ..., A
eigenspace E (A, T). Our hypotheses ensure that the list obtained by concatenating these

m are the distinct eigenvalues of T'. Choose an orthonormal basis for each

orthonormal bases is an orthonormal basis of V' consisting of eigenvectors of T'. It follows

from the real spectral theorem (7.29) that T' is self-adjoint.

Exercise 7.B.15. Suppose F = C and T € £(V). Prove that T is normal if and only
if all pairs of eigenvectors corresponding to distinct eigenvalues of T' are orthogonal and
V=EM,T)® ®&E\,,T), where A, ..., A,,, denote the distinct eigenvalues of T'.

Solution. If 7' is normal then 7.22 shows that all pairs of eigenvectors corresponding to
distinct eigenvalues of T" are orthogonal, and the complex spectral theorem (7.31) shows that

T is diagonalizable, which by 5.55 is equivalent to
V=E\N,T)®--®E,,T),

where Aq, ..., ), are the distinct eigenvalues of T'.
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Now suppose that all pairs of eigenvectors corresponding to distinct eigenvalues of T are

orthogonal and
V=E\N,T)®--®E,,T),

where Ay, ..., A
eigenspace E(A,T). Our hypotheses ensure that the list obtained by concatenating these

m are the distinct eigenvalues of T'. Choose an orthonormal basis for each
orthonormal bases is an orthonormal basis of V consisting of eigenvectors of T'. It follows

from the complex spectral theorem (7.31) that T is normal.

Exercise 7.B.16. Suppose F = C and £ C £(V). Prove that there is an orthonormal
basis of V' with respect to which every element of £ has a diagonal matrix if and only

if S and T are commuting normal operators for all S,T € &.

This exercise extends the complex spectral theorem to the context of a collection of

commuting normal operators.

Solution. If there exists such an orthonormal basis of V' then each T € £ is normal by the
complex spectral theorem (7.31) and each pair S,T € £ commutes by 5.74 (since diagonal

matrices always commute).

Suppose S and T are commuting normal operators for all S,T € £. By Exercise 6.8B.20,
there is an orthonormal basis of V' with respect to which the matrix of each T' € £ is upper-
triangular. Because T is normal this matrix must actually be diagonal, as the proof of the

complex spectral theorem (7.31) shows.

Exercise 7.B.17. Suppose F = R and £ C £(V). Prove that there is an orthonormal
basis of V' with respect to which every element of £ has a diagonal matrix if and only

if S and T are commuting self-adjoint operators for all §,T € €&.

This exercise extends the real spectral theorem to the context of a collection of com-

muting self-adjoint operators.

Solution. If there exists such an orthonormal basis of V' then each T € & is self-adjoint by
the real spectral theorem (7.29) and each pair S,T € & commutes by 5.74 (since diagonal

matrices always commute).

Suppose S and T are commuting self-adjoint operators for all S,T € &£. The real spectral
theorem (7.29) shows that each T' € £ is diagonalizable and thus by Exercise 5.F.2 there is a
basis vy, ...,v,, of V with respect to which the matrix of each T' € £ is diagonal. Perform the
Gram-Schmidt procedure on vy, ..., v,, to obtain an orthonormal basis e, ..., e,, of V such that

span(ey, ..., ;) = span(vy, ..., vx)

for each k € {1,...,n}. Let T € £ be given and note that span(vy, ...,v;) = span(eq, ..., e;) is
invariant under T for each k € {1, ...,n} since M (T, (vy, ..., v,,)) is diagonal. Thus, by 5.39,
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M(T,(eq,...,€,)) is upper-triangular. Because T is self-adjoint this matrix must actually be

diagonal, as the proof of the real spectral theorem (7.29) shows.

Exercise 7.B.18. Give an example of a real inner product space V, an operator

T € £(V), and real numbers b? < 4c such that

T2 +bT + ¢l

is not invertible.

This exercise shows that the hypothesis that T is self-adjoint cannot be deleted in 7.26,

even for real vector spaces.

Solution. Let V = R? with the usual inner product and let T € £ (RZ) be a counterclock-
wise rotation about the origin by 90°, so that the matrix of T" with respect to the standard

(%)

Observe that T2 + I (i.e. taking b = 0 and ¢ = 1) is zero and hence not invertible.

orthonormal basis of R? is

Exercise 7.B.19. Suppose T € £(V) is self-adjoint and U is a subspace of V that is

invariant under 7.
(a) Prove that U* is invariant under 7.
(b) Prove that T'|; € £(U) is self-adjoint.
(c) Prove that T|,. € £(U4) is self-adjoint.

Solution.
(a) This is immediate from Exercise 7.A.4 and the fact that T* = T'.

(b) Because T is self-adjoint we have (T'x,y) = (z,Ty) for all z,y € V. In particular this
equality holds for all z,y € U. It follows that T'|; is self-adjoint.

(c) This follows by replacing U with U~ in part (b), which is valid by part (a).
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Exercise 7.B.20. Suppose T' € £(V) is normal and U is a subspace of V' that is invari-

ant under 7.
(a) Prove that U* is invariant under T
(b) Prove that U is invariant under 7.
(c) Prove that (T|,)" = (T%)|y-
(d) Prove that T|; € £(U) and T|;. € £(U™) are normal operators.

This exercise can be used to give yet another proof of the complex spectral theorem

(use induction on dim V' and the result that T has an eigenvector).

Solution.

(a) Let ey, ...,e,, be an orthonormal basis of U and let e, ,, ..., €,, be an orthonormal basis
of Ut, so that eq,...,e

the matrix of T" with respect to eq, ..., e

» is an orthonormal basis of V. Because U is invariant under T,

., 1s of the form

A o A A o A,

Am,l Am,m Am,m+1 Am,n
0 0 Am+1,m+1 Am+1,n
0 0 An,m—i—l An,n

It follows from 7.9 and the matrix above that
ST =33 145,07 and DT P =>">" |4,
k=1 k=1 j=1 k=1 k=1 j=1

where we have swapped the indices j and k for the last equality. For each k € {1, ..., m}
we have |[Te,|* = [T*e,|* and thus

n

2 U 2
=> > 1454l
1 5=1

k=

0=> IT"exl” = > ITerl® =3 > 1Al = DD 1Al = X2 >[4l
k=1 k=1 k=1 j=1 k=1 j=1 k=m+1 j=1

It follows that A, = 0 for each j € {1,...,m} and each k € {m + 1,...,n}, so that the

matrix of T' with respect to eq, ..., e, is of the form

Al,l ’ Al,m 0 0
Apq A 0 0
0 0 Am—i—l,m-ﬁ-l Am—i—l,n
0 0 An,m—i—l An,n

Thus U~ is invariant under 7.
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(b) With respect to the orthonormal basis e, ...,e,, of V from part (a), 7.9 shows that the

matrix of T* is

A].,]. * Am,l 0 0
Al,m . Am,m 0 0
0 0 Am—{—l,m—i—l An,m+1
0 0 Am+1,n An,n

Thus U is invariant under T*.

¢) With respect to the orthonormal basis e, ...,e . of U from part (a) we have
1 m

Aiq o Al Aiq o Apa
M(T|y) = oo = M((T|y)") = :
Am,l Am,m Al,m Am,m
Part (b) shows that
A Ana
M(T)|y)=| : : =M((T|y)")
Al,m Am,m

Thus (Tly)" = (T*)]y-
(d) Using part (c), notice that
(Tly) Tly = (T)|y Tly = (T*T)ly = (TT*)|y = T|y (T)|y =Tl (T|y)"

Thus T is normal. Replacing U with U+ in this result, which is valid by part (a),

shows that T'|;. is normal.

Exercise 7.B.21. Suppose that T is a self-adjoint operator on a finite-dimensional inner

product space and that 2 and 3 are the only eigenvalues of T'. Prove that

T? — 5T + 61 = 0.

Solution. Exercise 7.B.14 if F = R, or Exercise 7.B.15 if F = C, shows that
V=EQ2,T)®E@3,T).
Thus any v € V' is of the form v = z + y, where x € E(2,T) and y € E(3,T). It follows that

(T2 — 5T + 6I)v = (T — 31)(T — 21z + (T — 2I)(T — 3I)y = 0.
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Exercise 7.B.22. Give an example of an operator T' € £(C?) such that 2 and 3 are
the only eigenvalues of T and T? — 5T + 61 + 0.

Solution. Let e;, ey, e be the standard basis of C3 and define T € £(C?) by

so that the matrix of T" with respect to e, ey, €5 is

210
020]|.
003

Since this matrix is upper-triangular, we see that 2 and 3 are the only eigenvalues of T'.

However, notice that

(T2 - 5T+ 6])62 - —61 7& O.

Exercise 7.B.23. Suppose T' € £(V) is self-adjoint, A € F, and € > 0. Suppose there
exists v € V such that |Jv]| =1 and

|Tv — M| < e.

Prove that T has an eigenvalue A" such that |A — \'| < e.

This exercise shows that for a self-adjoint operator, a number that is close to satisfying

an equation that would make it an eigenvalue is close to an eigenvalue.

Solution. The relevant spectral theorem (7.29 or 7.31) implies that there is an orthonormal
basis ey, ..., e, of V consisting of eigenvectors of T', so that T'e;, = A e, for each k € {1,...,n},
where A\, ..., \,, € F are the eigenvalues of T'. It follows from 6.30 and that

170 = Xof* = Ay = AP |, eq)|” + -+ (A, = A[(v, €,)] .
Let A" be the eigenvalue in {Aq,..., A, } which minimizes |\, — A| and observe that
X = A = X = Aol
= [N = AP {v,e0)[* -+ [N = A[(v, €,)|
< A= AP e 4 4 A = AP (v, e)
= |Tv — Aof*
<e?

Thus [N — \| < e.
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Exercise 7.B.24. Suppose U is a finite-dimensional vector space and T' € £(U).

(a) Suppose F = R.. Prove that T is diagonalizable if and only if there is a basis of U

such that the matrix of T" with respect to this basis equals its transpose.

(b) Suppose F = C. Prove that T is diagonalizable if and only if there is a basis of U

such that the matrix of T" with respect to this basis commutes with its conjugate

transpose.

This exercise adds another equivalence to the list of conditions equivalent to diagonal-
izability in 5.55.

Solution.

(a)

If T is diagonalizable then there is a basis u, ...,u,, of U such that
A:=M(T, (uy,...,u,))
is diagonal. It follows that A = A®.
Now suppose that there is a basis uy, ...,u,, of U such that A = A*, where
A=M(T, (uqg, ...y u,))-
For v = ayuy + -+ a,u, and v =>byu; + -+ b,u, in U, define
(u,v) = ayby + -+ a,b,;

it is straightforward to verify that this defines an inner product on U. Notice that

Uq, ..., U, is an orthonormal basis of U with respect to this inner product; it follows
that T is self-adjoint with respect to this inner product and so we may apply the real
spectral theorem (7.29) to obtain a basis of U consisting of eigenvectors of T'. Thus T

is diagonalizable.
If T is diagonalizable then there is a basis uq, ..., u,, of U such that
A= M(T, (uqg,...,u,))
is diagonal. It follows that A* is also diagonal and hence that AA* = A*A, since diag-

onal matrices always commute.

Now suppose that there is a basis u, ...,u,, of U such that AA* = A*A, where
A=M(T, (uqg, ...y u,))-

For v = ayuy + -+ a,u, and v ="byu; + -+ b,u, in U, define
(u,v) = ayby + -+ a,b,;

it is straightforward to verify that this defines an inner product on U. Notice that

Uq, ..., U, is an orthonormal basis of U with respect to this inner product; it follows

that T is normal with respect to this inner product and so we may apply the complex
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spectral theorem (7.31) to obtain a basis of U consisting of eigenvectors of T'. Thus T

is diagonalizable.

Exercise 7.B.25. Suppose that T' € £(V') and there is an orthonormal basis e, ..., €,
of V consisting of eigenvectors of T, with corresponding eigenvalues A, ..., A,,. Show

that if k£ € {1,...,n}, then the pseudoinverse T satisfies the equation

L .
T_'_ek _ A €L if )\k :,é 0,

Solution. By the relevant spectral theorem (7.29 or 7.31), T is either self-adjoint if F = R

or normal if F = C. In either case, 7.21 shows that

null7” = null7* and rangeT = rangeT™.
Let k € {1,...,n} be given. If A, = 0 then
e, € nullT = null T* = (range T)" = null P, 7,
where we have used 6.57(e) and 7.6(a). It follows that
Tte), = (T|(nullT)l)71PrangeTek = (T|@arr)*) " (0) = 0.
If A, # 0 then observe that
Mote, =T(A\;%e,) = A;'e, €rangeT = rangeT* = (null 7)™,

where we have used 7.6(b). Because the restriction of T to (nullT)" is an isomorphism be-
tween (nullT)" and range T (sce 6.67), it follows that (T|uur)*) "T (Mg ex) = A;'ey and
hence that

TTek = (T|(nullT)l)_1PrangeTek = (Tl(nullT)J')_1PrangeTT()‘Elek)

= (T|(nu11T)*)_lT()\Elek> =X lep.
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7.C. Positive Operators

Exercise 7.C.1. Suppose T' € £(V). Prove that if both T and —T are positive opera-
tors, then T' = 0.

Solution. Let v € V be given. Observe that (Tw,v) > 0 since T is positive and
(—=Tv,v) >0 < —(Tv,v)>0 < (Tv,v)<0
since —T is positive. Thus (T'w,v) = 0 and it follows from 7.43 that T'v = 0. Hence T' = 0.

Exercise 7.C.2. Suppose T € £(F*) is the operator whose matrix (with respect to the

standard basis) is

2 -1 0 O
-1 2 -1 0
0 -1 2 -1
0 0 -1 2

Show that T is an invertible positive operator.

Solution. Note that the matrix in question equals its conjugate transpose; since the stan-
dard basis of F* is orthonormal, it follows that T is self-adjoint. Some calculations reveal

that T has 4 distinct eigenvalues:

3+v5 5445
2 2

Notice that each eigenvalue is strictly positive. It follows from 5.7 and 7.38(b) that T is an

invertible positive operator.

Exercise 7.C.3. Suppose n is a positive integer and T' € £(F™) is the operator whose
matrix (with respect to the standard basis) consists of all 1’s. Show that T is a positive

operator.

Solution. The matrix of T with respect to the standard basis of F™ (which is orthonormal)
equals its conjugate transpose; it follows that T is self-adjoint. As shown in Exercise 5.B.3
(a), the eigenvalues of T are contained in {0, 1}. Thus, by 7.38(b), T is positive.

Exercise 7.C.4. Suppose n is a positive integer with n > 1. Show that there exists an
n-by-n matrix A such that all of the entries of A are positive numbers and A = A*, but
the operator on F™ whose matrix (with respect to the standard basis) equals A is not

a positive operator.
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Solution. Let

12 .9
el
221

Observe that each entry of A is positive and A = A*. Let T' € £L(F™) be the operator on F”

whose matrix with respect to the standard basis equals A, i.e.
T(zq,Z9,....x,) = (T, + 229 + - + 22,20, + o + - + 22, ..., 20, + 225 + -+ ).
Notice that
T7(-1,1,0,...,0) = (1,-1,0,...,0).

It follows that —1 is an eigenvalue of T'. Thus, by 7.38(b), T' is not a positive operator.

Exercise 7.C.5. Suppose T € £(V) is self-adjoint. Prove that T is a positive operator
if and only if for every orthonormal basis e, ..., e, of V all entries on the diagonal of

M(T,(eq,...,e,)) are nonnegative numbers.

Solution. Suppose that T is a positive operator and let e, ..., e,, be an orthonormal basis of
V. For k € {1,...,n}, 6.30(a) shows that the k' diagonal entry of M (T, (eq,...,e,)) is equal
to (Tey, e;,); this must be non-negative by the positivity of T

Suppose that for every orthonormal basis e;,...,e,, of V, all entries on the diagonal of
M(T,(eq,...,€,)) are nonnegative numbers. Because T is self-adjoint, the relevant spectral
theorem (7.29 or 7.31) implies the existence of an orthonormal basis ey, ...,e, of V with
respect to which the matrix of T is diagonal. By assumption each diagonal entry of this

matrix is non-negative and it then follows from 7.38(c) that T' is a positive operator.

Exercise 7.C.6. Prove that the sum of two positive operators on V is a positive oper-

ator.

Solution. Suppose that S,T € £(V) are positive operators and note that S+ T is self-
adjoint by 7.5(a). Let v € V be given and observe that

(S 4+ T)v,v) = (Sv+ Tv,v) = (Sv,v) + (Tv,v) > 0.

Thus S + T is positive.

Exercise 7.C.7. Suppose S € £(V) is an invertible positive operator and T' € £(V) is

a positive operator. Prove that S 4+ T is invertible.

Solution. Let us prove the following lemma (see 7.61 also).
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Lemma L.11. If T € £(V) is a positive operator then T is invertible if and only if

(Tv,v) > 0 for every non-zero v € V.

Proof. Suppose that T is invertible and let v € V be non-zero. It follows that Tv is non-
zero and thus, by the contrapositive of 7.43, we have (T'v,v) > 0. If T is not invertible

then there exists some non-zero v € V' such that Tv = 0, which gives us (T'v,v) = 0.0

Let v € V be non-zero. Lemma [..11 shows that (Sv,v) > 0 and it follows from the positivity
of T that

((S+T)v,v) = (Sv,v) + (Tv,v) > 0.

Another application of Lemma [..11 allows us to conclude that S + T is invertible.

Exercise 7.C.8. Suppose T' € £(V'). Prove that T is a positive operator if and only if

the pseudoinverse T is a positive operator.

Solution. Suppose that T is a positive operator. By 7.38(c) there is an orthonormal basis
€1,...,€, of V such that Te, = A\pe, with A\, > 0. For each k € {1,...,n} let

B Atoif A, #0,
=0 A =o0.
It follows from Exercise 7.3.25 that TTe, = u,e, for each k € {1,...,n}. Because each p, is
non-negative, 7.38(c) implies that T T is a positive operator.
Replacing T with T in the preceding result and using that (TT)T =T (see Exercise 6.C.23)

gives us the converse statement.

Exercise 7.C.9. Suppose T € £(V) is a positive operator and S € L(W,V). Prove
that S*T'S is a positive operator on W.

Solution. For any w € W observe that
(S*T Sw,w) = (T'(Sw), Sw) > 0,

where we have used the positivity of T.

Exercise 7.C.10. Suppose T is a positive operator on V. Suppose v, w € V are such
that

To=w and Tw=w.

Prove that v = w.

Solution. Notice that
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lv—w|? = (v —w,v—w) = (Tw—Tv,v—w) =—(T(v—w),v—w) <0,

where we have used that T is a positive operator for the final inequality. It follows that

lv —w|?® = 0, which is the case if and only if v = w.

Exercise 7.C.11. Suppose T is a positive operator on V and U is a subspace of V'

invariant under T'. Prove that T'|; € £(U) is a positive operator on U.

Solution. Exercise 7.B.19 (b) shows that T'|;; is self-adjoint, and for any u € U we have
<T‘U(u)7u> = <Tu7u> 2> 07

where we have used that T is a positive operator. Thus T'|;; is a positive operator.

Exercise 7.C.12. Suppose T € £(V) is a positive operator. Prove that T* is a positive

operator for every positive integer k.

Solution. By 7.38(c) there is an orthonormal basis ey, ..., e,, of V such that Te; = Aje; with
A; 2 0 for each j € {1,...,n}. Let k be a positive integer and observe that Tkej = )\;‘?ej for
each j € {1,...,n}. Because each )\? is non-negative, 7.38(c) allows us to conclude that T* is

a positive operator.

Exercise 7.C.13. Suppose T € £(V) is self-adjoint and « € R.

(a) Prove that T'— al is a positive operator if and only if « is less than or equal to

every eigenvalue of T'.

(b) Prove that al — T is a positive operator if and only if « is greater than or equal

to every eigenvalue of T'.

Solution.

(a) The relevant spectral theorem (7.29 or 7.31) implies the existence of an orthonormal
basis ey, ..., e,, such that Te;, = A\, e, for some eigenvalues Ay, ..., A,; note that each A\

is real by 7.12. It follows that the matrix of T' — o with respect to eq,...,e,, is
A —a - 0

0 A, —a

If « is less than or equal to every eigenvalue of T' then each diagonal entry of this
matrix is non-negative and it follows from 7.38(c) that T'— o[ is a positive operator; if
a is greater than some eigenvalue of T then at least one diagonal entry of this matrix

is negative and it follows from Exercise 7.C.5 that T'— «af is not a positive operator.

(b) It is straightforward to modify the argument in part (a) to prove part (b).
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Exercise 7.C.14. Suppose T is a positive operator on V and vy, ...,v,, € V. Prove that

m m
Tvk:a j
=1 k=1

Solution. Using the positivity of T', observe that

DD (Top,v)) = (Toy + -+ T, 01 + - +0,,) = (T(vg + -+ ,,),01 + -+ ,,) >0,

Exercise 7.C.15. Suppose T € £(V) is self-adjoint. Prove that there exist positive
operators A, B € £(V) such that

T=A—B and VI*T =A+ B and AB = BA=0.

Solution. The relevant spectral theorem (7.29 or 7.31) implies the existence of an orthonor-
»; Dote that each A\j

is real by 7.12. Note further that the operator R € £(V) given by Re;, = |\;|e; is positive
by 7.38(c) and satisfies R%e, = A2e, = T?e,; it follows from the uniqueness in 7.39 that

R=VT? =T*T.
For each k € {1,...,n} define

[ itz a0,
“=V0 ita <0, 0 PET Yo ifa, >0

mal basis ey, ..., e, such that T'e;, = A\ e, for some eigenvalues A, ..., A

Notice that, for each k € {1, ...,n},
oy B 20, o — B =X, ap+ B, =A], and o8, =0.

Define A, B € £(V) by Ae, = a,e;, and Bej, = S e, and note that A and B are positive
operators by 7.38(c). Furthermore,

(A—DB)ey, = (o, — Brley = Mpep, = Tey,, (A+ Bley = (o + Brle, = [Ailey = VI*Tey,
ABek = BAek = akﬁkek = 0
It follows that

T=A—-B, VI*T=A+B and AB=BA=0.

Exercise 7.C.16. Suppose T is a positive operator on V. Prove that

null VT = nullT  and range VT = rangeT'.

Solution. Note that /7 is positive, hence self-adjoint, hence normal; it follows from Exercise
7.A.27 that
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null VT = null (\/T)Q =null7” and range VT = range (\/T)2 =rangeT'

Exercise 7.C.17. Suppose that T € £(V) is a positive operator. Prove that there exists
a polynomial p with real coefficients such that vT = p(T).

Solution. By 7.38(c) there is an orthonormal basis eq,...,e, of V such that Te, = A\ e,
with A, > 0, where Ay, ..., A, are the eigenvalues of T; note that vTe, = \/Aze,. Excrcise
4.7 shows that there is a polynomial p € P(R) satisfying p(\,) = /A for each k € {1,...,n}
and it follows that

p(T)e, = p(Ag)ey, = \/)‘_kek = ﬁek'
Thus VT = p(T).

Exercise 7.C.18. Suppose S and T are positive operators on V. Prove that ST is a

positive operator if and only if S and T' commute.

Solution. If S and T do not commute then, by FExercise 7.A.9, ST is not self-adjoint and

hence not a positive operator.

If S and T commute then Exercise 7.A.9 shows that ST is self-adjoint and Exercise 7.B.16/
Exercise 7.8.17 shows that there is an orthonormal basis ey, ..., e,, of V' consisting of eigenvec-
tors of both S and T', say Se;,, = pie, and Te,, = Apex; each py and each A, is a non-negative
real number by 7.38(b). It follows that STe;, = puiAe;, so that each ey is an eigenvector of
ST with a corresponding non-negative real eigenvalue. Thus, by 7.38(c), ST is a positive

operator.

Exercise 7.C.19. Show that the identity operator on F? has infinitely many self-adjoint

square roots.

Solution. For any t € (0, 1), let R, be the operator on F2 whose matrix with respect to the

standard orthonormal basis of F? is

(\/1—1&2 ‘ )
A

note that each t € (0,1) gives a distinct operator R,. Because the matrix above equals its

conjugate transpose, R, is self-adjoint. A calculation shows that R? = I.
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Exercise 7.C.20. Suppose T' € £(V) and e, ..., e,, is an orthonormal basis of V. Prove

- Cn

that T is a positive operator if and only if there exist vy, ...,v,, € V such that
<Tek7 ej) = <Uk7vj>
for all j,k=1,...,n.

The numbers {(T'ey, e;) are the entries in the matrix of T with respect to
n

bik=1,..

the orthonormal basis eq, ..., e,,.

Solution. Suppose that T is a positive operator and for each k € {1,...,n} let v, = /Te,.
It follows that

(Tey, e;) = (\/Tek, \/Tej) = (v, v;)
for all j,k € {1,...,n}.
Now suppose that there exist vy, ...,v,, € V such that

<T6kaej> = <vk7vj>

for all j,k € {1,...,n}. Define R € £(V) by Re;, = vy, so that

(Tey,e;) = (Rey, Re;) = (R*Rey, e;)
for all 5,k € {1,...,n}. It follows that

M(T,(eq,...,e,)) = M(R*R, (e, ...,e,))

and hence that T'= R*R. We may use 7.38(f) to conclude that T' is a positive operator.

Exercise 7.C.21. Suppose n is a positive integer. The n-by-n Hilbert matrixz is the n-
1
Jrk—1°
whose matrix with respect to some orthonormal basis of V' is the n-by-n Hilbert matrix.

by-n matrix whose entry in row j, column k is Suppose T' € £(V) is an operator

Prove that T is a positive invertible operator.

Example: The 4-by-4 Hilbert matrix is

1 1 1
I 5 3 1
101 1 1
2 3 4 5
101 1 1
3 4 5 6
101 1 1
4 5 6 7

Solution. (This solution uses some integration of complex-valued functions of a real vari-
able.) Suppose that ey, ..., e, is the orthonormal basis of V' with respect to which the matrix

of T' is the n-by-n Hilbert matrix. For any v = z,e; + -+ x,e,, € V, observe that
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(Tv,v) = <zn: x,Tey, z”: :cjej>

jk=1
n
>
it k=1
n 1
= > T, / tIth=2 qg
3, k=1 0

1 n n
= / | [ttt dt
0 k=1

I

c\
2.

Il 3
o

&

4~

<

AN

n
it D aptht | de
k=1

1
/ xktk‘fl
0 |k=1

Observe that the integrand above is a non-negative and continuous function [0,1] — R. It

3

dt.

follows that the integral is non-negative and vanishes if and only if
2

=0forallte[0,1] < Zx,ﬁkfl =0 for all t € [0, 1]
k=1

n
xktkfl
k=1

& zp,=0forallke{l,..,n} & v=0.

Thus (T'w,v) >0 for every v € V and (T'v,v) = 0 if and only if v = 0; it follows from Lem-

ma [..11 that T is an invertible positive operator.

Exercise 7.C.22. Suppose T € £(V) is a positive operator and u € V is such that
|u| =1 and |Tu| > |Tv| for all v € V with |Jv| = 1. Show that w is an eigenvector of T'

corresponding to the largest eigenvalue of T'.

Solution. Suppose 0 < \; < -+ < A, are the distinct eigenvalues of T'; each A, is a non-
negative real number by 7.38(b). Exercise 7.B.14/Exercise 7.B.15 shows that
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and that all pairs of eigenvectors of T' corresponding to distinct eigenvalues are orthogonal.
Suppose that u = v; 4+ --- +v,, where each v, € E(\;,T). It follows from the Pythagorean
theorem that 1 = |[u|® = [vy|* + - + |v,|* and hence that

ITul® = Moy |* + -+ A llva* < A% (lor|* + - + o, |*) = A2
Letting w be a unit eigenvector corresponding to the eigenvalue J,,, our hypothesis implies
that A2 = |Tw|® < |Tu|®. Thus |Tu|* = A2, which gives us
ITul® = X% & Al + -+ A% (loa)* — 1) = 0.
Note that if A\, = 0 then 7" must be the zero operator and the desired result is clear. If A, # 0

then the equation above shows that |v, ||> = 1; combining this with 1 = [v,|* + - + |v,,|?
shows that v; = -~ =wv,_; = 0 and hence that v =v,, € E()\,,,T), as desired.

Exercise 7.C.23. For T € £(V) and u,v € V, define (u,v) by (u,v); = (Tu,v).

(a) Suppose T' € £L(V). Prove that (-, ), is an inner product on V' if and only if T is

an invertible positive operator (with respect to the original inner product (-, -)).

(b) Prove that every inner product on V' is of the form (-, -); for some positive invert-
ible operator T' € £(V).

Solution.

(a) Suppose that T is an invertible positive operator. We must verify each property of
definition 6.2.

Positivity. For any v € V' we have (v,v); = (T'v,v) > 0 by the positivity of T.
Definiteness. We have (0,0), = (T°(0),0) = 0, and for v # 0 we have
(v,v)p = (Tv,v) >0
by Lemma L.11.
Additivity in first slot. For u,v,w € V we have
(u+v,wyp = (T(u+v),w) = (Tu+ Tv,w) = (Tu,w) + (Tv,w) = (u,w)p + (v, W)p.

Homoegeneity in first slot. For u,v € V and A € F we have

(Au, v)p = (T (M), v) = (A\Tu,v) = MNTu,v) = A\u, v)p.

Conjugate symmetry. For u,v € V we have

(u,v)p = (T'u,v) = (v, Tu) = (Tv,u) = (v, u)p,
where we have used that T is self-adjoint for the third equality.

Thus (-, ) is an inner product on V.

Now suppose that (-,-); is an inner product on V and let u,v € V' be given. Observe
that
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(Tu,v) = (u,v)p = (v,u)p = (Tv,u) = (u, Tv).
Thus T is self-adjoint. Furthermore, for any v € V,
(Tw,v) = (v,v)p > 0.
Thus T is a positive operator. Finally, for v # 0,
(Tv,v) = (v,v)p > 0.
It follows from Lemma [.11 that T is invertible.

(b) Let (-,-); be the original inner product on V and let (-, )5 be an arbitrary inner prod-
uct on V; we need to show that there exists an invertible operator T' € £(V') which is

positive with respect to (-,-); such that (u,v)y = (T'u,v), for every u,v € V.

Let eq, ..., e,, be an orthonormal basis of V' with respect to (-,-); and let f;,..., f,, be an
orthonormal basis of V' with respect to (-,-),. Define R € £(V) by Rf, = e, and note
that R is invertible since R maps a basis to a basis. Now define T' € £(V) by T = R*R,
where R* is the adjoint of R with respect to (-, -);. Observe that T is invertible by 7.5(f)
and Exercise 3.D.2, and T is positive with respect to (-,-); by 7.38(f). Furthermore, for
any u =z, f; +-+z,f, andv=y, f; +-+y,f, in V, observe that

<U, U>2 =Ty + o+ 2y, = <RU7RU>1 = <R*Ru,’l)>1 = <TU7U>1'

Exercise 7.C.24. Suppose S and T are positive operators on V. Prove that
null(S+7) =nullS Nnull T

Solution. Exercise 7.C.6 shows that S + T is a positive operator. Observe that
Sv=0and Tv=0 < (Sv,v)=0and (Tv,v) =0
& (Sv,v)+ (Tv,v) =0 < (S+T)v,v)=0 < (S+T)v=0,

where we have used 7.43 several times. Thus null(S + T') = null.S Nnull T'.

Exercise 7.C.25. Let T be the second derivative operator in FExercise 31(b) in Section

7A. Show that —T is a positive operator.

Solution. Define the orthonormal basis B = v, e, ...,e,, f1, ..., f,, as in Exercise 7.A.31 and

observe that
—T'U = O, —Tek = k2€k7 _Tfk = k2fk

It follows that the matrix of —T with respect to B is diagonal with non-negative diagonal

entries; 7.38(c) allows us to conclude that —T' is a positive operator.
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7.D. Isometries, Unitary Operators, and Matrix Factoriza-

tion

Exercise 7.D.1. Suppose dimV > 2 and S € £(V,W). Prove that S is an isometry
if and only if Se;, Se, is an orthonormal list in W for every orthonormal list e;, e5 of

length two in V.

Solution. Suppose S is an isometry and suppose e, e, is an orthonormal list in V. Let
U = span(eyq, e5) and note that e, e, is an orthonormal basis of U. Note further that S|, is

an isometry; it follows from 7.49(d) that Se;, Se, is an orthonormal list in W.

Now suppose that Se;, Se, is an orthonormal list in W for every orthonormal list e;, e, in V.
Let ey, €y, ..., €, be an orthonormal basis of V' and let j < kin {1, ...,n} be given. Since €, €
is an orthonormal list in V', our hypothesis guarantees that Se;, Se; is an orthonormal list
in V. Thus |Se;| = |Se,| = 1 and (Se;, Se;) = 0. Because j < k in {1,...,n} were arbitrary,
it follows that Sey, ..., Se,, is an orthonormal list in . We may use 7.49(d) to conclude that

S is an isometry.

Exercise 7.D.2. Suppose T' € £(V,W). Prove that T is a scalar multiple of an isom-

etry if and only if T' preserves orthogonality.

The phrase “T preserves orthogonality” means that (Tu,Tv) =0 for all u,v € V
such that (u,v) = 0.

Solution. Suppose that T'= AS for some A € F and some isometry S € £(V,W). For any
u,v € V such that (u,v) = 0, observe that

(Tu, Tv) = (ASu, ASv) = |A]*(Su, Sv) = |A]*(u,v) = 0,
where we have used 7.49(c) for the third equality. Thus T" preserves orthogonality.

Now suppose that T' preserves orthogonality. Let e, ..., e,, be an orthonormal basis of V' and
let k € {1,...,n} be given. Using the identity (u + v, u — v) = |u|* — [v|?, observe that

(e1 +ep,er —ep) = el —lexl =0 = (Tey +Tey, Tey —Tey) = |Tey| — [Tey| = 0.

Thus, letting A = |T'e;||, we have X\ = ||T'e,| for each k € {1,...,n}. If A =0 then T' = 0I, so
that T is a scalar multiple of the identity operator, which is certainly an isometry. If A # 0
then let S = A7IT. Observe that, for any distinct j,k € {1,...,n},

(ejex) =0 = (Te;Te) =0 < (ASe;,A\Se,) =0 < [A*(Se;, Se,) =0.

Since A # 0, this last equation implies that (Se;, Sej) = 0. Furthermore, using that X is a

non-negative real number,

[Sell = A7 Tey] = 1.
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Thus Se, ..., Se,, is an orthonormal list in W. It follows from 7.49(d) that S is an isometry

and hence that 7" = AS is a scalar multiple of an isometry.

Exercise 7.D.3.
(a) Show that the product of two unitary operators on V is a unitary operator.
(b) Show that the inverse of a unitary operator on V is a unitary operator.

This exercise shows that the set of unitary operators on V' is a group, where the group

operation is the usual product of two operators.

Solution.
(a) Suppose S,T € £(V) are unitary operators. For any v € V, observe that
|STv| = |Sv] = [v].

Thus ST is a unitary operator.

(b) Suppose that S € £(V) is a unitary operator. For any v € V' we have v = Su for some
u € V. It follows that

IS~ ol = ful = |Sul = |v].
Thus S~! is a unitary operator.

Exercise 7.D.4. Suppose F = C and A, B € £(V) are self-adjoint. Show that A + iB
is unitary if and only if AB = BA and A? + B2 = I.

Solution. Suppose A + iB is unitary. It follows from 7.53(f) that (A +iB)* = A — iB is also
unitary. Thus, for any v € V,

| Av]* + | Bu|® +i(((AB — BA)v,v)) = |Av+iBu|* = |o[?,

| Av]* + | B|® — i(({(AB — BA)v,v)) = |Av —iBv|* = |o|*.
Subtracting the latter of these equations from the former, we see that

((AB— BA)v,v) =0
for every v € V. It follows from 7.13 that AB = BA. We can now use 7.53(c) to see that
I=(A+iB)"(A+iB) = (A—iB)(A+iB) = A2+ B2+ i(AB — BA) = A? + B2,
If AB= BA and A? + B? =1 then
(A+iB)"(A—iB)=(A—iB)(A+1iB) = A>+ B>+ i(AB— BA) = I.

Thus, by 7.49(b), A 4 iB is unitary.
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Exercise 7.D.5. Suppose S € £(V). Prove that the following are equivalent.
(a) S is a self-adjoint unitary operator.
(b) S =2P — I for some orthogonal projection P on V.

(c) There exists a subspace U of V such that Su = u for every u € U and Sw = —w

for every w € U+,

Solution. Suppose that (a) holds, i.e. suppose that S is a self-adjoint unitary operator. Let
P = (S +1I) and notice that P is self-adjoint and that S = 2P — I. Notice further that, by
7.53(b), 82 = I; it follows that

8?4284+ 1  S+T
= ; ===

P2 P.

We may now invoke Exercise 7.A.20 to see that P is an orthogonal projection. Thus (b) holds.

Suppose that (b) holds, so that there is some subspace U of V such that S = 2P, — I. For
any u € U and any w € U* it follows that

Su=2Pyu—u=u and Sw=2P;w—w=—w,
where we have used 6.57. Thus (c) holds.

Suppose that (c) holds, i.e. suppose there exists a subspace U of V such that Su = u for
every u € U and Sw = —w for every w € Ut. Let v; = u; +w; and vy = uy +wy in V be

given, where u;,u, € U and w;,wy € UL. Observe that
(Svy,v9) = (Uy — Wy, ug + wy) = (ug, ug) — (W, wy) = (uy + Wy, uy — wy) = (Svy,vy).
Thus S is self-adjoint. Furthermore,
S%vy = S(S(uy +wy)) = S(uy —wy) =uy +w; = vy

Thus S is its own inverse. Combining this with the fact that S is self-adjoint and 7.53(c),

we see that S is a self-adjoint unitary operator, i.e. (a) holds.

Exercise 7.D.6. Suppose T}, T, are both normal operators on F3 with 2,5,7 as eigen-
values. Prove that there exists a unitary operator S € £(F?) such that T}, = S*T,S.

Solution. Let \; =2, A\, =5, 3 =7, and let e, eq, €3, f, fa, f3 € V be such that

Tiep = Mgy, and Ty fy = Ay fi
Without loss of generality, we may assume that each e, and each f;, is a unit vector. Com-
bining this with 7.22, we see that each list e;, ey, e5 and f;, f5, f3 is an orthonormal basis

of F3. Define S € £(V) by Se;, = f, and note that S is a unitary operator by 7.53(d). Note
further that

S*T2S€k - S*Tka - )\kS*fk - )\kek - Tlek,
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where we have used that S* = S~! which holds by 7.53(c). Thus T} = S*T,S.

Exercise 7.D.7. Give an example of two self-adjoint operators T}, T, € £(F*) such
that the eigenvalues of both operators are 2,5,7 but there does not exist a unitary
operator S € £(F*) such that T} = S*T,S. Be sure to explain why there is no unitary
operator with the required property.

Solution. Let T} and T, be the operators on F* whose matrices with respect to the standard

basis of F* are

2000 2000
0200 and 0500
0050 0050
0007 0007

Since these matrices are diagonal and the standard basis of F# is orthonormal, we see that
T, and T, are self-adjoint and that their eigenvalues are precisely 2,5,7. If there was an
isometry S € £(F*) such that T}, = S*T,S then since S*S = I (by 7.42), we would have

It would then follow from Exercise 3.D.8 that dimnull(T} — 2I) = dimnull(T}, — 2I). How-

ever, from the matrices of T} and T, above we can see that

dimnull(T} — 2I) = 2 # 1 = dimnull(T;, — 21).

Exercise 7.D.8. Prove or give a counterexample: If S € £(V') and there exists an or-

thonormal basis eq,...,e, of V such that |Se.|| =1 for each e, then S is a unitary

n

operator.

Solution. This is false. Let e, e, be the standard orthonormal basis of R? and let S € £(R?)
be given by Se; = Se, = e;. Observe that |Se;| = |Se,| = || = 1, but S is not a unitary

operator because S is not injective.

Exercise 7.D.9. Suppose F = C and T € £(V). Suppose every eigenvalue of T has

absolute value 1 and |Tv| < ||v| for every v € V. Prove that T is a unitary operator.

Solution. By Schur’s theorem (6.38) there is an orthonormal basis e, ...,e,, of V with

respect to which A :=M(T),(ey,...,¢e,)) is upper-triangular. Note that |A; ;[ =1 for each

-y Cn

j €{1,...,n} since each diagonal entry of A is an eigenvalue of T'. For any k € {2,...,n} it
follows that

k k—1
2 2
SR =14 D14, 42 = ITep)? < el = 1.
j=1 j=1
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Thus E?:\Aj’k\Z = 0, which gives us A; , == A;_; ; = 0. Hence A is a diagonal matrix,

ie. eq,...,e, is an orthonormal basis of V' consisting of eigenvectors of T'. By assumption

each eigenvalue of T has absolute value 1 and thus, by 7.55, T is a unitary operator.

Exercise 7.D.10. Suppose F = C and T € £(V) is a self-adjoint operator such that
[Tv| < |jv| for all v € V.

(a) Show that I —T? is a positive operator.
(b) Show that T + iV I — T2 is a unitary operator.

Solution.
(a) For any v € V observe that
(I —T?*)v,v) = (v—T?v,v) = (v,v) — (T?v,v)
= (v,v) = (T'v, Tv) = [o]* — |Tw|* > 0.
Thus I — T? is a positive operator.

(b) Let us prove the following lemma.

Lemma L.12. If S € £(V) is positive and T' € £(V) is such that ST = T'S, then
VST =TVS.

Proof. By Exercise 7.C.17 there is a polynomial p € P(R) such that v/S = p(S).
Because S and T commute, we can argue as in Exercise 7.B.12 to see that v/S

and T commute. O

A straightforward calculation (or 5.17) shows that T and I —T? commute. It follows
from Lemma 1..12 that T and v I — T? commute. Observe that

T4+ (VI—T?) =1.

Thus, by Exercise 7.D.4, T + iV I — T? is a unitary operator.

Exercise 7.D.11. Suppose S € £(V). Prove that S is a unitary operator if and only if
{Sv:veVand |v|<1}={veV:|y <1}

Solution. Let X = {Sv:v eV and |v| <1} and Y = {v e V : |v| < 1}, so that our goal is
to show that S is a unitary operator if and only if X =Y.

Suppose that S is a unitary operator. If Sv € X for some v € V such that |v| <1, then
observe that |Sv| = |Jv| < 1; it follows that Sv € Y and hence that X C Y. Now suppose
v €Y, so that |v| < 1, and note that S is invertible and that S~! is an isometry by 7.53. It
follows that
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v=_S9(S"t) and |S'v|=|v|< 1.
Thus v € X, so that Y C X. We may conclude that X =Y.

Now suppose that S is not unitary. If S is not invertible then S is not surjective and thus
there exists some necessarily non-zero w ¢ range S, which implies |w| " w ¢ range S. Thus

lw| " w e Y but |w| 'w ¢ X, so that X # Y. Suppose that S is invertible. Because S is
not unitary, there must exist some v € V' such that |Sv| # ||v[; note that v must be non-
zero. By replacing v with |v]| v if necessary, we may assume that |v| = 1. Consider the

following cases.
Case 1. If |Sv| > 1 then Sv € X but Sv ¢ Y. Thus X #Y.

Case 2. If | Sv| < 1 then note that ||Sv| # 0 since v # 0 and S is injective. Let u = | Sv| " Sv,
so that u € Y. We claim that u ¢ X. Indeed, if v € X then u = Sw for some w € V such
that |w| < 1. It follows from the injectivity of S that

Sv
1S

=Sw = v=|[Sv|w = |v]=]Sv]|w] <1,

contradicting that |v| = 1. Thus u ¢ X, so that X #Y.

In any case, we have shown that if S is not unitary then X # Y. We may conclude that S
is a unitary operator if and only if X =Y.

Exercise 7.D.12. Prove or give a counterexample: If S € £(V) is invertible and

S~ || = || Sv|| for every v € V, then S is unitary.

Solution. This is false. For a counterexample, consider the operator S € £ (Cz) whose ma-

trix with respect to the standard basis of C? is

i V2
V2 —i)

A calculation shows that S is its own inverse, so that |S~1v|| = |[Sv| for every v € V. How-

ever, observe that

Thus S is not a unitary operator.
Exercise 7.D.13. Explain why the columns of a square matrix of complex numbers
form an orthonormal list in C™ if and only if the rows of the matrix form an orthonormal

list in C™.

Solution. Suppose A € C™" and let S € £(C"™) be such that A is the matrix of S with

respect to the standard orthonormal basis of C™. Observe that
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the columns of A form an orthonormal list in C"

< S is unitary < the rows of A form an orthonormal list in C";

the first equivalence is 7.49(e) and the second equivalence is 7.53(e).

Exercise 7.D.14. Suppose v € V with |jv|| =1 and b € F. Also suppose dimV > 2.

Prove that there exists a unitary operator S € £(V') such that (Sv,v) = b if and only if

o] < 1.
Solution. If there exists such a unitary operator then, using the Cauchy-Schwarz inequality,

2
[b] = [{(Sv, )| < [Sv]o] = [o]” < 1.

Now suppose that |b] < 1. Let e; = v and extend this to an orthonormal basis e, e, ..., €
of V. Define S € £(V) by

Se; =be; +1/1— b°e,, Se, = —1/1— |b|*e; +bey, Se, =, for k> 2.

Given that e, e,, ..., e, is an orthonormal basis of V', some straightforward calculations show

n

that Se,, Se,, ..., Se,, is also an orthonormal basis of V. Thus S is a unitary operator by

7.53(d). Furthermore,
(Sv,v) = <be1 +4/1— |b|262,el> = ble|® =b.

Exercise 7.D.15. Suppose T is a unitary operator on V such that T'— I is invertible.

(a) Prove that (T + I)(T —I)"" is a skew operator (meaning that it equals the nega-

tive of its adjoint).
(b) Prove that if F = C, then i(T + I)(T —I)"" is a self-adjoint operator.

The function z +— i(z + 1)(z — 1)71 maps the unit circle in C (except for the point 1)
to R. Thus (b) illustrates the analogy between the unitary operators and the unit circle

in C, along with the analogy between the self-adjoint operators and R.

Solution.

(a) Using that T*T = TT* = I, which holds by 7.53(b), observe that
(T +D(T— 1)1 = RR(T — 1),

1
—(T+I)(T—-I)"t=(T—-T*)R*R, )
where R = (T — I)~!. Observe further that
(R*R) T = (2] - T —T*)T = T(2] — T — T*) = T(R*R) ™.

Since T—! =T* (by 7.53(c)), taking the inverse of both sides of the equation
(R*R)™'T = T(R*R)~! shows that (R*R)T* = T*(R*R). Hence R*R commutes with
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T*, and we can similarly show that R* R commutes with 7. Thus R* R commutes with

T — T*. Tt follows from the expressions in (1) that
(T+D(T - =—(T+I)(T—-1)"".
(b) Using part (a) and 7.5(b), we have

((T+D)(T-D =(=)|~(T+D)(T - =i«(T+I)(T—-1I)"

Exercise 7.D.16. Suppose F = C and T € £(V) is self-adjoint. Prove that
(T + 1) (T —4I)~!

is a unitary operator and 1 is not an eigenvalue of this operator.

Solution. Let Q = (T +4I)(T —il)~!. The complex spectral theorem (7.31) guarantees the
existence of an orthonormal basis ey, ...,e,, of V such that T'e;, = A, e;, for some eigenvalues
Aly -y A, which must be real since T is self-adjoint. For each k € {1,...,n} a routine calcu-

eey no

lation shows that

A + i
Ae — i

and ‘

Thus, by 7.55, () is a unitary operator. Now observe that for any v € V,
Qu=v = Qv=v = (T—il)v=T+il)v = 2iv=0 = v=0.

Thus 1 is not an eigenvalue of Q.

Exercise 7.D.17. Explain why the characterization of unitary matrices given by 7.57
holds.

Solution. Let @ € F™™ be a matrix and let S € £(F™) be such that @ is the matrix of S
with respect to the standard orthonormal basis of F™. By definition, @ is a unitary matrix
if and only if 7.49(e) holds (we are taking both orthonormal bases e, ...,e, and fi,..., f,,, in
the statement of 7.49 to be the standard orthonormal basis of F™). Observe that

757(a) < T49(e) <« 7.49(a) < 753(a) < 7.53() < T7.57(b).

Thus 7.57(a) and 7.57(b) are equivalent. After identifying elements of F™ with column vec-
tors, i.e. n-by-1 matrices, note that |Qu|| = ||Sv| for any v € F™. As noted before, @ is a
unitary matrix if and only if S is a unitary operator. The equivalence of 7.57(a) and 7.57(c)
is now immediate from the definition of a unitary operator. Finally, by 7.9, the matrix of S*
is Q*. The equivalence of 7.57(a) and 7.57(d) then follows from the equivalence of 7.53(a)
and 7.53(b).
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Exercise 7.D.18. A square matrix A is called symmetric if it equals its transpose.
Prove that if A is a symmetric matrix with real entries, then there exists a unitary

matrix () with real entries such that Q*AQ is a diagonal matrix.

Solution. Suppose A € R™" and let e, ..., e,, be the standard orthonormal basis of R™. Let
T € £L(R™) be such that M (T, (eq, ...,e,)) = A. By assumption A = A* and thus T is self-
adjoint. It follows from the real spectral theorem (7.29) that there exists an orthonormal
basis fi, ..., f, of R™ such that D := M(T, (fy, ..., f,)) is diagonal. Let

Q=M (f1,- [n), (€1, --s€,))-

Certainly the identity operator on R™ is an isometry. It follows from the equivalence of
7.49(a) and 7.49(e) that @ is a unitary matrix. On one hand, 7.57 shows that Q= = Q*. On
the other hand, 3.82 shows that

Qil = M(T, (61, ceey en), (-f].’ ceey fn))
Thus, using the change-of-basis formula (3.84), we have that Q*AQ = D is diagonal.

Exercise 7.D.19. Suppose n is a positive integer. For this exercise, we adopt the no-
tation that a typical element z of C™ is denoted by z = (%, 21, --., 2,1 ). Define linear
functionals wg,wy, ...,w,_; on C™ by

1 n=l

Z,, €

wJ(ZO,Zl, "'7ZTL71) f— ﬁmzo m 271'1,jm/n

The discrete Fourier transform is the operator F : C™ — C™ defined by
Fz=(wy(z),w1(2),...,w,_1(2)).
(a) Show that & is a unitary operator on C™.
(b) Show that if (2, ..., 2,_1) € C™ and %, is defined to equal z;, then
F YNz, 21y s 2ne1) = F (2, 21y o) 21)-
(c) Show that F4 =1T.

The discrete Fourier transform has many important applications in data analysis. The
usual Fourier transform involves expressions of the form f < f (z)e~ 2™ dx for com-
—Oo

plex-valued integrable functions f defined on R.

Solution.

(a) For this exercise, let us count from 0 to n — 1 instead of from 1 to n for columns of

matrices etc. Let ey, ..., e,,_; be the standard orthonormal basis of C™ and observe that
o’k
w;e, = ——=, where a=e

NG

—27i/n
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It follows that

1 1 1 1
1 « a2 - antl
1
Q = M(?, (60, coey en_l)) = % 1 a2 a4 a2(n_1)
1 a1 q2(n-1) ... g(n-1)(n-1)

Thus the Euclidean inner product of the j® and k* columns of @ is

1 n—1 1 n—1
- Z OéJO{ - Z 2mi(k—j /n
n m=0 n m=0
If j = k then e2™(k=9)/» = 1, 50 that
n—1 n—1
LS (eritamym 2 L5 2
n n
m=0 m=0

and if j # k then e?™(k=3)/» L 1 and the geometric series formula gives us

[y

n— (em(k_j)/n)m _ 1— [e2m'(k—j)/n] _ 1 — e2mi(k—j) 0
n(1— e2milk=/n) ~ (1 — e2milk—i/n) ’

S|

0

3
I

where we have used that e?™*~7) =1 since k — j is an integer. We have now shown
that the columns of @) form an orthonormal list in C™ with respect to the Euclidean

inner product. It follows from 7.49 that F is a unitary operator.
(b) Define & € £L(C™) by E(2g, 21y -y 2n_1) = F (29, Zp_1, ---, 21) and observe that
Ceg=Fey, and Ee, =Fe, , forke{l,..,n—1}.

Thus, letting X = M (&, (e, ..., €,_1)), we have

p Qr ifk=0,
PR Qg ifke{l, . ,n—1}

For k € {1,...,m — 1}, observe that

ok — e2mijk/n _ g2mijk/n —2mij _ g—2mij(n—k)/n _ ,j(n—k)

It follows that
kj

o a](nfk)

NN
By inspection of @, it is also clear that Qo = Q, . Thus Q7 , = X, ;. for all j, k and
it follows that & = F* = F 1.

k= Qrj= = Qjn k-

(¢) The formula in part (b) shows that

?2(2/(0,21, ""Z’I’Lfl) - (ZO,anl, ...,Zl) = ?4(20721, ""anl) - (20,21, ""anl)'
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Exercise 7.D.20. Suppose A is a square matrix with linearly independent columns.
Prove that there exist unique matrices R and @) such that R is lower triangular with

only positive numbers on its diagonal, ) is unitary, and A = RQ.

Solution. If A has linearly independent columns then Exercise 7.A.7 (b) shows that A* also
has linearly independent columns. It follows from 7.58 that there exists a unitary matrix

P and an upper triangular matrix U with only positive numbers on its diagonal such that
A* = PU. It follows that A = R(Q), where R = U* and Q = P*. Observe that R is lower tri-

angular with only positive numbers on its diagonal and that @ is unitary by 7.57.
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7.E. Singular Value Decomposition

Exercise 7.E.1. Suppose T' € £(V,W). Show that T =0 if and only if all singular

values of T are 0.

Solution. Let N be the number of positive singular values of T'. It will suffice to show that
T =0 if and only if N = 0. Indeed, 7.68(b) shows that

N =0 < dimrangeT =0 < T =0.

Exercise 7.E.2. Suppose T' € £(V,W) and s > 0. Prove that s is a singular value of

T if and only if there exist nonzero vectors v € V and w € W such that
Tv=sw and T*w = sv.

The vectors v, w satisfying both equations above are called a Schmidt pair. Erhard
Schmidt introduced the concept of singular values in 1907.

Solution. Suppose that s is a singular value of T'. Thus, letting s, ..., s,,, be the positive
singular values of T', we have s = s, for some k € {1,...,m}. Let e, ...,e,, and fi,..., f,,, be
the orthonormal lists obtained from the SVD (7.70). It follows from 7.70 and 7.75 that

Te, =s,f, and T*f, = s.e.
Thus we can take v = e, and w = f.
Conversely, suppose there exist non-zero vectors v € V and w € W such that
Tv=sw and T*w = sv.

It follows that T*Tv = s?v, so that s? is an eigenvalue of T*T. Thus v's2 = s is a singular

value of T', where we have used that s is non-negative.

Exercise 7.E.3. Give an example of T € £(C?) such that 0 is the only eigenvalue of

T and the singular values of T" are 5, 0.

Solution. Let T € £ (C2) be the operator whose matrix with respect to the standard basis

0 0

and note that 0 is the only eigenvalue of T'. Note further that the matrix of T*T is

(50)(00)= (6 25)

Thus the singular values of T" are 5, 0.
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Exercise 7.E.4. Suppose that T' € £(V, W), s; is the largest singular value of T', and

s,, is the smallest singular value of T'. Prove that

{|Tv| :v €V and |v| =1} = [s,, 5]

Solution. We consider several cases.

Case 1. If s; = s,, = 0 then all singular values of T" equal 0 and Exercise 7.12.1 shows that
T = 0. Thus

{ITv| :veV and |Jv]| =1} = {0} =[0,0] = [s,,, 51]-
Case 2. If s; = s, > 0 then note that all singular values of s7'T equal 1. It follows from
7.69 that s7'T is an isometry and hence that
{ITv]:veVand o] =1} = {s1} = [s1,51] = [s, 51]:
Case 3. Suppose that s; > s,,, which implies s; > 0. Let s4,..., s,,, be the positive singular

values of T' and let ey, ...,e,, and f;,..., f,, be the orthonormal lists obtained from the SVD
(7.70). For any v € V, 7.70 and 6.24 show that

Tv= 81<’U,61>f1 +"'+8m<v7em>fm = ”TU”2 = S%‘(’U,61>|2+"'+872n‘<7],em>’2.
For any v € V such that |v| = 1, it follows from Bessel’s inequality (6.26) that

2
ITo)* < 53 (] (v, 1)

2 2 2
+o 4 v, e)f) <stlol* =51 = [To] <.

Thus {|Tv|:v €V and |v| =1} C [0, s,]. To complete the exercise, we now consider two

subcases.

Case 3.1. If s,, > 0 then it must be that m =n = dimV, so that e, ..., e,, is an orthonormal
basis of V. It follows that

2 2 2 2
ITol* > s (I, e)|* + - + (v, e,) ") = salol* = s = [To] > s,,.

Thus {|Tv| : v €V and |v| =1} C [s,, s1]. For s € [s,,, 51], let

s2—s2 s%—s2

V=4 —=—2e; + 4] —=——e,.
g2 — g2 I s2 g2 "
1 n 1 n

A calculation shows that |v| =1 and |Tv| = s. Thus [s,,,s;] C {|Tv| : v € V and |jv| = 1}

and we may conclude that
{ITv]:v eV and |v]| = 1} = [s,, s,].

Case 3.2. If s,, =0 then it must be that m < n =dimV. Extend the orthonormal list
€y, .-, €, to an orthonormal basis e, ...,e,, of V. As noted in the discussion after the proof
of 7.70, it follows that e, € nullT. For s € [0, 5], let
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s 52
v=—e +4/1——e,.

A calculation shows that |v| =1 and |Tv| =s. Thus [0,s,] C {|Tv|:v €V and |jv| = 1}

and we may conclude that

{ITv] s v eV and o] =1} = [0,51] = [s,,, 51].

Exercise 7.E.5. Suppose T' € £(C?) is defined by T'(z,y) = (—4y, z). Find the singular

values of T'.

Solution. The matrix of T with respect to the standard basis of C? is

0 —4 0 1\(0 —4 10
A= A= = .
(1 o) = 4 (—4 0)(1 0) (0 16)
Thus the singular values of T" are 4, 1.

Exercise 7.E.6. Find the singular values of the differentiation operator D € £(P,(R))
defined by Dp = p’, where the inner product on P,(R) is as in Example 6.34.

Solution. As shown in Example 6.34, the list

— 1 _ 3 _ 45 (.2 1
61—\/; 62—\/;95’ 63—\/§($ -3)

is an orthonormal basis of P5(R) with respect to the inner product given in Example 6.34.
Observe that

De, =0, D€2=\/§=\/§61, Des = 1/ 2(2x) = V15e,.

Thus the matrix of D with respect to ey, ey, e is

V3 0 0 0 0\/(o+v3 0 000
0\/1_5 =>A*A:\/§OO 00@2030.
0 0 0 V15 0/ \o o

It follows that the singular values of D are v/15,/3,0.

A=

o o O

Exercise 7.E.7. Suppose that T' € £(V) is self-adjoint or that F = C and T € £(V) is
normal. Let A, ..., \,, be the eigenvalues of T', each included in this list as many times
as the dimension of the corresponding eigenspace. Show that the singular values of T

are ||, ..., |\, |, after these numbers have been sorted into decreasing order.

Solution. By Exercise 7.B.14 /Fxercise 7.B.15, we know that there is a decomposition of V'

into a direct sum of mutually orthogonal eigenspaces of T'. Thus n = dim V' and there exists
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an orthonormal basis ey, ...,e,, of V such that Te, = A e, for each k € {1,...,n}. It follows
from 7.21(e) that

T*ek - )\_kek = T*Tek - |)\k|26k.

Thus each vector in the list |A\{], ..., |\, | is a singular value of T. As noted in the table on
p- 272, the length of the list of singular values of T is exactly dim V' = n. Thus, after being

sorted into decreasing order, ||, ..., |\,,| are the singular values of T'.

Exercise 7.E.8. Suppose T € £(V,W). Suppose s; > s4 > - >s,, >0 and e, ...,e

m

is an orthonormal list in V and f;, ..., f,,, is an orthonormal list in W such that
Tv=s(v,e)) 1+ + 5, (v, €)1
for every v € V.
(a) Prove that f, ..., f,,, is an orthonormal basis of range T'.
(b) Prove that ey, ...,e,, is an orthonormal basis of (nullT)".
(c¢) Prove that sq, ..., s,, are the positive singular values of T
)

(d) Prove that if k£ € {1,...,m}, then e, is an eigenvector of T*T with corresponding

eigenvalue s%.

(e) Prove that

TT*w = s3{w, f1) f1 + -+ 82w, f,.) fn

for all w e W.

Solution.

(a) Because the equation
Tv = 81<U7 61>f1 +ot sm<’07 em)fm

holds for all v € V, it is clear that fi,..., f,,, spans rangeT". By assumption fi, ..., f,, is
orthonormal and hence linearly independent (6.25). Thus fi, ..., f,,, is an orthonormal

basis of rangeT'.

(b) If v € null T then
OZTU281<U561>f1+"'+8m<v’em>fm = <Ua61> == <’U,€m> :Oa

where we have used that f;,..., f,, is linearly independent and that each s, is strictly

positive. Thus {ey, ...,e, .} C (nullT)"*. By assumption ey, ...,e, is orthonormal. Fur-

thermore, by 6.67 we have dim (null T)" = dimrange T = m. It follows from 6.28 that
is an orthonormal basis of (null7)".

€1y ey €y

(c) Extend the orthonormal list ey, to an orthonormal basis ey, ..., €4,y of V and

ey €,
extend the orthonormal list f, ..., f,,, to an orthonormal basis f, ..., fyimy of W. As in

the discussion after the proof of 7.70, we have
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Tek _ {Skfk lf k/‘ ~ {]_, ...,m},
0 otherwise.

For any j € {1,...,dim W}, it follows that

i dim V7 . dim V7 s;e; if j€{1,..,m},
T fj = Z <T fja€k>€k = Z <fjaTek:>ek: =

k=1 k=1 0 otherwise.

Thus

T*Te — sie, ifke{l,..,m},
g 0 otherwise.

From this expression and the fact that s; > s, > - > s, > 0, we see that the list

s2,...,82 consists of the eigenvalues of T*T listed in decreasing order with each eigen-
value appearing as many times as the dimension of the corresponding eigenspace of

T*T. It follows that the singular values of 1" are precisely sy, ..., ,,.
(d) We proved this in part (c).
(e) Because the equation

Tv=s1(v,e)f1+ -+ 5 (v, €)1

holds for all v € V', the calculation in the proof of 7.75 shows that equation 7.77 holds
for all w € W. Thus, for any w € W,

m

TT*w =T (Z sk(w,fk)ek> = Zsj <Z sipw, fr)ex, ej>fj = ZS? <w, fj>fj'
k=1 j=1 k=1

=1

Exercise 7.E.9. Suppose T' € £(V,W). Show that T and T* have the same positive

singular values.

Solution. Let sq, ..., s,,, be the positive singular values of T*. By the SVD (7.70), there exists

an orthonormal list f;,..., f,,, in W and an orthonormal list ey, ..., e,, in V" such that

T*w= 51<w’ f1>61 T+t Sm<w7 fm>em
for every w € W. It follows from 7.75 that
Tv= (T*)*’U = 51<U’ €1>f1 T+t Sm(”’ em>fm

for every v € V. Thus, by Exercise 7.5.8, the positive singular values of T" are s, ..., s,,. We
have now shown that if s, ..., s,,, are the positive singular values of T* then s, ..., s,,, are the
positive singular values of T'. Replacing T' with 7™ in this result and using that (T*)* =T

gives us the desired equivalence.
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Exercise 7.E.10. Suppose T' € £(V,W) has singular values sy, ..., s,,. Prove that if T

is an invertible linear map, then T~! has singular values

Solution. Because T is invertible, 7.68 shows that each singular value of T" must be positive.
By the SVD (7.70), there exists an orthonormal list e;,...,e,, in V' and an orthonormal list
fis- [, in W such that

Tv= S1 <U7 el)fl +t sn<v7 en>fn
for every v € V. Note that T~! =TT by 6.69(a). It follows from 7.75 that

T’1w= <w7fn>en+.__+ <’LU,f1>
$1

€1

Sn

for every w € W. Since
1

51

1
Sy > >8>0 = —>>—>0,
STL

Fxercise 7.1.8 shows that s.1, ..., s71 are the singular values of T~! (we are taking the or-

thonormal lists required by Exercise 7.E.8 to be f,, ..., f; and e, ..., e;).

Exercise 7.E.11. Suppose that T'€ £(V,W) and vy, ...,v,, is an orthonormal basis of

V. Let sq, ..., s,, denote the singular values of T'.

n

" =53+ + 52

(a) Prove that |Tv,|* + -+ |Tv,
b) Prove that if W =V and T is a positive operator, then
(

<Tvla 1)1> + ot <Tvnavn> =8y + -+ 85,

See the comment after Exercise 5 in Section 7A.

Solution.

(a) Let sq,...,s,, be the positive singular values of T'. As discussed after the proof of 7.70,
there exists an orthonormal basis ey, ..., e,, of V and an orthonormal basis f;, ..., fomw
such that

Tek _ {Skfk lf k/‘ ~ {]_, ...,m},
0 otherwise.

It follows from Exercise 7.A.5 that

DITul? =) ITel” =) lsifil® =D st =) sk,
k=1 k=1 k=1 k=1 k=1

where we have used that s, = 0 if £ > m for the last equality.
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(b) Because T is a positive operator, T must be self-adjoint and each of its eigenvalues
must be non-negative. Recalling that singular values are non-negative, Exercise 7.15.7
shows that sy, ..., s,, must be the eigenvalues of T'. It follows from 7.39 that /sy, ..., /s,
are the eigenvalues of v/T and another application of Exercise 7.E.7 shows that the
singular values of v/T are /315 -+ /35 Thus, by part (a),

n

> (To,0,) = S IVT0, P = 51+ -+,
k=1 k=1
Exercise 7.E.12.

(a) Give an example of a finite-dimensional vector space and an operator T" on it such

that the singular values of T2 do not equal the squares of the singular values of 7.

(b) Suppose T € £(V) is normal. Prove that the singular values of T? equal the squares

of the singular values of T'.

Solution.

(a) Consider the operator T' € £(F?) whose matrix with respect to the standard basis of

.

A calculation shows that the singular values of T are 1,0. However, since T2 = 0, the

singular values of T are 0, 0.

(b) Suppose that sq,...,s,, are the singular values of T, so that there is an orthonormal

basis ej, ..., e, of V such that T*Te, = s2e,. Using that T is normal, observe that
(T%)*T?e;, = (T*T)%e), = siey,.

Thus the singular values of T? are s?, ..., s2.

Exercise 7.E.13. Suppose T3, T, € £(V). Prove that T} and T, have the same singular
values if and only if there exist unitary operators S;, S, € £(V) such that T} = S;15S5,.

Solution. Suppose there exist such unitary operators and observe that
Ty = S3T3St = S; 1Ty S = 14T, = S; 3T, S,
= TyTy — M = S; 1 (T3Ty, — M\I)S, for all A € F

= dim E(\, T;T}) = dim E(\, T} T,) for all A € F.

Thus T and T, have the same singular values.
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Now suppose that T} and T; have the same singular values s, ..., s,,, ..., s,,, where s, ..., s

are positive and s, = 0 if £ > m (it may be the case that m = n). By the SVD (7.70), there

exist orthonormal bases

m

€1yees €y f1yeos fns 915y Gny Ry By

of V such that

{skfk if ke {1,...,m}, sph, ifke{l,..,m},

0 otherwise.

and To9, =
0 otherwise, 29k {

Define S;,5, € £(V) by S h;, = f;, and Sye;, = g;, and note that S; and S, are unitary op-
erators by 7.53(d). Furthermore,

ke{l,.m}t = 5T,5¢€, = 5Ty, =s;51hy = s,fr = Tiey,
k' >m = SlTQSQek = SlT2gk =0= Tlek.

Exercise 7.E.14. Suppose T € £(V,W). Let s,, denote the smallest singular value of
T. Prove that s, |v| < |Tv| for every v € V.

Solution. If v = 0 then the inequality is clear, so suppose that v # 0. It follows from Exercise
7.F.4 that

s, < HT(H) H = sl < IT0l.
v

Exercise 7.E.15. Suppose T € £(V) and s; > - > s,, are the singular values of T.
Prove that if A is an eigenvalue of T', then s; > |A| > s,,.

Solution. Let v € V be such that Tv = Av and |v| = 1. It follows from Exercise 7.E.4 that
Al = Aol =Tl €[5, 51]-

Exercise 7.E.16. Suppose T € £(V,W). Prove that (T*)" = (T)".

Compare the result in this exercise to the analogous result for invertible linear maps

[see 7.5(f)].

Solution. Let s, ..., s, be the positive singular values of T'. The SVD (7.70) and 7.75 imply
the existence of an orthonormal list ey, ...,e,, in V and an orthonormal list fi,..., f,,, in W

such that

m

T*w = s1{(w, fr)eq + -+ s, (w, frn) e
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for every w € W. Since $q,...,s,, are also the positive singular values of T™ (see Exercise

m

7.1.9), another application of 7.75 shows that

v, e v, €,
(T*)T’U — < 1>f1 +.”+ < >fm
1 m
for every v € V.
Also by 7.75, we have
TTU} — <w>fm>em 4t <w7 f1>61
Sm S1

for every w € W. It follows from Exercise 7.5.8 that s ! ... s 1

. are the positive singular

values of TT and we can apply 7.75 once more to see that

(TT)*U — <v;€m>fm 4ot <Ua 61>

m 1

fi

for every v € V. Thus (T*)! = (T7)".

Exercise 7.E.17. Suppose T € £(V). Prove that T is self-adjoint if and only if T is
self-adjoint.

Solution. Observe that

where we have used Exercise 6.C.23 for the first equivalence and Exercise 7.1.16 for the

second equivalence.
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7.F. Consequences of Singular Value Decomposition

Exercise 7.F.1. Prove that if S,T € £(V,W), then ||S| — |T|| < |IS — T.

The inequality above is called the reverse triangle inequality.
Solution. The proof is essentially the same as the proof given in Fxercise 4.2.

Exercise 7.F.2. Suppose that T' € £(V) is self-adjoint or that F = C and T € £(V)

is normal. Prove that

|T|| = max{|A| : A is an eigenvalue of T'}.

Solution. Let Ay, ..., \,, be the eigenvalues of T', included in this list as many times as the
dimension of the corresponding eigenspace. As shown in Exercise 7.E.7, the singular values
of T are |\{], ..., |\, | (sorted in decreasing order). It follows from 7.88(a) that

|T'| = max{|A| : A is an eigenvalue of T'}.

Exercise 7.F.3. Suppose T € £(V,W) and v € V. Prove that

ITol = Tl & T*To=|T|*.

Solution. Suppose that T*Tv = |T|*v. Using 7.88(c) and 7.91, it follows that
2 * *
IT1" ol = 1T*To] < [T*[|Tol = ITNTvl = |T]lo] < [Tv].
Since |Tv| < |T||v| (by 7.88(c)), we may conclude that |Tv| = |T|||v]-
Suppose that |Tv| = |T||v| and observe that

|70 — T Po||* = (@ Tv — 7120, T T — |T])
= |T*To|” + IT)*Jo]* — 2Re(T T, | T|*v)
%2 2 2 2 2 2
< T*FITol™ + 1T T " = 20T T (7.88(c))

= 0. (7.91)

Thus T*Tv = |T|*v.

Exercise 7.F.4. Suppose T' € £L(V,W),v € V, and |Tv| = |T|||v||. Prove that if u € V
and (u,v) = 0, then (T'w, Tv) = 0.

Solution. By Exercise 7.F.4 we must have T*Tv = |T|*v. It follows that
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(Tu, Tv) = (u, T*Tv) = (u, | T*0) = |T]*(u,v) = 0.

Exercise 7.F.5. Suppose U is a finite-dimensional inner product space, T' € £(V,U),
and S € £(U,W). Prove that

ISTI < ISTIT-

Solution. By 7.88(c) we have, for any v € V,
|SToll < ISIITol < [SIT]v]-

It follows from the minimality of |ST| that |ST| < || S||T|.
Exercise 7.F.6. Prove or give a counterexample: If S, T € £(V), then |ST| = |T'S]|.

Solution. This is false. For a counterexample, consider the operators S, T € £ (R2) whose

matrices with respect to the standard basis of R? are

(1 0) and (0 1)

00 00/

A routine calculation shows that ST = 0 whereas T'S # 0. It follows from 7.87(b) that
IST| =0+ |T5S].

Exercise 7.F.7. Show that defining d(S,T) = |S —T| for S,T € £(V,W) makes d a
metric on L(V,W).

This exercise is intended for readers who are familiar with metric spaces.

Solution. Certainly d is non-negative and d(T',T) = 0 for any T € £(V,W). Furthermore,
d(S,T) = 0implies S = T by 7.87(b), and we have d(S,T) = d(T, S) forany S,T € £L(V,W)
since |Sv — Tw| = |[Tv — Sv| for any v € V. Finally, 7.87(d) shows that

d(R,T) < d(R,S) +d(S,T)

for any R, S, T € £(V,W).

Exercise 7.F.8.
(a) Prove that if T'€ £(V) and |I —T| < 1, then T is invertible.
(b) Suppose that S € £(V) is invertible. Prove that if T' € £(V) and
Is =Tl < 1/]s1],
then T is invertible.

This exercise shows that the set of invertible operators in £(V) is an open subset of

L(V'), using the metric defined in Exercise 7.
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Solution.

(a) We will prove the contrapositive statement. Suppose that T' is not invertible, so that

there is some non-zero v € V such that Tv = 0. It follows that
I =Tvll = (I =T)o| = o] = |I-T]>1.

(b) The proof is a generalization of the proof in part (a). We will again prove the contra-
positive statement. Suppose that T' is not invertible, so that there is some non-zero
v € V such that Tv = 0. Observe that

[ol = 157 Sv]| < [S7HISvll = IS7HI(S — T)ol < [STHIS — T[lv]

1
= |S—-T|| > 5=
IS~

Exercise 7.F.9. Suppose T € £(V). Prove that for every € > 0, there exists an invert-
ible operator S € £(V) such that 0 < |T' — S| < e.

Solution. Because T' can have only finitely many eigenvalues, we can choose some § € (0, €)
such that J is not an eigenvalue of T'. Letting S =T — 41, it follows that S is invertible and
that S # T'. Thus

0<|T—S|=[6I|=05<e.

Exercise 7.F.10. Suppose dimV > 1 and T € £(V) is not invertible. Prove that for
every € > 0, there exists S € £(V') such that 0 < |T'— S|| < e and S is not invertible.

Solution. Since T is not invertible, there exists some e; € null T such that |e;| = 1. Extend
this to an orthonormal basis e, ..., e,, of V and note that n > 2. Define S € £(V) by Se; =0
and Sej, = Te, — te;, for k > 2. Notice that S is not invertible and that S # T'. Notice fur-
ther that, for any v € V,

9 2
[(T = S)ol* = |5 (v, ez)en + -+ (v,e,)e,) |
2 2 2 202
= S ([(v,e)” + - + (v, e)[*) < o™
Thus (T — S)v| < 5|v| for any v € V. It follows that |[T'— S| < 5 <e and hence that

0<|T—S|<e,since S+T.

Exercise 7.F.11. Suppose F = C and T' € £(V'). Prove that for every € > 0 there exists
a diagonalizable operator S € £(V') such that 0 < |[T — S| < e.

Solution. We will prove that S may be chosen to have dim V' distinct eigenvalues, which

implies the desired result by 5.58.
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By Schur’s theorem (6.38), there is an orthonormal basis e, ..., e,, of V with respect to which

the matrix of T is upper-triangular, say

Ay * e %
M(T, (e, emen)) = | O M2 77
0 0 A,
Let D € £(V) be given by De; = ke,, so that
100
MD, (er, o)) = [ § 77
0 0 en

It is straightforward to verify that |D| =n. For 6 € R and j,k € {1,...,n} such that j < k,
notice that

Since there are only finitely many such choices of j and k, we may choose a § € (0, %) such
that \; + 70 # A + ké for each j,k € {1,...,n} satisfying j < k. It follows that the diagonal

entries of the upper-triangular matrix

)\1 +6 * e *
M(T +6D, (e, me,)) = | O 2272 = |
0 0 X, +nd

and hence the n eigenvalues of the operator S :=T + §D, are distinct. Furthermore,
0<d = S+T = 0<|T-S9|,
(5<% = |T—S|=4|D|<e.

Exercise 7.F.12. Suppose T € £(V) is a positive operator. Show that ||VT|| = /[T

Solution. Let s be the largest singular value of v/T, i.e. H\/TH = s. Since VT is positive
and hence normal, Exercise 7.1.12 (b) shows that the singular values of T' equal the squares
of the singular values of v/T. Given that singular values are non-negative, it follows that the
largest singular value of T is s2, i.e. |T| = s2. Thus |[VT| =s = VT

Exercise 7.F.13. Suppose S, T € £(V) are positive operators. Show that
IS =T < max{|lS|, |T[} < [S+T1.

Solution. Let us prove a couple of useful lemmas.
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Lemma L.13. If A € £(V) is a self-adjoint operator then ||A|I — A is a positive op-

erator.

Proof. First note that |A||I — A is a real-linear combination of self-adjoint operators
and hence is itself self-adjoint (see 7.5). Now suppose that A € R is an eigenvalue of
|A|II — A, say |A|v— Av = Av for some v € V. It follows that A — | A| is an eigenvalue
of A and hence, by Exercise 7.F.2,

A=lAll <Al = A=0.

Thus |A||I — A is a positive operator by 7.38(b). O

Lemma L.14. If A and B — A are positive operators then |A| < |B].

Proof. Note that B = (B — A) + A is a positive operator by FExercise 7.C.6. It follows

from Lemma 1..13 that |B||I — B is a positive operator and hence that
|BII = A= (|B|I = B)+(B—A)
is a positive operator. Suppose A > 0 is an eigenvalue of A, say Av = Av for some v € V.
Observe that
(IBII — A)v = (1B = Ao,
so that |B| — A is an eigenvalue of the positive operator |B|I — A. It follows that

| B — A is non-negative and hence that A < |B|. Since this was true for any eigenvalue

of A, and each such eigenvalue is non-negative, Exercise 7.F.2 shows that
|A| = max{|A| : A is an eigenvalue of A} < |B|,

as desired. O

Returning to the exercise, suppose A € R is an eigenvalue of the self-adjoint operator S — T,
say (S —T)v = Av for some v € V. It follows that

SN = (S =T))v = (IS] = Mv
and hence that |S| — A is an eigenvalue of |S||I — (S —T'). Notice that ||S|I — (S —T) is a
positive operator by Lemma [..13 and Exercise 7.C.6, so that its eigenvalues are non-negative.

Thus A < ||S] and a similar argument with the operator S — T + |T'|I shows that —||T"| < A.
It follows that |A\| < max{|S|,|T|} and hence, by Exercise 7.F.2,

|S — T'|| = max{|A| : A is an eigenvalue of S — T'} < max{|S|, T}

Applying Lemma [..14 twice, first with A=T and B=S + T and then with A =S and
B =5+ T, shows that
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ISI<IS+T| and [T][<|S+T| = max{|S],|T]} <[S+TI

Exercise 7.F.14. Suppose U and W are subspaces of V such that |P; — Py | < 1.
Prove that dimU = dim W.

Solution. Using the identities P; = I — Py and Py, = I — Py (see Exercise 6.C.5) and
Exercise 7.F.8 (a), we see that the operators Py + Py, and Py + Py, are invertible. It
follows that

UNW = (null Pyu) N (null Py,) C null(Py. + Py) = {0} = UNnWt=/{0},
V =range(Py + Py.) C (range Py) + (range Py, ) =U + W+ = U+Wi=V.
Thus, using 6.51,
dimV =dim(U + Wt) = dimU + dim W+ —dim(UN W) =dimV + dimU — dim W
= dimU =dimW.

Exercise 7.F.15. Define T' € £(F?) by
T (21,29, 23) = (23,221, 32).

Find (explicitly) a unitary operator S € £(F?) such that T = SvT*T.

Solution. Let e;, ey, e5 be the standard orthonormal basis of F3. A routine calculation shows

that the singular value decomposition of T is
Tv = 3(v,e5)es + 2(v,eq)eq + (v, e5)e.

As the proof of 7.93 shows, if we take S € £(V) to be the unitary operator defined by
Sey =e€3, Se; =ey, and Se; =ey,

then T'= SvT*T.

Exercise 7.F.16. Suppose S € £(V) is a positive invertible operator. Prove that there
exists 0 > 0 such that T is a positive operator for every self-adjoint operator T' € £(V)
with |S — T < 4.

Solution. Let u be the least singular value of S and note that u > 0 since S is invertible.
Note further that /i > 0 is the least singular value of V'S by Exercise 7.1.12 (b). Thus, by
Exercise 7.E.14,

(Sv,v) = (120, $120) = || S/20|° > pfo]? (1)

for every v € V. Suppose T' € £(V) is a self-adjoint operator satisfying ||S — T'| < u. For any
v € V, the Cauchy-Schwarz inequality gives us
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(8 —T)v,0) < I(S = T)olloll < IS —Tlo)* < plol)”
= pulv]* + (T — S)v,v) > 0. (2)
Combining inequalities (1) and (2) we obtain, for any v € V,
(Tw,v) = (Sv,v) + (T — S)v,v) > plv|*> + (T — S)v,v) > 0.

Thus T' is a positive operator.

Exercise 7.F.17. Prove that if u € V and ¢, is the linear functional on V' defined by
the equation ¢, (v) = (v,u), then [, [ = [u].

Here we are thinking of the scalar field F as an inner product space with {c, 3) = af

forall o, B € F. Thus |, | means the norm of ,, as a linear map from V to F.

Solution. The Cauchy-Schwarz inequality shows that
pu(0)] = [{v, )| < [uf|lv]

for any v € V. It follows that |¢,| < |u|. Since |p, (uw)| = |{(u,u)| = |u|, we may conclude
that [, | = Jlul-

Exercise 7.F.18. Suppose e, ..., e, is an orthonormal basis of V and T' € £(V,W).
2 2\1/2
(a) Prove that max{|Te, |, ..., [Te, |} < |T| < (ITes” + - + [ Te,|*) "
2 2\1/2 . e s
(b) Prove that |T'|| = (HT61H + -+ |Te,| ) if and only if dimrangeT < 1.
Here e, ..., e,, is an arbitrary orthonormal basis of V, not necessarily connected with
a singular value decomposition of T'. If s, ..., s,, is the list of singular values of T,
then the right side of the inequality above equals (s3 + -+ + sfl)l/ 2, as was shown in
Exercise 11(a) in Section 7E.
Solution.
(a) For any k € {1,...,n} we have |Te;| < |T|lexl = IIT| and thus
max{||Te,, ..., |Te,|} < |T].

Let sy, ..., s, be the singular values of T' and suppose that s, ..., s,, are the positive

singular values of T'. Suppose further that

Tv= 81<U, fl)gl + et Sm(”a fm)gm

is a singular value decomposition of T'. For any v € V', observe that

2 2 2
|ITv)* = s3|(v, f1)|° + -+ s2,|(v, f,)]
< (s34 +s2)|v)

< (s3+ -+ 82)|v)*.
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Thus |Tv| < (s34 -+ 3721)1/2 |v| for every v € V', which implies that

1/2
IT] < (52 + -+ 82)"% = (ITes |2 + -+ [ Te, |?) ",

where we have used Exercise 7.F.11 (a) for the last equality.

(b) Let sq,...,8, be the singular values of T'. By Exercise 7.E.11 (a) and 7.68(b), it will

suffice to show that |T| = (s + - + 52)1/2 if and only if T has at most one positive

singular value.

If T has at most one positive singular value then s, = 0 for £ > 2. It follows that

IT) = s, = (s3)"* = (s2 4 +52)""°.

If T has at least two positive singular values then s, > 0 and it follows that

IT) =51 = (s2)"% < (s2+ 63+ +2) /%

Exercise 7.F.19. Prove that if T € £(V, W), then |T*T| = |T).
This formula for |T*T| leads to the important subject of C*-algebras.

Solution. For any v € V', observe that
[(T*T) Y2 0|* = (T*T)/2 v, (T*T)H2v) = (T*Tv,v) = (Tv, Tv) = |To|* < |T|?|o]*.
It follows that ||(T*T)'/2| < |T|. By the polar decomposition (7.93), there exists a unitary
operator S € £(V) such that T = S(T*T)'/2. Note that
|S| = max{||Sv||: v € V and |V| =1} = max{1} = 1.
It then follows from Exercise 7.F.5 that
|7 = [.S(T*T) 2| < ISIIT*T)V2] = |(T*T)*7].

Thus |(T*T)Y/2| = |T|, which is equivalent to |[T*T| = |T|* by Exercise 7.F.12.

Exercise 7.F.20. Suppose T € £(V) is normal. Prove that |T%| = |T'|* for every pos-

itive integer k.

Solution. Let k£ be a positive integer and suppose sy, ..., s,, are the singular values of T', so
that || = s;. As in Exercise 7.E.12 (b), let ey, ..., e,, be an orthonormal basis of V' such that
* ) . . . .
T*Te; = sje; for each j € {1,...,n}. Using the normality of T, it follows that
EV*Thke — (T*T\ke . — o2k
(TF)* Tke; = (T*T)%e; = s5%€;

k

for each j € {1,...,n}. Thus the singular values of T* are s¥, ..., s*; these are still in decreas-

ing order since the function z + ¥ is strictly increasing on [0, 00). It follows that

|T*] = s§ = |T]*.
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Exercise 7.F.21. Suppose dim V' > 1 and dim W > 1. Prove that the norm on £(V, W)
does not come from an inner product. In other words, prove that there does not exist
an inner product on £(V, W) such that

max{||Tv| :v eV and |v|| <1} =/ (T, T)

forall T € L(V,W).

Solution. Let vy, ...,v,, be an orthonormal basis of V and let wy, ..., w,, be an orthonormal
basis of W; note that m,n > 2. Let S,T € £(V,W) be the linear maps given by

Sv; =wy, Svy=wy, and Sv,=0if k> 2,
Tvy = —w;, Tvy=w,, and Tv, =0if k> 2.
It is straightforward to verify that
|S+T|=15-T[=2 and [S]=][T]|=1
= |S+TI* +1S —T|* =8 # 4 =2(|S|" + |T|*).

Thus the norm on £(V,W) does not satisfy the parallelogram equality (6.21) and hence

does not come from an inner product.

Exercise 7.F.22. Suppose T' € £(V,W). Let n =dimV and let s; > --- > s,, denote
the singular values of T'. Prove that if 1 < k < n, then

min{|T|;;| : U is a subspace of V withdimU =k} =s,_ ;.

Solution. For k € {1,...,n}, let E,, = {|T|y| : U is a subspace of V withdimU = k}. If T

has no positive singular values, i.e. T' = 0, then
min B, = min{0} =0=s,, ;.4

for any k € {1, ..., n}. Furthermore, since the only subspace of V' with dimension n is V itself,

we have
min E, = min{|T]} = |T] = s,

We may therefore assume that T has at least one singular value and that 1 < k < n.
Suppose that s; > --- > s, are the positive singular values of T', where m > 1, and let
Tv= S1 <U, el)fl Tt Sm(”a em>fm

be a singular value decomposition of 7T'. Extend the orthonormal list eq, ..., e,, to an ortho-

normal basis eq,...,e,, of V so that

To — sjfj if 1 <j<m,
J . .
0 ifm<j<n.
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For 1 <k <nlet X =span(e,_j.1,..-,€,) and note that dim X = k. We consider two cases.

Casel.If1<k<n-—m,sothat m+1<n—k+1,thens, , , =0. Furthermore, T' van-
ishes on each of the basis vectors e, 1, ..., €,, so that T|yx = 0. Since E,, is bounded below

by zero, it follows that min B, =0=s,,_ ;.

Case 2. Suppose that n —m < k <n, so that 1 <n —k <m, and let U be any subspace
of V satisfying dimU = k. If v € V is such that |v| <1 then note that Pyv € U and that
| Pyol| < |lv| < 1. It follows that |T'Pyv| < |T|y|, since

IT ||l = max{||Tu| : w € U and |u| < 1}.
Thus |TPy| < |T|y|- Next, observe that
dim range(TPy.) < dimrange Py, = dimUt =dimV —dimU =n — k.

It follows from 7.92 that |T'— T Py.| > s,,_j;. Combining these inequalities with the iden-
tity Py = I — Py from Exercise 6.C.5, we have

[T 2 TPyl = T = TPye]| = 85—ps1-
Thus s,,_;, is a lower bound of E,. Now observe that, for any z € X,
2 2 2 2
I(Tlx)2l” = 57 kpa[(Ts enpyn) |+ + stz )™ < 57l
It follows that |T'| x| < s,,_p,1; in fact, this is an equality since |le,,_, ;| = 1 and
(T|x)(n-rs1) = Sn-rirfacerr = [ Tlx)(€nps1) | = Snopra-
Thus the lower bound s,,_;,; belongs to Ey, i.e. minE, = s, ;..
Exercise 7.F.23. Suppose T' € £(V,W). Show that T is uniformly continuous with

respect to the metrics on V' and W that arise from the norms on those spaces (see
Exercise 23 in Section 6B).

Solution. Let & > 0 be given and let § = e(1 4 |T]) ™. If u,v € V are such that |u —v| < 4,

then observe that
|Tuw = To| = |T(u—v)| <|T|u—v| <|T]5 <e.
Thus T is uniformly continuous.

Exercise 7.F.24. Suppose T € £(V) is invertible. Prove that

T
T =Tt < T is a unitary operator.

Solution. Let s; > --- > s, be the singular values of T', so that |T'|| = s;; note that each

singular value is strictly positive since T is invertible. Note further that s;! > .- > s71 are
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the singular values of T~! by Exercise 7.E.10, which gives us |T-1| = s,;!. Thus we wish to

prove that

-1 -1

s;l =s7! <« s7!T is a unitary operator.

Indeed,

S — 81 = 81 — S’I’l
& each singular value of T" equals s,
< each singular value of s7!T equals 1

& s7!T is a unitary operator. (7.69)

Exercise 7.F.25. Fix u,z € V with u # 0. Define T' € £(V) by Tv = (v, u)x for every
v € V. Prove that

T*Tv = M(v,u)u
Jlull
for every v € V.
Solution. Let R € £(V) be given by
Rv = M(v, uyu.
Jlull

Our aim is to show that R = vT*T'. Using the formula T*v = (v, z)u, shown in example 7.3,

a routine calculation shows that
R2v = ||z|* (v, u)u = T*T.

Furthermore, for any v € V,

(Rv,v) = ] (v,u)]> > 0.
Jlul

Thus R is a positive square root of T*T'. It follows from uniqueness (7.39) that R = vT*T.

Exercise 7.F.26. Suppose T € £(V). Prove that T is invertible if and only if there
exists a unique unitary operator S € £(V') such that T' = SVT*T.

Solution. Suppose that T is invertible. The polar decomposition (7.93) provides us with a
unitary operator S € £(V) such that T = SvT*T. To see that S is unique, note that vT*T

is invertible, since

null VT*T = null T*T = null T = {0},
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where the first equality follows from Exercise 7.C.16 and the second equality follows from
7.64(b). Thus S is uniquely determined by the formula S = T'(v T*T)_l.

Now suppose that T is not invertible. Let s, ..., s,, be the positive singular values of T, let
Tv= S1 <U7 el)fl + ot sm(”? em>fm

be a singular value decomposition of T', and extend e, ...,e,, and f;,..., f,,, to orthonormal
bases ey, ..., e, and f;,..., f,, of V. Because T is not invertible, it must be the case that m is
strictly less than n. Define R, S € £(V) by

Re;, = Se;, = f, for k<n, Re, = and Se, =—f,.

n’

As in the proof of the polar decomposition (7.93), R and S are both unitary operators and
both satisfy T'= RVT*T = SvT*T, however R #+ S.

Exercise 7.F.27. Suppose T' € £(V) and sq,...,s,, are the singular values of T'. Let

€y, .-, €, and fi,..., f,, be orthonormal bases of V' such that
Tv=s;(v,e))fi ++5s,(v,e,)fn
for all v € V. Define S € £(V) by
Sv=(v,e))fi ++ (v,e,) f,.
(a) Show that S is unitary and |T' — S| = max{|s; — 1|, ...,|s,, — 1|}
(b) Show that if E € £(V) is unitary, then |T'— E| > |T — S]|.

This exercise finds a unitary operator S that is as close as possible (among the unitary

operators) to a given operator T

Solution.

(a) S was shown to be unitary in the proof of the polar decomposition (7.93). Suppose that
max{[s; —1,...,|s,, — 1|} = |s; — 1|, where j € {1,...,n}. For any v € V, observe that

2 2 2 2 2 2) 12
[T = S)ol” = [s1 = 1w, e)|” + -+ [s,, = 17w, )" <[5 — 170"
Thus |T — S| < |s; — 1. Since |[(T' — S)e;| = |s; — 1|, we must have |T — S| = [s; — 1|.

(b) Let ke {l,....,n} be given and note that, since E is unitary, we must have
Ee,| = |e.| = 1. It follows from the reverse triangle inequality (see Exercise 6.A.20
k k
that

IT = E| > (T — E)ex| = [ITex| — 1Eeyll = [lsp fell =11 = lsx — 1.

Thus |T — E| > max{|s; — 1|,...,|s,, — 1|} = |T — S|.

Exercise 7.F.28. Suppose T € £(V). Prove that there exists a unitary operator
S € £(V) such that T = VTT*S.
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Solution. Let s, ..., s,, be the positive singular values of T, let
Tv= S1 <1), €1>f1 Tt sm(”? €m>fm

be a singular value decomposition of T', and extend e, ...,e,, and f;,..., f,,, to orthonormal
bases eq,...,e, and fi,..., f, of V. Define the unitary operator S € £(V) as in the proof
of the polar decomposition (7.93). Using the formula for TT* from Exercise 7.E.8 (e), we
see that

VITT*y = 31<U7f1>f1 +o Tt Sm<va fm)fm

for every v € V. For any k € {1,...,m} and any v € V, notice that (Sv, f;) = (v, e;). It fol-
lows that

VIT*Sv = 81<S’U, f1>fl + ot 8m<S’U,fm>fm = $1<Ua €1>f1 +oe 8m<vaem>fm =Tv.

Thus S is a unitary operator satisfying T' = +/TT*S.

Exercise 7.F.29. Suppose T € £(V).

(a) Use the polar decomposition to show that there exists a unitary operator S € £(V)
such that TT* = ST*TS*.

(b) Show how (a) implies that 7' and 7™ have the same singular values.

Solution.

(a) The polar decomposition (7.93) gives us a unitary operator S € £(V) satisfying
T = SVT*T; as we showed in Exercise 7.F.28, S also satisfies T = /TT*S. It follows
that

VTT*S = SVT*T = ~TT*=SVT*TS*
= TT*=SVT*TS*SVT*TS* = ST*TS*.

(b) The identity TT* = ST*T'S* and Exercise 5.A.13 show that the list of eigenvalues of
T*T is the same as the list of eigenvalues of TT*. It follows that the list of singular

values of T is the same as the list of singular values of T™.

Exercise 7.F.30. Suppose T' € £(V),S € £(V) is a unitary operator, and R € £(V)
is a positive operator such that T'= SR. Prove that R = vT*T.

This exercise shows that if we write T' as the product of a unitary operator and a pos-

itive operator (as in the polar decomposition 7.93), then the positive operator equals
T*T.

Solution. Observe that

T*T = (SR)"SR = R*S*SR = R?,
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where we have used that R is self-adjoint and that S is unitary. Thus R is a positive square
root of T*T'; by uniqueness (7.39) we must have R = vT*T.

Exercise 7.F.31. Suppose F = C and T € £(V) is normal. Prove that there exists a
unitary operator S € £(V) such that T = SvT*T and such that S and VT*T both

have diagonal matrices with respect to the same orthonormal basis of V.

Solution. As the polar decomposition (7.93) and Exercise 7.1'.28 show, there exists a unitary
operator S € £(V) such that

T=SVT*T =VTIT*S =VvT*TS,

where we have used that T is normal for the last equality. Thus S and vT*T commute,
which by Exercise 7.B.16 is equivalent to the existence of an orthonormal basis of V' with
respect to which S and vT*T both have diagonal matrices.

Exercise 7.F.32. Suppose that T' € £(V, W) and T # 0. Let s, ..., s,,, denote the pos-

itive singular values of T. Show that there exists an orthonormal basis ey, ..., e, of

(nullT)" such that
T(e(& .
5

equals the ball in range T of radius 1 centered at 0.

Solution. Let B be the ball in range T of radius 1 centered at 0 and let
Tv= 51 <1), 61>f1 Tt Sm<v7 em>fm

be a singular value decomposition of T'; as we showed in Exercise 7.E.8 (b), eq,...,e,, is an
orthonormal basis of (nullT)". Note that

TveB < |Tof* = sil(v,e))]” + -+ sml(v,e,,) < 1.

Note further that

TveT(E(e—l,...,e—m)> o veE(e—l,...,e—m)
Sl Sm Sl Sm

Thus T(E(s7 ey, ..., spien,)) = B.
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Chapter 8. Operators on Complex Vector Spaces

8.A. Generalized Eigenvectors and Nilpotent Operators

Exercise 8.A.1. Suppose T € £(V). Prove that if dimnull7* = 8 and dimnull 7¢ = 9,
then dimnull 7™ = 9 for all integers m > 5.

Solution. By 8.1 we have dimnull 7° € {8,9}. Notice that

dimnull7? =8 = null7? =null7’? = null7®=null7® = dimnull7® =3,

where we have used 8.2 for the second implication. Since dimnull 7% = 9 it must then be the
case that dimnull7® = 9, whence null 7° = null 7. It follows from 8.2 that, for all integers
m > 5,

null7™ =null7° = dimnull7™ = dimnull7? = 9.

Exercise 8.A.2. Suppose T' € £(V), m is a positive integer, v € V, and T™ v # 0 but

T™v = 0. Prove that v, Tv, T?v, ..., T™ v is linearly independent.

The result in this exercise is used in the proof of 8.45.

Solution. Suppose ay, ..., a,,_; are scalars such that
agv + a;Tv+ - +a,, ;T™ v =0.

Apply T™! to both sides of this equation to obtain ayT™ v = 0. Since T™ v # 0, it must

be the case that a; = 0. Thus we have the equation
a;Tv+-+a, T v=0.
Now apply T™ 2 to both sides of this equation to obtain a; 7™ v = 0, which implies a; = 0.
By continuing in this manner, we see that each of the scalars aq,...,a,,_; is zero. Thus
v, T, ...,T™ v is linearly independent.
Exercise 8.A.3. Suppose T' € £(V). Prove that

V =nullT @rangeT < nullT? =nullT.

Solution. By Exercise 5.D.4 it will suffice to show that
nullT NrangeT = {0} < nullT? =nullT.

First suppose that nullT NrangeT = {0}. To show that nullT? = null T, it will suffice to
show that null7? C null T’ (by 8.1). Suppose therefore that v € null T2, so that T?v = 0, and
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notice that Tw € nullT NrangeT = {0}. Hence Tv = 0, i.e. v € null 7. Thus null7? C null T,

as desired.

Now suppose that null7? = nullT and suppose that v € nullT Nrange T, so that Tv =0
and v = T'u for some u € V. It follows that

T?u=Tv=0 = wenul?T? = wenullT = Tu=v=0.

Thus null T Nrange T = {0}, as desired.

Exercise 8.A.4. Suppose T € £(V),\ € F, and m is a positive integer such that the

minimal polynomial of T is a polynomial multiple of (2 — X)™. Prove that

dimnull (T — AI)™ > m.

Solution. Let p be the minimal polynomial of T'; by assumption we have p(z) = (z — X)™q(2)
for some polynomial q. Consider the chain of inclusions provided by 8.1:

{0} Cnull (T — AI)" C - C null (T — AI)™.

Notice that it will suffice to prove that each of these m inclusions is strict, since this will
imply that the dimension increases by at least 1 at each inclusion. Suppose therefore, by way
of contradiction, that there is some inclusion in this chain which is not strict, i.e. there exists
some k € {0, ...,m — 1} such that

null (T — A" = null (T =AD" = null (T — ADF = null (T — A)™  (by 8.2).

Define 7(z) = (z — A\)"q(z) and note that degr < degp. For any v € V observe that, since
0 = p(T)o = (T — AI)"q(T)v,

¢Twenull (T—X)" = ¢T)venull(T—-A) = r(T)v=0.
Thus r is a polynomial of lesser degree than p which annihilates T', contradicting that p is

the minimal polynomial of T

Exercise 8.A.5. Suppose T' € £(V) and m is a positive integer. Prove that
dimnull7™ < mdimnull T

Hint: Exercise 21 in Section 3B may be useful.

Solution. Exercise 3.8B.22 shows that

dimnull 7™ < dimnull 7! + dimnull 7 < dim null 72 + 2dimnull T

< - <mdimnullT.
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Exercise 8.A.6. Suppose T' € £(V'). Show that

V =rangeT® D rangeT' D --- D range T* D range T**! D ...

Solution. Suppose k is a non-negative integer and w € range T**!, so that there is some
v € V such that

w = Tk+ly = T*(Tv) € range T*.

Thus range T**! C range T*.

Exercise 8.A.7. Suppose T € £(V) and m is a nonnegative integer such that
range T™ = range T™"!.

Prove that range T* = range T™ for all k > m.

Solution. It will suffice to prove that range 7™ = range T™+**! for all positive integers
¢. By Exercise 8.A.6, this is equivalent to showing that range T™%¢ C range T™+¢*! for all
positive integers £. Suppose therefore that ¢ is a positive integer and that w € range 7™,

so that w = T™* v for some v € V. Tt follows that
T™y € rangeT™ = T™v crangeT™! = T™y =Ty for some u € V.

Thus w = T™ 1y € range T™ 1. Hence range 7™ C range T™+*1, as desired.

Exercise 8.A.8. Suppose T' € £(V). Prove that

range TdimV = range TdimV+1 = range TdimV+2 ——

Solution. The proof is similar to 8.3. By Exercise 8.A.7, we need only prove that
range T4V = range T4mV+1,

Seeking a contradiction, suppose that this is not true. It then follows from FExercise 8.A.6
and Exercise 8.A.7 that

V =rangeT" D rangeT! D --- D range T4V D range T4mV+1,
At each of the strict inclusions in this chain, the dimension decreases by at least 1. Thus
dimrange T9mV+l < 1,

which is a contradiction since the dimension of a vector space must be a non-negative integer.

Exercise 8.A.9. Suppose T' € £(V) and m is a nonnegative integer. Prove that

null 7™ = null T™*! < rangeT™ = range T™ 1.
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Solution. Since null 7™ is a subspace of null 7 *! and range T™"! is a subspace of range T™
(see 8.1 and Exercise 8.A.6), it will suffice to show that

dimnull 7™ = dimnull7™*! <« dimrange7™ = dimrange 7™ *!.
Indeed, by the fundamental theorem of linear maps (3.21), we have

dim null 7*! — dimnull 7™ = dimrange 7™ — dim range 7™,

Exercise 8.A.10. Define T' € £(C?) by T'(w, z) = (z,0). Find all generalized eigenvec-
tors of T'.

Solution. Observe that the matrix of T with respect to the standard basis of C? is

(00
00/
It follows that the only eigenvalue of T is 0 and that T2 = 0, so that every non-zero v € C?

is a generalized eigenvector of T' corresponding to the eigenvalue 0.

Exercise 8.A.11. Suppose that T' € £(V). Prove that there is a basis of V' consist-
ing of generalized eigenvectors of T' if and only if the minimal polynomial of T' equals
(z—Ay) (22— A,,) for some A\, ..., A, € F.

Assume F = R because the case F = C follows from 5.27(b) and 8.9.

This exercise states that the condition for there to be a basis of V consisting of gener-
alized eigenvectors of T' is the same as the condition for there to be a basis with respect

to which T' has an upper-triangular matrix (see 5.44).

Caution: If T' has an upper-triangular matrix with respect to a basis v, ...,v,, of V,
then v, is an eigenvector of T' but it is not necessarily true that v, ..., v,, are general-

ized eigenvectors of T..

Solution. Suppose that there is a basis vy, ...,v,, of V consisting of generalized eigenvectors

of T', i.e. there exist scalars A\, ..., A\, € F and positive integers k,, ..., k,,, such that
(T =\, 1), =0
for each n € {1,...,m}. Let p be the polynomial given by

p(2) = (2= X)) = (2 = A) "

m

and notice that p is a product of linear factors. Notice further that p(7") annihilates each
of the basis vectors vy, ...,v,,, so that p(T') = 0. It follows from 5.29 that p is a polynomial
multiple of the minimal polynomial of T', from which it follows that the minimal polynomial

of T is a product of linear factors.
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Conversely, if the minimal polynomial of T" splits into linear factors, then notice that T' has
an eigenvalue. The proof of 8.9 then shows that there is a basis of V' consisting of generalized

eigenvectors of T'.

Exercise 8.A.12. Suppose T € £(V) is such that every vector in V is a generalized
eigenvector of T'. Prove that there exists A € F such that T'— AI is nilpotent.

Solution. First let us prove the following lemma.

Lemma L.15. If ' € £(V) is such that u,v, and u + v are generalized eigenvectors of

T then u and v correspond to the same eigenvalue.

Proof. Suppose that u,v, and u + v correspond to the eigenvalues «, 8, and v respec-
tively. Since the list u, v, u + v is linearly dependent, 8.12 implies that the eigenvalues
a, B, and v cannot be distinct, i.e. at least two of these eigenvalues are equal. If a =
then we are done, so suppose that g = ~; the case where o = v is handled similarly.
Observe that

b=y = u+v,v€null(T—BI)dimV = ueIlull(T_ﬁI)dimV.

Thus u corresponds to both a and g; it follows from 8.11 that a = £. O

Returning to the exercise, note that the desired result is clear if V' = {0}. Suppose therefore
that n:=dimV > 1 and fix a non-zero v € V. By assumption u is a generalized eigenvector
of T and thus corresponds to some eigenvalue A € F, i.e. (T — AXI)"u = 0. Let v € V be non-
zero. If u + v = 0 then

(T — A)"v = —(T — M\I)"u = 0,

and if u + v # 0 then, by assumption, v and u + v are generalized eigenvectors of T'. It follows
from Lemma [..15 that u and v correspond to the same eigenvalue, so that (T'— A\I)"v = 0.
Thus (T — AI)" =0, i.e. T — A is nilpotent.

Exercise 8.A.13. Suppose S,T € £(V) and ST is nilpotent. Prove that T'S is nilpo-

tent.

Solution. There is an integer k such that (ST)* = 0, which implies
(TS)* =T(ST)*S = 0.

Thus T'S is nilpotent.

Exercise 8.A.14. Suppose T € £(V) is nilpotent and T # 0. Prove T is not diagonal-

izable.
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Solution. 8.18 shows that the minimal polynomial of T is 2™ for some positive integer m;

since T' # 0 we must have m > 2. It follows from 5.62 that T is not diagonalizable.

Exercise 8.A.15. Suppose F = C and T' € £(V). Prove that T is diagonalizable if and

only if every generalized eigenvector of T' is an eigenvector of 7T'.

For F = C, this exercise adds another equivalence to the list of conditions for diago-
nalizability in 5.55.

Solution. If every generalized eigenvector of T' is an eigenvector of T', then the basis of V'
consisting of generalized eigenvectors of T' provided by 8.9 is in fact a basis of V' consisting

of eigenvectors of T'. That is, T is diagonalizable.

Now suppose that there is some v € V such that v is a generalized eigenvector of T but
v is not an eigenvector of T, i.e. there exists A € F (we need not require F = C for this

implication) such that
(T—AXN)"v=0 and (T —X)v#0

for some integer m > 2. Let p be the minimal polynomial of T" and let p,, be the unique monic
polynomial of smallest degree satisfying p,(T)v = 0 (see Exercise 5.C.7.) A small modifica-
tion of 5.29 shows that p, must divide (z — A)™, so that p, = (z — A)¥ for some non-negative
integer k. Since v = (T — AI)°v and (T — AI) v are both non-zero, it must be the case that
k > 2. It then follows from Excrcise 5.C.7 (b) that the minimal polynomial of T has (z — A)”

as a factor, where k > 2. We may use 5.62 to conclude that T is not diagonalizable.

Exercise 8.A.16.

(a) Give an example of nilpotent operators S, T on the same vector space such that
neither S + T nor ST is nilpotent.

(b) Suppose S,T € £(V) are nilpotent and ST = T'S. Prove that S+ T and ST are

nilpotent.

Solution.

(a) Let S, T € £ (Fz) be the operators whose matrices with respect to the standard basis

of F2 are

M(S) = ((1’ 8) and M(T) = (8 (1))

Some straightforward calculations show that S? = T2 = 0, so that S and T are nilpo-
tent, and that (S +7T)> # 0 and (ST)* # 0, so that neither S + T nor ST is nilpotent
(by the contrapositive of 8.16).
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(b) By 8.16 we have S™ = T™ = 0, where n = dim V. Using that S and T commute, we may
write (ST)" = S™T™ = 0. Thus ST is nilpotent. Furthermore, since S and T commute,

we may apply the binomial theorem:
2n
2n
S+T)" = ( )SQ"—ka.
(S+1T) k; .

Notice that S2" % =0 for 0 < k< n and T* =0 for n < k < 2n. It follows that each
term in the sum above is zero, so that (S + T)2n = 0. Thus S + T is nilpotent.

Exercise 8.A.17. Suppose T € £(V) is nilpotent and m is a positive integer such that
" = 0.

(a) Prove that I — T is invertible and that (I —T) ' = I +T + - +T™ 1.

(b) Explain how you would guess the formula above.

Solution.
(a) A calculation shows that
I-T)I+T+-+T™)=I-T"=1.
(b) We might guess this formula by analogy with the formula
1—2)1+z+-+2m1)=1-2"

for z € F.

Exercise 8.A.18. Suppose T' € £(V) is nilpotent. Prove that T1+dimrangeT —

IfdimrangeT < dim V — 1, then this exercise improves 8.16.

Solution. Let dimrange T = k and, seeking a contradiction, suppose that T**! # 0. By 8.16
we have T4V = 0 and thus we can let m be the smallest integer such that 7™ = 0 and
T™ ! 2 0; note that k+2 <m < n. Let v € V be such that 7™ 1v # 0 and T™v = 0. It
then follows from Exercise 8.A.2 that the list

v,Tv,....,T™ v

is linearly independent, from which it follows that k > m — 1 > k 4+ 1—a contradiction.

Exercise 8.A.19. Suppose T' € £(V) is not nilpotent. Show that
V = null T9™ V-1 @ range 74m V-1,

For operators that are not nilpotent, this exercise improves 8.4.

Solution. Observe that

T is not nilpotent = null74™V-1 = pull 7dmV
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= qpull T2@mV-1) — pyrdmV-1 oy = pul] T9m V-1 g range T4m V-1

where we have used Exercise 8.A.21 for the first implication, 8.3 for the second implication,

and Exercise 8.A.3 for the third implication.

Exercise 8.A.20. Suppose V is an inner product space and T' € £(V) is normal and
nilpotent. Prove that 7' = 0.

Solution. Observe that
TV =0 o null79%™V =V o nllT=V < T=0,

where we have used Exercise 7.A.27 for the second equivalence.

Exercise 8.A.21. Suppose T € £(V) is such that null 79™V—1 £ null T4™V | Prove
that T is nilpotent and that dimnull 7% = k for every integer k with 0 < k < dim V.

Solution. Consider the chain of inclusions provided by 8.1:
{0} = null7° C null T! C -+ C null 74™V=1 C pull 74V,

Since null 74 V=1 &£ null T4V ' 8.2 shows that each of these inclusions must be strict. Note
that if the dimension increased by more than 1 at some inclusion in this chain then we
would have null 7%V > dim V/, which cannot happen. Hence it must be the case that the
dimension increases by exactly 1 at each inclusion in this chain, whence dimnull T* = k for
every integer k € {0, ...,dim V'}. It follows from this that T9™V = 0, so that T is nilpotent.

Exercise 8.A.22. Suppose T' € £(C9) is such that rangeT* # range T'. Prove that T

is nilpotent.

Solution. FExercise 8.A.9 shows that null 7% # null T°. It then follows from Exercise 8.A.21
that T is nilpotent.

Exercise 8.A.23. Give an example of an operator 7" on a finite-dimensional real vector

space such that 0 is the only eigenvalue of T" but T is not nilpotent.

This exercise shows that the implication (b) = (a) in 8.17 does not hold without the
hypothesis that F = C.

Solution. Let T' € £ (R3) be the operator whose matrix with respect to the standard basis
of R3 is
0-10
MT)=11 0 0]-
0 0O
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A straightforward calculation reveals that 0 is the only eigenvalue of T' and that T3 # 0; it
follows from 8.16 that T is not nilpotent.

Exercise 8.A.24. For each item in Example 8.15, find a basis of the domain vector
space such that the matrix of the nilpotent operator with respect to that basis has the

upper-triangular form promised by 8.18(c).

Solution.

(a) If ey, ey, €5, €, is the standard basis of F*4 then observe that the matrix of T’ with respect

to the basis e, ey, €1, €4 is
10
01
00
00

(b) Let v, = (1, %, %),vz = (%, %, ), and vy = (0, 5%1,0). Routine calculations show that

vq, Vs, V3 is a basis of F? and that the matrix of the nilpotent operator in part (b) with

010
001]{.
000

(c) Observe that the matrix of the differentiation operator on 2,,(R) with respect to the

respect to this basis is

basis 1, z, ..., x™ is

01000
002--00
000--00
000 --0m
000 00

Exercise 8.A.25. Suppose that V is an inner product space and T' € £(V') is nilpotent.
Show that there is an orthonormal basis of V' with respect to which the matrix of T has

the upper-triangular form promised by 8.18(c).
Solution. Combining 8.18(b) with 6.37, we see that T has an upper-triangular matrix with

respect to some orthonormal basis of V, and combining 5.41 with 8.17(a) shows that the

diagonal entries of this matrix are zero.
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8.B. Generalized Eigenspace Decomposition

Exercise 8.B.1. Define T € £(C?) by T'(w,z) = (—z,w). Find the generalized eigen-

spaces corresponding to the distinct eigenvalues of T'.

Solution. As example 5.9 shows, T has the two distinct eigenvalues +4 with corresponding

eigenspaces
E(—i,T) =span((1,7)) and E(i,T) = span((1,—1)).

Since dim C? = 2, 8.12 shows that there can be no other generalized eigenvectors linearly

independent from the two above. Thus

G(—i,T) = E(—i,T) =span((1,7)) and G(i,T)= E(i,T) = span((1,—1)).

Exercise 8.B.2. Suppose T € £(V) is invertible. Prove that G(\, T') = G(
every A € F with A # 0.

%,T‘l) for

Solution. By 8.20 it will suffice to show that
null (T — AI)" = null (T~ — X\711)",
where n = dim V. Suppose therefore that v € null (T' — \I)", i.e.

n

0= (T —\)"v = Enj (—1)k>\’“(k

)T"‘kv.
k=0

Applying the operator (—1)""A™™T~" to both sides of this equation and using that
(=)™ = (=1)""* for any k € {0, ...,n}, we find that

n

0= (—1)" )" (") ke = (171 = A,
> (Y () ( )

Thus v € null (77! — A711)" and it follows that null (T — AI)" C null (T~ — A711)". Re-

placing T with 77! and X with A~! in this inclusion gives us the desired result.

Exercise 8.B.3. Suppose T' € £(V). Suppose S € £(V) is invertible. Prove that T" and
S~ITS have the same eigenvalues with the same multiplicities.

Solution. We showed in FExercise 5.A.13 (a) that T and S7'T'S have the same eigenvalues.
Suppose that A € F is an eigenvalue of T' and S™'T'S. Using the identity p(T') = p(S™'TS)

for a polynomial p, observe that
ST —AI)"S = (S7'TS — AI)",

where dim V = n. It now follows from Exercise 3.D.8 that
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dimnull (T — A\I)" = dimnull (S~1TS — A\I)",

i.e. the multiplicity of A as an eigenvalue of T' equals the multiplicity of A as an eigenvalue

of S7ITS.

Exercise 8.B.4. Suppose dimV > 2 and T € £(V) is such that
null 74 V=2 £ py]] 7dm V-1,

Prove that T has at most two distinct eigenvalues.

Solution. Let dimV =n > 2 and note that our hypothesis implies dimnull 7! > n — 1.

There are then two cases.

Case 1. If dimnull 7" = n then 77! = 0 and it follows from 8.17(a) that 0 is the only

eigenvalue of T'.

Case 2. Suppose that dimnull 7% ! = n — 1, so that we can find n — 1 linearly independent
generalized eigenvectors of T’ corresponding to the eigenvalue 0. It follows from 8.12 that T
can have at most one non-zero eigenvalue (otherwise we would have at least n + 1 linearly

independent vectors in a vector space of dimension n).

In either case, T' has at most two distinct eigenvalues.

Exercise 8.B.5. Suppose T € £(V) and 3 and 8 are eigenvalues of T'. Let n = dim V.
Prove that V = (null7"?) @ (range 7" 2).

Solution. If 0 is not an eigenvalue of T, i.e. T is injective, then null 7" 2 = {0} and the

desired result follows from Exercise 5.D.4.

If 0 is an eigenvalue of T then T has at least three distinct eigenvalues and it follows from
Exercise 8.B.4 and 8.2 that

null 772 = null 7% = null 722,
Thus, by Exercise 8.A.3, V = (null Tn_2) @ (range T"_Z).

Exercise 8.B.6. Suppose T' € £(V) and ) is an eigenvalue of T'. Explain why the expo-
nent of z — X in the factorization of the minimal polynomial of T is the smallest positive
integer m such that (T — A\)™|g ) = 0.

Solution. Let p be the minimal polynomial of T" and let m be the exponent of z — X in the

factorization of p, i.e. p(z) = (z — X)"¢(z) for some polynomial ¢ with g(\) # 0.

We claim that null (T — AI)™ = null (T — AI)™*'. By 8.1 it will suffice to prove the in-
clusion null (T — AI)™ C null (T — AI)™, so suppose that v € null (T — XI)™*", define
w = (T — AI)™v, and notice that Tw = Aw. Now observe that
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0=p(T)v=q(T)T —A)"v = q(T)w = g(Mw,

where we have used that Tw = Aw for the last equality. Since g(\) # 0 it must be the case
that w = 0, i.e. v € null (T — AI)™. Thus null (T — A\)™*" C null (T — AI)™, as desired.

It now follows from 8.2 that null (T — A\I)™ = null(T — )\I)dimv = G(\,T), from which it is
clear that (T'— X )™|g(» 1) = 0. To see that m is minimal, let k be any positive integer such
that (T — )\I)k|G()\,T) =0 and let s5(z) = (z — A\)"q(2). The equation (T — )\I)k\G(A’T) =0
implies that

null (T — A" = G(A\, T) = null (T — \I)™.

Let v € V be given. Since 0 = p(T)v = (T — X )" q(T)v, we either have q(T)v = 0, in which

case s(T)v =0, or
¢(T)v € null (T — AI)™ = null (T — \I)*,

in which case s(T))v = 0 also. Thus s(T") = 0 and the minimality of the degree of p implies
that degp < degs, from which it follows that m < k.

Exercise 8.B.7. Suppose T' € £(V) and A is an eigenvalue of T with multiplicity d.

Prove that G(A, T) = null (T — AI)%.

If d < dim V, then this exercise improves 8.20.
Solution. Let p be the minimal polynomial of T" and let m be the positive integer such that
p(z) = (2 — X\)"q(z) with g()\) # 0. As we showed in Exercise 8.B.6,
G\, T) = null (T — AI)™ = null (T — AXI)™*.
It then follows from Exercise 8.A.4 and 8.2 that
d=dim G\, T) = dimnull (T — AXI)™ >m
= null (T — A% = null (T — AXI)™ = G\, T).

Exercise 8.B.8. Suppose T' € £(V) and A, ..., A
Prove that

m are the distinct eigenvalues of T

V=G, T)® &G\, T)

if and only if the minimal polynomial of T equals (z — A;)* - (z — )\m)km for some
positive integers kq, ..., k,,,.
The case F = C follows immediately from 5.27(b) and the generalized eigenspace de-

composition (8.22); thus this exercise is interesting only when F = R.

Solution. Suppose that
V=G\,T)® - dG\,,T).
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For each i € {1,...,m} let d; = dim G(\;,T) and let q(z) = (z — A;)™ - (z — \,,)*. For any
v € V we have v = v; + -+ 4+ v,,, where each v, € G(\;,T). Fix i € {1, ..., m} and note that
G(\;, T) = null (T — M\, 1)% by Excrcise 8.B.7; it follows that

q(T)v; = (H (T - Ajl)dg) (T — Ail)divi = 0.

JFi
Thus ¢(T)v = 0, whence ¢(T) = 0. It now follows from 5.29 that the minimal polynomial

of T is a factor of ¢ and hence must be of the form (z — A;)™ - (z — A,,,)*™ for some non-

negative integers kq, ..., k,,,. In fact each k;, must be positive since each A, is an eigenvalue of

T and the eigenvalues of T are precisely the zeros of the minimal polynomial (by 5.27(a)).

Now suppose that the minimal polynomial of T equals (z — A;)™ - (z — A,,)*™ for some

m

positive integers kq, ..., k,,,. The proof of 8.22(c) shows that the sum

is direct and Fxercise 8.A.11 shows that any vector in V can be expressed as a linear com-

bination of generalized eigenvectors of T'. Thus

Exercise 8.B.9. Suppose F = C and T € £(V). Prove that there exist D, N € £(V)
such that T'= D + N, the operator D is diagonalizable, N is nilpotent, and DN = N D.

Solution. Let A\, ..., A,, be the distinct eigenvalues of 7" and let

be the generalized eigenspace decomposition of V. For any v € V we have v = vy +--- 4+ v,,,
where each v, € G(Ay, T). Define D € £(V) by Dvy, = Agvy, so that Dl ) = Apl, and
let N =T — D. Certainly D is diagonalizable. Furthermore, for any k € {1,...,m},

Nl ) = (T = D)lgin,m) = (T = AD)la,, 1)
is nilpotent by 8.22(b). It follows that

NdimV,U — ]\[dimV,U1 +._.+NdimV,U =0

m

foranyv=v; +-+uv, €eV=GA,T)®D--®G\,,T). Thus N is nilpotent. Now, since
DN = DT — D? and ND = TD — D?, to show that D and N commute it will suffice to show
that D and T' commute. Indeed, for any k € {1,...,m} and v, € G(\,, T),

T.ka - )\kT'Uk — DTUk,

where we have used that D|g(, 1) = A, and that G(A, T') is invariant under T' (by 8.22(a)).
It follows that TDv = DTv for any v =v; + - +v,, € V=GA,T)® - ®G(A,,,T). Thus

T and D commute.
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Exercise 8.B.10. Suppose V is a complex inner product space, eq,...,e, is an ortho-

normal basis of T', and T' € £(V'). Let A, ..., A,, be the eigenvalues of T, each included

as many times as its multiplicity. Prove that
2 2 2 2
Al® 4+ A" < Ter|" + - + | Te |

See the comment after Exercise 5 in Section 7A.

Solution. Let A € C be an eigenvalue of T', let d = dim G(X, T'), and consider the restriction
operator R:=T |G( A1) Certainly A is an eigenvalue of R and R has no other eigenvalues.
By Schur’s theorem (6.38) there is an orthonormal basis fi, ..., f; of G(A,T') with respect to
which the matrix A := M (R) is upper-triangular. For any k € {1, ...,d} it then follows that
A” = IMfel® < ITfil, whence

2 2 2
dA” <\THIT + -+ T fal”
Summing this inequality over the finitely many distinct eigenvalues of T shows that
2 2 2 2
A"+ AT ST + -+ 1Tl

where g4, ..., g,, is the orthonormal basis of V' obtained by combining the orthonormal bases
of the generalized eigenspaces of T' found in the previous discussion (the generalized eigen-
space decomposition (8.22) shows that this provides an orthonormal basis for all of V'). As
we showed in Exercise 7.A.5, the quantity |Te,||* + -+ |Te,,|* does not depend on which

orthonormal basis of V' is used and thus
2 2 2 2
Al AT S Teq|” + -+ | Te, |7

Exercise 8.B.11. Give an example of an operator on C* whose characteristic polyno-

mial equals (z — 7)%(z — 8)°.

Solution. Let T' € £ (C4) be the operator whose matrix with respect to the standard basis

4 .
€e1,€9,€es,e4 of C* is

7000
0700
0080
0008

A straightforward calculation shows that 7 and 8 are the only eigenvalues of T and that
E(7,T)=G(7,T) = span(e;,e;) and E(8,T)= G(8,T) = span(es,e,).

Thus the multiplicities of the eigenvalues 7 and 8 both equal 2, from which it follows that

the characteristic polynomial of T is (z — 7)*(z — 8)°.
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Exercise 8.B.12. Give an example of an operator on C* whose characteristic polyno-

mial equals (z — 1)(z — 5)® and whose minimal polynomial equals (z — 1)(z — 5)*.

Solution. Let T' € £ (C4) be the operator whose matrix with respect to the standard basis

4 .
€1,€q,€3,e4 of C* is

o O O
o O ot o
O Ol = O
OO O O

A straightforward calculation shows that 1 and 5 are the only eigenvalues of T and that
E(1,T)=G(1,T) =span(e;) and G(5,T) = span(eqy,e3,€,).

Thus the multiplicity of the eigenvalue 1 equals 1 and the multiplicity of the eigenvalue
5 equals 3, from which it follows that the characteristic polynomial of T is (z — 1)(z — 5)°.
Another calculation shows that (T — I)(T — 5I) # 0 and that (T — I)(T — 5I)° = 0. Thus

the minimal polynomial of T is (z — 1)(z — 5)°.

Exercise 8.B.13. Give an example of an operator on C* whose characteristic and

minimal polynomials both equal z(z — 1)*(z — 3).

Solution. Let T' € £ (C4) be the operator whose matrix with respect to the standard basis

4 .
€1,€q,63,e4 of C* is

o O O O
o O = O
O = = O
w o o o

A straightforward calculation shows that 0,1, and 3 are the only eigenvalues of T" and that
E(Oa T) = G(07 T) = Span(61)7 E(37 T) = G(37 T) = span(e4),
and G(1,T) = span(ey,e3).

Thus the multiplicities of the eigenvalues 0 and 3 both equal 1 and the multiplicity of the
eigenvalue 1 equals 2, from which it follows that the characteristic polynomial of T is
2(z—1)%(z — 3). Another calculation shows that

T(T—I)(T—3I)#0 and T(T—1I)*(T—3I)=0.

Thus the minimal polynomial of T is z(z — 1)*(z — 3).

Exercise 8.B.14. Give an example of an operator on C* whose characteristic polyno-

mial equals z(z — 1)*(z — 3) and whose minimal polynomial equals z(z — 1)(z — 3).
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Solution. Let T € £ (C4) be the operator whose matrix with respect to the standard basis

4 -
€1,€9,6e3,€e4 of C* is

o O O O
O O = O
O = O O
w o O O

A straightforward calculation shows that 0,1, and 3 are the only eigenvalues of T' and that

E(0,T) = G(0,T) = span(e,), E(3,T) = G(3,T) = span(e,),

and FE(1,T) = G(1,T) = span(ey, e3).

Thus the multiplicities of the eigenvalues 0 and 3 both equal 1 and the multiplicity of the
eigenvalue 1 equals 2, from which it follows that the characteristic polynomial of T is
z(z—1)*(z — 3). Another calculation shows that T(T — I)(T — 3I) = 0. Thus the minimal
polynomial of T is z(z — 1)(z — 3).

Exercise 8.B.15. Let T be the operator on C* defined by

T(2y, 29, 23, 24) = (0, 21, 22, 23).

Find the characteristic polynomial and the minimal polynomial of T'.

Solution. Let e;, ey, €3, ¢4 be the standard basis of C*. The matrix of T' with respect to the

basis ey, €3, €9, €, is

o O O O
S O O
O = O O

O O = O

Thus 0 is the only eigenvalue of T" and it then follows from 8.28 that the characteristic

polynomial of T is z*. Since T = 0 it must be the case that the minimal polynomial of T is

also z*%.

Exercise 8.B.16. Let T be the operator on C® defined by
T(21, 29, 23, 24, 25, 2g) = (0, 21, 25,0, 24, 0).

Find the characteristic polynomial and the minimal polynomial of T'.

Solution. Let e, ey, €3, €4, €5, €5 be the standard basis of C*. The matrix of T with respect

to the basis es, eq, €1, €5, €4, €g 1S
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O O O O OO
O O O O O+
O O O OO
O O O O OO
O OO OO
O O O O OO

Thus 0 is the only eigenvalue of T" and it then follows from 8.28 that the characteristic

polynomial of T is 26. A straightforward calculation shows that T2 # 0 and 7% = 0. Thus

the minimal polynomial of T is 23.

Exercise 8.B.17. Suppose F =C and P € £(V) is such that P2 = P. Prove
that the characteristic polynomial of P is z™(z—1)", where m = dimnull P and

n = dimrange P.

Solution. Exercise 5.A.8 shows that the only possible eigenvalues of P are 0 and 1. It follows

from 8.28 that the characteristic polynomial of P is of the form 2°(z — 1)k, where
¢=dimG(0,P) and k=dimV —/.
Since null P? = null P, 8.2 shows that
G(0,P) =null P4V = null P = ¢ =dimG(0, P) = dimnull P = m.
It now follows from the fundamental theorem of linear maps that

k=dimV — ¢ =dimV —dimnull P = dimrange T = n.

Exercise 8.B.18. Suppose T € £(V) and X is an eigenvalue of 7. Explain why the

following four numbers equal each other.

(a) The exponent of z — A in the factorization of the minimal polynomial of 7.

(b) The smallest positive integer m such that (T — \)™|g(x ) = 0.

(c) The smallest positive integer m such that

null (T — AI)™ = null (T — \)™*".
(d) The smallest positive integer m such that
range (T — AI)™ = range (T — AI)"*".

Solution. We showed that (a) and (b) are equal in Exercise 8.B.6, and a very small modi-
fication of that argument shows that (a) and (c) are also equal. Finally, the fact that (c¢) and

(d) are equal follows from Exercise 8.A.9.

Exercise 8.B.19. Suppose F = C and S € £(V) is a unitary operator. Prove that the
constant term in the characteristic polynomial of S has absolute value 1.

321 / 366



Solution. Suppose (z — A;)“++ (2 — A, )% is the characteristic polynomial of S and note
that the constant term of this polynomial is :I:Xlil-n Adm . Note further that [\,| = 1 for each
ke {1,...,m} by 7.54. It follows that

d dq dyy
[EAT A L= A A [T =1

Exercise 8.B.20. Suppose that F = C and V,...,V, are nonzero subspaces of V' such
that

V=V®--aV,.

Suppose T € £(V) and each V), is invariant under T'. For each k, let p, denote the

characteristic polynomial of T|Vk. Prove that the characteristic polynomial of T equals

plpm

Solution. It will suffice to prove the case where m = 2; a straightforward induction argu-
ment will then prove the general statement. Suppose therefore that V =U @& W, where U

and W are non-zero subspaces of V invariant under 7.

Let E(T) be the collection of eigenvalues of T" and define E(T|;) and E(T|y,) similarly. We
claim that E(T) = E(T|y) U E(T|y)- Certainly any eigenvalue of T'|;; or of T'|y;, must also
be an eigenvalue of T', so that E(T|;) U E(T|y,) C E(T). For the reverse inclusion, suppose
that A € C is an eigenvalue of T', so that Tv = Av for some non-zero v € V. Let u € U and
w € W be such that v = u 4+ w and observe that

Tu — Au = A w — Tw.
Since U and W are invariant under T" we have Tu — Au € U and Aw — Tw € W, whence

Tu— M= w—TweUNW = {0}.

Thus Tu = Au and Tw = Aw. Note that at least one of © and w must be non-zero, since v
is non-zero. It follows that A € E(T|;) U E(T|y,) and we may conclude that

E(T) = E(T|y) U E(T|w),
as claimed.
Next we claim that G(A\,T) = G\, T'|y) & G(A, T'|y) for any A € C. First, note that
G\ T|y) CU and G\ T|y) CW.
Since U N W = {0}, it follows that G(A,T'|;) N G(A, T'|yyy) = {0}. Thus the sum
GATly) & G\ Tlw)

is indeed direct.
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Now suppose that
u+we G()‘aT|U) @ G()‘aT|W)a
. dim U dim W
ie. weUand (T|y — ) u=0, weW and (T|y — ) w = 0.

It follows that (T — AI)™ V4 = (T — AI)™Vw = 0 and thus v + w € G(\, T). Hence

Now suppose that v € G\, T), ie. (T —AN"™ Yy =0, and let w € U and w € W be such
that v = u + w. Observe that

Since U and W are invariant under T we have (T — AI)™Yu € U and (T — A)"™Yw e W,

whence
(T —AD"Vu=—(T - AD)"™VweUnW = {0}.
Thus
(T—-AD"Yu=0 = (T|p—2A)"Yu=0 = (T|y—A)"™Yu=0,

where we have used 8.3 for the last implication. It follows that u € G(\,T'|;) and we can
similarly show that w € G(\,T|y,). Hence v =u+w € G\, T|y) ® G(A\, T|y,) and we may

conclude that
GAT) =G\ Tly) @ G\, Tlw),

as claimed.
We have now proved the following:

() B(T) = E(T|y) UE(T|y);

(i) G\, T) =G\ T|y) ® G\, Ty ) for any A € C.
Let Ay, ..., A\, denote the distinct eigenvalues of T, let

m; =dimG(\;,T), k,=dimG(\,,T|y), and ¢, =dim G\, T|w),

and let r,p, and g be the characteristic polynomials of T',T|;;, and T'|y, respectively; by
definition we have r(2) = (z — A;)" - (2 — \,,)""". It follows from (i) that

p(z) = (z— X)) (2= X,)" and q(z) = (z— X)) (2= A",

n

and it follows from (ii) that k; + ¢; = m, for each ¢ € {1,...,n}. Thus

p(2)a(z) = (2 — X)) (2= X))t = (2 = X)) ™ (2 = A) ™ = 1(2),

n

as desired.
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Exercise 8.B.21. Suppose p, ¢ € P(C) are monic polynomials with the same zeros and
q is a polynomial multiple of p. Prove that there exists T € £ (Cdegq) such that the

characteristic polynomial of T' is ¢ and the minimal polynomial of T is p.

This exercise implies that every monic polynomial is the characteristic polynomial of

some operator.

Solution. Let A, ..., A,, be the distinct zeros of p and ¢ and suppose that

p(z) = (2 — Al)kl"'(z—)\ )km and ¢(z) = (z_)\l)el... (z— A )Em

m m

for some positive integers ky, ..., k,,, ¢y, ..., £,,; note that k, < £, for each ¢ € {1, ..., m} since ¢
is a polynomial multiple of p. Fix ¢ € {1,...,m}. If k;, = 1 then let A, be the ¢, x ¢, diagonal
matrix with diagonal entries equal to A;. If K, > 1 and k; = ¢, then let A; be the ¢, x ¢,

matrix with diagonal entries equal to A, and entries directly above the diagonal equal to

1, i.e.
A 1000
0OXx 100
e R
00 0 - N\
0 0 0 A

If 1 <k; <, then let B; be the (¢, — k;) x (¢, — k;) diagonal matrix with diagonal entries
equal to \;, let C; be the k; x k; matrix with diagonal entries equal to A; and entries directly

above the diagonal equal to 1, and let A, be the block diagonal matrix

B, 0
0C)

Now let T' € £(C™), where n = degq, be the operator whose matrix with respect to the
standard basis is the block diagonal matrix

A - 0

A=+ -
0 - A,
It follows that the distinct eigenvalues of T" are A, ..., A, since these are precisely the dis-
tinct diagonal elements of A. Fix i € {1,...,m}. For any positive integer d, a calculation (see
Exercise 8.8.22) shows that
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(A1—)\¢I£1>d 0 0

(A—X\I1,)% = 0 (Ai _ )\iIZi)d 0 :

0 0 (Am_/\i[em)n

where I, is the n x n identity matrix and I, is the £; x £, identity matrix. For j # i, note
that the upper-triangular matrix A; — A, I, has non-zero diagonal entries since A; # A;; it
follows that the upper-triangular matrix (A, — A1 gj)d also has non-zero diagonal entries and
hence is injective. Another calculation shows that (A; — A, I, [i)ei is the ¢; x ¢; zero matrix. It

follows from this discussion that

dimG()\;,T) = dimnull (A — \,1,,)" = dimnull (A4; — )\, I,,)" = ¢,

i

Hence q is the characteristic polynomial of T'. It also follows from this discussion that the
matrix of (T'— A;J)|g(x, 1) With respect to the standard basis is A; — A;Iy,. A final calcula-
tion shows that k; is the least integer k such that (A, — )\ilgi)k = 0 and thus, by Exercise
8.B.18, k; must be the exponent of z — A, in the factorization of the minimal polynomial of

T. Hence p is the minimal polynomial of T'.

Exercise 8.B.22. Suppose A and B are block diagonal matrices of the form

A=  E= :
0 A 0 B

where A, and B, are square matrices of the same size for each k =1, ..., m. Show that
AB is a block diagonal matrix of the form

A, B, 0

AB =
0 A, B

Solution. For each k € {1,...,m} suppose that A, and B, are ¢, x £, matrices and let
n=14¢+--+¢,, so that A and B are n x n matrices. Let S,T € £(F™) be the operators
whose matrices with respect to the standard basis ey, ..., e, are M(S) = A and M(T') = B,
so that M (ST) = AB. Let E; be the list ey, ..., e, and, if m > 2, for each k € {2,...,m} let
E, be the list

€l bty 410 Gl gty

Now let U, = span E|, for each k € {1,...,m} and note that E, is a basis of U,. Note further
that each Uy is invariant under both S and T and that the matrices of S|y, and T'|y, with
respect to E, are A, and B, respectively. It follows that each U, is invariant under ST and
that the matrix of (ST)|y, with respect to the basis Ej, is A, B. Thus the & block on the
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diagonal of AB equals A;B;, and all entries of AB off the “block diagonal” must be zero

(otherwise U, would not be invariant under ST').

Exercise 8.B.23. Suppose F =R, T € £(V), and X € C.
(a) Show that u +iv € G(\, Tg) if and only if u —iv € G(\, Tg).

(b) Show that the multiplicity of A as an eigenvalue of T equals the multiplicity of

X as an eigenvalue of T.

(c) Use (b) and the result about the sum of multiplicities (8.25) to show that if dim V'

is an odd number, then T has a real eigenvalue.

(d) Use (c) and the result about real eigenvalues of T (Fxercise 17 in Section 5A) to
show that if dimV is an odd number, then T has an eigenvalue (thus giving an

alternative proof of 5.34).

See Exercise 33 in Section 3B for the definition of the complexification .

Solution.

(a) Analogously to complex conjugation, for u,v € V' let us define u + iv = u — iv. This

operation has the properties we would expect of it, such as

(u+iv)+ (x+iy) =u+w+z+iy and oa(u+iv) =au+iv for a € C.
Furthermore, observe that
Te(u+ ) =Tu+ iTv=Tu—iTv=Te(u—iv) = Te(u+ w).

It follows from these algebraic properties that, for a non-negative integer m,

(Te — M) (u+iv) = (T — M) (u — iv).
Combining this identity with the obvious equation 0 = 0 (where 0 is the zero vector in
Vo) shows that u + iv € G(\, Tg) if and only if u —iv € G(\, Tg).

(b) Let uy + ivy,...,u,, + iv,, be a basis of G(\,T¢); we claim that u, —ivq,...,u; —iv,,
is a basis of G(\, Tg). Part (a) shows that each u, — v, indeed belongs to G(\, T).
Suppose that oy, ..., a,, € C are such that

aq(uy —ivy) + - + o, (w0, —iv,,) = 0.
Taking the complex conjugate of both sides (see part (a)) shows that

The linear independence of the list u; + v, ..., u,, + iv,, now shows that

1 ==0a,=0 = o =-=qa,=0.
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Thus the list u; — vy, ..., u; — 4v,, is linearly independent. Now let u + iv € G(X, Tg) be
given. By part (a) we have u —iv € G(A, T') and thus there exist scalars ay, ..., a,,, € C
such that

u—iv = aq(uy +ivy) + - + o, (u,, + v,,).
Taking the complex conjugate of both sides shows that

u+ v ="0(u—1ivy) + -+, (u,, —iv,,).
is a basis of

Thus uy — vy, ..., u,, — iv,, spans G(\, T). Hence u; —ivy, ..., u,, — v

G(\, Tg), as claimed. It follows that dim G(\, Tg) = dim G()\, Tg), i.e. the multiplicity

of A as an eigenvalue of T equals the multiplicity of A as an eigenvalue of T¢.

m m

(c) We will prove the contrapositive. Suppose that T has no real eigenvalues. Since non-
real eigenvalues of T come in pairs (by part (a)) and both eigenvalues of this pair have
the same multiplicity (by part (b)), the sum of the multiplicities of all the eigenvalues

of T must be an even number. Thus, by 8.25, dim V' is an even number.

(d) This is immediate from part (c¢) and Exercise 5.A.17.
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8.C. Consequences of Generalized Eigenspace Decomposi-

tion

Exercise 8.C.1. Suppose T € £(C?) is the operator defined by
T(zl) 295 Z3) = (2:2, 23 0)

Prove that T' does not have a square root.
Solution. Notice that T is nilpotent. Thus, if S € £(C?) satisfies S? = T, then S must also
be nilpotent. It follows from 8.16 that S = 0. However, note that

0 # T%(0,0,1) = 54(0,0,1).

Thus there can be no S € £(C?) satisfying 5% =T

Exercise 8.C.2. Define T' € £(F%) by T(zy, o, T3, T4, T5) = (224, 3T3, —T4,4x5, 0).

(a) Show that T is nilpotent.
(b) Find a square root of I +T.

Solution.

(a) Notice that the matrix of T with respect to the standard basis of F5 is

O O O OO
O O O oM
O O O wo
OOL

O~ O OO

It follows from 8.18 that T is nilpotent.
(b) Note that T* # 0 and T° = 0. Following the strategy outlined in the proof of 8.39, we
should attempt to solve the equation

(I+a,T +ayT? + a3T3 + a,T4)’ =1+ T

for the coefficients a4, ay, as,a,. After calculating, we find that

1 . 1 1 . 5
a1_§7 a2__§v a3_1_6v ay = 128"

Thus the operator Fls(l%l + 64T — 1672 + 873 — 5T*) is a square root of I +T (a

matrix calculation, by hand or otherwise, verifies this).

Exercise 8.C.3. Suppose V is a complex vector space. Prove that every invertible op-

erator on V has a cube root.
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Solution. The proof is almost identical to the proof of 8.41, replacing “square root” with
“cube root” where applicable. The crux of the argument is the existence of cube roots for
operators of the form I + T, where T is nilpotent. As in the proof of 8.39, proving this
existence amounts to showing that we can always solve the equation

(I+a,T+ayT?++a, T ) =I+T

for a,,a,,...,a where m is some positive integer. By multiplying out the left-hand side,

m—1>
we notice that the coefficient of T* is always a degree 1 polynomial in a; with constant term
involving sums and products of a,, ..., a;_;. Thus, having found a,...,a;_;, we can always

solve for a;.

Exercise 8.C.4. Suppose V is a real vector space. Prove that the operator —I on V'

has a square root if and only if dim V' is an even number.

Solution. Suppose that dim V' is an even number and let vy, ..., v,,, be a basis of V. Define
R e £L(V) by

Regy, 1 = —€g, and  Rey, = e
for each k € {1,...,n}. It follows that
R’eg)_y = —€y, 1 and RZey, = —ey,
for each k € {1,...,n}, so that R? = —I, i.e. R is a square root of —I.

Now suppose that dim V' is an odd number and let ' € £(V') be given. By 5.34, there exists
an eigenvalue A € R of T, say Tv = \v for some non-zero v € V. It follows that T%v = \%v
and hence that T?v # —v, since A > 0. Thus no operator T € £(V) satisfies T? = —1I.

Exercise 8.C.5. Suppose T € £(C?) is the operator defined by
T(w,z) = (—w — 2, 9w + 52).

Find a Jordan basis for T'.

Solution. The matrix of T' with respect to the basis (1, —3),(1,—2) is

(62)
02)
Thus (1,—3), (1,—2) is a Jordan basis for T'.

Exercise 8.C.6. Find a basis of P,(R) that is a Jordan basis for the differentiation
operator D on P,(R) defined by Dp = p’.

1:1:2, %x?’,% 4 s

Solution. The matrix of D with respect to the basis 1, z, 5
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o O O OO
S oo O
OO O = O
O O = OO
o= O OO

1.2 %x?’, ix‘l is a Jordan basis for D.

Thus 1, z, 3

Exercise 8.C.7. Suppose T € £(V) is nilpotent and vy, ..., v,, is a Jordan basis for T.

m+1

n

Prove that the minimal polynomial of T is z , where m is the length of the longest

consecutive string of 1’s that appears on the line directly above the diagonal in the
matrix of T' with respect to vy, ...,v

n-:

Solution. The matrix of T" with respect to vy, ...,v,, is a block diagonal matrix of the form

n

A~ 0
A= - |,
0 - A

p

where each A, is a d;, x d;, matrix of the form

01 0
0 0

the diagonal entries are zero as T, being nilpotent, has only zero as an eigenvalue. A calcu-
lation shows that Azk_l # 0 and AZ"‘ = 0. Note that the length of the string of 1’s appearing
on the line directly above the diagonal of A, is exactly d;, — 1. It follows that d;,, <m +1
for each k € {1,...,n}, so that A7**' =0, and d, = m + 1 for some £ € {1,...,n}, so that
A" # 0. Thus, by Exercise 8.A.22,

m+1
A1. 0 0 00 - 0
Amtl — 0 - AZnH w0 =|0-0-0]|=0,
0 0 - A;’;H 0 0 0

o - 0 .- Am

p

Hence T™*! = 0 and T™ + 0. Furthermore, zero is the only eigenvalue of T and hence the
only root of the minimal polynomial of 7. We may conclude that the minimal polynomial

of T is z™m*1,
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Exercise 8.C.8. Suppose T' € £(V) and vy, ..., v,, is a basis of V that is a Jordan basis

for T. Describe the matrix of T2 with respect to this basis.

Solution. The matrix of 7" with respect to vy, ..., v, is a block diagonal matrix of the form

A o 0 A, 10
A= i =~ i |, where A, = ' 1
0 - A 0 A
A calculation shows that
)\,% 20, 1 0
Ai s -'. .’. 1
". 2Ak
0 A2

Thus, by Exercise 8.A.22, the matrix of T2 with respect to vy, ...,v,, is

A% e 0
A2 = ¢ -
0 - AI%

Exercise 8.C.9. Suppose T' € £(V) is nilpotent. Explain why there exist vy, ...,v, € V

and non-negative integers my, ..., m,, such that (a) and (b) below both hold.
(a) T™wvyq,...,Tvy,vy,...; T™nv,,, ..., Tv, v, is a basis of V.

(b) T™tly, = ... = T™mnTly =0.

Solution. By 8.45 there exists a Jordan basis for T, i.e. a basis with respect to which the

matrix of T is of the form

A 0 01 O
A=1:+ ~ |, where A, = . 1]
0 - A, 0 0

the diagonal entries of each A, are zero as T', being nilpotent, has only zero as an eigenvalue.
Fix k € {1,...,n} and suppose that A, is an (m;, + 1) X (m; + 1) matrix, where m,, is some
non-negative integer. Suppose that the sub-list of the Jordan basis corresponding to the A,

block on the block diagonal of A is Um, +1, Umy, ---, Us, U, uy. The form of A, shows that

— 2 — — _ 1 —
Tuy =ug, T?uy =Tuy=1uz, ..., T U =Umt1, T™u; =0.

Thus we can take v, = u,, for each k € {1,...,n} and (a) and (b) will both hold.
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Exercise 8.C.10. Suppose T' € £(V) and vy, ..., v,, is a basis of V that is a Jordan basis
for T'. Describe the matrix of T' with respect to the basis v,,, ..., v; obtained by reversing
the order of the v’s.

Solution. The matrix of T" with respect to vy, ..., v,, is a block diagonal matrix of the form

A - 0 Ak .1 ‘ 0
A= |t =~ t |, where A, = ' 1
0 - A, 0 A

Reversing the order of the sub-list of vy, ..., v, corresponding to A, has the effect of trans-
posing A,,, and reversing the order of the entire basis vy, ..., v,, has the effect of reversing the
order of the blocks on the block diagonal of A. Thus the matrix of T' with respect to the

basis v,,, ..., v; is

AL - 0
0 - A

Exercise 8.C.11. Suppose T € £(V). Explain why every vector in each Jordan basis

for T is a generalized eigenvector of T'.

Solution. Suppose that v, ...,v,, is a Jordan basis for T', i.e. the matrix of T' with respect

n

to vy, ...,v,, is of the form

A - 0 Ak .1 ‘ 0
A= |t =~ t |, where A, = ' 1
0 - A, 0 A

Let v,, be a vector in the Jordan basis vy, ...,v,,. The form of A above shows that there is a
k € {1,...,p} such that either (T — A\, I)v,, = 0 or

Tv,, =\, + 0,1 = (T—X1)v,, =v,, 1
Similarly, either (T' — A\, I)v,,,_; = 0, which gives us (T — )\kI)Q’Um =0, or
Tv,, 1 =ANUpy1+ Vo = (T—XNDv,, ;=(T— )\kI)va =, o
Continuing in this fashion, we find a positive integer ¢, no greater than the size of A, such

that (T — A, J)“v,, = 0. Thus v, is a generalized eigenvector of T.

Exercise 8.C.12. Suppose T' € £(V) is diagonalizable. Show that M (T') is a diagonal

matrix with respect to every Jordan basis for T'.
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Solution. Let vy, ...,v,, be a Jordan basis for T'. It follows from Exercise 8.C.11 that vy, ..., v,
is a basis of V' consisting of generalized eigenvectors of T'. Because T is diagonalizable, every
generalized eigenvector of T is an eigenvector of T' (as we showed in Exercise 8.A.15; note
that the proof of this implication does not use the hypothesis of Exercise 8.A.15 that F = C).
Thus vy, ..

respect to this basis is diagonal.

., U, is a basis of V' consisting of eigenvectors of T' and hence the matrix of T" with

Exercise 8.C.13. Suppose T' € £(V) is nilpotent. Prove that if vy, ..., v,, are vectors in

V and m,, ..., m,, are nonnegative integers such that
T™uvy, ..., Tvy, vy, ..., T v, ..., Tv,, v, is a basis of V
and
Tty = ... =Tmntly =0,
then T™1v,,...,T™nv, is a basis of nullT".

This exercise shows that n = dimnullT. Thus the positive integer n that appears

above depends only on T' and not on the specific Jordan basis chosen for T'.

Solution. The linear independence of the basis

m m
T™vy,...,Tvy,vq, ..., T"™v,,....,Tv,,v

n’-n

gives us the linear independence of the list T™1v,, ..., T v, . The condition

Tty = .. =Tmntly =0

n

shows that each of the vectors T"1vy, ..., T™»v,, belongs to nullT. Suppose that v € null T

There are scalars a; , such that

n

v= izjaj’kavj = 0=Tv= izjaj,ka“vj = Z R o,

j=1 k=0 j=1 k=0 j=1 k=0
mﬁé
where we have used that T™1 1y, = ... = Tmnatly =0 for the last equality. It follows from

the linear independence of the basis

T™vy, . To, v, T, T, v

n’-n

that a; , = 0 for all j € {1,...,n} such that m; > 1 and all k € {0, ...,m; — 1}. Thus
V= 0y, ™0+ g, T,

Hence T™1vy, ..., T™nv,, spans null T and we may conclude that this list is a basis of null T

Exercise 8.C.14. Suppose F = C and T € £(V). Prove that there does not exist a
direct sum decomposition of V' into two nonzero subspaces invariant under 7' if and only

if the minimal polynomial of T is of the form (z — )\)dimv for some A € C.
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Solution. First suppose that there exist non-zero subspaces U and W which are invariant
under T and satisfy V = U @ W. If the union of the set of eigenvalues of T'|;; and the set
of eigenvalues of T'|};, contains at least two complex numbers then T' has at least two eigen-
values. It follows that the minimal polynomial of T" has at least two roots and hence is
not of the form (z — A)™™" for any A € C. Suppose therefore that T|;; and T,y both have
a single eigenvalue p € C. As we argued in Exercise 8.B.20, it follows that p is the only
eigenvalue of T and hence that the minimal polynomial of T" is of the form (z — ,u)e for some
positive integer £ < dim V. Let m = max{dim U, dim W} and notice that m < dim V' since
U and W are proper subspaces of V. Notice further that V = G(u,T),U = G(u, T|y;), and
W = G(u,T|w) by 8.22(c). It follows from 8.22(b) and 8.16 that

(Tly —pD)™ = (T|w — pI)™ =0.
Let v=u4+weV =U@&W be given and observe that
(T — uD)" gy © = (T — pI)™ (1w + w) = (Tlyy — pI)™u+ (Tl — uI)™w = 0.
Thus (T — puI)™ |G, = 0. Hence, by Exercise 8.3.6, we must have £ <m < dim V. It fol-
lows that the minimal polynomial of T" is not of the form (z — )\)dimv for any A € C.

Now suppose that the minimal polynomial of T" is not of the form (z — )\)dimv for any A € C
and let Ay, ..., A, be the distinct eigenvalues of T'. If m > 2 then, by 8.22(c),

V=G, T)® G\, T) D ®G\,,T)]

is a direct sum decomposition of V' into two non-zero subspaces of V invariant under T'. If
m = 1 then the minimal polynomial of T" must be of the form (z — )\1)6 where £ is a positive
integer satisfying ¢ < dim V. By 8.46 there exists a Jordan basis vy, ..., vy, for T', so that

the matrix of T' with respect to this basis is of the form

A 0 AL .1 ' 0
A=| i =~ i |, where A, = ' 1
0 -~ A 0 A

Note that if p = 1, so that A = A, is a (dim V) x (dim V) matrix, then (A — A, I)" # 0, con-
tradicting that (z — )\1)@ is the minimal polynomial of T'. Thus p > 2. Suppose that A; is a
d x d matrix; since p > 2 we must have d < dim V. Let

U =span(vy,...,vg) and W =span(vg,q,..., Vgmy )-

Then U and W are non-zero, invariant under T (since A is block diagonal), and decompose
V as the direct sum V=U & W.
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8.D. Trace: A Connection Between Matrices and Operators

Exercise 8.D.1. Suppose V is an inner product space and v, w € V. Define an operator
T € £L(V) by Tu = (u,v)w. Find a formula for tr 7'

Solution. Let e, ...,e,, be an orthonormal basis of V' and suppose that
v=a,e;+-+a,e, and w=be +:-+b,e,.
Observe that (Tey, er) = ((ex, v)w, ) = azby, for each k € {1,...,n}. It follows from 8.55 that
trT = Za_kbk = (w, v).
k=1

Exercise 8.D.2. Suppose P € £(V) satisfies P2 = P. Prove that

tr P = dimrange P.

Solution. Since P(P — 1) = 0, the minimal polynomial of P is either z,z — 1, or z(z — 1). In
any case, the minimal polynomial of P splits into distinct linear factors and hence P is di-
agonalizable by 5.62. Thus there is a basis of V' with respect to which the matrix A := M (T")
is diagonal. Since the only possible eigenvalues of P are 0 or 1, each diagonal entry of A is
either 0 or 1. It follows that tr P is the number of diagonal entries of A equal to 1; denoting

this number by m, it is clear from the form of A that dimrange P = rank A = m.

Exercise 8.D.3. Suppose T' € £(V) and T® = T. Prove that the real and imaginary
parts of trT" are both integers.

Solution. First suppose that F = C. The equation T° = T is equivalent to
T(T—-I)(T+I)(T—4I)(T+iI)=0.

Thus the eigenvalues of T" are contained in the set {0, £1, £4}. It then follows from 8.52 that

the real and imaginary parts of tr’T" are both integers.

Before we proceed, let us prove the following lemma.

Lemma L.16. Let V be a real vector space and suppose T' € £(V'). Then tr T = tr 7.

Proof. Let vy, ...,v,, be a basis of V. As we showed in Exercise 2.B.11, vq,...,v,, is also
a basis of V. Observe that Tv, = T, for each k € {1,...,n}. Thus

M(Tq, (vg,y...y0,)) = M(T, (vy,...,v,)).

It is now immediate that tr T = tr7T'. O
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Now suppose that F = R. Since T° = T we also have T = T and it follows from our previ-
ous discussion that the real and imaginary parts of tr T are integers. Thus, by Lemma [.16,

tr’T' is an integer.

Exercise 8.D.4. Suppose V' is an inner product space and T' € £(V'). Prove that

trT* =trT.

Solution. Let eq,...,e, be an orthonormal basis of V' and let A be the matrix of T with
respect to ey, ..., e,,. It follows from 7.9 that the matrix of T with respect to e, ..., e, is A*.
Since the diagonal entries of A* are the complex conjugates of the diagonal entries of A, we

obtain the equation tr7* = trT.

Exercise 8.D.5. Suppose V is an inner product space. Suppose T' € £(V) is a positive
operator and tr’T' = 0. Prove that T" = 0.

Solution. By 7.38(c) there is an orthonormal basis ey, ...,e,, of V with respect to which

n
the matrix of T is diagonal with only non-negative numbers on the diagonal. Since tr7T =0
the sum of these non-negative diagonal entries is zero, which can be the case only if each
diagonal entry is zero. Thus the matrix of T' with respect to eq, ..., e, is the zero matrix.

Hence T = 0.

Exercise 8.D.6. Suppose V is an inner product space and P,Q € £(V) are orthogonal
projections. Prove that tr(PQ) > 0.

Solution. Suppose that P and () are orthogonal projections onto subspaces U and W re-
spectively. Let eq, ..., e,, be an orthonormal basis of W and let fi,..., f,, be an orthonormal
basis of W+, so that ey, ...,e,,, f1, -, f,, is an orthonormal basis of V. It follows from 8.55
that

tr(PQ) = (PQey, e1) + -+ (PQey,, e) + (PQSy, f1) + +(PQSy, fr)
= <P61761> + ot <P€maem>7

where we have used that Q| = I and Q| = 0. As noted in 7.35(b), orthogonal projections

are positive operators. It follows that

tI‘(PQ) = <P€1,61> + ot <Pem’em> 2 0.
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Exercise 8.D.7. Suppose T' € £(C?) is the operator whose matrix is

51 —12 —-21
60 —40 —28 |.
57 —68 1

Someone tells you (accurately) that —48 and 24 are eigenvalues of T'. Without using a

computer or writing anything down, find the third eigenvalue of T'.

Solution. On one hand, the trace of the matrix above is 51 — 40 4+ 1 = 12. On the other
hand, by 8.52, the trace of this matrix is the sum of the eigenvalues of T'. Letting x be the
third eigenvalue of T, it follows that

12=—-48+24+2 = z==36.

Exercise 8.D.8. Prove or give a counterexample: If S, T € £(V), then
tr(ST) = (tr S)(tr T).

Solution. This is false. For a counterexample, let S and T be the operators on F? whose

matrices with respect to the standard basis are

M(S) = ((1) 8) and  M(T) = (8 2) ~  M(ST) = (8 8)

Then tr S = trT =1 but tr(ST) = 0. Thus tr(ST) # (tr S)(tr T').

Exercise 8.D.9. Suppose T € £(V) is such that tr(ST) =0 for all S € £(V). Prove
that T' = 0.

Solution. We will prove the contrapositive. Suppose that T #+ 0, so that there exists some
vy € V such that Tv; # 0. Extend v; to a basis vy, ...,v,, of V. Suppose that

T'Ul - Al’l’Ul + o + An’lvn.

Since Tw; # 0 there must exist some i € {1,...,n} such that A, ; # 0. Define S € £(V) by
Sv; = vy and Sv,, = 0 for k # i. Now observe that the matrix of ST with respect to vy, ...,v

n

1S

Az 1 Ai,2 Ai,n
0 0 0
0 0 0

Thus tr(ST) = A; ; # 0.
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Exercise 8.D.10. Prove that the trace is the only linear functional 7 : £(V) — F such
that

7(ST) =7(TS)
for all S,T € £(V) and 7(I) = dim V.

Hint: Suppose that vy, ..., v,, is a basis of V. For j, k € {1, ...,n}, define P; ;. € £L(V)
by P; y(a;vy + -+ a,v,) = a,v;. Prove that

1 ifj=k,
P. =
™(Pix) {0 if j + k.
Then for T € £(V), use the equation T =y 3 "y M(T); v P; ), to show that
7(T) =trT.
Solution. Let vy, ...,v, be a basis of V and for j,k € {1,...,n} define P; , € £(V) as in the
hint. For any j,k € {1, ...,n} observe that

Thus P, P, ; = P; ;. It follows that

(P ;) = (P Py;) = 7(Py;Pj) = 7(P),
which implies

n=rI)=7(P,++P,,)=7(P,)++7(P,,) =n7(P,).
Thus 7(Py ;) = - = 7(P,,,) = 1. Now observe that, for j # k,
Py P p(a1v; + -+ a,v,) = Py (av;) =0,
and Pjka,‘c’k(alfu1 + - 4a,v,) = Pj’k(akvk) = ayv; = PJ~7,,c(c11111 + - +a,v,).

Thus Py, P, , = 0 and P, P, = P, . It follows that

7(P; ) = 7(P; 1 Pyi) = 7(PpiPis) = 7(0) = 0.

We have now shown that
1 if j =k,
(i) = {0 if j 4 k.

For any T' € £(V), it follows that

338 / 366



Exercise 8.D.11. Suppose V and W are inner product spaces and T' € £(V,W). Prove
that if eq, ..., e, is an orthonormal basis of V and f,, ..., f,,, is an orthonormal basis of
W, then

m

() =Y > [(Tey, £,
k=1

J=1

The numbers <Te k> fj> are the entries of the matrix of T with respect to the orthonor-
mal bases e, ...,e, and fi, ..., f,.. These numbers depend on the bases, but tr(T*T)
does not depend on a choice of bases. Thus this exercise shows that the sum of the
squares of the absolute values of the matrix entries does not depend on which ortho-

normal bases are used.

Solution. The matrix of 7" with respect to eq,...,e, and fi,..., f,, is

(Tey, f1) (Tey, f1) - (Te,, f1)
(Tey, fo) (Tey, fo) - (Te,, fa)

(Ter, f) (Tey, fr) -~ (Ten, f)

and thus by 7.9 the matrix of T with respect to f, ..., f,, and eq, ..., e, is

<T617f1> <T61af2> <T617fm>
<T627f1> <T62af2> <T627fm>

<Ten’f1> <Ten7f2> <T6n’fm>

It follows that the k' diagonal entry of the matrix of T*T" with respect to ey, ..., e, is

> {Tew £5)[

J=1

from which we obtain the desired formula.
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Exercise 8.D.12. Suppose V and W are finite-dimensional inner product spaces.

(a) Prove that (S,T) = tr(T*S) defines an inner product on £(V,W).

(b) Suppose ey, ..., e, is an orthonormal basis of V' and fi, ..., f,,, is an orthonormal

basis of W. Show that the inner product on £(V, W) from (a) is the same as the
standard inner product on F™", where we identify each element of £(V, W) with
its matrix (with respect to the bases just mentioned) and then with an element of
Fmr.

Caution: The norm of a linear map T € £(V , W) as defined by 7.86 is not the same

as the norm that comes from the inner product in (a) above. Unless explicitly stated

otherwise, always assume that |T'|| refers to the norm as defined by 7.86. The norm

that comes from the inner product in (a) is called the Frobenius norm or the Hilbert-

Schmidt norm.

Solution.

(a) We shall verify each property in definition 6.2.

Positivity. For any T € £(V), Exercise 8.D.11 shows that (T',T) = tr(T*T) is non-
negative.

Definiteness. Certainly (0,0) = 0. Suppose that T' € £(V) is such that (T',T) = 0, i.e.
tr(T*T) = 0. Since T*T is a positive operator, Fxercise 8..5 shows that T*T = 0 and
Exercise 7.A.2 then gives us T = 0.

Additivity /homogeneity in first slot. These properties follow from the linearity of
the trace (see 8.56).

Conjugate symmetry. Let S,T € £(V) be given and observe that

(S,T) = tr(T*S) = tr((S*T)*) = tr(S*T) = (T, S),
where we have used Exercise 8.D.4 for the third equality.
As we showed in Exercise 8.D.11, the matrix of T* with respect to fi,..., f,, and

€1y -eey €y 1S

(Tey, f1) (Teq, fo) - (Tey, frn)
(Tey, f1) (Tey, fo) - (Teq, frn)

<Ten’f1> <T€n7f2> <Ten7fm>

The matrix of S with respect to eq,...,e, and fi,..., f,, is

340 / 366



(Seq, f1) (Seq, f1) - (Se,, f1)
(Seq, fo) (Sey, fo) - (Se,, fa)

(Ser, fn) (Seps fon) = (Sen, fn)

It follows that the k' diagonal entry of the matrix of 7*S with respect to e, ..., e, is
>t (Sey, fj> (Tey, fj>, from which we obtain the desired formula

m

(S,T) = tr(T*S) = En: > (Sey, f;) (Tey, £;)-
k=1

J=1

Exercise 8.D.13. Find S,T € £(P(F)) such that ST —TS = 1.
Hint: Make an appropriate modification of the operators in Example 3.9.

This exercise shows that additional hypotheses are needed on S and T to extend 8.57

to the setting of infinite-dimensional vector spaces.

Solution. Let S € £(P(F)) be the differentiation operator, i.e. Sp=p’, and let
T € £L(P(F)) be the multiplication by x operator, i.e. (T'p)(z) = xp(z). Observe that

((ST —TS)p)(z) = [p(x) + zp’(x)] — zp’(z) = p(x).
Thus ST —TS =1.
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Chapter 9. Multilinear Algebra and Determi-

nants

9.A. Bilinear Forms and Quadratic Forms

Exercise 9.A.1. Prove that if 8 is a bilinear form on F, then there exists ¢ € F such
that

B(z,y) = cxy

for all z,y € F.

Solution. Using the linearity of 8 in each slot, we have
for all z,y € F. Thus we can take ¢ = (1, 1).

Exercise 9.A.2. Let n = dim V. Suppose § is a bilinear form on V. Prove that there
eXiSt P, eeey Pps Ty y ooy T, € V7 such that

Blu,v) = @1(u) - 71 (v) + - + @, (u) - 7, (v)
for all u,v € V.

This exercise shows that if n = dim V, then every bilinear form on V is of the form

given by the last bullet point of Example 9.2.
Solution. Let ey, ...,e,, be a basis of V and for j € {1,...,n} define ¢;, 7, € V' by
©; (Z akek> =a; and T; (Z bkek> = Z bkﬂ(ej, e)-
k=1 k=1 k=1

For any u =Y jp_; aper, v = Y p_q bre, € V, observe that

Zsﬁj(u) ZZ& bkﬁ eJ,ek (Zajewakek) = u U)

7j=1 k=

Thus ¢4, ..., ¢, Ty, .-, T,, are the desired linear functionals.

Exercise 9.A.3. Suppose 5:V xV — F is a bilinear form on V and also is a linear
functional on V' x V. Prove that g = 0.
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Solution. Let u,v € V' be given. On one hand, since § is a linear functional on V x V' we
must have 28(u,v) = 8(2u, 2v). On the other hand, since § is a bilinear form on V' we must
have 26(u,v) = (u, 2v). Thus

0 = B(2u, 2v) — B(u, 2v) = B(u,0),

where we have used that g € (V x V)/ for the last equality. Similarly, we can show that
B(0,v) = 0. The linearity of 8 as a map V x V — F then implies that

0= ,B(U,O) +,8(0,’U) = ﬁ(uvv)'
Thus g = 0.

Exercise 9.A.4. Suppose V is a real inner product space and £ is a bilinear form on
V. Show that there exists a unique operator T € £(V') such that

Bu,v) = (u, Tv)
for all u,v e V.

This exercise states that if V' is a real inner product space, then every bilinear form on
V' is of the form given by the third bullet point in 9.2.

Solution. Let e, ..., e, be an orthonormal basis of V' and define T' € £(V') by
Te, = B(er,ep)er + -+ Ble,s ep)e,
for k € {1,...,n}. Observe that (ej,Tek> = B(ej,ek) for any j, k € {1,...,n}. It follows that,
for any u=3";_; ager,v =351 beey €V,
(u, Tv) = ZZajbk<ej,Tek> = ZZajbkﬁ(ej,ek) = B(u,v).
j=1 k=1 j=1 k=1

Thus T is the desired operator.

Exercise 9.A.5. Suppose ( is a bilinear form on a real inner product space V and T
is the unique operator on V such that f(u,v) = (u,Tv) for all u,v € V (see Exercise 4).
Show that 3 is an inner product on V if and only if T is an invertible positive operator
on V.

Solution. First suppose that T' is an invertible positive operator. To show that £ is an inner

product on V', we must verify each property in definition 6.2.

Positivity /definiteness. 7.61 shows that B(v,v) = (v,Tv) = (T'v,v) > 0 for all non-zero
v € V and certainly 5(0,0) = 0.

Additivity /homogeneity in first slot/symmetry. These properties are immediate from

the corresponding properties of (-, ).

Now suppose that § is an inner product on V. The symmetry of 8 and (-, ) gives us
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(Tu,v) = (v, Tu) = B(v,u) = B(u,v) = (u, Tv).

Thus T is self-adjoint. Now let v € V' be non-zero and observe that, by the positive-definite-

ness of f3,
(Tv,v) = (v, Tv) = B(v,v) > 0.

7.61 allows us to conclude that T is a positive invertible operator.

Exercise 9.A.6. Prove or give a counterexample: If p is a symmetric bilinear form on
V, then

{veV:pl,v)=0}

is a subspace of V.

Solution. This is false. Let p be the symmetric bilinear form on F2 given by
p((z1,22), (Y1,Y2)) = 1Y1 — TaYa.
Observe that
p((1,1),(1,1)) = p((1, —1), (1, —1)) = 0 # p((2,0),(2,0)).
Thus {v € V : p(v,v) = 0} is not a subspace of F2.

Exercise 9.A.7. Explain why the proof of 9.13 (diagonalization of symmetric bilinear
form by an orthonormal basis on a real inner product space) fails if the hypothesis that
F = R is dropped.

Solution. Define B and T as in the proof of 9.13. Note that a symmetric matrix with com-

plex entries need not equal its own conjugate transpose nor commute with its own conjugate

4= (1 —il)

satisfies A® = A, A # A* and AA* #+ A*A. Thus we cannot necessarily claim that T is self-

adjoint or normal and hence cannot necessarily apply the complex spectral theorem.

transpose, e.g.

Exercise 9.A.8. Find formulas for dim VS§,2H)1 and dim Va(lf) in terms of dim V.
Solution. Let e, ..., e,, be a basis of V. As 9.5 shows, the map S +— M (f) is an isomorphism
of V2 onto F™™. Furthermore, by 9.12, under this isomorphism the symmetric bilinear forms
in V@ correspond exactly to the symmetric matrices in F™™. Thus to calculate dim Vs<y2131
it will suffice to find the dimension of the subspace of F™™ consisting of the symmetric
matrices; as we showed in Exercise 7.A.16 (b), this subspace has dimension n(n + 1)/2. It

now follows from 9.17 that
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1 —1
dim VY = dimV® — dim V%) = n? - nm; ) "(n2 )

Exercise 9.A.9. Suppose that n is a positive integer and
V={pe?,(R):p(0)=p1)}
Define a: V x V — R by

1
a(p,q) = / pq.
0
Show that « is an alternating bilinear form on V.

Solution. The bilinearity of a follows from the linearity of differentiation and of integration.

For any p € V, observe that
' R VA 2 2
[ w =3 [ &) =3[60)? - 0] -0
0 0
Thus « is alternating.

Exercise 9.A.10. Suppose that n is a positive integer and
V={peP,(R):p(0)=p(1) and p'(0) = p'(1)}.

Define p: V xV — R by
1
p(p,q) = / pq”.
0
Show that p is a symmetric bilinear form on V.

Solution. The bilinearity of p follows from the linearity of differentiation and of integration.

For any p,q € V, observe that
1 1
/ pq’ —qp” = / [pq’]" — [ap'] = [p(1)¢' (1) — p(0)q’(0)] — [g(1)p’ (1) — q(0)p’ (0)] = 0.
0 0

Thus p is symmetric.
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9.B. Alternating Multilinear Forms

Exercise 9.B.1. Suppose m is a positive integer. Show that dim V(™ = (dim V)™.

Solution. Let e, ..., e, be a basis of V' and let ¢4, ..., p,, be the corresponding dual basis of
V', so that for any v € V we have, by 3.114,

v=gpi(v)er ++puv)e,

For each (iy, ..., 1,,) € {1,...,n}" define an m-linear form o; _; by

ail,...,im(vla oy Upy) = %1(“1) %m(vm)-

Let B be the list of all such @, we claim that B is a basis of V(™). For any a € V"),

observe that

7, 7

a(”l?"'?”m) :(X(Z 9021 117"'5 Z Soim(vm)eim>

3

Oé( ) Sozl(vl) gpzm(vm)

[y

’Ll:

( )azl, i (U1 ey V).

i_

I
.‘ M

Thus « € span B and it follows that V("™ = span B. Now suppose that a linear combination

of B is zero:

Z Z Ciyroi,, Yy, ,im(v17---7vm) =0 forallv,..,v, €V.

i,=1 1,=1

For any (ky, ..., k,,) € {1,...,n}"", note that

]_ ile :kla""im :km,
ail,.l.,im<ek1a ) ekm> = .
0 otherwise.

Thus

n
= Z Z Zl? 9lm Zl’ 7m( kl 6km) = ckl?‘“akm.
ilz =

Hence B is linearly independent and it follows that B is a basis of V(™) as claimed.

Now observe that B is a list of length n™, since the set {1,...,n}"" contains n™ elements.
Thus dim V™ = np™ = (dim V)™
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Exercise 9.B.2. Suppose n > 3 and a : F* x F" x F” — F is defined by
(T, ey )y (Y1 oo U )y (215 o0y 21,))
= T1Y223 — ToY123 — T3Yp21 — T1Y32y + T3Y1 22 + TaY32y.

Show that « is an alternating 3-linear form on F™.

Solution. A straightforward calculation shows that « is 3-linear. To see that « is alternating,

let z = (zq1,..,2,),¥y = (Y1, -, Y,,), and z = (zq, ..., 2, ). Observe that
(T, X, 2) = T XTgZg — Lol 23 — T3LoZy — L1X329 + T3lq29 + ToTg2zy = 0.

We can similarly show that a(z,y,z) = a(z,y,y) = 0. Thus « is alternating.

Exercise 9.B.3. Suppose m is a positive integer and « is an m-linear form on V such
that a(vy, ..., v,,) = 0 whenever vy, ..., v,, is a list of vectors in V' with v; = v, ; for some

j€A{1,...,m —1}. Prove that « is an alternating m-linear form on V.

Solution. For any k € {1,...,m — 1}, observe that
0 = (Vg ey Vg + Vg1, Vg F Vg1 ooy Upn )
= (V1 eey Vg, Uy ooy Upy) + (U1, oy Vg1, Vg 1y oy Uy )
+ (Vg ooy Vg, U1 ooy Uy ) (U1, ey Uy 15 Uy oy Upy)
= (V1 eey Uy Ukt 15 -0y U ) QU1 ety U 15 Uk oovy Uy ) -

Thus swapping the vectors in any two consecutive slots of a(vy,...,v,,) changes the value of

a by a factor of —1. Now suppose that vy, ..., v,, is a list of vectors in V' with v; = v, for some

1 < j <k <m. By performing consecutive swaps in the slots of a(vy,...,v,,) if necessary,

which only changes the sign of a, we can ensure that v, appears directly after v;:

a(vl, ooy Uiy nny Uy ...,vm) = ia(vl, ceey Vjy U, ...,Um) = 0.

j, .

Thus « is alternating.

Exercise 9.B.4. Prove or give a counterexample: If a € ‘/;(13), then
{(U17”2,U3,U4) ceV*: a(vq, Vg, v3,vy) = 0}

is a subspace of V4.

Solution. This is false. For a counterexample, consider V = R*. By 9.37 there exists a non-
zero alternating 4-linear form a on R*. Let e;,eq,e3,e, be the standard basis of R* and

observe that a(eq, ey, 0,0) = (0,0, e5,e,) = 0. However, a(e;, ey, e5,e4) # 0 by 9.39.
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Exercise 9.B.5. Suppose m is a positive integer and  is an m-linear form on V. Define

an m-linear form « on V by

(V1 ooy Uyy,) = Z (sign(jl,...,jm))ﬁ(vjl,...,vjm>

(jlr“?jm)epermm

for vy, ...,v,, € V. Explain why a € V;(IT).

Solution. Suppose that v;, = v, for some 1 < k < ¢ < m. We will show that
QU1 ey Upyy vy Uy euny Uy ) = 0.

Let G C permm consist of those permutations with £ and ¢ in the correct order and let
H = (permm) \ G consist of those permutations with k and ¢ in reverse order. Notice that
the map ® : G — H which swaps the position of k£ and ¢ is a bijection: it is its own inverse.
Thus each permutation in H corresponds via ® to exactly one permutation in G. Notice

further that sign(®(jy, ..., 7,,)) = —sign(4y, ---, J,n) by 9.34 and, because v, = vy,
ﬁ(vjl, ...,vjm> = 5(”1’17 ...,Uim) where (i1, ..., 0,,) = P(J1, s Jm)-

To summarize, for each (iy,...,%,,) € H we have (iy,...,4,,) = ®(j;,...,J,,) for a unique
(J1s - Jm) € G such that

sign(iy, ..., 1,,) = —sign(jy, .-, J,,) and B(vil, ...,vim) = ﬁ(vjl, ...,vjm>.
It follows that

Z (sign(iq, ...,im))5<vil, - vim) = — Z sign(jy, ...,jm)ﬂ(vjl, ...,vjm>.

(il,...,i )GH (jlv"'7jm)eG

Thus

a(vl,...,vm) = Z (Sign(jla"'7jm))ﬁ(vj17""vjm)

(jl 7"~1jm)epermm

= Z sign(jy, ---,jm)ﬁ(vjlv-"vvjm>

+ Z (Sign(il,...,im))ﬁ<vila"'7vim>

(iyyeyip ) EH

= Z Sign(jla"-ajm)lB(Uh’""Ujm)

_ Z sign(jl,---,jm)ﬁ(vjl’ ""vjm)

(jl:'":jm)EG
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Exercise 9.B.6. Suppose m is a positive integer and  is an m-linear form on V. Define

an m-linear form « on V by

a(vy, .y V,,) = Z /J)(Ujl,---,vjm>

(j17~“7jm)€permm
for vy, ...,v,, € V. Explain why
a(vkl, ...,vkm) = Uy, ey U,y )
for all vy, ...,v,, € V and all (ky, ..., k,,,) € permm.

Solution. The set of all permutations of (1,...,m) is exactly the same as the set of all per-

mutations of (kq,...,k,,)-

Exercise 9.B.7. Give an example of a nonzero alternating 2-linear form o on R? and

a linearly independent list v;, v, € R? such that a(vy,v,) = 0.

This exercise shows that 9.39 can fail if the hypothesis that n = dim V' is deleted.

Solution. We can take

Ol((.’l?l,l'Q,.'ZI?)), (y17y2>y3)) =T1Yo — ToYy, V1 = (15070)a and Vg = (0707 1)
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9.C. Determinants

Exercise 9.C.1. Prove or give a counterexample:

S, TeL(V) = det(S+T)=detS+detT.

Solution. This is false. Let S,T € £(R?) be the operators whose matrices with respect to

the standard basis are

M(S) = ((1) 8) and  M(T) = (8 (1’) ~ M(S+T) = ((1) (1’)

It follows from 9.48 and 9.53 that
det S+detT =0+#1=det(S+1T).

Exercise 9.C.2. Suppose the first column of a square matrix A consists of all zeros
except possibly the first entry A, ;. Let B be the matrix obtained from A by deleting
the first row and the first column of A. Show that det A = A, ; det B.

Solution 1. Suppose that A is an n X n matrix; we may as well suppose that n > 2. Let T
be the operator on F™ whose matrix with respect to the standard basis ey, ..., e,, is A". Let
U = span(e,, ..., e,,) and notice that U is invariant under T since all entries of the first row of
A" are zero, except possibly the first entry. Notice further that the matrix of T'|;; with respect
to ey, ...,e, is B. Let a be an alternating n-linear form on F™ such that a(eq, ...,e,) = 1;
see 9.37 for the existence of such an a. If we define 8 by S(vy,...,v,) = a(Tey, vy, ..., v,,),

then f is an alternating (n — 1)-linear form on U. Using 9.56(a), observe that

det A =det A* =detT
= (detT) a(e, eq, ..., e,)

= (det Bt) OZ(Tela €9y eey en)
= Am(det B) C\f(ela ceey en)

Solution 2. Suppose that A is an n X n matrix; we may as well suppose that n > 2. Consider
the formula for det A given by 9.46:
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det A = Z (sign(jl,...,jn))Ajbl...Ajn,n.

(jl 7'"7jn)epermn

By assumption we have A; ; =0if j; # 1 and thus

det A=A, , > (sign(1, Jy, -y dn)) Ay, 2 Ay -
(17j2a“'ajn)epermn
For (1,js,...,J,) € permn notice that j, > 2 for each k€ {2,...,n}. Thus if we define
iy = Jip1 — Lfor ke {1,...,n — 1}, then (,...,4,,_;) € perm(n — 1). Observe that:
o the map sending (1, j, ..., j,,) +> (i1, ...,%,,_1) is a bijection between the set of all permu-
tations (41, Ja, -, Jn,) € Permn satisfying j; = 1 and perm(n — 1);
e B x=A4A; 144 foreach ke {l,...n—1}
o sign(iq, ..., 4, 1) = sign(1, jo, ..., J,) since 1 is in its natural position in the permutation
(1, 4o, -, Jn) and 45, < 4, if and only if j, 1 < jpyq-
It follows that
detA: A171 Z (Sign(l’j27“'7jn))Aj2,2'"Ajn,n

(17j2 """ jn)epermn

= A1,1 Z (sign(iy, ... in—l))Bil,l Bin,l,n—l = A1,1 det B.

(%1,--1%p_1)€ perm(n—1)
Exercise 9.C.3. Suppose T' € £(V) is nilpotent. Prove that det(I +7T') = 1.

Solution. By 8.18 there is a basis e, ...,e,, of V such that the matrix of T" with respect

to eq,..., e, is upper-triangular with each diagonal entry equal to zero. It follows that the

matrix of I + T with respect to eq, ..., e,, is upper-triangular with each diagonal entry equal

to one. 9.48 and 9.53 allow us to conclude that det(I +7T') = 1.

Exercise 9.C.4. Suppose S € £(V). Prove that S is unitary if and only if
|det S| = | S| = 1.

Solution. If S is unitary then |det S| =1 by 9.58 and ||S|| = 1 since ||Sv|| = |jv| for every
veV.

Conversely, suppose that |det S| = |S| = 1. Let s; > --- > s,, > 0 be the singular values of
S, so that s; = |S|| = 1. Observe that, by 9.60,

1 =|detS|=s;-5,.

It follows that s; =--- =s,, = 1, otherwise the right-hand side of the equation above would
be strictly less than 1. Thus S is unitary by 7.69.

351 / 366



Exercise 9.C.5. Suppose A is a block upper-triangular matrix

Ay *
A= ,
0 A

where each A, along the diagonal is a square matrix. Prove that

det A = (det A;) -+ (det A,,).

Solution. It will suffice to prove the case where m = 2. A straightforward induction argu-

ment will then prove the general case. Suppose therefore that A is a block upper-triangular

B D
A=
(0 C)’
where B is a k x k matrix and C is an £ X £ matrix, so that A is a (k+ £) x (k+ ¢) matrix
and D is a k x £ matrix. Let eq, ..., e, , be the standard basis of FFte | let

matrix of the form

U = span(ey, ...,e;), W =span(eg q,-..,€;),
and let T'€ £(V) and S € £(W) be such that
M(T, (e1,-r€pp)) =A and M(S, (epyqs-erie)) =C.

Notice that U is invariant under 7" and M (T|y, (eq, ...,€)) = B. Let a be a (k + £)-linear
form on F* satisfying a(ey,...,e5,0) = 1; see 9.37 for the existence of such an a. If we
define f: U - F and v: W — F by

B(V1, .y vg) = (U1, ey v, Ty s Tegyy),
,Y(Uk-i-l’ "'7/Uk:+£) = a(el, ceey ek,'l)k+1, ...7/Uk+e),

then f is an alternating k-form on U and ~ is an alternating ¢-form on W. Now observe that

k J4
a(el,...,ek,TekH,...,TekM):a(el,...,ek,E D; €; + E Ci 1€k+i,

i1=1 i1=1

Z Dzl Eeze + z Eek‘l'lg)

1,=1 1p=1
k k
- E b E Dil,l.'.Dig,é a(e]_,...’ek,eil’...,eil)
=1 =
k k

+ E E C;., C’,L-Ma(el,...,ek,ekﬂl,...,ekﬂé)
= E E 7’1’ Z ea(el,...,ek,ek_i_il,...,ek_i_iZ);

i1=1 1,=1
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this last line holds since a(el, ey €k €5 s ...,eie) = 0 for any (iy,...,3,) € {1, ..., k}g (because

« is alternating). It follows that

k k
a(el,...,ek,T€k+1,...,T€k+£) = E A E Cil,l"'cie,ﬁ O[(e]_,...,ek,ek_i_il,...,ek_i_ig)

ii=1  i,=1

Y 0
=« el,...,ek,g C,L'l’lek_i_ila"')g C;, tCh+i,

i =1 Q=1
= a(eq,y e €h, S€pyqs ey S€pig)-
Now observe that

det A =detT
= (det T) a(eq, oy €4y €1y oo Eprr)
= a(Tey, ... Tey, Tegy1y -y Teris)
= B((T|y)er, - (Tly)ex)
= (det(T[yy)) Bley, - €,)
= (det B) a(eq, ey €y Tpi1y ooy Teh i)
= (det B) a(eq, ..., €, S€p i1, -, S€piy)
= (det B) y(Seji1, - Sepir)
= (det B)(det S)y(egy1s - €pie)
= (det B)(det C) ax(eq, -y €k, €1y -vs €pie)

= (det B)(det C).

Exercise 9.C.6. Suppose A = ( v; -+ v, ) is an n-by-n matrix, with v, denoting the

k™ column of A. Show that if (m4,...,m,,) € permn, then

det( Vpp, U ) = (sign(my,...,m,,)) det A.

m,,

Solution. Swapping pairs of columns of ( Uy, " Uy ) multiplies the determinant by —1
(see 9.57(b)). If N is the number of swaps required until the columns are in the correct order,

ie. (v, = v, ), then sign(my,...,m,) = (—1)".
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Exercise 9.C.7. Suppose T' € £(V) is invertible. Let p denote the characteristic poly-

nomial of T and let ¢ denote the characteristic polynomial of 7-!. Prove that
1 . 1

q(z) = —=24""p (—)

p(0) 2

for all nonzero z € F.

Solution. By definition we have p(z) = det(zI — T') and q(z) = det(zI —T~'). Now observe
that

1 .y (1 1 v (1
_ = dim )l =—— o AmVdet| =] T
p(0)” p@)dWJV “\z
= det(—T') det(I — 2T)
(

2l —T71)

where the second line holds by 9.50 and the third bullet point of 9.42 and the second line
holds by 9.49(a).

Exercise 9.C.8. Suppose T € £(V) is an operator with no eigenvalues (which implies
that F = R). Prove that detT" > 0.

Solution. Since T has no eigenvalues, it must be the case that F = R and n:=dimV is
even (by 5.34). Furthermore, the characteristic polynomial p of T' must have no real roots.

Thus the factorization of p over C is of the form

p(2) = (2= A)(z = Ay) = (2 = A) (2 = App)

for some non-zero complex numbers Ay, ..., A, (see Chapter 4). It follows that the constant

m

term of p is

AL A A = [P A > 0.
On the other hand, by 9.65, the constant term of p equals (—1)"(detT) = detT. Thus
detT > 0.

Exercise 9.C.9. Suppose that V is a real vector space of even dimension, T' € £(V),

and detT' < 0. Prove that T" has at least two distinct eigenvalues.
Solution. We will prove the contrapositive, i.e. assuming that V is a real vector space of

even dimension and T' € £(V), we will prove that if 7' has at most one distinct eigenvalue
then det T" > 0. If T has no eigenvalues then Exercise 9.C.8 shows that detT" > 0, so suppose
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that T has exactly one eigenvalue A and let dim V' = 2n for some positive integer n. It follows

that the characteristic polynomial p of T is given by p(z) = (z — A)*". Now observe that

det T = (—1)*"det T = det(—T) = p(0) = (—\)*" > 0.

Exercise 9.C.10. Suppose V is a real vector space of odd dimension and T € £(V).

Without using the minimal polynomial, prove that 7" has an eigenvalue.

This result was previously proved without using determinants or the characteristic

polynomial—see 5.34.

Solution. The characteristic polynomial p of T is a polynomial of odd degree with real

coefficients. It follows from Exercise 4.9 that p has a real zero, i.e. T' has an eigenvalue.

Exercise 9.C.11. Prove or give a counterexample: If F = R, T € £(V), and det T > 0,

then T has a square root.

IfF =C,T € £(V)and detT # 0, then T has a square root (see 8.41).

Solution. This is false. For a counterexample, let T' be the operator on R? whose matrix

A= (_01 _11>

Thus det T' = det A = 1 by 9.48. We claim that T" has no square root. It will suffice to show

that for any matrix

with respect to the standard basis is

Mz(a b)eRQ»2
cd

we have M? #+ A. Indeed, observe that
A2 — a?+bc bla+d)
c(a+d) be+ d?.
Equating this to A, we must have c(a + d) = 0. If ¢ = 0 then a? = —1, which cannot hold

for a € R, so it must be the case that a = —d. But now b(a + d) = 0 # 1. Thus there does
not exist M € R%? satisfying M? = A.

Exercise 9.C.12. Suppose S,T € £(V) and S is invertible. Define p : F — F by
p(z) = det(zS —1T).

Prove that p is a polynomial of degree dim V' and that the coefficient of z4™V in this

polynomial is det S.

Solution. Let n = dim V and observe that
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p(z) =det(2S —T) = det(S (2] — S7IT)) = (det S)(det(2I — S7'T)) = (det S)q(z),

where g is the characteristic polynomial of S™'T. Since det S # 0 (because S is invertible)
we see that p is a polynomial of degree n. Furthermore, by 9.65, the coefficient of 2™ in the

polynomial p is det S.

Exercise 9.C.13. Suppose F = C,T € £(V),and n =dimV > 2. Let A, ..., \,, denote

the eigenvalues of T', with each eigenvalue included as many times as its multiplicity.

(a) Find a formula for the coefficient of 2”2 in the characteristic polynomial of T in

terms of A\j, ..., \,.

(b) Find a formula for the coefficient of z in the characteristic polynomial of T" in terms
of \{,.., A

n:

Solution.

(a) By 9.62, the characteristic polynomial p of T is given by
p(2) = (2= Ay) (2= Ay).

Multiplying p out involves making a binary choice for each factor (either choose z or
—)\;,), summing over all 2" choices, and collecting like powers. To find the coefficient of
2"~2 we should choose z from n — 2 of the factors; equivalently, we should choose —\,,
from 2 of the factors. That is, for each choice of 1 <7 < 7 < n we obtain a contribution
of (—/\i)(—)\j) = A\;A; to the coefficient of 2""2. Summing over all such choices, we see
that the coefficient of 2”2 in p is
>
1<i<j<n

(b) As in part (a), to find the coefficient of z we should choose z from exactly one of the
factors, which is equivalent to choosing —\; from n — 1 of the factors. In other words,
we should omit exactly one of the \,’s, i.e. for each choice of 1 < k < n we obtain a

contribution of

(A1) (M) (k) = (FAL) = (F1) T g = Ay Ay - A)

to the coefficient of z. If we write A; - )\Ak === \,, to mean the product of all the eigenval-
ues Ay, ..., A, except for A\, then the coefficient of z in p is

n

(1) Z)‘l A A

k=1

Exercise 9.C.14. Suppose V is an inner product space and T is a positive operator on
V. Prove that

det VT = Vdet T.
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Solution. By 7.38(c) there is an orthonormal basis ey, ..., e,, of V with respect to which the

matrix of T is of the form

for some non-negative real numbers A, ..., \,,. It is then clear that the matrix of VT with

respect to eq, ..., e, is
/A, - 0
0 - /X,
It follows from 9.48 that

det VT = /AL /A, = VA A, = Vdet T.

Exercise 9.C.15. Suppose V is an inner product space and T' € £(V'). Use the polar

decomposition to give a proof that
|det T'| = +/det(T*T)
that is different from the proof given earlier (see 9.60).
Solution. By the polar decomposition (7.93) there exists a unitary operator S € £(V') such
that T' = SvT*T. Now observe that

|det T| = |det(SVTT)| = |(det S)(det(VTT) )| = |det S||/det(T*T)| = \/det(T*T),

where the second equality follows from 9.49, the third equality follows from Exercise 9.C.14,
and the fourth equality follows from 9.58 and 9.59.

Exercise 9.C.16. Suppose T' € £(V). Define g : F — F by g(z) = det({ + 2T"). Show
that ¢’(0) = tr 7.

Look for a clean solution to this exercise, without using the explicit but complicated

formula for the determinant of a matrix.

Solution. Let n = dim V' and let p be the characteristic polynomial of —T'. For = # 0, ob-

serve that
g(x) =det(I +2T) ==z det(;[—k T) =z p(;) =14+ (trT)x + -+ (det T)z™,

where we have used 9.65 for the last equality. Since g(0) = det I = 1, we see that this formula
holds for all x € F. Thus ¢'(0) =trT.
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Exercise 9.C.17. Suppose a, b, ¢ are positive numbers. Find the volume of the ellipsoid
2 2 2
Y z
{(:v,y, )€R3 —+b—2+—<1}

by finding a set  C R3 whose volume you know and an operator T on R2 such that

T(£2) equals the ellipsoid above.

Solution. Let e, 5, e5 be the standard orthonormal basis of R?, let @ = {v € R?: |v| < 1},
and define T € £(R?) by Te, = ae;,Te, = be,, and Tes = ce;. Then as the proof of 7.99

shows,

22 g2 22
T(Q):E(ael,b627063): (a:,y,z)GRg _+b_2+_<1
Thus the volume of the ellipsoid in question is given by 9.61:
4ab
volume T'(2) = |det T'|(volume Q) = a3c7r'

Exercise 9.C.18. Suppose that A is an invertible square matrix. Prove that Hadamard’s
inequality (9.66) is an equality if and only if each column of A is orthogonal to the

other columns.

Solution. Let vy, ...,v,, be the columns of A, let e, ..., e,, be the result of applying the Gram-
and let A = QR be the QR factorization (see 7.58) of A, i.e.

is the unitary matrix whose columns are eq,...,e, and R is the upper-triangular matrix
Yy 1 n pp g

Schmidt procedure to vy, ..., v,,,

with positive diagonal entries whose (j, k)™ entry is R, = <Uk, ej>. By studying the Gram-
Schmidt procedure, we see that the columns of A are orthogonal to each other if and only if
the list e, ..., e,, is given by

Uy v

||U1||,

n_ 1)

e

vy € =

61=

Furthermore, the proof of Hadamard’s inequality (9.66) shows that the inequality is an
equality if and only if

Ry Ry =Rl R, (2)

Suppose that the columns of A are orthogonal to each other. It follows from (1) and the
definition of R that R is a diagonal matrix whose k™ diagonal entry is |v,|, from which it
follows that both sides of (2) are equal to |v,|-|v, |- Thus Hadamard’s inequality is an
equality.

Now suppose that Hadamard’s inequality is an equality, so that (2) holds. It follows that
each inequality R , <|R. ;| must be an equality, otherwise the left-hand side of (2) would
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be strictly less than the right-hand side. Thus each off-diagonal entry of R must be zero, i.e.
<vk, ej> = 0 for j # k. It follows that at the k" stage of the Gram-Schmidt procedure we set
e, = |vg| "y, so that (1) holds. Thus the columns of A are orthogonal to each other.

Exercise 9.C.19. Suppose V is an inner product space, eq,...,e, is an orthonormal

basis of V, and T' € £(V) is a positive operator.
(a) Prove that detT < [[i_1(Teg,ex)-

(b) Prove that if T is invertible, then the inequality in (a) is an equality if and only if

e, is an eigenvector of T for each k =1,...,n

Solution.

(a) Let B be the matrix of v/T with respect to ey, ...,e, and suppose the columns of B
so that |lv,| = |V/Te,| for each k € {1, ...,n} (the norm on the left-hand

side is the usual norm on F™ and the norm on the right-hand side is the norm on V).

are vy, ..., U,,

Note that det T and det v/T are non-negative since T' and /T are positive operators
(see 9.59). It follows from Hadamard’s inequality (9.66) that

det VT = det B < [[llvil = [[|[VTerl| = [ vV (Ter ex)-
k=1 k=1 k=1
Thus

detT = (\/detT)2 = (det ﬁ) ﬁ (Tey, e,

where we have used Exercise 9.C.14 for the second equality.

(b) Let Aq,..., A\, be the eigenvalues of T'; since T is a positive operator, these are also the
singular values of T' (once sorted into decreasing order; see Fxercise 7.1.7). If each e,
is an eigenvector of T then, by 9.60, both sides of the inequality in (a) equal A;-- A,,.
Now suppose that the inequality in (a) is an equality. Since we only used Hadamard’s
inequality to derive the inequality in (a) and T being invertible implies v/T is invertible,
Exercise 9.C.19 shows that the columns of B (as defined in (a)) must be orthogonal to
each other. It follows that B*B is a diagonal matrix, since its (j, k)™ entry is (vj, vk>.
Now observe that, by the self-adjointness of v/T,

T = (\/:7)2 = (VT)' (VT) = M(T,(ey,....e,)) = B*B.

Thus the matrix of T" with respect to e, ..., e,, is diagonal, i.e. each e, is an eigenvector
of T.
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Exercise 9.C.20. Suppose A is an n-by-n matrix, and suppose ¢ is such that ‘Aj7k| <c
for all 5,k € {1,...,n}. Prove that

det A| < c"n™/2.

The formula for the determinant of a matrix (9.46) shows that |det A| < c¢"nl. However,
the estimate given by this exercise is much better. For example, if c = 1 and n = 100,
then c"n! ~ 10'%%, but the estimate given by this exercise is the much smaller number
1019, If n is an integer power of 2, then the inequality above is sharp and cannot be

improved.

Solution. Suppose the columns of A are vy, ...,v,,. For any k € {1,...,n}, observe that

2 2
loel? = D" 144" < e?n = o] < ent/2.

n
J=1

It follows from this inequality and Hadamard’s inequality (9.66) that

n
|det A| < H”Uk” < "2,
k=1

Exercise 9.C.21. Suppose n is a positive integer and § : C™"™ — C is a function such
that

d(AB) =6(A) - §(B)
for all A, B € C™™ and 6(A) equals the product of the diagonal entries of A for each
diagonal matrix A € C™". Prove that
d(A)=det A
for all A € C™™.

Recall that C™™ denotes the set of n-by-n matrices with entries in C. This exercise
shows that the determinant is the unique function defined on square matrices that is
multiplicative and has the desired behavior on diagonal matrices. This result is anal-
ogous to Exercise 10 in Section 8D, which shows that the trace is uniquely determined

by its algebraic properties.

Solution. First suppose that A is not invertible. It follows from Exercise 3.C.5 that there are
matrices B, C, and D such that A = BDC, where D is diagonal with at least one diagonal
entry equal to zero. Thus 6(D) = 0 and hence

5(A) = §(B)§(D)5(C) = 0 = det A,

where we have used 9.50 for the last equality.
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To prove that 6(A) = det A for invertible A, let us first prove the following. For i, j € {1,...,n}
such that i # j and a € C, let C; ;(a) be the identity matrix except for an « in the i™ row
and j column. For any A € C™", a calculation shows that AC; ;(«) is the matrix obtained
from A by adding a times column ¢ to column j. We claim that (Cm-(a)) = 1. For ease of
notation, let C'= C; ;(a). Note that C is invertible (its inverse is C; ;(—a)). Let B be the
identity matrix except for B, ; = % and let D be the identity matrix except for D, ; = 2. A
calculation shows that C = BCDC™! and it follows that

i(C) = 5(B)5(C)5(D)5(C_1) = % -0(C)-2- 5(0_1) = 5(06’_1) =d6(1) =1,
as claimed.

Now suppose that A is invertible. By 5.47 and 3.84, there exists an invertible matrix B and
an invertible upper-triangular matrix U such that A = B~1UB, from which it follows that

§(A) = §(B-1)5(U)8(B) = (U)6(B~B) = 8§(U)5(I) = 8(U).

Since det A = det U by 9.52, it will suffice to show that §(U) = det U. Suppose that the di-

agonal entries of U are Aj, ..., \,; note that each A, is non-zero since U is invertible and that

eey ns

det U = A;-- A\, by 9.48. For any matrix of the form C; ;(«), observe that
Given that U is upper-triangular with non-zero diagonal entries, we can multiply U on
the right by successive matrices of the form C; ;(a) until we obtain a diagonal matrix D

with diagonal entries Aq, ..., \,; as we just showed, this has no effect on the value of 4, i.e.
§(D) = 46(U). Thus

§(U) = 6(D) = Ay A, = detU,

as desired.
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9.D. Tensor Products

Exercise 9.D.1. Suppose v € V and w € W. Prove that v ® w = 0 if and only if v =0

or w = 0.
Solution. If v = 0 then ¢(v) =0 for any ¢ € V' and if w = 0 then 7(w) = 0 for any 7 € W”’.
Thus if v =0 or w = 0 then
(v®w)(p,7) = @(v)7T(w) =0
for any ¢ € V’ and any 7 € W’. Hence v @ w = 0.

If v#£0 and w # 0 then, by Exercise 3.F.3, there exist ¢ € V' and 7 € W’ such that
o(v) = 7(w) = 1. It follows that

(v®w)(p,7) = p(v)7(w) = 1.

Thus v ® w # 0.

Exercise 9.D.2. Give an example of six distinct vectors v, vy, v3, wy, Wy, w3 € R3 such
that

but none of v; @ wy, vy ® wy, v3 ® wy is a scalar multiple of another element of this list.

Solution. Let

1 —1 2 1 1
vp= 11|, vpu=|-1], v3=1[2], wy=|-1|, wpa=1|0], w3z=
1 —1 2 0 1

By identifying v, ® w;, with the matrix v,w}, (see 9.76), we find that

1-10 —-10 -1 011
11Qw;=|1-10], 1,Qwy=|—-10-11], v3wz3=1011].
1-10 —-10 -1 011

Since the sum of these three matrices is zero and none of them is a scalar multiple of another,

= = O

V] @ Wy, Vg @ Wy, V3 @ wy is the desired list.

Exercise 9.D.3. Suppose that v,,...,v,, is a linearly independent list in V. Suppose

o Ym

also that wy,...,w,, is a list in W such that

m

v @wy + -+ v, Quw, =0.

Prove that w; = =w,, = 0.
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Solution. We will prove the contrapositive. Suppose that w, # 0 for some k € {1,...,m}.
By Exercise 3.1.3 there exists some 7 € W’ such that 7(wy,) # 0. As in the proof of 9.74, let
D1y -y P € V' be such that goi(vj) =1ifi=jand goi(vj) = 0 otherwise. Now observe that

(V1 @ Wy ++ + v, @ W, |(Pg, T) = P (v1)7(wy)
+ o+ (o) T(wg) + - + g (V) T(w,,) = T(wy,) # 0.

Thus v; ® wy + - +v,, ®w,, # 0.

Exercise 9.D.4. Suppose dimV > 1 and dim W > 1. Prove that
{vew: (v,w) e Vx W}
is not a subspace of V@ W.
This exercise implies that if dimV > 1 and dim W > 1, then
{v@w: (v,w) EVXW}£VQW.

Solution. Let e, e, ..., €,, be a basis of V with dual basis ¢;, ¢, ..., ©,,, and let f,, fo, ..., f,,

be a basis of W with dual basis 7, 7y, ..., 7,,. Let
U={vw: (v,w) eV x W}
Observe that

1 ifi=je{1,2},
0 otherwise.

le; ® fy +€2®f2](90¢,7'j) = {

For any v =a,e; +asey +--+a,e, €V and any w=>b,f, +byfy +--+0b,f, € W, ob-
serve that (v® w)(gpi, Tj) = a;b;. Equating e; ® f; + e, ® f; = v ® w then gives us the sys-

tem of equations
a/lbl — a/zbz — ]. aIld ale - (Ile - 0,

which has no solution. Thus e; ® f; + €5 ® fy # v ® w for any (v,w) € V' x W, which shows
that U is not closed under addition and hence is not a subspace of V@ W.

Exercise 9.D.5. Suppose m and n are positive integers. For v € F™ and w € F", iden-
tify v ® w with an m-by-n matrix as in Example 9.76. With that identification, show
that the set

{v@w:veF™ and w e F"}

is the set of m-by-n matrices (with entries in F') that have rank at most one.

Solution. Thinking of v and w as column vectors, Example 9.76 shows that we can identify

v ® w with the m-by-n matrix vw®. The desired result is now immediate from Exercise 3.C.16.
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Exercise 9.D.6. Suppose m and n are positive integers. Give a description, analogous
to Exercise 5, of the set of m-by-n matrices (with entries in F') that have rank at most

two.

Solution. Let M be the collection of m-by-n matrices with entries in F that have rank at
most two. We claim that M can be identified with the set

{u@uw+v®x:u,veF™ and w,x € F*}

by identifying u ® w with uw® (thinking of w and w as column vectors) as in example 9.76.

This amounts to showing that
M = {uw* +vz® : u,v € F™! and w,z € F”’l}.
For u,v € F™! and w,z € F™!, observe that uw® + vz® is the matrix whose k™ column is

wiu + v, from which it is clear that the span of the columns of uw® 4+ vz® is equal to the

span of v and v. Thus uw® + vz® has rank at most two.

Exercise 9.D.7. Suppose dim V' > 2 and dim W > 2. Prove that

{v; @w; + vy @ Wy : vy,v, €V and wy,wy € W} £V QW.

Solution. Suppose eq, ..., e, is a basis of V' and fi,..., f,, is a basis of W, where m,n > 3.

By identifying an m-by-n matrix A with the bilinear functional

m

ZZA & ® i)

1j=1
as in the proof of 9.74, we can identify V @ W with F"™. Under this identification the set
E:={v; @w; + vy Qw, : vy,v5 € V and wy,w, € W}

corresponds to the set of m-by-n matrices that have rank at most two, as we showed in
Exercise 9.D.6. Given that m,n > 3, there exist matrices in F™" with rank strictly greater
than two. Thus E#V @ W.

Exercise 9.D.8. Suppose vy, .. €V and wy,...,w,, € W are such that

e m

vy @ wy + -+ v, w, =0.
Suppose that U is a vector space and I' : V- x W — U is a bilinear map. Show that
F(UD wl) + et F(Um7 wm) = 0.

Solution. 9.79(a) shows that there exists a linear map I': V ® W — U such that
T(v®w) =T(v,w)
for all v € V and all w € W. It follows that
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[(vy,wy) + -+ (v, w,) = f(vl Qwy) + - +I'(v,, ®w,)

Exercise 9.D.9. Suppose S € £(V) and T € £(W). Prove that there exists a unique
operator on V ® W that takes v ® w to Sv @ Tw for all v € V and w € W.

In an abuse of notation, the operator on V.Q W given by this exercise is often called

S®T.

Solution. Define a bilinear mapI' : V. x W — V @ W by I'(v, w) = Sv ® Tw. By 9.79, there
is a unique operator I' € £(V ® W) such that

T(v®w) =(v,w) = Sv® Tw.

Exercise 9.D.10. Suppose S € £(V) and T' € £(W). Prove that S ® T is an invertible
operator on V @ W if and only if both S and T are invertible operators. Also, prove
that if both S and T are invertible operators, then (S ® I/V)_1 =S 1 ®T !, where we

are using the notation from the comment after Exercise 9.

Solution. If S and T" are both invertible then
(STTRITHS W) v@w)= (ST H(SveTw)=S1Sv@T ' Tw=vQw
for any (v,w) € V. x W. Thus § ® W is invertible and (S@ W) ' =5t T 1.

Now suppose that S is not invertible (the case where T is not invertible is handled similarly).
There exists a non-zero v € V such that Sv = 0. Let w € W be non-zero (we may as well
assume W # 0) and note that v ® w # 0 by Exercise 9.D.1. Now observe that

SRT)v@w)=Sv®Tw=0® Tw=0.

Thus S ® T is not invertible.

Exercise 9.D.11. Suppose V and W are inner product spaces. Prove that if S € £(V)
and T € £(W), then (S®T)" = S* ® T*, where we are using the notation from the

comment after Exercise 9.

Solution. For any u,v € V and any w,xz € W, observe that
(SRT)vew),u®z)=(SvQTw,u )
= (Sv, u)(Tw, x)
= (u, S*u)(w, T*x)
=(v®w,S*u®T*x)
=ww,(S*®T*)(u® x)).
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Thus (S®T)" = S* ® T*.

Exercise 9.D.12. Suppose that Vi, ..., V,  are finite-dimensional inner product spaces.
Prove that there is a unique inner product on V; ® --- ® V,,, such that

<1)1 Q@ Up, U @ ® um) = <U17 ’LL1> <Um7 um)
for all (vy,...,v,,) and (uqy,...,u,,) in V; x - xV,_.

Note that the equation above implies that
[v1 ® -+ ®@ vy || = og] X -+ X [y, |

forall (vy,...,v,,) €V} X - xV,_.

k
ng

Solution. For each k € {1,...,m} let €¥,...,eF be an orthonormal basis of V.. A very tedious

calculation shows that

O35 SENNCERETHD 39 ST CEREL >>

J1=1 Ji=1

> Z IR —

J1=1

is the desired inner product.

Exercise 9.D.13. Suppose that V;,...,V, are finite-dimensional inner product spaces
and V; ® ---®V,, is made into an inner product space using the inner product from
Exercise 12. Suppose e, ..., eflk is an orthonormal basis of V,, for each k =1, ..., m. Show
that the list

,®- 8 |

.71_17 ’nla'v.]m*la 3Mm

is an orthonormal basis of V; @ - ® V.

Solution. The list in question is a basis of V; ® ---® V., by 9.90. To verify orthonormality,
suppose that iy, j, € {1,...,n;,} for each k € {1,...,m} and observe that

<611® Qe ,ej ® Qe >:<e%1’e}1>...<ez'(n em>:{1 if iy = J15 s by = Jims

b .
m’ JIm 0 otherwise.
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